
Resource Sharing and Pipelining in Coarse-Grained Reconfigurable
Architecture for Domain-Specific Optimization

Yoonjin Kim†, Mary Kiemb‡, Chulsoo Park†, Jinyong Jung†, Kiyoung Choi†‡

Design Automation Laboratory, School of EE/CS
Seoul National University, Seoul, South Korea

†{ykim, jupiter, jyjung}@poppy.snu.ac.kr, ‡kiemb@marykiemb.net, †‡kchoi@azalea.snu.ac.kr

Abstract
Coarse-grained reconfigurable architectures aim to

achieve both goals of high performance and flexibility.
However, existing reconfigurable array architectures
require many resources without considering the specific
application domain. Functional resources that take long
latency and/or large area can be pipelined and/or
shared among the processing elements. Therefore the
hardware cost and the delay can be effectively reduced
without any performance degradation for some applica-
tion domains. We suggest such reconfigurable array ar-
chitecture template and design space exploration flow
for domain-specific optimization. Experimental results
show that our approach is much more efficient both in
performance and area compared to existing reconfigur-
able architectures.

1 Introduction
As the market pressure of embedded systems compels

the designer to meet tighter constraints on cost, perform-
ance and power, the application specific optimization of a
system becomes inevitable. On the other hand, the flexi-
bility of a system is also important to accommodate rap-
idly changing consumer needs. To compromise these
incompatible demands, domain-specific design is focused
on as a suitable solution for recent embedded systems.
Coarse-grained reconfigurable architecture is the very
domain-specific design in that it can boost the perform-
ance by adopting specific hardware engines but it can be
reconfigured as well to adapt the different characteristics
of each application.
In this reason, many delicate coarse-grained reconfigur-

able designs are proposed [1]. Most of them comprise of
a fixed set of specialized processing elements (PEs) and
interconnection fabrics between them and the run-time
control of the operation of each PE and the interconnec-
tion provides the reconfigurability. However, such fixed
architectures have limitations in optimizing the cost and
performance for various domains of application. Some
researchers suggest a reconfigurable architecture in the

form of a template to find an optimal design for a specific
application domain [4][5].
Most design space exploration techniques previously

suggested are limited to the configuration of the internal
structure of a PE and the interconnection scheme. Such
configuration techniques are in general good at obtaining
high performance but require high hardware cost. This is
mainly because even a primitive PE design should be
equipped with basic functional resources to gain reason-
able performance. Moreover, adding a small functional
block to a primitive PE design increases the total cost of
the aggregate architecture increases a lot. To alleviate this
problem, some templates permit heterogeneous PEs[5][6].
However, such heterogeneity bears strict constraints in
the mapping of applications to PEs, resulting in negative
effect on the performance.
In this paper, we suggest a reconfigurable architecture

template which has two key features. One is hardware
cost reduction by sharing critical functional resources that
occupy large area in the PEs and the other is critical path
reduction by pipelining the critical resources. To implant
these features into our template, we assume that the tem-
plate is based not on SIMD like execution [2] but on loop
pipelining execution [7][8]. Although SIMD like execu-
tion is efficient for data parallel computation in that it
saves configuration and data storage by regular execution,
it is inflexible in that each PE cannot operate independ-
ently. In contrast, loop pipelining requires more storage
to control each pipeline stage but it has more flexibility in
selecting the operation of a PE. In addition, it can en-
hance the performance because it reduces the synchroni-
zation overhead to perform identical operations simulta-
neously.
This paper is organized as follows. After mentioning the

related work in Section 2, we describe our reconfigurable
architecture template in Section 3. In Section 4, we pro-
pose a design flow to optimize the reconfigurable archi-
tecture to a specific application domain. We also describe
the details of design space exploration for optimal re-
source sharing. We show the experimental results in Sec-
tion 5 and conclude with future work in the last section.

1530-1591/05 $20.00 © 2005 IEEE

2 Related Work
Many coarse-grained reconfigurable architectures are

suggested as summarized in [1]. Among them, two di-
mensional mesh architectures have the advantage of rich
communication resources for parallelism. Morphosys [2]
consists of 8 x 8 array of Reconfigurable Cell coupled
with Tiny_RISC processor. The array performs 16-bits
operations including multiplication in SIMD style. It
shows good performance for regular code segments in
computation intensive domains but requires high hard-
ware cost. XPP configurable system-on-chip architecture
[3] is another example. XPP has 4 x 4 or 8 x 8 recon-
figurable array and LEON processor with AMBA bus
architecture. A processing element of XPP is composed
of an ALU and some registers. Since the processing ele-
ments do not include heavy resources, the total hardware
cost is not high but the range of applicable domains is
restricted.
For more aggressive domain-specific optimization, tem-

plate based architectures are suggested. In ADRES tem-
plate [4], an XML-based architecture description lan-
guage is used to define the overall topology, supported
operation set, resource allocation, timing, and even inter-
nal organization of each processing element. KressArray
[5] also defines the exploration properties such as array
size, interconnections, and functionality of certain proc-
essing elements. However, both templates do not support
common resources shared among processing elements,
thus some critical functional resources may have low
utilization while occupying large area.

3 Architecture Template
3.1 Resource sharing
We illustrate resource sharing between processing ele-

ments with matrix multiplication. We assume a general
mesh-based coarse-grained reconfigurable array of PEs,
where a PE is a basic reconfigurable element composed
of an ALU, an array multiplier, etc. and the configuration
is controlled by configuration cache. Each row of the
array shares read/write-buses. Figure 1 shows the case of
4x4 array with two read buses and one write-bus.

Cache Cache Cache Cache

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

PE PE PE PE

(a) Array organization (b) Data bus structure

Figure 1. 4x4 reconfigurable Array.

Consider two square matrices X and Y of order N. The
output matrix Z is represented by:

∑
−

=

××=
1

0
)},(),({),(

N

k
jkYkiXCjiZ (1)

where i, j = 0,1,…,N and C is a constant specified in the
configuration cache.

 +

*

St

Ld
7

*

St

Ld

*
8

*

+

+

*
5

+

+

*

St
6

Ld

*

+
3

Ld

*

+

+
4

Ld
1

Ld

*
2

col#4

col#3

col#2

col#1

+

*

St

Ld
7

*

St

Ld

*
8

*

+

+

*
5

+

+

*

St
6

Ld

*

+
3

Ld

*

+

+
4

Ld
1

Ld

*
2

col#4

col#3

col#2

col#1

Ld: load operation, St: store operation

Figure 2. The loop pipelining of a matrix multi-
plication of order 4.

Assuming that equation (1) with N=4 is executed on the
array shown Figure 1, the loop pipelining [7] schedules
the operations as shown in Figure 2. The first row of Fig-
ure 2 represents the schedule time in cycle from the start
of the loop and the first column represents the column
number of the array. At the first cycle, all the PEs in the
first column are loaded with the operands then perform
multiplication at the second cycle. In the next two cycles,
the PEs in the first column perform addition to obtain the
sum of products, while the PEs in the next columns per-
form multiplication. Then multiplication is performed in
the first column at the 5th cycle while the first multiplica-
tion is performed in the fourth column.

*

*

*

*

SW

SW

SW

SW

+

SW

SW

SW

SW

+

+

SW

SW

SW

SW

*

*

*

*

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

SW

SW

SW

SW

col#1 col#2 col#3 col#4

*

*

*

*

*

*

*

*

SW

SW

SW

SW

+

SW

SW

SW

SW

+

+

SW

SW

SW

SW

*

*

*

*

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

SW

SW

SW

SW

col#1 col#2 col#3 col#4

Figure 3. 8 multipliers sharing among 16 PEs.

Because loop pipelining distributes the same operations
over several cycles, there is no need for all PEs to have
the same functional resources at the same time. This al-
lows the PEs in the same column or in the same row to
share area-critical resources. For the 4x4 matrix
multiplication example, since multipliers take much more
area and delay compared to other resources, we classify
them as critical resources and other resources as
primitive resources. The reconfigurable structure in our
template can be one dimensional array, two-dimensional
mesh, or other rectangular structure, where each PE has
its own Bus switch to control the resource sharing.
Figure 4 depicts the detailed connections about multi-

plier sharing. The two n-bit operands of a PE are con-
nected to the Bus switch. The dynamic mapping of a mul-

tiplier to a PE is determined in compile time and the in-
formation is annotated to the configuration instructions.
In run-time, the mapping control signal from the configu-
ration cache is fed to the Bus switch and the Bus switch
decides where to route the operands. After the multiplica-
tion, the 2n-bit output is transferred from the multiplier to
the original issuing PE via the Bus switch.

MULMUL

ctrl

n
MULMUL

Config cache

n

2n

n
n

2n

nn
2n

Bus
switch

*

MULMUL

ctrl

n
MULMUL

Config cache

n

2n

n
n

2n

nn
2n

Bus
switch

*

Figure 4. The connections between a PE and
shared multipliers.

3.2 Resource pipelining
If there is a critical functional resource which has very

long latency in a PE, the functional resource can be pipe-
lined to curtail the critical path. Resource pipelining has
clear advantage in loop pipelining execution because het-
erogeneous functional units can run at the same time.
Figure 5 shows this. In a general PE design, the latency is
fixed by the critical path but in a pipelined PE design, the
critical path is curtailed by the register insertion, so the
latency can vary depending on the operation. Since het-
erogeneous operations are executed simultaneously in
loop pipelining, some short latency operations can termi-
nate early and the total latency of the system may be re-
duced.

Critical
Resource

Output Reg’

Front

End

Neighbor PE Neighbor PE

Two cycles operation One cycle operation

Output Reg’

Critical path

Reg

Critical path is
seperated into two

Output Reg’

Output Reg’

One cycle operation

Critical
Resource

Output Reg’

Front

End

Neighbor PE Neighbor PE

Two cycles operation One cycle operation

Output Reg’

Critical path

Reg

Critical path is
seperated into two

Output Reg’

Output Reg’

One cycle operation
(a) General PE (b) Pipelined PE

Figure 5. The critical path comparison between
a general PE and a pipelined PE.
If a critical functional resource has both large area and

long latency, the resource sharing and resource pipelining
can be applied at the same time in such a way that the
shared resource executes operation in several pipeline
stages. If these two techniques are merged, the conditions
for resource sharing are relaxed and so the critical re-
sources are utilized more efficiently. Figure 6 shows this
situation. It is the scheduling for equation (1) when the
multiplier is pipelined into two stages. It needs only 4
multipliers to perform the execution without any stall

whereas the scheduling of Figure 2 needs 8 multipliers.
This is because two PEs sharing one pipelined multiplier
can perform two multiplications at the same time using
different pipeline stages.

 +

+

1*

2*
7

+

1*

2*

St
8

1*

2*

+

+
5

2*

+

+

1*
6

Ld

1*

2*
3

Ld

1*

2*

+
4

Ld
1

Ld

1*
2

col#4

col#3

col#2

col#1

1*

2*

St

Ld
9

2*

St

Ld

1*
10

1*/2* : first/second stage of pipelined multiplication

Figure 6. The loop pipelining of a matrix multi-
plication when the multiplier is pipelined.

4 Design Space Exploration
Since our Resource Sharing and Pipelining (RSP) tech-

nique assumes any rectangular pipelining structure, our
RSP design flow for domain-specific optimization is ap-
plicable to a generic array architecture template including
many existing coarse-grained reconfigurable arrays. The
RSP technique can be integrated into the refinement stage
of the base design space exploration flow. The steps in
the upper half of Figure 7 represent the generic design
space exploration flow and those in the lower half repre-
sent our RSP flow. The upper half can be slightly differ-
ent depending on the specific base architecture.
To extract critical loops which are to be executed on the

reconfigurable architecture, profiling is performed over a
set of applications in the target domain. When the critical
loops are selected, the design space is explored to obtain
an optimal base architecture. After the base architecture
is determined, the selected critical loops are mapped on
the configuration contexts. With the base architecture and
the initial configuration contexts, RSP parameters are
determined through the RSP design space exploration
step.

ProfilingProfiling

Selected
Critical Loops

Base
Architecture
Exploration

Base
Architecture
Exploration

Base Architecture

App. 1
Domain

App. 2 App. 3App. 1
Domain

App. 2 App. 3

Pipeline
Mapping
Pipeline
Mapping

Configuration
Contexts

Configuration
Contexts

Configuration
Contexts

Configuration
Contexts

Configuration
Contexts

Configuration
Contexts

RSP
Parameters

RTL Modeling
And Synthesis

RSP
Exploration

RSP
Mapping

Configuration
Contexts

Configuration
Contexts

RSP
Configuration

Contexts
Configuration

Contexts
Configuration

Contexts

RSP
Configuration

Contexts

Figure 7. Design space exploration flow for

RSP architecture template.

Our RSP template has the following principal parame-
ters for design space exploration:

 The types of shared functional resources
 The types of pipelined resources
 The number of pipeline stages of the pipelined re-

sources
 The number of rows of the shared resources
 The number of columns of the shared resources

For an easy mapping of operations, we need to form a
regular structure of shared resources. So the shared re-
sources are placed in line with the rows and/or columns
of the reconfigurable structure. Thereby, the structure of
the shared resources is represented by the number of rows
and/or columns.
The RSP design space exploration is based on the esti-

mation of the hardware cost and performance with the
RSP parameters. If the hardware cost is too high or the
performance is too low, such RSP design is rejected.
Among the designs that satisfy the condition, only Pareto
points are evaluated and then an optimal solution is se-
lected. Although accurate hardware cost of entire archi-
tecture is evaluated after RSP exploration, we can esti-
mate the hardware cost of an RSP design with pre-
synthesized architecture components during RSP explora-
tion. This is as follows :

HWcost = {n×m×(Sh_PEarea+Regarea+SWarea)

+ Sh_Resarea×(n×shr+m×shc)} < n×m×PEarea (2)
where
n, m : number of row, column
PEarea : area of a PE with shared resource
Sh_PEarea : area of a PE without shared resource
Regarea : area of registers in a PE for pipelined operation
SWarea : area of a bus switch
Sh_Resarea : area of a shared resource
shr/shc : number of rows/columns of the shared resources

Once the final RSP configuration context is obtained,

we can evaluated the exact performance since the con-
figuration context has the information of the exact num-
ber of cycles required to execute the given kernel loop.
However, the mapping and evaluation of all the candidate
RSP designs are time-consuming. Therefore, in the RSP
exploration stage, we use the upper bound for the per-
formance estimation. The upper bound is computed with
the RSP parameters and the initial configuration contexts.
In the case of RS, the number of operations that are to be
executed on the critical resources is counted and com-
pared with the number of shared resources in every cycle.
If the number of critical operations in a cycle is larger
than the number of shared resources, it means that the
shared resources are lacking in the cycle. Therefore,
some stall cycles should be inserted to avoid the resource

conflict – we call it RS stall. In addition, in the case of
RP, the operations that are to be executed on the pipe-
lined resources take multiple cycles so the operations
dependent on pipelined resources should be stalled to-
gether – we call it RP stall. So we approximate the entire
number of stall cycles by RS stall and RP stall cycles. In
reality, more cycles may stall depending on the character-
istics of the RSP structure, thus this approximation is an
upper bound of the performance.
The initial RSP configuration contexts are rearranged

according to the RS and RP. We have two rules for the
rearrangement. First, in the case of RS, shared resources
are assigned to PEs in the order of loop iteration. There-
fore, if it lacks shared resources, the operations in later
loop iterations are moved to the next cycle. Second, in
the case of RP, since the operations on pipelined re-
sources take multiple cycles, other operations dependent
on the output of pipelined resources have to be stalled
together. Furthermore, in the case of consecutive pipe-
lined operations, overlapped cycles between the opera-
tions should be removed. In the case of RSP, the two
rules are applied to the initial configuration contexts.

5 Experimental Results
5.1 Architecture specification
We have determined the internal PE design as well as

the array structure by analyzing the kernels and imple-
mented the base architecture with VHDL. The base archi-
tecture used in this experiment is similar to Morphosys,
which has a two dimensional 8 x 8 mesh of PEs. Each of
the PEs contains one ALU and one array multiplier. Our
base architecture is different from Morphosys in that data
memory have multiple read/write data buses and a con-
figuration cache is allocated to each PE. This is because
our template assumes loop pipelining style execution
while Morphosys assumes SIMD style execution. In ad-
dition, the bit-width of the data bus is extended to 16 and
some interconnections between PEs are added to reduce
data arrangement cycles. We evaluated area and delay
cost of each component of a PE by RTL synthesis and the
result is shown in Table 1. The array multiplier is a criti-
cal resource in both area and delay and thus we extract
the multiplier from the PE design and arrange it to be the
shared and pipelined resource. To make a two stage pipe-
lined version of the multiplier, we inserted a pipeline
register into the multiplier.

Table 1. Synthesis result of a PE
Area Critical path delayComponent No. of slices Ratio Time(ns) Ratio

PE 910 100 25.6 100
Multiplexer 58 6.37 1.3 12.89

ALU 253 27.80 11.5 44.92
Array multiplier 416 45.71 19.7 76.95

Shift logic 156 17.14 2.5 17.58
bold number : the largest ratio among the components

5.2 Architecture evaluation
For quantitative evaluation of RTL model from RSP ex-

ploration, we have used Synplify ProTM[9] as the RTL
synthesis tool and Xilinx Virtex II 8M gates FPGA[10] as
the target hardware. To demonstrate the effectiveness of
our approach, we have compared three cases: base archi-
tecture, RS architecture, and RSP architecture. Figure 8
shows four cases of resource sharing:

1. one multiplier shared by 8 PEs in each row,
2. two multipliers shared by 8 PEs in each row,
3. two multipliers shared by 8 PEs in each row and

one multiplier shared by 8 PEs in each column,
4. two multipliers shared by 8 PEs in each row and

two multipliers shared by 8 PEs in each column.

The RTL synthesis results of these designs are shown in

Table 2. Compared to the base architecture, we have re-
duced the area and delay by up to 42.8% and 34.69%,
respectively.

8x8
PE array

RS/RSP Architecture #1 RS/RSP Architecture #2

RS/RSP Architecture #3 RS/RSP Architecture #4

MULMUL

MULMUL

MULMUL

8x8
PE array

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

8x8
PE array

MULMUL

MULMUL

MULMUL

8x8
PE array

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL

MULMUL MULMUL MULMUL

MULMUL MULMUL MULMUL MULMUL MULMUL MULMUL

Figure 8. Four designs of RS/RSP architectures.

Table 2. Synthesis result of various architec-
tures

Area (No. of slices) Critical path delay(ns)Arch’ PE SW Array R(%) PE SW Array R(%)
Base 910 - 55739 0 25.6 - 26 0
RS#1 10 32446 42.8 0.7 26.85 -4.88
RS#2 34 36816 34.05 1.2 27.97 -9.25
RS#3 55 40577 27.02 1.8 28.89 -11.11
RS#4 68 44768 19.69 2.0 30.23 -16.27

RSP#1 10 33249 40.35 0.7 16.72 34.69
RSP#2 34 38422 31.07 1.2 17.26 32.58
RSP#3 55 42987 22.88 1.8 18.21 29.97
RSP#4

489

68 47981 13.92

15.3

2.0 18.83 27.58
R(%): Reduction ratio compared with Base architecture
SW: Bus switch

5.3 Performance evaluation
We have applied several kernels of Livermore loops

benchmark and representative loops in DSP applications
to RS and RSP architectures. Table 3 shows the operation
set and maximum multiplication number in a cycle of
selected kernels. Table 4 shows that RSP Arch#2 sup-
ports all of the selected kernels of Livermore loops with-
out stall and gives the best performance. Table 5 shows
performance evaluation of specific applications including
2D-FDCT, SAD, MVM, and FFT, and RSP Arch#2 again
supports all of the selected kernels. The performance
evaluation results of Table 4 and 5 show that the best
performance for individual kernels can be obtained with
RSP#1 or RSP#2. Therefore we conclude that RSP archi-
tecture is more efficient than the base architecture in the
aspect of area and delay. Furthermore, the shared re-
sources of RSP architectures are more utilized than RS
architectures under same resource sharing condition - in
the case of 2D-FDCT in H.263, RSP#2 has no stall but
RS#2 has stall cycles of 6.

Table 3. Kernels in the experiments
Kernels Operation set Mult No.

*Hydro mult, add 6
*ICCG mult, sub 4
*Tri-diagonal mult, sub 4
*Inner product mult, add 8
*State mult, add 7
2D-FDCT in H.263 enc mult, shift, add, sub 16
SAD in H.263 enc abs, add 0
Matrix-vector
Multiplication mult, add 8
Multiplication Loop
 in FFT add, sub, mult 8

*kernel : Livermore loop benchmark suite
Mult No : maximum of multiplications mapped to array in a cycle
mult : multiplication, add : addition, sub : subtraction,
abs : absolute value, shift : bit shift operation

The amount of performance improvement depends on

the application. For example, compared to 2D-FDCT
which has multiplications, we have achieved much more
performance improvement with RSP architectures for
SAD which has no multiplication. This is because the
clock frequency has been increased by pipelining the
multipliers. We cannot have that much speedup for ker-
nels with many multiplications since multiplications take
multiple cycles in the RSP architectures.

6 Conclusion
Coarse-grained reconfigurable architectures are consid-

ered to be appropriate for embedded systems because it
can satisfy both flexibility and high performance. Most
reconfigurable architectures use regular structures com-
posed of computational primitives for parallel execution
of multiple operations and flexible operation scheduling
but such regular designs require many hardware re-
sources without regard to the characteristics of the appli-
cation domain. To overcome the limitation, we suggest a

novel reconfigurable architecture template which splits
the computational resources into two groups: primitive
resources and critical resources. Critical resources can be
area-critical and/or delay-critical. Primitive resources
compose the base reconfigurable array. Area-critical re-
sources are shared among the basic PEs. The number of
shared resources is configurable according to the applica-
tion domain. Delay-critical resources can be pipelined to
curtail the overall critical path so as to increase the sys-
tem clock frequency. In this way, our architecture tem-
plate can be used to achieve the goal of domain-specific
optimization while keeping the regularity of the recon-
figurable array.
In the experiments, the RTL synthesis results show that

our resource sharing and pipelining can reduce the area
and the critical path delay by up to 42.8% and 34.69%
respectively compared to the base architecture and the
benchmark evaluation reveals the performance enhance-
ment up to 35.7%. In this paper, we consider only hard-
ware cost and performance but the domain-specific opti-
mization may also be effective for reducing power con-
sumption. To verify the practicality of the proposed ap-
proach more seriously, we are currently working on im-
plementing H.264 encoder on our architecture template.

Acknowledgements
This work was supported by grant No. R01-2004-000-

10268-0 from the Basic Research Program of the Korea
Science & Engineering Foundation.

References
[1] Reiner Hartenstein, “A decade of reconfigurable comput-
ing: a visionary retrospective,” in Proc. of DATE, 2001.
[2] Hartej Singh, Ming-Hau Lee, Guangming Lu, Fadi J.
Kurdahi, Nader Bagherzadeh, and Eliseu M. Chaves Filho,
“MorphoSys: an integrated reconfigurable system for data-
parallel and computation-intensive applications,” IEEE Trans.
on Computers, vol. 49, no. 5, pp. 465-481, May 2000.
[3] Jurgen Becker and Martin Vorbach, “Architecture, mem-
ory and interface technology integration of an indus-
trial/academic configurable system-on-chip (CSoC),” in Proc.
of ISVLSI, 2003.
[4] Bingfeng Mei, Serge Vernalde, Diederik Verkest, and
Rudy Lauwereins, “Design methodology for a tightly coupled
VLIW/reconfigurable matrix architecture: a case study,” in
Proc. of DATE, 2004.
[5] Reiner Hartenstein, M. Herz, T. Hoffmann, and U. Na-
geldinger, “KressArray Xplorer: a new CAD environment to
optimize reconfigurable datapath array architectures,” in Proc.
of ASP-DAC, 2000.
[6] Nikhil Bansal, Sumit Gupta, Nikil D. Dutt, and Alex
Nicolau, “Analysis of the performance of coarse-grain recon-
figurable architectures with different processing element
Configurations,” in Proc. of WASP, 2003.
[7] Jong-eun Lee, Kiyoung Choi, and Nikil D. Dutt, “Map-
ping loops on coarse-grain reconfigurable architectures using
memory operation sharing,” in Technical Report 02-34, Center
for Embedded Computer Systems(CECS), Univ. of California,
Irvine, Calif., 2002.
[8] Jong-eun Lee, Kiyoung Choi, and Nikil D. Dutt, “An
algorithm for mapping loops onto coarse-grained reconfigur-
able architectures,” in Proc. of LCTES, 2003.
[9] Synplicity Corp.: http://www.synplicity.com
[10] Xilinx Corp.: http://www.xilinx.com

Table 4. Performance evaluation of the kernels in Livermore loop benchmark suite
Hydro(32†) ICCG(32†) Tri-diagonal(64†) Inner product(128†) State(16†) Arch’ cycle ET(ns) DR(%) stall cycle ET(ns) DR(%) stall cycle ET(ns) DR(%) stall cycle ET(ns) DR(%) stall cycle ET(ns) DR(%) stall

Base 15 390 0 - 18 468 0 - 17 442 0 - 21 546 0 - 20 520 0 -
RS#1 19 510.15 -30.80 4 18 483.3 -3.26 0 17 456.45 -3.26 0 21 563.85 -3.26 0 35 939.75 -80.72 15
RS#2 15 419.55 -1.07 0 18 503.46 -7.58 0 17 475.49 -7.58 0 21 587.37 -7.58 0 20 559.4 -7.58 0
RS#3 15 433.35 -11.11 0 18 520.02 -11.11 0 17 491.13 -11.11 0 21 606.69 -11.11 0 20 577.8 -11.11 0
RS#4 15 453.45 -16.27 0 18 544.14 16.27 0 17 513.91 -16.27 0 21 634.83 -16.27 0 20 604.6 -16.27 0

RSP#1 21 351.12 10 2 19 317.68 32.12 0 18 300.96 31.91 0 22 367.84 32.64 0 37 618.64 -18.96 14
RSP#2 19 327.94 15.92 0 19 327.94 29.93 0 18 310.68 29.71 0 22 379.72 30.45 0 23 396.68 23.65 0
RSP#3 19 345.99 11.28 0 19 345.99 26.07 0 18 327.78 25.84 0 22 400.62 26.62 0 23 418.83 19.45 0
RSP#4 19 357.77 8.26 0 19 357.77 23.55 0 18 338.94 23.31 0 22 414.26 24.12 0 23 433.09 16.71 0

 Kernel(No.†) : iteration number of the kernel, ET(ns) : Execution Time = cycle × Critical path delay(ns), DR(%) : Delay Reduction percentage,
stall : stall number of resource lack, bold number : the largest amount of delay reduction %

Table 5. Performance evaluation of 2D-FDCT, SAD, MVM and FFT function
2D-FDCT in H.263 enc SAD in H.263 enc *MVM(64†) Multiplication Loop in FFT(32†) Arch’ cycle ET(ns) DR(%) stall cycle ET(ns) DR(%) stall cycle ET(ns) DR(%) stall cycle ET(ns) DR(%) stall

Base 32 832 0 - 39 1014 0 - 19 494 0 - 23 598 0 -
RS#1 56 1503.6 -80.72 24 39 1047.15 -3.26 0 19 510.15 -3.26 0 37 993.45 -66.12 14
RS#2 38 1062.86 -7.58 6 39 1090.83 -7.58 0 19 531.43 -7.58 0 23 643.31 -7.58 0
RS#3 32 924.48 -11.11 0 39 1126.7 -11.11 0 19 548.91 -11.11 0 23 664.47 -11.11 0
RS#4 32 967.36 -16.27 0 39 1178.97 -16.27 0 19 574.37 -16.27 0 23 695.29 -16.27 0

RSP#1 64 1070.08 -28.61 24 39 652.08 35.7 0 20 334.4 32.31 0 40 668.8 -11.83 13
RSP#2 40 690.4 17.01 0 39 673.14 33.61 0 20 345.2 30.12 0 27 466.02 22.07 0
RSP#3 40 728.4 12.45 0 39 710.19 29.96 0 20 364.2 26.27 0 27 491.67 17.78 0
RSP#4 40 753.2 9.47 0 39 734.37 27.57 0 20 376.6 23.76 0 27 508.41 14.98 0
 *MVM : Matrix Vector Multiplication

