
Resource Recycling: Putting Idle Resources to Work on a
Composable Accelerator

Yongjun Park1, Hyunchul Park2, Scott Mahlke1, and Sukjin Kim3

1Advanced Computer Architecture Laboratory 2Texas Instruments, Inc. 3Samsung Advanced
University of Michigan Institute of Technology

Ann Arbor, MI Houston, TX Giheung, Republic of Korea
{yjunpark, mahlke}@umich.edu {parkhc}@ti.com {sukj.kim}@samsung.com

ABSTRACT
Mobile computing platforms in the form of smart phones, netbooks,
and personal digital assistants have become an integral part of our
everyday lives. Moving ahead to the future, mobile multimedia
support will become a key differentiating factor for customers. Fea-
tures such as high-definition audio and video, video conferencing,
3D graphics, and image projection will lead to the adoption of
one phone over another. However, in contrast to wireless signal
processing which is dominated by vectorizable computation, mo-
bile multimedia applications often contain complex control flow
and variable computational requirements. Moreover, data access
is more complex where media applications typically operate on
multi-dimensional vectors of data rather than single-dimensional
vectors with simple strides. To handle these complexities, com-
posable accelerators such as the Polymorphic Pipeline Array, or
PPA, present an appealing hardware platform by adding a degree
of hardware configurability over existing accelerators. Hardware
resources can be both statically as well as dynamically partitioned
among executing tasks to maximize execution efficiency. However,
an effective compilation framework is essential to partition and as-
sign resources to make intelligent use of the available hardware. In
this paper, a compilation framework is introduced that maximizes
application throughput with hybrid resource partitioning of a PPA
system. Static partitioning handles part of the resource assignment,
but this is followed up by dynamic partitioning to identify idle re-
sources and put them to use – resource recycling. Experimental
results show that real-time media applications can take advantage
of the static and dynamic configurability of the PPA for increased
throughput.

Categories and Subject Descriptors
D.3.4 [Processors]: [Code Generators]; C.3 [Special-Purpose and
Application-Based Systems]: [Real-time and Embedded Systems]

General Terms
Algorithms, Experimentation, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-903-9/10/10 ...$10.00.

Keywords
Coarse-grained reconfigurable architecture, Composable accelera-
tor, Dynamic partitioning, Modulo Scheduling, Workload balanc-
ing

1. INTRODUCTION
The mobile devices market, including cell phones, netbooks, and

personal digital assistants, is one of the most highly competitive
businesses. The computing platforms that go into these devices
must support ever increasing performance capabilities while main-
taining low energy consumption. Advanced multimedia and signal
processing applications are key drivers. Traditionally, application-
specific integrated circuits (ASICs) were used for the heavy lifting
to perform the most compute intensive kernels in a high perfor-
mance but energy-efficient manner. However, several features push
designers to a more flexible and programmable solution: support-
ing multiple applications or variations of applications, providing
faster time-to-market, and enabling algorithmic changes after the
hardware is constructed.

For wireless signal processing, programmable designs that ex-
ploit high degrees of single-instruction multiple-data (SIMD) par-
allelism have emerged to challenge ASICs [2, 1, 5, 15, 24]. While
these solutions suffice for wireless signal processing, multimedia
applications contain more complex data dependence patterns and
frequent control flow for which wide-SIMD is inefficient. Thus, a
different approach is necessary.

Polymorphic pipeline arrays (PPAs) are attractive alternatives
for accelerating multimedia applications because the hardware is
more flexible and can accelerate the code in multiple ways [19].
Coarse-grain pipeline parallelism is exploited by concurrently ex-
ecuting filters in streaming applications [7, 8, 12], as well as fine-
grain instruction level parallelism is also found by modulo schedul-
ing innermost loops [21]. A PPA is a generalization of a coarse-
grain reconfigurable architecture (CGRA) shown in Figure 1 [17].
It consists of an array of simple processing elements (PEs) that are
tightly interconnected by a scalar operand network and a shared
memory. Groups of four PEs form cores that are driven by a sin-
gle instruction stream. These cores can execute tasks (filters in a
streaming application) independently or neighboring cores can be
coalesced to execute loops with high degrees of fine-grain paral-
lelism. The use of a regular interconnection fabric allows the core
boundaries to be blurred, thereby allowing the hardware to be cus-
tomized differently for each application.

While PPAs provide the opportunity for hardware customiza-
tion, an effective compiler is necessary to configure the hardware
to maximize application performance. In this work, we adopt the
stream programming paradigm. Stream programming is generally

PE PE

PE PE

Core 0

MEM

Arbiter

PE PE

PE PE

Core 2

PE PE

PE PE

Core 1

PE PE

PE PE

Core 3

MEM MEM MEM

PE PE

PE PE

Core 4

MEM

Arbiter

PE PE

PE PE

Core 6

PE PE

PE PE

Core 5

PE PE

PE PE

Core 7

MEM MEM MEM

(a) (b)

FU 0 RF 0

I-CACHE
Loop

Buffer

FU 1 RF 1

PE 0 PE 1

FU 2 RF 2 FU 3 RF 3

PE 2 PE 3

Core 5

RF 1

RF 3

RF 0 RF 1

Loop
Buffer

Loop
Buffer

V-
Control

pred
RF

Figure 1: PPA Overview: (a) PPA with 8 cores, (b) Inside a
single PPA core

based on synchronous dataflow wherein the application is repre-
sented as a directed graph (stream graph) where each node repre-
sents an actor and each arc represents the flow of data [13]. The
number of data samples produced and consumed by each node are
specified a priori. For this work, we focus on stream-style C code
where a program is represented as a set of autonomous actors (also
called filters) that operate on data and communicate through first-
in first-out data channels [23]. During program execution, actors
fire repeatedly in a periodic schedule [8]. Each actor has a sepa-
rate instruction stream and an independent address space, thus all
dependences between actors are made explicit through the commu-
nication channels. Compilers can leverage these characteristics to
plan and orchestrate parallel execution.

Given a streaming application, the primary challenge is to per-
form resource allocation and assignment so as to achieve maximum
throughput. More specifically, a PPA compilation framework must
not only partition filters across the available cores, but also aggre-
gate cores together into core-groups to jointly execute the assigned
filters. Larger core-groups are effective for long-running filters be-
cause higher levels of fine-grain parallelism can be exploited. By
modulo scheduling across more resources, higher performance is
achieved. However, selecting large core-groups reduces the overall
number of groups and hence the amount of coarse-grain pipeline
parallelism that can be exploited. Greedily speeding up a small
portion of the application often results in poor overall performance.
Thus, an intelligent compiler must achieve a balance.

In this paper, the goal is to solve the joint filter assignment and
core aggregation problem for mapping streaming applications onto
a PPA. We start by defining the main scheduling constraints on PPA
architectures, and propose a new compilation process to solve the
difficulties. In this framework, we adapt the key concept from the
stream graph modulo scheduling algorithm for coarse-grain paral-
lelism [12]. The main difference is that parallel composition of
the each filter is not performed with split-joins, but by modulo
scheduling across larger core-groups. With this change, the PPA
compiler can be used for more generic code by removing the re-
strictions of static data rates on stream programming languages like
StreamIt [23]. Edge-centric modulo scheduling (EMS) [18], which
focuses on routing of values between functional units, is used as the
modulo scheduling technique for exploiting fine-grain parallelism.

The compilation process consists of three steps. First, filters are
assigned to virtual cores using static partitioning and an approxi-
mate load balancing algorithm. Next, core allocation is performed
to map the virtual cores to the physical cores considering core loca-
tions and the inter-filter communication patterns. Finally, fine-grain
dynamic partitioning is performed to identify and recycle under-
utilized resources.

This paper offers the following three contributions:

• An analysis of the scheduling difficulties for composable ac-
celerators such as the PPA.

• A compilation framework for jointly partitioning streaming
applications across hardware resources and selecting resource
aggregations that jointly exploit coarse-grain parallelism be-
tween filters and fine-grain parallelism within filters.

• An efficient resource borrowing technique is proposed to re-
duce the execution time of the largest coarse-grain pipeline
stage by borrowing resources from underutilized stages.

2. BACKGROUND AND MOTIVATION

2.1 Composable Accelerators
As chip multiprocessors (CMPs) have become commonplace in

today’s desktop environment, their importance is growing rapidly
in the mobile environment. The disparity between the granularity
of parallelism in workloads and the granularity of processing cores
inspired a flexible execution model that allows the aggregation of
small cores to create larger logical cores [11],[10].

Composable accelerators are multi-core accelerator designs that
incorporate this flexible execution model in embedded systems.
Multiple small cores enable the parallel execution of individual
tasks, exploiting task level parallelism. Additionally, when there
is a high degree of parallelism within a task, such as loop level par-
allelism or instruction level parallelism, a larger core can be created
by merging small cores. With this flexible execution model, differ-
ent levels of parallelism can be exploited with a single piece of
hardware.

Our specific compilation target is the Polymorphic Pipeline Ar-
ray (PPA) shown in Figure 1. A PPA is a composable accelerator
for embedded systems that can exploit both the fine-grain paral-
lelism found in innermost loops and the pipeline parallelism found
in streaming applications. A PPA consists of multiple simple cores
that are tightly coupled to neighboring cores in a mesh-style in-
terconnect. A PPA with 8 cores is shown in Figure 1(a). There
are a total of 32 processing elements (PEs) in this PPA, each con-
taining one function unit (FU) and a register file (RF). Four PEs
are combined to create a core that can execute its own instruction
stream. Each core has its own scratch pad memory and column
buses connect 4 PEs to a memory access arbiter that provides shar-
ing of scratch pad memories among the cores.

The detailed diagram of a single PPA core is shown in Figure 1(b).
Each PE contains a 32-bit FU and a 16 entry register file. PEs are
connected to a mesh-style interconnect. The distributed nature of
PPA provides low power consumption and hardware cost making
it an attractive solution for embedded systems. The mesh intercon-
nect also connects the neighboring PEs in different PPA cores. This
allows fast inter-core communication for mapping compute inten-
sive loop nests across multiple cores. A detailed description of PPA
cores can be found in [19].

2.1.1 Supporting Different Levels of Parallelism
The major feature of the PPA is its ability to exploit both fine-

grain and coarse-grain pipeline parallelism. Since each PPA core
can process its own instruction stream, coarse-grain parallelism can
be exploited for streaming applications. The communication be-
tween pipeline stages can be efficiently supported with DMA con-
nections between cores. Abundant fine-grain parallelism within a
pipeline stage can also be exploited by aggregating multiple cores
to form a larger logical core allowing for maximized resource uti-
lization. This is efficient since the PPA provides fast inter-core
communication using a mesh-style interconnect.

A

B
C

E

5

40

5

5

A

B1 C

S

J

B2

E

5

20

2

2

20 5

5

A

B1

C

S

J

B2

E

Memory transfer

Stage 0

Stage 1

Stage 2

Proc 1 Proc 2

(a) Original stream graph (b) SGMS processor assignment

(d) SGMS stage assignment

20/20

Proc 1 Proc 2

(c) PPA processor assignment

D 5 D 5

A

B
C

E

5

5

5

D 5

A

B

C

E

Stage 0

Stage 1

Stage 2

(e) PPA stage assignment

D D

Memory transfer

Memory transfer

Memory transfer

Figure 2: Example of processor and stage assignment for
SGMS and PPA scheduling.

2.1.2 Virtualization
One of the major characteristics of a PPA is virtualized execu-

tion of software pipelined loops [19]. Virtualized modulo schedul-
ing generates a unified schedule that can be mapped onto different
target sub-arrays of the PPA. At runtime, the PPA cores are dynam-
ically merged to create larger logical cores based on the resource
availability. With virtualization support, tasks can execute on dif-
ferent sized cores without rescheduling, improving the overall per-
formance when the resource requirement in the workloads varies
dynamically during execution [19]. However, there are some lim-
itations of virtualization on a PPA, such as sub-optimality of the
unified schedules and runtime overhead for virtualization.

2.1.3 Partitioning Schemes
Static Partitioning. The PPA array can be partitioned statically

based on the resource requirement of each coarse-grain pipeline
stage. Static partitioning has its benefit in achieving high quality
schedules, but it cannot adapt to dynamically changing resource
availability. When an application has a large variation in execution
pattern, static partitioning can either result in low utilization of re-
sources, or may not be able to fully accelerate the application when
there are not enough resources available.

Dynamic Partitioning. Coarse-grain pipeline stages in mul-
timedia applications have different execution patterns, resulting in
fluctuating resource requirements. Dynamic partitioning can come
in handy with the presence of dynamic variation of resource re-
quirements. The partitioning of the PPA array can change during
runtime on demand. For a single pipeline stage, a single core can
be assigned to an acyclic region of code, but more resources can be
assigned to the compute intensive loop kernels to exploit fine-grain
parallelism. Dynamic partitioning assumes the sharing of resources
between neighboring pipeline stages. The resources sitting idle in
one stage can be utilized by neighboring stages through resource
borrowing. So, it is not guaranteed that the required resource is
available at all times in dynamic partitioning. When the required
resource is not available, the stage stalls and waits for the resource.
Virtualization can avoid stalls due to resource contention by gen-

Borrowing
Core2

Borrowing
Core2

Borrowing
Core2

E

A

B

A

B

A

B

B

(b) Execution timeline(PPA)

Ti
m

e

A
S

B1

A
S

B1

SPE1
to SPE2

A
S

B1

B2

J

C

SPE1
to SPE2

A
S

B1

SPE2
to SPE1 B2

J

C

SPE1
to SPE2

A
S

B1

SPE2
to SPE1

E

B2

J

C

SPE1
to SPE2

SPE1 MEM SPE2 MEM

(a) Execution timeline(SGMS)

Ti
m

e

D

D

D

C

D

B

C

D

B

CORE1 CORE2

Borrowing
Core2

A

B B

Borrowing
Core2

A

B

C

D

B

Core1 to Core2

MEM

Core1 to Core2

Core1 to Core2

Core1 to Core2

Core2 to Core1

Core2 to Core1

Figure 3: Example of running a SGMS on multi-core and a
modulo scheduling on PPA.

erating a schedule that can be modified easily at runtime to run on
different number of resources.

2.2 Stream Graph Modulo Scheduling
This paper presents a compiler technique specifically for com-

posable accelerators based on stream graph modulo scheduling, or
SGMS [12]. SGMS is a modulo scheduling algorithm for mapping
streaming applications onto multicore systems. Modulo schedul-
ing is traditionally a form of software pipelining applied at the
instruction level to find a valid schedule for a loop such that the
interval between successive iterations (initiation interval, or II) is
minimized [21]. SGMS is the same technique on a coarse-grain
stream graph to pipeline the actors across multiple cores. The ob-
jective is to maximize concurrent execution of actors while hiding
communication overhead to minimize stalls.

SGMS consists of two steps: 1) integrated fission and processor
assignment and 2) stage assignment. The first step is to assign ac-
tors to each processor with maximum load balance using an integer
linear program formulation. Stateless data actors are replicated and
fissed to achieve even work distribution. In stage assignment, the
compiler decides a pipeline stage for each actor at runtime. The op-
timization process in this stage is to maximally hide inter-processor
communication latency and not to violate data dependences.

Even though this paper adapts the basic concept of the SGMS,
task scheduling in PPAs is different in several aspects. First, the
PPA scheduler is proposed using legacy C code, hence it has less
restrictions than SGMS using streaming languages such as Stream-
It. For example, SGMS can exploit parallelism for only stateless
actors, but modulo scheduling also can be applied to stateful actors.
In addition, PPAs do not incur fission overhead (split, join) to assign
multiple cores due to the tightly coupled inter-core scalar network
for aggregation.

Figure 2 shows the differences between SGMS and PPA schedul-
ing. Given an example stream graph (Figure 2(a)), all actors are
assumed data parallel. When SGMS schedules the graph on 2 pro-
cessors (Figure 2(b)), the resultant II is 32 because the slowest node
B is fissed once and corresponding split-join overhead is incurred.
Figure 2(c) is the resultant schedule for the PPA, enabling the pro-
cessor assignment to achieve an II of 30 as node B is accelerated

B

A

C

D

(a) (b)

Memory

Core0 Core1 Core2

(c) (f)(d) (e)

Core 0

T
im

e

Core 2Core 1

A C

DB

Deadline

Core 0

T
im

e

Core 2Core 1

A
C

D

B

Deadline

Core 0

T
im

e

Core 2Core 1

A
C

D
B

Deadline

Core 0

T
im

e

Core 2Core 1

A

C

D

B

Deadline

Resource
Conflict

Reconfiguration

Load imbalance

A B C D
of Core 1 2 2 1
Time 1 1 1 1

A B C D
of Core 1 2 2 1
Time 1 1 2 2

A B C D
of Core 1 2 2 1
Time 1 1 2 2

A B C D
of Core 1 2 2 1
Time 3 1 2 2

Figure 4: Examples of the runtime overhead: (a) original task graph, (b) simple 1x3 PPA, (c) expected ideal schedule with high
resource utilization, (d) runtime overhead: stall, reconfiguration time, (e) static partitioning with low runtime overhead, (f) a possible
problem of the static partitioning: workload imbalance.

by core aggregation without overhead. Finally, Figure 2(e) shows
the stage assignments for PPA schedule in which the entire node B
is executed in stage 0 within 20 time units by using both cores.

Figure 3 shows the execution timeline of both SGMS and PPA
schedules. The main difference between the two schedules is the
locations of node B: it is split into two independent pieces using
SGMS on a multicore and with the PPA it is executed as a whole
by aggregrating the resources of both core 1 and 2. Note that
with the PPA, node B must be scheduled at the same time on both
cores in order to exploit resource aggregration. Another interesting
point is that since tightly-coupled memory system in the PPA pro-
vides lightweight memory synchronization mechanism, scheduling
is more tolerable to high memory transfer.

2.3 Compilation Challenges
Efficient scheduling for composable accelerators is now emerg-

ing as an interesting, and challenging problem due to the high de-
gree of freedom in both the hardware and software. Some factors
that make scheduling difficult are:

Resource Requirement Variance: The optimal resource require-
ment for efficient parallelism depends on the task-specific charac-
teristics. For example, cyclic code regions can be accelerated ef-
ficiently by appropriating more resources, but the performance of
acyclic code with sequential dependences cannot be improved by
supplying additional resources [20]. Assuming worst-case require-
ments for all code segments leads to either over-provisioned de-
signs to achieve a desired performance or under-performance for a
fixed design.

Execution Time Variance: Composable accelerators typically
have multiple tasks running in parallel, and they usually have com-
plex dependences. Thus, it is hard to predict the resource usage pat-
tern and accommodate the optimal execution of multiple instruction
streams.

Geometry: In CMPs, full connectivity between processors is of-
ten provided. However, in a low-cost accelerator, the interconnect
is much more sparse and merging cores should be performed in a
connectivity-aware manner.

To illustrate these difficulties, Figure 4 shows some simple, but
frequently occurring examples that result in resources being wasted.
The simple dataflow graph (DFG) in Figure 4(a) is being scheduled
on a simple composable architecture (Figure 4(b)). Assuming the
optimal resource requirements of each node(A, B, C, D) is 1, 2,
2 and 1 cores with the same execution time, the expected sched-
ule is similar to Figure 4(c). However, even though the optimal
number of cores is assigned, the different amounts of work in each

node results in different execution times. On top of that, if C and
D have long execution time, node B cannot start execution at the
completion of task A, but must wait until the execution of node
C is finished because of resource conflicts (Figure 4(d)). Another
potential source of resource waste occurs when changing the core
assignment. In Figure 4(d), task D is delayed by the reconfiguration
time even though enough resources are available.

Static partitioning of the cores can potentially eliminate these
problems, such as stalls and reconfiguration overhead (Figure 4(e)).
Static partitioning means the core aggregation is not changed at
runtime and each task is assigned to a suitable merged core. In
this scheme, task A is not preferred to be executed in core group
(1, 2) because the best resource requirement for A is one core. If
A is assigned to 2 cores, resources cannot be utilized sufficiently.
However, the workload of each core may not be balanced well be-
cause we categorized all the tasks based on optimum resource re-
quirements (Figure 4(f)). To minimize this side effect, a final per-
formance tuning phase is performed using dynamic partitioning of
cores. For example, task D can be changed to run using 3 cores
after final tuning because all the other resources remain idle. Ad-
ditionally, we also propose a core reallocation mechanism to avoid
geometry-based runtime overhead.

In this paper, our work is focused on finding the optimal par-
titioning of cores for a given task graph rather than changing the
task graph itself. Although modifying the task graph is also a com-
mon load balancing strategy, it usually cannot be applied well to the
graph itself without changing the source code due to the memory
and control dependences.

3. COMPILER FRAMEWORK
In this section, we describe our new compilation framework based

on the insights discussed in the previous section. The purpose of
this framework is to achieve the highest throughput by minimiz-
ing stalls due to resource contention and reconfiguration processes.
The compilation process consists of three different stages: prepass
static partitioning, core allocation, and postpass dynamic partition-
ing. Prepass heuristically fuses virtual (no geometry information)
PPA cores to accommodate larger pipeline stages based on the pro-
file workload information with static partitioning. Core allocation
maps the virtual cores onto physical cores, avoiding failures that
occur when cores in same group are not connected together. Post-
pass performs final performance tuning to reduce the completion
time of bottleneck pipeline stages by exploiting resource borrow-
ing.

All compilation steps are performed at compile time. Virtualiza-

A

B

C

E

10

326

466

86

D

246

F10

Input

output

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Filter 1 Core 2 Cores 4 Cores

A 10

B 86

C 246

D 326 200

E 466 350 200

F 10

Task Group Virtual Core

A, B, F 1

C 2

D 0, 3

E 4, 5, 6, 7

A
B

D
C

T
im
e

CORE0 CORE1 CORE2 CORE3 CORE4 CORE5 CORE6 CORE7

E

F

A
B

D
C

T
im
e

CORE0 CORE1 CORE2 CORE3 CORE4 CORE5 CORE6 CORE7

E

F

E

Expand

Expand Expand

Move

Deadline : 466

New deadline : 350

10

10

A

B
DC

T
im
e

CORE0 CORE1 CORE2 CORE3 CORE4 CORE5 CORE6 CORE7

F

A
B

D
C

T
im
e

CORE0 CORE1 CORE2 CORE3 CORE4 CORE5 CORE6 CORE7

E
F

E E E

E EE ED

Expand

Move

New deadline : 326

Final deadline : 246

20

106

Figure 5: Static Partitioning example: (a) example data flow graph, (b) phase 0: each task is assigned to one core, (c) phase 1: the
slowest task E gets one more core to accelerate, (d) phase 2: task E is still the slowest and gets two more cores(5, 7), thus task F
loses own core(5), (e) phase 3: new slowest task D is accelerated as getting more core(0) and finally task C with one core(2) takes the
maximum execution time, (f) execution time estimate table , (g) final core assignment: D has 2, E has 4 cores.

tion is not considered in this framework because of performance
overheads, both on the hardware and compiler sides. For the hard-
ware, a virtualization controller has execution time overhead for
checking the resource availability of the neighbor cores. In ad-
dition to this, virtualized modulo schedule also has some perfor-
mance degradation as it generates only one schedule to support
various core configurations [19]. Despite these performance over-
heads, virtualization can improve the overall performance in spe-
cific situations, such as when running an application on a small
number of resources or running an application with huge dynamic
variance [19]. However, we just generate one schedule per stage
and disable virtualization even when using dynamic partitioning to
evaluate the real effectiveness of this strategy.

3.1 Prepass: Static Partitioning
As we discussed in Section 2.3, the goal of this compilation stage

is to minimize idle and reconfiguration time between tasks and to
create high quality schedules that maximize resource utilization in
order to minimize execution time of assigned work. To achieve
this goal, we propose resource grouping using static partitioning.
This section describes our method for effectively grouping tasks
requiring similar number of cores. The performance improvement
achieved by this stage mainly comes from recognizing the huge
variance between the optimal resource requirements and execution
times of each task. The key idea is to categorize all tasks into some
number of available resource combinations, enabling high utiliza-
tion and assigning the different portions of composable cores based
on this information. This method basically enables all the tasks to
use the resources efficiently, achieving high throughput. This stage
also performs coarse load balancing because the throughput of the
program depends on the slowest pipeline stage. Therefore, imbal-
ance between core groups leads to performance degradation even if
all the tasks execute efficiently. Load balancing is also performed in
the postpass step after identifying the optimal static partition with
maximum resource utilization.

Algorithm 1 shows how the optimal core groupings (to support
the assigned tasks) are identified to exploit fine-grain parallelism
effectively. The general idea is to heuristically assign more cores
to larger tasks based on the execution time estimate. However,

Algorithm 1 Prepass: Static Partitioning Algorithm
Input: G:(V, E), #virtualCores, balance, quality
1: groups← PartitionGraph(G, #virtualCores);
2: while true do
3: SortGroupsByExecTime(groups);

{ Find task groups with max and min execution time estimate. }
4: maxTaskGroup← MaxExecTimeTaskGroup(groups);
5: numCores← NumRequiredCoresToExpand(maxTaskGroup);
6: minTaskGroups← FindContractTaskGroups(groups, numCores);

{ Generate candidate for new task groups. }
7: maxTaskGroupCand← ExpandGroup(maxTaskGroup);
8: minTaskGroupCand← ContractGroup(minTaskGroups);

{ Test the availability of the new task groups. }
9: if (ExecTime(maxTaskGroupCand) > ExecTime(maxTaskGroup) ∗ qual-

ity || ExecTime(maxTaskGroupCand) < ExecTime(minTaskGroupCand))
then

10: Finish;
11: end if

{ Update task groups.}
12: Remove(maxTaskGroup, minTaskGroups);
13: Add(maxTaskGroupCand, minTaskGroupCand);

14: if (ExecTime(maxTaskGroupCand) < ExecTime(minTaskGroupCand) ∗
balance || timeOut) then

15: Finish;
16: end if
17: end while

assigning too many resources to larger cores may not be the best
solution because performance enhancement depends on the task-
specific characteristics and may result in missed opportunities to
accelerate other tasks, given a limited number of cores. Therefore,
a quality factor is introduced to define the minimum performance
gain that must be achieved to justify the assignment of additional
cores.

Algorithm 1 starts from assigning one core to each task (Line
1). If the number of tasks is larger than the number of cores, tasks
are grouped by the total execution time estimate(ExecTime). Based
on this initial assignment of one core to each task group, the while
loop in Algorithm 1 identifies the optimal number of cores per task
group. Line 3-6 finds the task groups with the maximum Exec-

Time(maxTaskGroup), and minimum ExecTime(minTaskGroups).
maxTaskGroup is the candidate for receiving more cores to en-
able faster execution while minTaskGroups will potentially lose
cores. The number of task groups in minTaskGroups varies because
number of additional cores, for maxTaskGroup to be the larger
fused core, are set by the current assigned core topology of max-
TaskGroup (Line 5) and the mininum ExecTime task group may
not have enough number of cores to give. In this case, an additional
second minimum ExecTime task group is required. If current max-
TaskGroup has 1 core with 1x1 configuration, just 1 more core is re-
quired to be 1x2 or 2x1 array-style fused core. However, if current
configuration of maxTaskGroup is 1x2 with 2 cores, 2 more cores
are required to expand because 1x3 or 3x1 array-style core group
is not allowed and next available core configuration is 2x2, 1x4,
or 4x1 with 4 cores on current PPA. Moreover, an additional task
group may be required to subsume the tasks from the minimum task
group if the minimum workload group loses all its assigned cores.
Then, line 7-8 creates the candidates of new maximum and mini-
mum task groups given the new core assignments. ExpandGroup is
the function for maxTaskGroup to get more cores to accelerate ex-
ecution and ContractGroup is to take cores from minTaskGroups.
Line 9-11 checks the benefit of these new resource assignments
and determines whether new combinations are updated. First, the
new ExecTime estimate of maxTaskGroupCand should be less than
some relative ratio of the original ExecTime(example quality factor
= 0.9), meaning that the performance gain should be at least 10%.
Also, the ExecTime estimates of the minTaskGroupsCand should
not become a new bottleneck. Line 12-13 updates the changes to
the core assignment and this process is repeated until the load im-
balance is less than the balance factor or the task group combination
does not change within the defined timeout period.

Figure 5 shows an example of the prepass static partitioning
algorithm. An original task graph (Figure 5(a)) with 6 nodes is
mapped onto a PPA with 8 cores. The original graph only has 6
nodes and each node is initially scheduled using 1 core. The an-
notated numbers show the ExecTime estimate for each node. The
prepass algorithm performs ExecTime estimation of the partitions
then tries to appropriate more cores to the heavier workloads to bal-
ance the task groups. More specifically, node E is maxTaskGroup
and gets 1 additional core because 2 cores are idle (Figure 5 (c)
Phase 1). Then, node E is selected again as maxTaskGroup because
the reduced ExecTime is still the highest at 350. In this case, an
idle core and another core is selected to accelerate node E. As a
result, node E is scheduled with 4 cores. Since node F lost all its
assigned cores, it is merged into another task group with minimum
ExecTime estimate, node A(Figure 5 (d) Phase 2). maxTaskGroup
then becomes the task group with node D and is accelerated by tak-
ing one more core from nodes A and F. Again, nodes A and F lost
all the cores and are merged into node B(Phase 3). At Figure 5 (c)
Phase 3, the process is finished since it meets the balance condi-
tion (example balance factor 2.5) and 8 cores are divided as 4 task
groups with different core numbers (Figure 5 (e)).

3.2 Core Allocation
After static partitioning, the number of PPA cores assigned to

each task group is known, but their relative positions on the PPA
array is not determined yet. Core allocation maps virtual PPA cores
assigned to task groups onto the physical structure of the PPA. As
discussed in Section 2.3, most composable accelerators, including
PPA, provide limited interconnects. The fast scalar network con-
necting adjacent cores in PPA can be utilized to exploit fine-grain
parallelism. So, cores assigned to the same task group are placed
next to each other. Core allocation also attempts to place cores as-

signed to task groups with maximum ExecTime next to the cores
with minimum ExecTime. This is to increase the opportunities
for dynamic partitioning in postpass. With dynamic partitioning,
idling resources can also be loaned to the neighboring task groups,
further increasing the resource utilization. Algorithm 2 shows the
process for core allocation. First, all the task groups are sorted by
ExecTime estimates. In each attempt, the maxTaskGroup and the
minTaskGroups are identified(lines 3 - 5) with Prepass-similar pro-
cess, and they are placed closely on the PPA array to enable shar-
ing cores at runtime(lines 6 and 7). Continuing the example from
the prior section, Figure 6 shows the core allocation results and the
slowest task group (C) is assigned the core next to the core reserved
for the fastest task group (A, B, F).

Algorithm 2 Core Allocation: Physical Core Mapping
Input: groups, #physicalCores
Output: phyTaskGroups
1: SortGroupsByExecTime(groups);
2: while HasGroup(groups) do
3: maxTaskGroup← MaxExecTimeTaskGroup(groups);
4: numCores← NumRequiredCoresToExpand(maxTaskGroup);
5: minTaskGroups← MinExecTimeTaskGroups(groups, numCores);

{ Assign physical cores.}
6: SetPhysicalCores(maxTaskGroup);
7: SetPhysicalCores(minTaskGroups);

{ Update task groups.}
8: Remove(maxTaskGroup, minTaskGroups, groups);
9: AddTo(maxTaskGroup, minTaskGroups, phyTaskGroups);

10: end while

(a) (b)

0

1

2

3

4

5

6

7

A B F

C
D E

Physical Core 0 1 2 3 4 5 6 7

Virtual Core 1 2 0 3 4 5 6 7

Filter A B F C D D E E E E

Low workload high workload

Figure 6: Core Allocation example: (a) physical placement of
cores, (b) the slowest group is placed next to the fastest group.

3.3 Postpass: Dynamic Partitioning
In this section, we propose the final performance acceleration

process: dynamically adjusting the resource assignment of the bot-
tleneck task groups. The basic concept is to accelerate the slowest
stage by dynamically acquiring the idle resources of neighboring
cores at runtime. While the static partitioning achieves a good load
balancing of PPA cores, workload variation still exists leaving some
time slack for cores assigned to lightly loaded task groups. The idle
time of cores can be exploited by neighboring cores using dynamic
partitioning proposed in this section.

Algorithm 3 begins the optimization process by constructing the
group adjacency information map (Line 1). The compiler auto-
matically identifies which group is physically adjacent based on
the PPA core connection information. Then, it identifies the slow-
est task groups and tries to find physically connected task groups.
Among these task groups, the task group with the lowest Exec-
Time estimates is selected (Line 4-7). Line 8 calculates the per-
formance estimate when dynamic partitioning is enabled between
these groups. In this process, only tasks from the maximum Exec-
Time task group are allowed to execute with dynamically varying
resources. The other task groups are restricted to their initial static
resource assignments. This is to limit dynamic resource assignment

Algorithm 3 Postpass: Dynamic Partition Algorithm
Input: phyTaskGroups, sharing
1: adjMap← ConstructAdjacentMap(phyTaskGroups);
2: while true do
3: SortGroupsByExecTime(phyTaskGroups);

{ Find task groups with max and min execution time estimate. }
4: maxTaskGroup← MaxExecTimeTaskGroup(phyTaskGroups);
5: nextMaxTaskGroup← NextMaxExecTimeTaskGroup(nextMaxTaskGroup);
6: numCores← NumRequiredCoresToExpand(maxTaskGroup);
7: minTaskGroups ← MinExecTimeAdjacentGroups(phyTaskGroups,

numCores, adjMap);

{ Test the availability of dynamic partitioning of shared execution.}
8: newMaxTaskGroupExecTime, newMinTaskGroupsExecTime

← EstimateExecTimeSharing(maxTaskGroup, minTaskGroups,
sharing);

9: if (newMaxTaskGroupExecTime < ExecTime(maxTaskGroup)
&& newMinTaskGroupsExecTIme < ExecTime(maxTaskGroup)) then

10: UpdateSharing(maxTaskGroup, minTaskGroups, groups);
11: end if

12: if (newMaxTaskGroupExecTime > ExecTime(nextMaxTaskGroup)) then
13: Finish;
14: end if
15: end while

only to the performance limiting groups to minimize the recon-
figuration overhead. The compiler identifies resource-constrained
loop nests in the maxTaskGroup that can further exploit fine-grain
parallelism with the extra resources. Then, the compiler gradu-
ally changes the resource assignment for the loop nests, until the
ExecTime estimate of the minTaskGroups reaches a performance
threshold. This threshold is set to the relative ExecTime of the sec-
ond limiting group (nextMaxTaskGroup). The sharing coefficient is
introduced to determine the threshold and it depends on the appli-
cation characteristics (dynamic variance) for each task at runtime.
For example, a stage execution time of AAC fluctuates between
150k and 200k cycles [19], and the coefficient will be smaller than
0.75 considering dynamic overhead. Line 9-11 updates the new
assignment if there is any performance gain with the resource shar-
ing. This process will finish if the new ExecTime is still larger than
the ExecTime of the nextMaxTaskGroup. Another key point of this
process is that the quality factor is not considered in this phase
because the objective of this process is to accelerate the pipeline
limiting stage using marginal resources.

An example of the postpass optimization is shown in Figure 7. In
this example, the slowest task group(C) and the fastest task groups
(A, B, F) are placed next to each other after the core allocation
step in Figure 7 (a). The compiler identifies five candidate loop
nests in task group C, and two of them are rescheduled using the
additional resources(cores 0 and 1). The final result in Figure 7(b)
shows that the pipeline deadline decreases from 246 to 200 cycles,
achieving 20% performance gain for this stage. The overall re-
source utilization is improved by recycling the wasted resources of
core 0 between cycle 106 to 197.

4. EXPERIMENTAL RESULTS
This section presents the results of the experimental evaluation

of proposed high-level compilation techniques. We first present a
brief explanation of the target architecture and benchmark appli-
cations. Performance measurement for prepass and postpass pro-
cesses is explained based on the experimental environment described
below.

4.1 Experimental Setup
Target Architecture PPAs are used to evaluate the performance

of the compilation techniques. The PPA has 8 cores in the form of

(a)

(b)

Ti
m
e

CORE0 CORE1 CORE2 CORE3 CORE4 CORE5 CORE6 CORE7

deadline : 246

ED

C

A

B

F

200200

246

106

Ti
m
e

CORE0 CORE1 CORE2 CORE3 CORE4 CORE5 CORE6 CORE7

original deadline : 246

ED

C0A

B

F

200200200197

C1

C3

C2

C4

new deadline : 200

Figure 7: Dynamic Partitioning example: (a) coarse-grain
pipeline using static partitioning, (b) coarse-grain pipeline with
final performance tuning process

a 2×4 array as shown in Figure 1. Virtualization controller is dis-
abled to evaluate the real performance of the compilation strategy.
For the experiments using less than 8 cores, PPA is partitioned into
two parts and the unused partition is disabled.

Target Applications and fine-grain parallelism To evaluate the
performance, we used three application domains: audio decoding
(aac), video decoding (h.264) and 3D graphics (3d). All software-
pipelineable loops from these applications are taken and scheduled
using edge-centric modulo scheduling with all available partitions.
Topology of the core groups are also considered. For example,
2x1 and 1x2 core groups with 2 cores are individually scheduled.
Performance is evaluated using the overall execution time.

For coarse-grain pipelining, three applications are split into mul-
tiple tasks that communicate in a feed-forward fashion and with-
out any inter-iteration dependencies contained within a single task.
Each task is able to have both loops and acyclic blocks of code.
Based on the control and data dependency restrictions, aac, 3D,
h.264 have 10, 5, and 3 tasks on experiments.

4.2 Performance Evaluation
Figure 8 shows the relative speedup obtained by various parti-

tioning algorithms on 4 to 8 cores. Symmetric partition means that
each task is scheduled using the same number of cores. If the num-
ber of tasks is smaller than the number of cores, the cores are di-
vided by the number of tasks and each task has its own partition. If
the tasks are more than the cores, the overall application is split by
the number of cores and each task group is executed using one core.
Smart partitioning means manually divided static partition based
on the application characteristics. For example, tasks containing
substantial portion of loops are executed on a large core group to
exploit fine-grain parallelism and the others are run on only one
core. Static partitioning represents the execution result when the
program runs on an automatically divided partition with prepass.
In dynamic partitioning, the program executes on the same parti-

0

0.5

1

1.5

2

2.5

3

4 5 6 7 8

R
e
la
ti
v
e
 s
p
e
e
d
u
p

of Cores

AAC

symmetric smart static dynamic

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

4 5 6 7 8

R
e
la
ti
v
e
 S
p
e
e
d
u
p

of Cores

3D

symmetric smart static dynamic

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

4 5 6 7 8

R
e
la
ti
v
e
 S
p
e
e
d
u
p

of Cores

H.264

symmetric smart static dynamic

Figure 8: Relative speedup normalized to simple symmetric partitioning

tion with static partitioning and dynamic reconfiguration is applied
as well.

(a)

(b)

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cy
cl
es

Iteration

group 0 group 1 group 2

group 3 group 4 deadline

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Cy
cl
es

Iteration

group 0 group 1

group 2 group 3

group 4 new deadline

static deadline

Figure 9: Stage execution time for AAC benchmark: (a) dy-
namic computation variance on static partitioning, (b) pipeline
deadline reduction with dynamic partitioning

4.3 Static Partition
As shown in Figure 8, smart partitioning always outperforms

symmetric partitioning by a significant amount because most of
the loop-intensive task groups are accelerated using fine-grained
pipelining. The promising point is that manual partitioning cannot
achieve better throughput than our static partitioning algorithm, and
the speedup of static partitioning on aac benchmark is always better
than smart partitioning. As other benchmarks have small number of
tasks, 3 and 5, manually partitioning with traditional load balanc-

ing algorithm can achieve the same speedup as with using the same
partitioning with the result of prepass. However, if the application
can be split into multiple subsets of tasks, our prepass optimiza-
tion is able to minimize the performance degradation induced by
low quality schedule, stall, and reconfiguration overhead. Note that
tasks cannot be divided for perfect load balancing because memory
and control dependences on the program prevent tasks from being
partitioned from the middle. Despite these inherent difficulties, our
algorithm successfully finds the throughput limiting tasks and ac-
celerates them. On an 8-core PPA, static partitioning allows 2.44x,
1.66x and 1.66x speedup over symmetric partitioning.

4.4 Dynamic Partition
AAC Figure 8 shows that postpass with dynamic partitioning

is effective when the number of cores are 5 and 8 but the gain is
small, 1.7% and 2.8%, respectively. This is because the task group
with the largest execution time on AAC application consists of a
large amount of sequential code and a small portion of the software-
pipelineable code. In prepass, this huge sequential task cannot re-
serve enough cores because of the low quality schedule and remains
the performance bottleneck. This task is then accelerated by shar-
ing its neighbors’ resources during postpass since it doesn’t need
to meet the quality factor any more, hence the final performance is
slightly enhanced by using the neighbor’s idle resource.

Runtime observations of the real execution on both static parti-
tioning and dynamic partitioning are shown in Figure 9. Figure 9
(a) shows that task group 4 is the performance bottleneck over time
and execution times of task group 0 and 2 are small. Core allocation
process places the cores, assigned to these three task groups, next
to each other and group 4 gets some performance gain as shown in
Figure 9 (b). Despite the small performance gain of group 4, 0 and
2 have substantial runtime overhead because these groups should
share the low quality schedule.

Cores Perf (smart) Perf (static) Perf (dyn) Overall
4 1.79 1.05 1 1.87
5 1.73 1.05 1.02 1.83
6 2.29 1.05 1 2.41
7 2.30 1.06 1 2.44
8 2.30 1.06 1.03 2.50

Table 1: Relative speedup for AAC benchmark (normalized to
the preceding column).

3D Rendering 3D rendering application has 5 tasks, two with
small acyclic code and three with big software-pipelineable code.

(a)

(b)

0

10000

20000

30000

40000

50000

60000

70000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

C
yc
le
s

Iteration

group 0 group 1
group 2 group 3
group 4 new deadline
original deadline

Figure 10: Stage execution time for 3D benchmark: (a) dy-
namic computation variance on static partitioning, (b) pipeline
deadline reduction with dynamic partitioning

Dynamic partitioning increases the throughput by a large amount
for all the cases because three huge tasks, which are easy to accel-
erate by fine-grain parallelism, have similar workload and quality
of the schedule is still high when sharing the resources at runtime.
The performance gain is up to 11.5% compared to static partition-
ing, just with reusing idle resources. Figure 10 shows how dynamic
reconfiguration efficiently decreases the execution time of the slow-
est task group. On iteration 19-23, task 4 takes up to 60000 cycles
to render 3D images and this work is finished in 50000 cycles by
resource borrowing from task 0 and 1. After dynamic performance
tuning, execution time on task 0 and 1 increases a large amount to
help task 4 finish early on iteration 19-23.

Cores Perf (smart) Perf (static) Perf (dyn) Overall
4 1 1.23 1.02 1.25
5 1.23 1.01 1.11 1.38
6 1.25 1.09 1.11 1.52
7 1.35 1.22 0.99 1.65
8 1.66 1 1.03 1.72

Table 2: Relative speedup for 3D benchmark (normalized to
the preceding column).

H.264 For H.264 benchmark, dynamic reconfiguration is not
enabled because execution time of the performance limiting task
group fluctuates too widely and is sometimes even smaller than the
fastest task group. Therefore, the compiler decides not to adapt dy-
namic partitioning because runtime overheads of the fastest stage
are much bigger than the gains of the limiting task and the over-
heads may adversely affect the final performance as the fastest task
becomes the slowest. Figure 11 shows that execution time changes
by a huge amount and sometimes is even lower than the fastest

task. In this case, the compiler does not allow dynamic reuse of
the neighbor resources because adopting dynamic partitioning is
optional.

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Cy
cl

es

Iteration

group 0 group 1 group 2 deadline

Figure 11: Stage execution time for H.264 benchmark: dy-
namic partitioning is not applied due to huge dynamic vari-
ance.

Cores Perf (smart) Perf (static) Perf (dyn) Overall
4 1 1.22 1 1.22
5 1.22 1 1 1.22
6 1.23 1.25 1 1.54
7 1.54 1 1 1.54
8 1.53 1.08 1 1.66

Table 3: Relative speedup for H.264 benchmark (normalized to
the preceding column).

5. RELATED WORK
Architectures: Combining cores to create a bigger logical core

is relatively a new technique, recently proposed by Core fusion [10]
and Composable Lightweight Processors [11]. Core Fusion is a
CMP architecture that can dynamically allocate independent cores
together for a single thread execution maintaining ISA compatibil-
ity. CLPs also allows dynamic allocation of cores to form a larger
and powerful single-threaded processors. It also keeps the binary
compatibility for the special EDGE ISA. The major difference be-
tween [10] and [11] is the target environment. PPA is designed
to exploit single thread performance in mobile environments where
power consumption and hardware cost is a first-class constraint.
The building blocks of PPA are simple in-order cores similar to
clustered VLIW processors [25]. Also, the statically controlled
point-to-point interconnect provides a fast inter-core communica-
tion, allowing PPA to exploit fine grain pipeline parallelism effi-
ciently for multimedia applications.

The PE level view of PPA is similar to Coarse-Grained Recon-
figurable Architectures. ADRES [16] is a reconfigurable architec-
ture where PEs are connected to a mesh-style interconnect. Mod-
ulo scheduling using simulated annealing is employed to exploit
fine grain pipeline parallelism of nested loops. The top row in
the array behaves as a VLIW processor with a multi-ported cen-
tral register file. However, the non software pipelineable region of
the application can only utilize the VLIW part of the array. So,
it cannot pipeline the application in a coarser granularity as PPA.
With identical resources, PPA outperforms our best approximation
of ADRES by 1.43x. PipeRench [6] is a 1-D architecture in which
processing elements are arranged in stripes to facilitate pipelining,
but it has a fixed configuration of resource partitioning for pipelin-
ing while PPA can partition the array differently as to the charac-

teristics of the target application. RaPiD [4] is another CGRA that
consists of heterogeneous elements (ALUs and registers) in a 1-D
layout, connected by a reconfigurable interconnection network.

Exploiting Parallelism: Exploiting coarse-grained pipeline par-
allelism is one of the most attractive approaches to accelerate sin-
gle thread performance as multicore architectures enter the main-
stream. Even this type of parallelism has many advantages com-
pared to other types of parallelism, adapting in real situation is
difficult because of program-inherent data dependences [22]. To
overcome this difficulty, [22] has proposed a dynamic analysis
tool to extract a stream graph from legacy C code in order to give
a programmer hints for manual parallelization. [22] also tries load
balancing by changing a program but this paper’s focus is more
on compile time optimization for given program. [8] and [12]
are similar to this paper to exploit coarse-grained pipeline paral-
lelism but the parallelization mechanism is limited only to state-
less components as using StreamIt language. Our work also con-
siders composable architecture specific features such as resource
conflict and reconfiguration overhead whereas these works targeted
fixed multi-core solutions(RAW architectures [14] and Cell pro-
cessors [9]). Resource borrowing on dynamic partition is a similar
concept to Work stealing [3] but our approach is performed in more
fine-grained level, not thread level.

6. CONCLUSION
The popularity of mobile computing platforms has led to the

development of feature packed devices that support a wide range
of software applications, ranging from high-definition audio and
video to high-end 3D graphics. However, the variable resource re-
quirements and complex data/control flow of these workloads limit
the applicability of traditional acceleration techniques. In response,
this paper proposes a novel, efficient compilation framework to
enhance the throughput by maximizing resource utilization of a
composable accelerator called a polymorphic pipeline array. The
compilation consists of three phases: static partitioning into task
groups, physical core allocation, and dynamic partitioning to re-
claim idle resources to accelerate performance bottlenecks. The ex-
perimental results show that static partitioning achieves up to 2.44x
speedup, with dynamic partitioning achieving even greater success
in certain benchmarks.

7. ACKNOWLEDGMENTS
Thanks to Mark Woh, Shuguang Feng and Gaurav Chadha for

all their help and feedback. We also thank the anonymous referees
who provided good suggestions for improving the quality of this
work. This research is supported by Samsung Advanced Institute
of Technology and the National Science Foundation grant CNS-
0964478.

8. REFERENCES
[1] K. Berkel, F. Heinle, P. Meuwissen, K. Moerman, and M. Weiss. Vector

processing as an enabler for software-defined radio in handheld devices.
EURASIP Journal Applied Signal Processing, 2005(1):2613–2625, 2005.

[2] H. Bluethgen, C. Grassmann, W. Raab, and U. Ramacher. A programmable
platform for software-defined radio. In Intl. Symposium on System-on-a-Chip,
pages 15–20, Nov. 2003.

[3] R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by
work stealing. Journal of the ACM, 46(5):720–748, 1999.

[4] C. Ebeling et al. Mapping applications to the RaPiD configurable architecture.
In Proc. of the 5th IEEE Symposium on Field-Programmable Custom
Computing Machines, pages 106–115, Apr. 1997.

[5] J. Glossner, E. Hokenek, and M. Moudgill. The sandbridge sandblaster
communications processor. In Proc. of the 2004 Workshop on Application
Specific Processors, pages 53–58, Sept. 2004.

[6] S. Goldstein et al. PipeRench: A coprocessor for streaming multimedia
acceleration. In Proc. of the 26th Annual International Symposium on Computer
Architecture, pages 28–39, June 1999.

[7] M. Gordon, W. Thies, M. Karczmarek, J. Lin, A. Meli, A. Lamb, C. Leger,
J. Wong, H. Hoffmann, D. Maze, and S. Amarasinghe. A stream compiler for
communication-exposed architectures. In Tenth International Conference on
Architectural Support for Programming Languages and Operating Systems,
pages 291–303, Oct. 2002.

[8] M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting coarse-grained task,
data, and pipeline parallelism in stream programs. In 14th International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 151–162, 2006.

[9] IBM. Cell Broadband Engine Architecture, Mar. 2006.
[10] E. Ipek, M. Kirman, N. Kirman, and J. Martinez. Core fusion: Accommodating

software diversity in chip multiprocessors. In Proc. of the 34th Annual
International Symposium on Computer Architecture, pages 186–197, 2007.

[11] C. Kim, S. Sethumadhavan, M. Govindan, N. Ranganathan, D. Gulati,
D. Burger, and S. W. Keckler. Composable lightweight processors. In Proc. of
the 40th Annual International Symposium on Microarchitecture, pages
381–393, Dec. 2007.

[12] M. Kudlur and S. Mahlke. Orchestrating the execution of stream programs on
multicore platforms. In Proc. of the SIGPLAN ’08 Conference on Programming
Language Design and Implementation, pages 114–124, June 2008.

[13] E. Lee and D. Messerschmitt. Synchronous data flow. Proceedings of the IEEE,
75(9):1235–1245, 1987.

[14] W. Lee, R. Barua, M. Frank, D. Srikrishna, J. Babb, V. Sarkar, and
S. Amarasinghe. Space-time scheduling of instruction-level parallelism on a
RAW machine. In Eighth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 46–57, Oct. 1998.

[15] Y. Lin et al. Soda: A low-power architecture for software radio. In Proc. of the
33rd Annual International Symposium on Computer Architecture, pages
89–101, June 2006.

[16] B. Mei et al. Exploiting loop-level parallelism on coarse-grained reconfigurable
architectures using modulo scheduling. In Proc. of the 2003 Design,
Automation and Test in Europe, pages 296–301, Mar. 2003.

[17] B. Mei, A. Lambrechts, J. Y. Mignolet, D. Verkest, and R. Lauwereins.
Architecure exploration for a reconfigurable architecture template. In Proc. of
the 2005 Design, Automation and Test in Europe, pages 90–101, Mar. 2005.

[18] H. Park, K. Fan, S. Mahlke, T. Oh, H. Kim, and H. seok Kim. Edge-centric
modulo scheduling for coarse-grained reconfigurable architectures. In Proc. of
the 17th International Conference on Parallel Architectures and Compilation
Techniques, pages 166–176, Oct. 2008.

[19] H. Park, Y. Park, and S. Mahlke. Polymorphic pipeline array: A flexible
multicore accelerator with virtualized execution for mobile multimedia
applications. In Proc. of the 42nd Annual International Symposium on
Microarchitecture, pages 370–380, Dec. 2009.

[20] Y. Park, H. Park, and S. Mahlke. Cgra express: Accelerating execution using
dynamic operation fusion. In Proc. of the 2009 International Conference on
Compilers, Architecture, and Synthesis for Embedded Systems, pages 271–280,
Oct. 2009.

[21] B. R. Rau. Iterative modulo scheduling: An algorithm for software pipelining
loops. In Proc. of the 27th Annual International Symposium on
Microarchitecture, pages 63–74, Nov. 1994.

[22] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to
exploiting coarse-grained pipeline parallelism in c programs. In Proc. of the
40th Annual International Symposium on Microarchitecture, Dec. 2007.

[23] W. Thies, M. Karczmarek, and S. P. Amarasinghe. StreamIt: A language for
streaming applications. In Proc. of the 2002 International Conference on
Compiler Construction, pages 179–196, 2002.

[24] M. Woh et al. From SODA to scotch: The evolution of a wireless baseband
processor. In Proc. of the 41st Annual International Symposium on
Microarchitecture, pages 152–163, Nov. 2008.

[25] H. Zhong, K. Fan, S. Mahlke, and M. Schlansker. A distributed control path
architecture for VLIW processors. In Proc. of the 14th International Conference
on Parallel Architectures and Compilation Techniques, pages 197–206, Sept.
2005.

