
IEEE TRANSACTIONS ON COMPUTERS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 38, NO. 1 , JANUARY 1989 115

Resource Sharing Interconnection Networks in
Multiprocessors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract-In this paper, circuit-switched interconnection net-
works for resource sharing in multiprocessors, named resource
sharing interconnection networks, are studied. Resource schedul-
ing in systems with such an interconnection network entails the
efficient search of a mapping from requesting processors to free
resources such that circuit blockages in the network are mini-
mized and resources are maximally used. The optimal mapping is
obtained by transforming the scheduling problems into various
network flow problems for which existing algorithms can be
applied. A distributed architecture to realize a maximum flow
algorithm using token propagations is also described. The
proposed method is applicable to any general loop-free network
configuration in which the requesting processors and free
resources can be partitioned into two disjoint subsets.

Index Terms-Circuit switching, distributed resource schedul-
ing, interconnection network, linear programming, maximum
flow, minimum cost flow, multicommodity network flow, re-
source sharing.

I. INTRODUCTION

N THIS paper, we investigate the problem on the sharing of I computing resources in multiprocessors and the distributed
scheduling of shared resources by a circuit-switched intercon-
nection network.

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAresource is a processing element to carry out a designated
function. Examples include a general purpose processor, a
special functional unit, a VLSI systolic array, an input/output
device, and a communication channel. A resource is accessible
by any processor via an interconnection network. A request
generated by a processor can be directed to any one of a pool
of free resources that are capable of executing the designated
task. An interconnection network is an essential element of
these systems as it interconnects processors and resources. Its
function is to route requests initiated from one point to another
point connected on the network. The network topology is
dynamic, and the links can be reconfigured by setting the
network’s active switching elements. The notable characteris-
tic of these networks is that they operate with address
mapping. That is, a request is initiated with a specific
destination or a set of destinations, and routing is done by

Manuscript received May 26, 1986; revised July 6, 1988. This work was
supported in part by National Science Foundation Grants MIPS 85-19649 and
IRI-8709072 and National Aeronautics and Space Administration Contract
NCC 2-481.

J. -Y. hang is with the Department of Electrical Engineering and Computer
Science, Northwestern University, Evanston, IL 60208.

B. W. Wah is with the Department of Electrical and Computer Engineering
and the Coordinated Science Laboratory, University of Illinois at Urbana-
Champaign, Urbana, IL 61801.

IEEE Log Number 8823532.

examining the address bits. Routing of requests is usually done
in parallel. As classified by Feng zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[161, these networks include
the single or multistage networks and the crossbar switch.
Examples are the Banyan [20], indirect binary n-cube [38],
cube [41], perfect shuffle [43], Flip [3], Omega 1271, data
manipulator [151, augmented data manipulator [42], delta
[37], [111, baseline [46], Benes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5] . and Clos [9]. Examples of
systems designed with interconnection networks are ‘hac [40],
Staran [3], C.mmp [47], Illiac IV [26], Pluribus [34], PASM
[48], Numerical Aerodynamic Simulation Facility (NASF)
[2], the Ballistic Missile Defense testbed [32], MPE’ [4], and
the Connection Machine [23]. The performance of resource
sharing systems under address mapping has been studied by
Rathi, Tripathi, and Lipovski [39], Fung and Torng [19], and
Marsan, Gregoretti, and Gerla [29], [30].

Wah proposed a network with distributed scheduling
intelligence, called resource sharing interconnection net-
work (RSIN) [45], [44]. Instead of using an address, mapping
scheme, which requires a centralized scheduler to seek and
give the address of a free resource to a request before it enters
the network, the request is sent into the network without any
destination tags. It is the responsibility of the network to route
the maximum number of requests to the free resources. In this
way, the scheduling intelligence is distributed in the network.
Distributed resource scheduling avoids the bottleneck of a
centralized scheduler [39]. The objective of a good scheduling
scheme is to avoid network blockages and to maximize
resource utilization, which requires an efficient algorithm at
each switching node to collect the minimum amount of status
information.

The PUMPS architecture [see Fig. l(a)] for image analysis
and pictorial database management [8] is a typical example of
resource sharing multiprocessors, in which various VLSI
systolic arrays, each realizing an image processing function,
are organized into a pool of resources. Most data flow
architectures can also be considered as resource sharing
systems. For example, in Dennis’ architecture [lo] [see Fig.
1 (b)], active instructions generated from cell blocks are routed
to a processing unit for execution. Hence, the processing units
constitute the pool of resources, and an RSIN connects them to
cell blocks. In a resource sharing system with load balancing,
processors are considered as resources; thus, requests gener-
ated are queued at the processors as well as the resources.
There may be an imbalance of workload at the resources, and
load balancing schemes are used to redistribute requests
among resources.

The design of an RSIN with optimal resource scheduling is

OO18-9340/89/01OO-0115$01 .OO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO 1988 IEEE

116 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Resource Sharing

Interconnection Network

IEEE TRANSACTIONS ON COMPUTERS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA38, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, JANUARY 1989

Processing Units + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0-

Resource
Sharing

Interconnection zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7 Network

(b)
Examples of resource sharing systems. (a) PUMPS: An example of a

multiprocessor with shared systolic arrays. (b) A data flow computer is a
resource sharing system (cell blocks are processors, while processing units
are resources).

Fig. 1.

studied in this paper. The results are derived with respect to
multistage interconnection networks, called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmultistage re-
source sharing interconnection networks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(MRSIN), and are
applicable to any general loop-free network configuration in
which the requesting processors and free resources are
partitioned into two disjoint subsets. Central to the design of
such an interconnection network is the development of an
efficient distributed algorithm to disseminate status informa-
tion through the complex interconnection structure. The
algorithm to be presented is simple, efficient, and independent
of the interconnection topology. For a typical interconnection
structure, such as the Omega network [27], network blockages
can be reduced to less than 5 percent. In the next section, the
model of MRSIN is reviewed, and the issues on resource
scheduling are discussed. In Section 111, we present transfor-
mation methods for various scheduling disciplines. These
transformations allow optimal request-resource mappings to
be obtained through the evaluation of network flow al-
gorithms. Architectures to carry out these algorithms are
presented in Section IV. Conclusions are drawn in Section V.

11. KESOURCE SHARING INTERCONNECTION NETWORKS

The model of the RSIN used in this study is summarized as

1) Circuit switching is assumed rather than packet switching
follows.

for the following reasons. First, packet switching is used in
conventional networks with address mapping because it allows
a network path to be shared by more than one request
concurrently. In an RSIN, reducing the packet delay by
balancing traffic among alternate routing paths is less critical
because a request can always search for another available
resource if the network is free. Moreover, the overhead of
rerouting a packet when a path or resource is blocked is higher
than that of rerouting a resource request. Second, owing to the
resource characteristics, a task cannot be processed until it is
completely received. The extra delay in breaking a task into
multiple packets may decrease the utilization of resources, and
hence increase the response time of the system.

2) One or more types of resources may exist in the system.
An RSIN connecting only one type of resource is called a
homogeneous RSIN, while an RSIN connecting multiple
types of resources is a heterogeneous one.

3) A priority level may be associated with a request to show
the urgency of the request. A preference value may be
associated with a resource to show the desirability of being
used for service. The costs of allocation are inversely related
to the priorities and preferences. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4) Each request needs one resource only. When multiple

resources are needed, they can be requested from multiple
ports concurrently, or can be requested sequentially from a
single port.

5) A processor can transmit one task at a time to the
resources. Other tasks arriving during the task transmission
time are queued. The circuit between a processor and a
resource can be released once the request has been transmit-
ted. The processor can continue to make other requests, while
the resource will be busy until the task is completed.

We have not investigated the problem on the selection of the
number of resources in each type and their placements in the
output ports. This problem has been studied by Briggs et al.,
who have considered the problem of choosing the number of
resources in each type in which one resource is connected to
each output port and one resource is requested each time [7].
We have not considered the case in which more than one
resource or multiple types of resources are requested by one
request. Here, the scheduling algorithm is dependent on the
number of resources in each type, the way that resources are
distributed to the output ports, and the network characteristics.
Furthermore, deadlocks may occur, and distributed resolution
of deadlock may have a high overhead.

The goal of the scheduling algorithm is to find a request-
resource mapping such that the total cost is minimized. In the
special case in which all requests are of equal priorities and all
resources have equal preferences, the scheduling problem
becomes the mapping of the maximum number of requests to
the free resources.

The maximal request-resource mapping may be hampered
by blockages in the system. In a conventional address-mapped
interconnection network, blockages may be caused by con-
flicts in cases when either the same resource is requested by
more than one request or a network link is requested by two
circuits. In an RSIN, a resource conflict can be resolved by
rerouting all but one request to other free resources. However,

JUANG AND WAH: RESOURCE SHARING INTERCONNECTION NETWORKS 117 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Processors Switching Boxes Resources

(b)
Fig. 2. Example to illustrate Transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) An MRSIN embedded in

an 8 x 8 Omega network (thick shaded paths in the network show circuits
that are already occupied; processors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp , , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 3 , p ~ , p7, and pa are making
requests; resources r l , r3, r,, r,, and ra are available). (b) The flow network
obtained from the MRSIN in Fig. 2(a) using Tranformation 1 (the number
associated with each arc is the amount of flow assigned to it by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
maximum flow algorithm; all arcs have unit capacity).

this may not always lead to better resource utilization because
the allocation of one request to a resource may block one or
more other requests from accessing free resources. A schedul-
ing algorithm that schedules requests according to the state of
the network and resources is, therefore, essential. The
necessity for a proper scheduler to give the maximum resource
utilization is illustrated in the following example. Consider an
8 x 8 Omega network' [see Fig. 2(a)] with switchboxes that
can be individually set to either a straight or an exchange
connection. Processors p l , p3, p , , p 7 , and p s are requesting
one resource each, and resources r , , r3, rs, r7, and r8 are
available. The circuits between p 2 and r6 and p 4 and r4 have

I The input ports are numbered in a different way from Lawrie's Omega
network [27] because all resources are homogeneous, and the permutation of
requesting processors will not affect the resource utilization. Broadcast
connection is not needed in the switchboxes since each request needs one
resource.

been established previously. p6 is not making a request, and r2
is busy. All free resources will be allocated if one of the
following request-resource mappings is used: { (p l , r3) , (p3,

(p7, r l) , (ps , r ,) } . But if the request-resource mapping { (p l ,

maximum of four out of five resources can be allocated, since
the path leading from p8 to r8 is blocked. Simulation results
showed that the average blocking probability can be as low as
2 percent for an MRSIN embedded in an 8 x 8 cube network zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[U], [22]. If a heuristic routing algorithm is used, then the
average blocking probability increases to around 20 percent.
In the simulation, the network is assumed to be completely
free, i.e., no link is occupied for other purposes. If the
network is not completely free, then there will be fewer paths
available for resource allocation. In this case, a heuristic
routing algorithm may have poor performance. An optimal

r5)9 (P59 r 7) , (P79 r l) , (P89 rS>} or { (P I , r3)9 (P39 rS), (P5, r7)9

rl), (P3 , r5), (P s , r3), (P7, r7), (P s , rs)) is used, then a

118 IEEE TRANSACTIONS ON COMPUTERS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA38, NO. 1, JANUARY 1989

scheduling algorithm will be able to better utilize these paths,
and result in a low blocking probability (although it will be
higher than that of the case when the network is completely
free). If extra stages are provided, there will be more paths
available. Resources may be fully allocated in most cases even
when an arbitrary resource-request mapping is used. Finding
an optimal mapping becomes less critical.

capacity and flow conservation constraints. Given a flow
network zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG(zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV, E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, t , c), the maximum flow problem can be
formulated as a linear programming problem as follows.

Maximum Flow Problem:
Maximize F
subject to

u=s
u=t 111. OPTIMAL RESOURCE SCHEDULING IN MRSIN

To bind a request to a resource in the system, an RSIN
determines a mapping from pending requests to free resources,
and provides connections to as many request-resource pairs as
possible. The objective of a scheduling algorithm is to obtain
the optimal mapping that optimizes certain performance
indexes, such as resource utilization. In this section, methods
to optimize request-resource mappings are discussed. Exhaus-
tive methods that examine all possible ordered mappings have
exponential complexity. In a homogeneous MRSIN, suppose x

1) f (e) - f (e) = [- F F
eEa(u) eEB(v) 0 otherwise

(flow Conservation) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2) O l f (e) i c (e) for all e E E

(capacity limitation)'.

Many other examples of network flow problems, including the
minimum cost flow and the transshipment problems, can be
found in the literature [21].

processors are making requests, y resources are available, and
the network is completely free. The scheduler has to try a
maximum of C:-y! (for x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 y) or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY,-x! (for y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 x)
mappings to find the best one, where Ci is the number of
combinations of choosing i objects out o f j objects [44], [22].
Suboptimal heuristics can be used but it is only practical when
x and y are small.

In this section, we transform the optimal request-resource
mapping problem into various network flow problems for
which many efficient algorithms exists [21], [24]. The basic
concepts of flow networks are briefly reviewed first.

A. Flow Networks

A flow network is usually represented by a digraph in which
each arc is associated with a capacity and possibly a cost. Let
D = (V , E) be a digraph with two distinct nodes: s (source)
and t (sink). A capacity function c(e) is defined on every arc
of the graph, where c(e) is a nonnegative real number for all e
E E. A flow functionfis an assignment of a real numberf(e)
to arc e such that the following conditions hold.

1) Capacity limitation: For every arc e E E ,

O s f (e) s c (e) .

B. Optimal Resource Mapping in Homogeneous MRSIN

A switchbox in an MRSIN is a crossbar switch without
broadcast connections. We establish the following theorem to
show that setting a nonbroadcast switch is equivalent to finding
a legal integral flow assignment in a flow network of unit
capacity. Note that an integral flow is a flow assignment in
which the amount of flow assigned to each link is of integral
value.

Theorem I : For any MRSIN, there exists a flow network
for which a legal integral flow is equivalent to a valid request-
resource mapping.

Proof: Consider an n x m switchbox, where n is the
number of input ports and m is the number of output ports. A

nonbroadcast switch setting is one in which an input link is
connected to at most one output link and vice versa. This
switchbox can be transformed to a node U in a flow network
with n incoming arcs and m outgoing arcs, i.e., I a (u) I = n
and I P (u) 1 = m. The capacities of these arcs are set to unity.
If one unit of flow is assigned to arcs for which their
corresponding links of the switch are connected, then the flow
conservation and link capacity constraints are satisfied at node
U. Therefore, a switch setting is equivalent to an integral flow

2) ~l~~ conservation: L~~ a (v) lresp., ~ (~) l be the set of
E v

assignment for the corresponding node in the flow network. In
other words, there is a direct correspondence between a
switchbox and a node, and between a switch setting and a flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 assignment.

incoming (resp., outgoing) arcs of vertex
- is, I } ,

F~~ every

The capacity constraint restricts the amount of flow that can be
assigned to a link; while flow conservation implies that an
intermediate node in the flow network does not absorb or
create flows.

A legal flow is a flow assignment that satisfies the capacity
and flow conservation constraints. In a network flow problem,
it is necessary to find the legal flow that optimizes a given
objective function. For example, in the maximum flow
problem, it is necessary to find F, the maximum amount of
flow that can be advanced from source to sink under the

To use existing algorithms to solve a flow problem, an
MRSIN has to be transformed into a flow network such that
the optimization of request-resource mappings is equivalent to
the optimization of the corresponding objective function in the
flow network. To this end, additional nodes may be intro-
duced, the capacity of a link may be greater than one, and a
cost may be associated with a link.

The following transformation produces a flow network such
that the optimal request-resource mapping can be derived
from its maximum flow.

Transformation I : Generate a flow network G (V , E, s, t ,
c), from a homogeneous MRSIN.

(Tl) Create three node sets P, A', and R for processors,

JUANG AND WAH: RESOURCE SHARING INTERCONNECTION NETWORKS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA119

switchboxes, and resources, respectively. Introduce two addi-
tional nodes: source zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs and sink zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V ’ = { S , t } U P U X U R.

(T2) Add an arc leading from the source s to every node
associated with a processor. Denote this set of arcs by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, i.e.,

S={(s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu) l u E P } .

Add an arc between every node associated with a resource and
the sink t. This set of arcs is called T.

T = { (u , t) l u E R } .

For each link in the MRSIN that connects two switchboxes, or
a processor to a switchbox, or a switchbox to a resource, add
an arc between the corresponding nodes in the flow graph.
Denote this set of arcs by B.

B={(u, W) (U E P U X , w E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX U R } .

Define

E ’ = S U T U B.

(T3) Assign link capacities according to the following
function.

0 associated link is occupied or
nonexistent in the MRSIN i 1 associated link is free

c(e) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e E B

0 associated processor does not generate request
1 associated processor generates request

0 associated resource is unavailable
 ET 1 associated resource is available.
c(e) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI

(T4) Obtain arc set E by removing those arcs with zero
capacity.

E=E’ - {e le E E ‘ , c(e)=O}.

Obtain node set V by deleting those nodes that are not
reachable from s.

Applying the above transformation to the MRSIN in Fig.
2(a) results in the flow network in Fig. 2(b). The following
theorem shows that Transformation 1 can be used to find the
optimal request-resource mapping.

Theorem 2: In a homogeneous MRSIN, the number of
resources allocated by a mapping is equal to the amount of
integral flow that can be advanced from the source to the sink
in the flow network obtained by Transformation 1.

Proof: The nodes in the flow network transformed from
a multistage interconnection network can be divided into
stages, and an arc is assigned either zero or one unit of flow. In
a flow network corresponding to a loop-free interconnection
network with an arbitrary configuration, dummy nodes can be
added to equalize all s-t paths and organize the network into
stages. An integral flow assignment to nodes in stage i defines
a one-to-one mapping g; that maps a subset of incoming arcs to
a subset of outgoing arcs. Hence, a legal integral flow
assignment in such a network can be represented by a

composite function h = g l g2 * gL , where L is the number of
stages. Since g, is one-to-one, h is also one-to-one. For a one-
to-one function, the norm of its domain is equal to the norm of
its range. According to Transformation 1, the stage next to the
source is comprised of nodes associated with the requesting
processors, and the stage next to the sink is comprised of
nodes associated with the free resources. Each node in these
two stages has a single incoming arc and a single outgoing arc.
Therefore, the one-to-one mapping of h implies the same
number of nodes involved in the flow assignment in each of
these two stages. Furthermore, the flow assignment defines a
path for a requesting processor to a free resource, and the free
resource can be allocated to the requesting processor through
this path. The norm of h is equal to the total flow leaving the
source and entering the sink. Thus, I I1 = I 0 I = F, where Z
and 0 represent the domain and range of g,, and F is the value
of the flow. As a result, every legal integral flow defines a set
of F nonoverlapping paths from s to t , and the number of
resources allocated is equal to the value of the corresponding
flow in the flow network. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

From Theorem 2 and a known result that the maximum flow
of a network with integral capacity is integral [6], we conclude
that the optimal request-resource mapping can be derived
from the maximum flow in the transformed flow network.

Many algorithms have been developed to obtain the
maximum flow in a flow network. The algorithm by Ford and
Fulkerson [17] is a primal-dual algorithm in which the flow
value is increased by iteratively searching for flow nugment-
ing paths until the minimum cut-set of the network is
saturated. At this point, no more flow can be advanced since
the minimum cut-set is the bottleneck. A flow augmenting path
is an s-t path through which additional flow can be advanced
from the source to the sink. When an arc e on the s-t path
points in the same direction as the s-t path, additional flow
may be advanced through e if the current flow assigned to e is
less than c(e), the capacity of the arc. In contrast, if arc e
points in the opposite direction as the s-t path, then additional
flow may be pushed through the s-t path by cancelling its
current flow. Advancing flow through an augmenting path in
this way will always increase the total amount of flow, and the
flow conservation and capacity limitations will not be violated.

As an example, in Fig. 3(a), an original flow f is assigned
along path s-a-d-t. Path s-c-d-a-6-t is a possible flow
augmenting path [see Fig. 3(b)]. Advancing one unit of flow
through this augmenting path results in a new flow assignment
f’ . Two units of flow are pushed through two separate paths s-
a-b-t and s-c-d-t according to this assignment [see Fig.

In an MRSIN, advancing a flow through an augmenting
path is equivalent to a resource reallocation, i.e., a permuta-
tion of the possible request-resource mappings. Consider the
MRSIN in Fig. 4(a), which is a counterpart of the flow
network in Fig. 3.* The original flow f is equivalent to the
request-resource mapping { (p a , rd), (pc, rb)}. The allocation

3 ~ 1 .

Although the switchboxes are combined with the processors c+r resources
in the flow network in Fig. 3, the discussion will not be affected.

120 IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 1, JANUARY 1989

(C)

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 . An illustration of advancing flow through a flow augmenting path
(all arcs have unit capacity). (a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA flow network with an initial flow
assigned to path zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs-a-d-t. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b) A flow augmenting path s-c-d-a-b-t exists in
the netNork. (c) Final flow assignment after advancing a unit of flow
through the flow augmenting path.

(b)
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. A resource reallocation corresponding to flow augmentation in Fig.

3. (a) An initial resource allocation and a possible reallocation. (b) Two
resources are allocated after reallocation.

of resource rb to request pc is blocked in this mapping. The
existence of the flow augmenting path s-c-d-a-b-t shows that
this blockage can be removed. Fig. 4(b) shows that advancing
flow through this augmenting path results in a new mapping
{ (p a , rb), (p c , rd)} and the allocation of both resources. As

another example, applying the maximum flow algorithm to the
flow network in Fig. 2(b), the flow assignment as shown in the
figure is obtained, and the request-resource mapping {(PI,

mappings that cannot allocate all the free resources are
eliminated by the maximum flow algorithm. Note that there
may be more than one optimal mapping. For example, another
possible optimal mapping in Fig. 2(b) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{(PI, r3) , (~ 3 , r5),

Finding a flow augmenting path from the source to the sink
in a flow network is central in most maximum flow al-
gorithms. The improvement lies in the efficient search of flow
augmenting paths [13], [12]. For example, in Dinic’s al-
gorithm, the shortest augmenting path is always advanced first
with the aid of an auxiliary layered network, and hence the
computational complexity is bounded by O(I E 1 3, for general
networks. In our case, the links have unit capacity, and the
time complexity is reduced to O(I VI 2’3 1 E 1) [35 1.

C. Homogeneous MRSIN with Request Priority and
Resource Performance

In a homogeneous MRSIN with request priority and
resource preference, each request is associated with a priority
level, and each resource is assigned a preference value. Many
application-dependent attributes, such as workload. execution
speed, utilization, and capability, can be encoded into request
priorities and resource preferences. The objective of resource
scheduling here is to maximize the number of resources
allocated, while requests of higher priority are to be allocated
and resources of higher preference are to be chosen. However,
it is not necessary for requests and resources to be allocated in
order of their priorities and preferences. The allocation of a
resource to a request may be blocked by requests of higher
priority, and the resource may be allocated to a request of
lower priority. A similar argument applies to resources.

With respect to a flow network, the priority of a request can
be considered as the cost of carrying a flow through the path
associated with this request. Likewise, the preference of a
resource can be considered similarly. As a result, the request-
resource mapping problem in the class of MRSIN’s can be
transformed into the minimum cost flow problem, which seeks
a flow assignment to minimize the total cost of flows in the
network.

Consider a flow network G (V , E , s, t , c, w) , in which
w(e), the cost per unit flow, is associated with arc e E E. In
the minimum cost flow problem, a legal s-t flow assignment is
sought that allows a given amount of flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFo to be circulated
from source to sink with the minimum cost. The objective is to
determine the set of least expensive s-t paths through which
the fixed amount of flow Fo can be advanced. The constraints
in this problem are the same as those in the maximum flow
problem. The problem may be defined in a linear program-
ming formulation.

r3)9 (p37 r5), (PS, r8), (p7, rl), (p8, r7)) is derived. Those

(p5, r8), (p7, r 7) , (p8, r l > > .

JUANG AND zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAWAH: RESOURCE SHARING INTERCONNECTION NETWORKS 121 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Minimum Cost Flow Problem:

Minimize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACeE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE w(e) f (e)
subject to

(- F ~ i f u = s

(flow conservation)

2) O s f (e) s c (e) for all e E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE

(capacity limitation).

In allocating resources, the objective is to find a correspond-
ing flow network whose optimal flow leads to an optimal
request-resource mapping. The main idea behind the transfor-
mation is to embed priority and preference information into
the objective function by proper cost assignments on links.
The amount of flow to be circulated can be considered as the
number of requests pending for allocation. However, this
amount may exceed the capacity of the flow network or the
number of available resources, and additional paths have to be
introduced to prevent overflow. A possible transformation is
given as follows.

Transformation 2: Generate a flow network G (V , E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, t ,
c, w) , from a homogeneous MRSIN with request priorities and
resource preferences.

(TI) Create node sets P, X , and R for processors,
switchboxes, and resources, respectively, and introduce spe-
cial nodes: source s, sink t , and a bypass node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU. Let

V ’ = { S , t , U } U P U X U R.

(T2) Create arc sets S, T, and B as in Step (T2) of
Transformation 1. Further, add an arc from the node
associated with a processor to the bypass node, and connect
the bypass node to the sink. This set of arcs is denoted as L .

L = { (u , u)lu E P } U {(U, t) } .

Define

E ’ = S U T U B U L .

(T3) Define capacity function c as in Step (T3) of
Transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. In addition, define

(T4) Define cost function w that represents the cost of
advancing one unit of flow through a link as follows.

0 for e E B

max (y,,, + 1, qmax + 1) for e E L

Ymax -Yp for e E S, p E P
4max - 4 w for e E T, w E R

w(e) =

where ymax is the highest priority level, yp is the priority of
request from processor p , qmax is the highest preference level,
and qw is the preference of resource w. Note that any cost

function that is inversely related to priorities and preferences
can be used, for e E S and e E T.

(T5) Create arc set E and node set V as in Step (T4) of
Transformation 1.

(T6) Set the total flow Fo to the number of requests.
As an example, in the MRSIN in Fig. 5(a), each request is

attributed a priority level, and an available resource is given a
preference value. The preference and priority levels range
from 1 to 10. A minimum cost flow network obtained from
Transformation 2 is shown in Fig. 5(b).

The following theorem proves the correctness of Transfor-
mation 2.

Theorem 3: The optimal request-resource mapping on a
homogeneous MRSIN with request priority and resource
preference can be derived from the minimum cost integral
flow of the flow network obtained by Transformation 2.

Proot It is easy to verify that a feasible flow always
exists since one can always push the required amount of flow
Fo through the bypass node U. A flow passing through the
bypass node means that the associated request it not a1 located.
Thus, minimizing the cost of a flow assignment is equivalent
to assigning as much flow as possible to the part of the flow
network other than the bypass node. This is achievable if the
minimum cost flow assignment minimizes the amount of cost
flow through the bypass node. The theorem can be proved by
contradiction. Assume that the minimum cost flow assignment
does not define the maximum resource allocation, then there
exists an s-t path such that the bypass node U is not on this
path, and the path is not saturated such that at least one unit of
flow can be advanced through it. The additional flow that
could have passed through this s-t path will pass through the
bypass node U . According to the cost function w defined in
Transformation 2, the cost of advancing flow through such an
s-t path is less than that of advancing the same amount of flow
through a path passing through node U. The total cost could be
reduced if more flow is pushed through this s-t path instead of
passing through the bypass node U. The existence of sbch a
path implies that the original assignment is not minimum,

Edmonds and Karp have developed a scaled out-of-kilter
algorithm to obtain the minimum cost flow of a general flow
network in polynomial time [18j, [131. For a flow network of
0-1 capacity, the time complexity is bounded by
O(I VI I E I 2) . Furthermore, in the minimum cost flow assign-
ment obtained, the flow assigned to a link is integral if the
links have integral capacities. Thus, the optimal request-
resource mapping of homogeneous MRSIN with request
priorities and resource preferences can be obtained efficiently.

As an example, applying the minimum cost flow algorithm
on the flow network in Fig. 5(b) results in the reduest-
resource mapping { (p 3 , rs), (p s , r l) , (p s , r7)}. The selected
paths are shown as bold lines in Fig. 5(b). Note that the
minimum cost flow obtained may not be unique, although
alternative mappings will not improve the cost of allcication.

D. Optimal Resource Scheduling in Heterogeneous
MRSIN

A heterogeneous MRSIN consists of multiple types of
resources, and a processor may generate a request of a given

which contradicts the assumption. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

122 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON COMPUTERS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 38, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, JANUARY 1989

Processors Switching Boxes Resources zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(b)

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 . Example to illustrate Transformation 2. (a) An MRSIN with request
priority and resource preference (highest priority is 10; highest preference
is 10; thick shaded paths in the network are already occupied; processors
p ~ , ps, and ps are making requests; resources r,, r,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArs, r,, and r8 are
available). (b) The flow network transformed from the MRSIN in Fig. 5(a)
using Transformation 2 (nonzero flows assigned by the out-of-kilter
algorithm are shown as thick dark lines in the figure; all arcs have unit
capacity; cost of arc is zero except where indicated).

type of resource. Such an MRSIN is equivalent to a flow
network carrying different types of commodities. A multicom-
modity flow network has multiple source-sink pairs, each of
which is associated with one type of commodity. A flow
coming out of a source of a given commodity can only be
absorbed by the sink of the same type of commodity. Flows of
different commodities may share a link as long as the total
flow does not exceed the capacity of the link.

For a flow network with k types of commodities, there are k
source-sink pairs, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(si, t i) , for i = 1 to k. Let F' be the flow of
the ith commodity. The search for the maximum flow can be
formulated as a linear programming problem [11.

Multicommodity Maximum Flow Problem:
Maximize Fi
subject to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

u=si

1) 2 f ' (e) - f ' (e) = F' " = t'
eEu(u) e€&) il:' otherwise

(flow conservation)
for i = l , . * e , k

k

2) O s z f ' (e) s c (e) for all e E E
i = I

(capacity limitation).

JUANG AND WAH: RESOURCE SHARING INTERCONNECTION NETWORKS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA123

A multicommodity flow network may be visualized as the
superposition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk single-commodity flow networks. Each
layer in the superposition represents a single-commodity flow.

To obtain the optimal request-resource mapping in a
heterogeneous MRSIN without priority and preference, a
transformation similar to Transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 can be applied to
obtain a single-commodity flow network for each type of
resource, and the single-commodity flow networks are super-
posed to form a multicommodity flow network.

The optimal mapping for a heterogeneous MRSIN with
request priorities and resource preferences can be obtained by
transforming the problem into the multicommodity minimum
cost flow problem. Let w’(e) be the cost per unit flow for the
ith commodity on edge e, andf’(e) be the corresponding flow.
The problem can be formulated as follows.

Minimize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXf= X e E E w’(e)f’(e)
subject to

Multicommodity Minimum Cost Flow Problem:

(-FX

(flow conservation)
for i = l , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- - . , k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k

2) O s C f ’ (e) s c (e) for all e E E
i = 1

(capacity limitation).

The equivalent flow network consists of k source-sink pairs
and k bypass nodes, where k is the number of types of
requested resources. Similar to the case before, this flow
network may be regarded as the superposition of k single-
commodity flow networks, and Transformation 2 can be
applied to each of them.

The problem of finding the maximum integral flow in a
general multicommodity flow network has been shown to be
NP-hard. Fortunately, interconnection networks of restricted
topology have transformations that belong to a class of
multicommodity flow networks in which the optimal flow
values are always integral [14]. For this class of flow
networks, the integral multicommodity optimal flows can be
obtained efficiently by the Simplex Method, which has been
shown empirically to be a linear time algorithm 1311.

IV. ARCHITECTURE OF MRSIN TO SUPPORT OPTIMAL
SCHEDULlNG

The optimal scheduling algorithms described in Section I11
can be supported by various architectures. An efficient design
is needed to avoid an intolerable overhead.

In a conventional interconnection network using address
mapping, resource binding is done at the requesting processor.
To obtain an optimal mapping, a requesting processor has to
know the status of the network, availability of resources, and
all requests generated by other processors. This information is
very costly to obtain because it changes dynamically. In
practice, resource binding is done without global information.
A resource mapping so obtained may be suboptimal and may

lead to heavy resource contention and severe circuit blockage.
In contrast, it is less costly to maintain global status informa-
tion in the network. Thus, by carrying out resource binding in
the RSIN, the overhead of obtaining an optimal resource
mapping can be reduced.

Two architectures of an MRSIN for carrying out the optimal
resource scheduling algorithms have been studied. In the first
approach, a dedicated monitor is responsible for resource
scheduling (see Fig. 6). It maintains the status of the
interconnection network and resources. The monitor enters a
scheduling cycle when there are pending requests. Requests
received or resources released during a scheduling cycle will
not be processed until the next cycle. In a scheduling cycle, a
flow network is generated according to the status of the
network. The optimal request-resource mapping is derived by
the monitor using a flow algorithm implemented in software.
The monitor then sends an acknowledgment to each requesting
processor that has been allocated a resource, notifies resources
that are allocated, and establishes paths in the network. The
implementation is sequential, and the overhead is measured by
the number of instructions executed in the algorithm.

A distributed architecture, on the other hand, distributes the
scheduling intelligence in the switchboxes of the interconnec-
tion network. Optimal scheduling is achieved through cooper-
ation among processes in the switchboxes. No transfcirmation
to a network flow problem is necessary because the network
flow algorithm is carried out in a distributed fashion in the
switchboxes. The complexity of the process in each switchbox
is central to the design of the distributed architecture. Our
previous study shows that the maximum flow algorithm for
homogeneous MRSIN without priority and preference can be
efficiently implemented in a distributed fashion [2 5] . For
systems with heterogeneous resources or with priorities and
preferences, there is no significant advantage of a distributed
implementation over a monitor architecture except for reasons
such as fault tolerance and modularity.

In the following sections, we describe a distributed realiza-
tion of Dink’s maximum flow algorithm to obtain the optimal
request-resource mapping.

A. Dink’s Maximum Flow Algorithm

Dink’s algorithm is based on the flow-augmsntation
method described in Section 111-B. It improves over Ford and
Fulkerson’s algorithm by advancing flow through the shortest
augmenting path, which can be found from a layered network
derived from the original flow graph. A flow chart surnmariz-
ing Dink’s algorithm is shown in Fig. 7. it comprises two
alternating phases. In the first phase, a layered network is
constructed, while in the second phase, an increment to the
flow assignment is determined by finding the maximal flow in
the layered network. The algorithm alternates between these
two phases until no more flow can be augmented.

In the layered network, nodes of the original flow network
are organized into layers. The first layer consists of the source
node(s) of the network, and the remaining layers are con-
structed iteratively. A layer consists of nodes that are not
included in the previous layers and have either an unsaturated
arc or an arc with nonzero flow originating from any node in

124 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

‘2

0 .

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. 1 , JANUARY 1989 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Y

‘m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn’-\n = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAc)

0

Resource Sharing
Interconnection Network

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 . A monitor architecture to carry out optimal resource scheduling in an
RSIN.

the layer

1 I No I
flow assignment sink (t) in

obrained

Search for
s-1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApaths

No

through the path

Fig. 7. Control flow of Dinic’s algorithm.

the layer before it. These two types of arcs, called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuseful
links, are transformed to arcs in the layered network.
Depending on the direction of the associated useful link, its
capacity in the layered network can be either the remaining
capacity or its current flow. As a result, nodes in a layered
network are arranged into disjoint subsets, Vo, Vl, * * e , Vo,
such that no arc points from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 to V, for i I j .

A legal flow in a layered network is said to be maximal if
every (s, t)-directed path in the layered network is saturated.
Note that it is not necessary to find the maximum flow of the
layered network. Finding a maximal flow is sufficient since
the objective of the layered network is to obtain a net increase
to the total flow assignment in each iteration. Moreover,
computing the maximal flow is easier than computing the
maximum flow. In Dinic’s algorithm, the maximal flow is
obtained by a depth-first search.

Since the amount of flow that can be advanced through an
arc in the layered network is the net increase of flow to the
associated arc in the original network, the maximal flow
obtained in the layered network is a net increment to the
existing flow. Moreover, since the maximum flow of a flow
network is finite, it can be obtained in a finite number of
iterations in constructing the layered network.

An example illustrating the construction of a layered
network is shown in Fig. 8 . Fig. 8(a) is a flow network
associated with an MRSIN in which three processors, p l , p2,
andp,, are making requests and three resources, rl, .r3, and r,,
are available. The flow assignment shown by darkened arcs in
Fig. 8(a) results in a mapping such that p 1 is mapped to r4 and
p4 is mapped to rl. The request generated by p2 is blocked.
Fig. 8(b) is a layered network constructed from the flow
network in Fig. 8(a). The layered network shows that there is a
flow augmenting path from p2 to r3. This path includes the arc
leading from node 6 to node 5, which is associated with the arc

JUANG AND WAH: RESOURCE SHARING INTERCONNECTION NETWORKS 125

(b)
Fig. 8. An illustration of a layered-network construction (all arcs have unit

capacity). (a) A flow network (transformed from a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMRSIN) in which
flow is advanced through the two dashed paths. (b) The layered network
derived from the flow network in (a). The darkened zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s, t)-path is a flow
augmenting path.

leading from node 5 to node 6 in the original network [see Fig.
8(a)]. It indicates that the flow leading from node 5 to node 6
can be cancelled. New flow should be routed through two
other arcs: one from node 4 to node 6, the other from node 5 to
node 7. This flow augmenting path shows that all three
resources can be allocated if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp4 is reallocated to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr3 and p2 is
reallocated to rl .

B. A Distributed Architecture for Homogeneous MRSIN
without Priority

A distributed MRSIN embedded in an 8 x 8 Omega
network is shown in Fig. 9. In this architecture, a processor is
connected to the network through a request server (RQ), a
resource is monitored by a resource server (RS), and each
switchbox is controlled by an independent process (NS). A

common status bus connects these components together. The
scheduling intelligence is distributed in the switchboxes of the
MRSIN. In each switchbox, there is an autonomous process
implemented as a finite-state machine. The process communi-
cates with other processes via direct links. Processes are
synchronized by exchanging status information via the status
bus to cooperatively realize a distributed Dinic’s algorithm. In
general, the design of a distributed Dinic’s algorithm is not
trivial. However, it can be greatly simplified in the MRSIN
due to the property of unit flow capacity.

A scheduling cycle begins when there are pending requests
and ready resources. A request generated in the middle of a
scheduling cycle has to wait until the next cycle. A scheduling
cycle consists of many iterations. In each iteration, protocols
governing process interactions are carried out to perform
layered-network construction and maximal flow assignment.
Distributed data structures are also needed for remesentine the

Request Servers (RQ) Switching Boxes (NS) Resource Servers (RS) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ C I 4

I I I
I I I

Status Bus 7
MRSIN Resources

t
Processors

Fig. 9. A distributed MRSIN embedded in an 8 x 8 Omega network.

layered network, flow assignment, and other intermediate
results.

In the proposed architecture, flow augmentation is done by
token propagations. Tokens are propagated in the network to
iteratively search for flow augmenting paths and rearrange
resource mappings until the optimum is obtained. Because
each link is of unit capacity and is not to be shared by multiple
allocated paths, a token can simply be represented by a signal
traversing from one element to another. It Carrie$, neither
identification nor other information. Its type is determined by
the function being performed. With such kinds of tokens,

126 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. JANUARY 1989

scheduling speed is limited only by the switching delay of
logic gates. The layered network obtained in each iteration can
be represented implicitly by recording the token propagation
status in a bit array associated with each port. The bit pattern
for the token propagation status is referenced as a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAport
marking in the sequel. A flow augmenting path in the layered
network can be identified by token propagation markings
along the path.

During a flow augmentation process, a free link may
become “registered” if the two ports associated with it are
marked. On the contrary, a registered link may become free if
the flow assigned to it is cancelled and port markings are
erased. A scheduling cycle consists of a request-token-
propagation phase for constructing a layered network, a
resource-token-propagation phase for finding the maximal
flow of the layered network, and a path registration phase for
registering paths associated with the maximal flow. At the end
of a scheduling cycle, any surviving registered link becomes
“occupied;” that is, it will be used in an allocated path. A
request will be bonded to a free resource when a request token
has successfully propagated to the resource in the request-
token-propagation phase, and a resource token has success-
fully propagated to the requesting processor in the resource-
token-propagation phase. This corresponds to finding a
maximal flow of the layered network in Dinic’s algorithm.

Since a token is nothing but a propagating signal, Dinic’s
algorithm is in fact realized by distributing tokens in the
network. Token propagation rules for carrying out each
function and the mechanism for synchronizing token propaga-
tions are described next. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1) Token Propagation for Layered Network Construc-
tion: At the beginning of the request-token-propagation phase,
each RQ with unbonded pending request sends a token to its
output port, which is connected to an NS in the first stage of
the MRSIN.

For every NS receiving a request token through its input
port, it duplicates the token and sends one to each of its free
output ports and registered input ports. Note that an input port
may be registered in previous iterations of the request-token-
propagation and resource-token-propagation phases. All re-
ceiving and sending ports in an NS receiving request tokens
are marked.

Token propagation is clocked, i.e., each token traverses
across one link in a clock period. Propagation direction
depends on the status of the link over which the token is
traversing. The token traverses forward if the link is free, and
backward if the link is registered. Accordingly, an NS may
receive a request token either from its free input ports or from
its registered output ports. Tokens may arrive at an NS during
any clock period. Only the first batch is considered. All of the
rest are discarded; that is, subsequent token arrivals will not
cause a port to be marked if the NS had received tokens
previously. If a token goes backward to a bounded RQ, it is
absorbed by the RQ. This phase comes to an end when one or
more RS’s has received a token. In the following theorem, we
show that the layered network will be obtained correctly by the
propagation of request tokens.

Theorem 4: A layered network can be constructed correctly
by propagating tokens according to the rules described above.

Proof: Since request tokens are only generated by RQ’s

in the first clock period of a request-token-propagation phase,
the RQ’s making requests in this phase can only be included in
the first layer. A virtual source node can be considered to be
connected to every RQ in the first layer. Next, we would like
to show that, given a layer, the next layer can be determined
uniquely by token propagations. In each clock period, tokens
are distributed from the current layer to unmarked free output
ports and unmarked registered input ports, and they traverse
exactly one link. Thus, only those elements that are directly
connected to the current layer may receive a token. By
eliminating those that had received tokens before, we obtain a
set of elements corresponding to those nodes in the next layer
of the layered network. If no RS is included in the next layer,
then these nodes are responsible for token propagation in the
next clock period. If an RS does appear in the layer. all tokens
stop propagating, and a virtual sink node is implicitly
generated in the last layer, although no actual token propaga-
tion is necessary to construct this virtual layer. In summary,
given a layer, the next layer can be constructed correctly by
request-token propagations. By induction, the theorem is

2) Token Propagation to Find Maximal Flow: The RS’s

receiving a token in the request-token-propagation phase
represent resources that have not been allocated to any request
so far and can possibly be allocated with some rearrangement
of resource mapping. Since the rearrangement is done by flow
augmentation in Dinic’s algorithm, a new phase of token
propagation is started to find the maximal flow in the layered
network after the layered network has been constructed.

In this phase, each RS appearing in the last layer sends a
token (called resource token for convenience) back to the
layered network hoping to find a matching RQ. In effect, the
token serves as a positive acknowledgment to the request
tokens from the RQ’s. The token traverses across one link per
clock period, and an NS expects to receive tokens only from
those ports to which a request token was sent, that is, those
ports that were marked. A resource token is not duplicated by
an NS since an RS can be assigned to only one RQ. When
multiple resource tokens arrive at a point where a request
token was duplicated, only one of them is allowed to go
through the link from which the request token was received.
The rest have to backtrack to find alternative paths. If
backtracking causes a token to return to its originating RS,

then the token is discarded. This means that the RS cannot find
a matching RQ in this iteration. The marking of a port is
cleared whenever a resource token backtracks through the
port. This prevents subsequent attempts of fruitless backtrack-
ing. The number of propagating resource tokens is reduced as
tokens are received by RQ’s or backtracked to RS’s. Resource
token propagation stops when the number of propagating
resource tokens is reduced to zero. It is easy to show that the
set of paths explored by successful resource token propaga-
tions represents the maximal flow of the layered network.

The maximal flow of the layered network is the flow to be
augmented to the original flow assignment in the current
iteration. Flow augmentation has to be done before the next
iteration starts. To achieve this, the MRSIN enters a third
phase. All it needs in this phase is to change the state of those

proved. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

JUANG AND WAH: RESOURCE SHARING INTERCONNECTION NETWORKS 127 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10. A state transition diagram of distributed MRSIN with a status bus.

paths associated with the maximal flow to being zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“regis-
tered.” These paths are readily known at the end of the
resource-token-propagation phase since they are the paths
through which resource tokens successfully propagated to
RQ’s. The RQ’s that received a resource token are bonded to
the corresponding RS’s. Their binding status bits are set to 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3) Synchronization via Status Broadcasting: To ensure
that each element of the MRSIN applies the right rule to
propagate tokens, phase transitions must be strictly synchro-
nized. A synchronization scheme based on message passing is
too slow to match the speed of the token-propagation scheme.
Although a broadcast bus can greatly simplify synchroniza-
tion, especially when processes are located in close proximity
[25] , the cost of maintaining the status of processes received
from the bus is too high. In this section, we propose the design
of an efficient status bus to address this problem.

Instead of being used as a transmission media for sending
messages, the status bus is in fact a specialized global
“memory” device that can be accessed concurrently. Each bit
of the bus is associated with an event that reflects the collective
status of a subset of processes. To realize such a bus, each
process maintains its own status in a single-bit register, and the
output of the register is connected to a wire-orr logic gate. The
output of the gate is then connected to the corresponding bit of
the status bus. Accordingly, the status observable from the bus
is the logical OR of the status of associated processes.

To determine what are the necessary events that require
synchronization, possible phase transitions in an MRSIN are
examined, and the results are summarized in a state transition

diagram in Fig. 10. In an idle period, the MRSIN is in one of
the states in which either no pending request or nlo ready
resource exists, or no ready resource can be allocated to
pending requests. The MRSIN may enter a scheduling period
when there are requests pending and resources ready. How-
ever, to avoid repeated attempts of allocating blocked re-
sources (i.e., the case of cycling between states 4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 in Fig.
10) and to improve the scheduling efficiency, the MRSIN may
choose to wait for more requests to arrive and more resources
to become available before entering a scheduling cycle. Each
scheduling iteration consists of five states. To conclude a
scheduling cycle, the MRSIN enters the allocation state in
which registered paths are changed to being “bonded.”

Based on the state transition diagram, seven events that
require synchronization are identified. We have chosen to
implement the status bus with seven bits. The definition of
these events and their associated processes are shown in Table
I. Since these events are observable on the status bus, an
occurrence of a state transition can be disseminated instantly,
and processes can react to the new state immediately. For
example, when an event vector (1 11000~) is observed on the
bus, an NS knows that the MRSIN is in a request-token-
propagation phase. (Note that the “DON’T CARE” symbol “x”
in the state vector means that the designated bit can be 0 or 1 .)
It can determine immediately which rule to apply whenever it
receives a token. When propagating a token, elements on the
propagation path turn on their E3 status bits for one clock
period in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAturn. This operation keeps bit 3 of the status bus on
whenever there are tokens propagating. The MRSIN moves to

128 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Event Definition

E, Request pending zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ez Resource Ready

E, Request token propagation

E, Resource token propagation

IEEE TRANSACTIONS ON COMPUTERS, VOL. 38, NO. I , JANUARY 1989

Associated Bit Number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01

Processes Status Bus

RQs B(MSB)

RSs 5

RQ, NSs 4

RSs, NSs 3

Scheduling

Dvleipline

A R Q is bonded to a RS RQs 0 (LSB)

Homogeneous Reaourcea H~lcrogmeoua R~sourcca zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
No PriDrilg Priority zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB Reatrieled General

B PrcJerencc Pre/crcncc Topology Topology

a new state (1 11001~) when an RS sets E6 to 1 upon receiving
a token. The MRSIN will stay in this state for one clock period
to allow all tokens to come to a stop. At the beginning of the
next clock cycle, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE6 will be turned off, and E4 will be turned
on. The MRSIN moves into state (110100~) representing a
resource-token-propagation phase. The next transition will
bring the MRSIN into a path registration state (110110~). E4
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE5 will be turned off after one clock period. Finally the
MRSIN returns to state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 11OOOx) for a new iteration.

Since a token is simply a signal, token propagation rules can
be expressed in terms of Boolean functions. A distributed
process at an NS, RQ, or RS does nothing but distribute the
token according to the global status and local conditions. It can
be realized easily by a finite-state machine, the design of
which can be found elsewhere [25]. The design has a very low
gate count and a very short token propagation delay.

Overall, the token-propagation architecture has two factors
that contribute to a significant speedup as compared to a
monitor architecture: 1) the augmenting paths are searched in
parallel, and 2) the time complexity is measured in gate delays
instead of instruction cycles. As a result, the scheduling
algorithm will run at a much higher speed than a software
implementation of the network flow algorithm.

V. CONCLUSIONS

An RSIN is suitable to support resource sharing in
multiprocessors. Optimal request-resource mapping in an
RSIN with homogeneous resources and requests of equal
priority is obtained by maximizing the number of communica-
tion paths that interconnect pairs of processors and resources.
In this paper, we have transformed various request-resource
mapping problems into network flow problems for which
efficient algorithms exist. Table I1 summarizes the results we
have obtained. The proposed method is independent of the
interconnection structure and is applicable to any network
configuration in which the requesting processors and free
resources can be partitioned into two disjoint subsets. In
particular, the method is applicable to networks with multiple
paths between source-destination pairs, such as the data
manipulator [151, augmented data manipulator [33], and
gamma network [36]. The resource utilization, however, will
depend on the network configuration, the resources available,
the arrangement of the various types of resources, and the
arrangement of the reauesting Drocessors.

Scheduling

TABLE I1
SUMMARY OF OPTIMAL RESOURCE SCHEDULING SCHEMES FOR

RESOURCE SHARING INTERCONNECTION NETWORKS

Algorithms Ford-Fulkerson, Outof-Kilter Linear NP-hard

Dink Programming

Archikclure

Implcmenlation

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEquivolcnl 11 Max.-Flow I Min -Cost I Real Multi- IInteger Mulb-

Optimal Flow Problem Circulation Commodity Commodity

Distributed Monitor (Centralized)
-~

Synchronized by

Status Bus; Software

Communicate via

Token Propagation

131

141

151

[71

[61

REFERENCES
A. A. Assad, “Multicommodity network flows-A survey,’’ Net-
works, vol. 8, pp. 37-91, 1978.
G. H. Barnes and S. F. Lundstrom, “Design and validation of a
connection network for many-processor multiprocessor systems,”
IEEE Computer, vol. 14, pp. 31-41, Dec. 1981.
K. E. Batcher, “The Flip network in STARAN,” in Proc. Znt. Conf.
Parallel Processing, 1976, pp. 65-71.
-, “Design of a massively parallel processor,” IEEE Trans.
Comput., vol. C-29, pp. 836-840, Sept. 1980.
V. Benes, Mathematical Theory of Connecting Networks. New
York: Academic, 1965.
J. A. Bondy and U. S. R. Murty, Graph Theory with Applications.
New York: North-Holland, 1981.
F. A. Briggs, M. Dubois, and K. Hwang, “Throughput analysis and
configuration design of a shared-resource multiprocessor system:
PUMPS,” in Proc. 8th Annu. Symp. Comput. Architecture, 1981,

F. A. Briggs, K. S. Fu, K. Hwang, and B. W. Wah, “PUMPS
architecture for pattern analysis and image database management,”
ZEEE Trans. Comput., vol. C-31, pp. 969-983, Oct. 1982.
C. Clos, “A study of nonblocking switching networks,” Bell Syst.
Tech. J . , vol. 32, pp. 406-424, 1953.
I . B. Dennis, “Data flow supercomputers,” IEEE Computer, vol. 13,

D. M. Dias and J. R. Jump, “Analysis and simulation of buffered delta
networks,” ZEEE Trans. Comput., vol. C-30, pp. 273--282, 1981.
E. A. Dinic, “Algorithm for solution of a problem of maximal flow in a
network with power estimation,” Soviet Math. Dokl., vol. 11, pp.
1277-1280, 1970.
J. Edmonds and R. M. Karp, “Theoretical improvements in al-
gorithmic efficiency for network flow problems,” J . ACM, vol. 19,
pp. 248-264, Apr. 1972.
J. R. Evans and J. J. Jarvis, “Network topology and integral
multicommodity flow problems,” Networks, vol. 18, pp. 107-1 19,
1978.
T. Y. Feng, “Data manipulating functions in parallel processors and
their implications,” ZEEE Trans. Comput., vol. C-23, pp. 309-318,
1974.
-, “A survey of interconnection networks,” Computer, pp. 12-
27, Dec. 1981.
L. R. Ford and D. R. Fulkerson, Flow in Networks. Princeton, NJ:
Princeton University Press, 1962.
D. R. Fulkerson, “An out-of-kilter method for minimum cost flow
problems,” SIAM J. Comput., vol. 9, pp. 18-27, 1961.
F. Fung and H. Torng, “On the analysis of memory conflicts and bus
contentions in a multiple-microprocessor system,” ZEEE Trans.
Cornput., vol. C-28, pp. 28-37, Jan. 1979.
L. R. Goke and G. J. Lipovski, “Banyan networks for partitioning
multiprocessor systems,” in Proc. 1st Annu. Comput. Architecture
Conf., Dec. 1973, pp. 21-28.
B. Golden, M. Ball, and L. Bodin, “Current and future research
directions in network optimization,” Comput. Oper. Res., vol. 8, pp.

pp. 67-79.

pp. 48-56, NOV. 1980.

71-81. 1981.

~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

JUANG AND WAH: RESOURCE SHARING INTERCONNECTION NETWORKS 129

A. Hicks, “Resource scheduling on interconnection networks,” M.S.
thesis, Purdue Univ., West Lafayette, IN, Aug. 1982.
W. D. Hillis, “The connection machine: A computer architecture
based on cellular automata,” zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAPhysica, pp. 213-228, 1984.
J. Y. Juang and B. W. Wah, “Optimal scheduling algorithms for
multistage resource sharing interconnection networks,” in Proc. 8th
Int. Comput. Software Appl. Conf., Nov. 1984, pp. 217-225.
J. Y. Juang, “Resource allocation in computer networks,” Ph.D.
dissertation, Purdue Univ., West Lafayette, IN, Aug. 1985.
D. J. Kuck, “ILLIAC N software and application programming,”
IEEE Trans. Comput., vol. C-17, pp. 746-757, Aug. 1968.
D. Lawrie, “Access and alignment of data in an array processor,”
IEEE Trans. Comput., vol. C-24, pp. 215-255, Dec. 1975.
M. Lee and C.-L. Wu, ‘‘Performance analysis of circuit switching
baseline interconnection networks,” in Proc. 11th Annu. Znt. Symp.
Comput. Architecture, 1984, pp. 82-90.
M. A. Marsan and F. Gregoretti, “Memory interference models for a
multimicroprocessor system with a shared bus and a single external
common memory,’’ Microprocessing Microprogramming-
EUROMICO zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ., vol. 7, Feb. 1982.
M. A. Marsan and M. Gerla, “Markov models for multiple bus
multiprocessor systems,” IEEE Trans. Comput., vol. C-31, pp. 239-
248, Mar. 1982.
E. H. McCall, “Performance results of the simplex algorithm for a set
of real-word linear programming models,” Commun. ACM, vol. 25,
no. 3, pp. 207-213, Mar. 1982.
W. C. McDonald and J. M. Williams, “The advanced data processing
test bed,” in Proc. COMPSAC, Mar. 1978, pp. 346-351.
R. J. McMillen and H. J. Siegel, “Routing schemes for the augmented
data manipulator network in an MIMD system,’’ IEEE Trans.
Comput., vol. C-31, pp. 1202-1214, Dec. 1982.
S . M. Ornstein et al., “Pluribus-A reliable multiprocessor,” in
Proc. Nut. Comput. Conf., 1975, pp. 551-559, AFIPS Press.
C. H. Papadimitriou and K. Steiglitz, Combinatorial Optimization:
Algorithms and Complexity. Englewood Cliffs, NJ: Prentice-Hall,
1982.
D. S . Parker and C. S . Raghavendra, “The gamma network: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA
multiprocessor interconnection network with redundant paths, ” in
Proc. 9th Annu. Symp. Comput. Architecture, 1982, pp. 73-80.
J. H. Patel, “Performance of processor-memory interconnections for
multiprocessors,” IEEE Trans. Comput., vol. C-20, pp. 771-780,
Oct. 1981.
M. C. Pease, “The indirect binary n-binary n-cube microprocessor
array,” IEEE Trans. Comput., vol. C-26, pp. 458-473, May 1977.
B. D. Rathi, A. R. Tripathi, and G . J. Lipovski, “Hardwired resource
allocators for reconfigurable architectures, ” in Proc. Int. Conf.
Parallel Processing, Aug. 1980, pp. 109-117.
M. C. Sejnowski et al., “Overview of the Texas Reconfigurable Array
Computer,” in Proc. Nut. Comput. Conf., vol. 49, 1980. pp. 631-
642.
H. J. Siegel and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR. J. McMillen, “The multistage cube: A versatile
interconnection network,” IEEE Computer, vol. 14, pp. 65-76, Dec.
1981.
H. J. Siegel and R. J. McMillen, “Using the augmented data
manipulator network in PASM,” IEEE Computer, vol. 14, pp. 25-
33, Feb. 1981.

[43]

1441

H. Stone, “Parallel processing with the perfect shuffle,” ZEEE Trans.
Comput., vol. C-20, pp. 153-161, Feb. 1971.
B. W. Wah and A. Hicks, “Distributed scheduling of resources on
interconnection networks,” in Proc. Nut. Comput. Conf., 1982, pp.

1451 -, “A comparative study of distributed resource sharing on
multiprocessors,” ZEEE Trans. Comput., vol. C-33, pp. 700-71 I ,
Aug. 1984.
C. Wu and T. Y. Feng, “On a class of multistage interconnection
networks,” IEEE Trans. Comput., vol. C-29, pp. 694-702, Aug.
1980.
W. A. Wulf and C. G. Bell, “C.mmp-A multi-mini processor,” in
Proc. Fall Joint Comput. Conf., 1972, pp. 765-777.
H. J. Siegel et al., “PASM: A partitionable SIMD/MIMD system for
image processing and pattern recognition,” IEEE Trans. Comput.,

697-709.

[46]

[47]

1481

vol. C-30, pp. 934-947, 1981. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Jie-Yong Juang (S’82-M’85) received the B.S.
degree in electncal engineering from National
Taiwan University, Taipei, Taiwan, in 1976, the
M.S. degree in computer science from University of
Nebraska, Lincoln, in 1981, and the Ph D. degree
in electrical engineering from Purdue University,
West Lafayette, IN, in 1985.

He is an Assistant Professor in the Department of
Electrical Engineering and Computer Science at
Northwestern University, Evanston, Illinois. His
areas of research include computer architecture,

parallel processing, distributed processing, fault-tolerant computing, and
logic p rogramng.

Benjamin W. Wah (S’74-M’79-SM’85) is an
Associate Professor in the Department of Electrical
and Computer Engineering and a Research Associ-
ate Professor in the Coordinated Science Laboratory
of the University of Illinois at Urbana-Champaign,
Urbana, IL.

He is currently on leave at the National Science
Foundation as a Program Director in thr Microelec-
tronic Information Systems Division. His areas of
research include computer architecture parallel
processing, artificial intelligence, distributed data-

Dr. Wah is the Associate Editor-in-Chief of the forthcoming IEEE
TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, and an editor
of IEEE TRANSACTIONS ON SOFTWARE ENGINEERING and Journal Of

Parallel and Distributed Computing and Information Science,r. He serves
as a member of the Governing Board of the IEEE Computer Society. He also
serws as a program evaluator for ABET (computer engineering1 and CSAC
(computer science).

bases, and operating systems.

