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Resource Sharing Interconnection Networks in 
Multiprocessors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract-In this paper, circuit-switched interconnection net- 
works for resource sharing in multiprocessors, named resource 
sharing interconnection networks, are studied. Resource schedul- 
ing in systems with such an interconnection network entails the 
efficient search of a mapping from requesting processors to free 
resources such that circuit blockages in the network are mini- 
mized and resources are maximally used. The optimal mapping is 
obtained by transforming the scheduling problems into various 
network flow problems for which existing algorithms can be 
applied. A distributed architecture to realize a maximum flow 
algorithm using token propagations is also described. The 
proposed method is applicable to any general loop-free network 
configuration in which the requesting processors and free 
resources can be partitioned into two disjoint subsets. 

Index Terms-Circuit switching, distributed resource schedul- 
ing, interconnection network, linear programming, maximum 
flow, minimum cost flow, multicommodity network flow, re- 
source sharing. 

I. INTRODUCTION 

N THIS paper, we investigate the problem on the sharing of I computing resources in multiprocessors and the distributed 
scheduling of shared resources by a circuit-switched intercon- 
nection network. 

A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAresource is a processing element to carry out a designated 
function. Examples include a general purpose processor, a 
special functional unit, a VLSI systolic array, an input/output 
device, and a communication channel. A resource is accessible 
by any processor via an interconnection network. A request 
generated by a processor can be directed to any one of a pool 
of free resources that are capable of executing the designated 
task. An interconnection network is an essential element of 
these systems as it interconnects processors and resources. Its 
function is to route requests initiated from one point to another 
point connected on the network. The network topology is 
dynamic, and the links can be reconfigured by setting the 
network’s active switching elements. The notable characteris- 
tic of these networks is that they operate with address 
mapping. That is, a request is initiated with a specific 
destination or a set of destinations, and routing is done by 
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examining the address bits. Routing of requests is usually done 
in parallel. As classified by Feng zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 161, these networks include 
the single or multistage networks and the crossbar switch. 
Examples are the Banyan [20], indirect binary n-cube [38], 
cube [41], perfect shuffle [43], Flip [3], Omega 1271, data 
manipulator [ 151, augmented data manipulator [42], delta 
[37], [ 111, baseline [46], Benes zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ] .  and Clos [9]. Examples of 
systems designed with interconnection networks are ‘hac [40], 
Staran [3], C.mmp [47], Illiac IV [26], Pluribus [34], PASM 
[48], Numerical Aerodynamic Simulation Facility (NASF) 
[2], the Ballistic Missile Defense testbed [32], MPE’ [4], and 
the Connection Machine [23]. The performance of resource 
sharing systems under address mapping has been studied by 
Rathi, Tripathi, and Lipovski [39], Fung and Torng [19], and 
Marsan, Gregoretti, and Gerla [29], [30]. 

Wah proposed a network with distributed scheduling 
intelligence, called resource sharing interconnection net- 
work (RSIN) [45], [44]. Instead of using an address, mapping 
scheme, which requires a centralized scheduler to seek and 
give the address of a free resource to a request before it enters 
the network, the request is sent into the network without any 
destination tags. It is the responsibility of the network to route 
the maximum number of requests to the free resources. In this 
way, the scheduling intelligence is distributed in the network. 
Distributed resource scheduling avoids the bottleneck of a 
centralized scheduler [39]. The objective of a good scheduling 
scheme is to avoid network blockages and to maximize 
resource utilization, which requires an efficient algorithm at 
each switching node to collect the minimum amount of status 
information. 

The PUMPS architecture [see Fig. l(a)] for image analysis 
and pictorial database management [8] is a typical example of 
resource sharing multiprocessors, in which various VLSI 
systolic arrays, each realizing an image processing function, 
are organized into a pool of resources. Most data flow 
architectures can also be considered as resource sharing 
systems. For example, in Dennis’ architecture [lo] [see Fig. 
1 (b)], active instructions generated from cell blocks are routed 
to a processing unit for execution. Hence, the processing units 
constitute the pool of resources, and an RSIN connects them to 
cell blocks. In a resource sharing system with load balancing, 
processors are considered as resources; thus, requests gener- 
ated are queued at the processors as well as the resources. 
There may be an imbalance of workload at the resources, and 
load balancing schemes are used to redistribute requests 
among resources. 

The design of an RSIN with optimal resource scheduling is 
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(b) 
Examples of resource sharing systems. (a) PUMPS: An example of a 

multiprocessor with shared systolic arrays. (b) A data flow computer is a 
resource sharing system (cell blocks are processors, while processing units 
are resources). 

Fig. 1. 

studied in this paper. The results are derived with respect to 
multistage interconnection networks, called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAmultistage re- 
source sharing interconnection networks zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(MRSIN), and are 
applicable to any general loop-free network configuration in 
which the requesting processors and free resources are 
partitioned into two disjoint subsets. Central to the design of 
such an interconnection network is the development of an 
efficient distributed algorithm to disseminate status informa- 
tion through the complex interconnection structure. The 
algorithm to be presented is simple, efficient, and independent 
of the interconnection topology. For a typical interconnection 
structure, such as the Omega network [27], network blockages 
can be reduced to less than 5 percent. In the next section, the 
model of MRSIN is reviewed, and the issues on resource 
scheduling are discussed. In Section 111, we present transfor- 
mation methods for various scheduling disciplines. These 
transformations allow optimal request-resource mappings to 
be obtained through the evaluation of network flow al- 
gorithms. Architectures to carry out these algorithms are 
presented in Section IV. Conclusions are drawn in Section V. 

11. KESOURCE SHARING INTERCONNECTION NETWORKS 

The model of the RSIN used in this study is summarized as 

1) Circuit switching is assumed rather than packet switching 
follows. 

for the following reasons. First, packet switching is used in 
conventional networks with address mapping because it allows 
a network path to be shared by more than one request 
concurrently. In an RSIN, reducing the packet delay by 
balancing traffic among alternate routing paths is less critical 
because a request can always search for another available 
resource if the network is free. Moreover, the overhead of 
rerouting a packet when a path or resource is blocked is higher 
than that of rerouting a resource request. Second, owing to the 
resource characteristics, a task cannot be processed until it is 
completely received. The extra delay in breaking a task into 
multiple packets may decrease the utilization of resources, and 
hence increase the response time of the system. 

2) One or more types of resources may exist in the system. 
An RSIN connecting only one type of resource is called a 
homogeneous RSIN, while an RSIN connecting multiple 
types of resources is a heterogeneous one. 

3) A priority level may be associated with a request to show 
the urgency of the request. A preference value may be 
associated with a resource to show the desirability of being 
used for service. The costs of allocation are inversely related 
to the priorities and preferences. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4) Each request needs one resource only. When multiple 

resources are needed, they can be requested from multiple 
ports concurrently, or can be requested sequentially from a 
single port. 

5)  A processor can transmit one task at a time to the 
resources. Other tasks arriving during the task transmission 
time are queued. The circuit between a processor and a 
resource can be released once the request has been transmit- 
ted. The processor can continue to make other requests, while 
the resource will be busy until the task is completed. 

We have not investigated the problem on the selection of the 
number of resources in each type and their placements in the 
output ports. This problem has been studied by Briggs et al., 
who have considered the problem of choosing the number of 
resources in each type in which one resource is connected to 
each output port and one resource is requested each time [7]. 
We have not considered the case in which more than one 
resource or multiple types of resources are requested by one 
request. Here, the scheduling algorithm is dependent on the 
number of resources in each type, the way that resources are 
distributed to the output ports, and the network characteristics. 
Furthermore, deadlocks may occur, and distributed resolution 
of deadlock may have a high overhead. 

The goal of the scheduling algorithm is to find a request- 
resource mapping such that the total cost is minimized. In the 
special case in which all requests are of equal priorities and all 
resources have equal preferences, the scheduling problem 
becomes the mapping of the maximum number of requests to 
the free resources. 

The maximal request-resource mapping may be hampered 
by blockages in the system. In a conventional address-mapped 
interconnection network, blockages may be caused by con- 
flicts in cases when either the same resource is requested by 
more than one request or a network link is requested by two 
circuits. In an RSIN, a resource conflict can be resolved by 
rerouting all but one request to other free resources. However, 
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(b) 
Fig. 2. Example to illustrate Transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a) An MRSIN embedded in 

an 8 x 8 Omega network (thick shaded paths in the network show circuits 
that are already occupied; processors zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp , ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp 3 ,  p ~ ,  p7,  and pa are making 
requests; resources r l ,  r3, r,, r,, and ra are available). (b) The flow network 
obtained from the MRSIN in Fig. 2(a) using Tranformation 1 (the number 
associated with each arc is the amount of flow assigned to it by the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
maximum flow algorithm; all arcs have unit capacity). 

this may not always lead to better resource utilization because 
the allocation of one request to a resource may block one or 
more other requests from accessing free resources. A schedul- 
ing algorithm that schedules requests according to the state of 
the network and resources is, therefore, essential. The 
necessity for a proper scheduler to give the maximum resource 
utilization is illustrated in the following example. Consider an 
8 x 8 Omega network' [see Fig. 2(a)] with switchboxes that 
can be individually set to either a straight or an exchange 
connection. Processors p l ,  p3, p , ,  p 7 ,  and p s  are requesting 
one resource each, and resources r , ,  r3, rs, r7, and r8 are 
available. The circuits between p 2  and r6 and p 4  and r4 have 

I The input ports are numbered in a different way from Lawrie's Omega 
network [27] because all resources are homogeneous, and the permutation of 
requesting processors will not affect the resource utilization. Broadcast 
connection is not needed in the switchboxes since each request needs one 
resource. 

been established previously. p6 is not making a request, and r2 
is busy. All free resources will be allocated if one of the 
following request-resource mappings is used: { ( p l ,  r3) ,  ( p3,  

( p7,  r l ) ,  (ps ,  r , ) }  . But if the request-resource mapping { ( p l ,  

maximum of four out of five resources can be allocated, since 
the path leading from p8 to r8 is blocked. Simulation results 
showed that the average blocking probability can be as low as 
2 percent for an MRSIN embedded in an 8 x 8 cube network zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[U], [22]. If a heuristic routing algorithm is used, then the 
average blocking probability increases to around 20 percent. 
In the simulation, the network is assumed to be completely 
free, i.e., no link is occupied for other purposes. If the 
network is not completely free, then there will be fewer paths 
available for resource allocation. In this case, a heuristic 
routing algorithm may have poor performance. An optimal 

r5)9 (P59 r 7 ) ,  (P79 r l ) ,  (P89 rS>} or { (P I ,  r3)9 (P39 rS), (P5, r7)9 

rl), (P3 ,  r5), ( P s ,  r3), (P7, r7), ( P s ,  rs)) is used, then a 
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scheduling algorithm will be able to better utilize these paths, 
and result in a low blocking probability (although it will be 
higher than that of the case when the network is completely 
free). If extra stages are provided, there will be more paths 
available. Resources may be fully allocated in most cases even 
when an arbitrary resource-request mapping is used. Finding 
an optimal mapping becomes less critical. 

capacity and flow conservation constraints. Given a flow 
network zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV,  E, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, t ,  c), the maximum flow problem can be 
formulated as a linear programming problem as follows. 

Maximum Flow Problem: 
Maximize F 
subject to 

u=s 
u=t 111. OPTIMAL RESOURCE SCHEDULING IN MRSIN 

To bind a request to a resource in the system, an RSIN 
determines a mapping from pending requests to free resources, 
and provides connections to as many request-resource pairs as 
possible. The objective of a scheduling algorithm is to obtain 
the optimal mapping that optimizes certain performance 
indexes, such as resource utilization. In this section, methods 
to optimize request-resource mappings are discussed. Exhaus- 
tive methods that examine all possible ordered mappings have 
exponential complexity. In a homogeneous MRSIN, suppose x 

1) f ( e ) -  f ( e ) =  [ - F  F 
eEa(u) eEB(v) 0 otherwise 

(flow Conservation) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2) O l f ( e ) i c ( e )  for all e E E 

(capacity limitation)'. 

Many other examples of network flow problems, including the 
minimum cost flow and the transshipment problems, can be 
found in the literature [21]. 

processors are making requests, y resources are available, and 
the network is completely free. The scheduler has to try a 
maximum of C:-y! (for x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 y )  or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY,-x! (for y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 x )  
mappings to find the best one, where Ci is the number of 
combinations of choosing i objects out o f j  objects [44], [22]. 
Suboptimal heuristics can be used but it is only practical when 
x and y are small. 

In this section, we transform the optimal request-resource 
mapping problem into various network flow problems for 
which many efficient algorithms exists [21], [24]. The basic 
concepts of flow networks are briefly reviewed first. 

A. Flow Networks 

A flow network is usually represented by a digraph in which 
each arc is associated with a capacity and possibly a cost. Let 
D = ( V ,  E )  be a digraph with two distinct nodes: s (source) 
and t (sink). A capacity function c(e) is defined on every arc 
of the graph, where c(e) is a nonnegative real number for all e 
E E.  A flow functionfis an assignment of a real numberf(e) 
to arc e such that the following conditions hold. 

1) Capacity limitation: For every arc e E E ,  

O s f ( e ) s c ( e ) .  

B. Optimal Resource Mapping in Homogeneous MRSIN 

A switchbox in an MRSIN is a crossbar switch without 
broadcast connections. We establish the following theorem to 
show that setting a nonbroadcast switch is equivalent to finding 
a legal integral flow assignment in a flow network of unit 
capacity. Note that an integral flow is a flow assignment in 
which the amount of flow assigned to each link is of integral 
value. 

Theorem I :  For any MRSIN, there exists a flow network 
for which a legal integral flow is equivalent to a valid request- 
resource mapping. 

Proof: Consider an n x m switchbox, where n is the 
number of input ports and m is the number of output ports. A 

nonbroadcast switch setting is one in which an input link is 
connected to at most one output link and vice versa. This 
switchbox can be transformed to a node U in a flow network 
with n incoming arcs and m outgoing arcs, i.e., I a ( u )  I = n 
and I P ( u )  1 = m. The capacities of these arcs are set to unity. 
If one unit of flow is assigned to arcs for which their 
corresponding links of the switch are connected, then the flow 
conservation and link capacity constraints are satisfied at node 
U. Therefore, a switch setting is equivalent to an integral flow 

2) ~l~~ conservation: L~~ a ( v )  lresp., ~ ( ~ ) l  be the set of 
E v 

assignment for the corresponding node in the flow network. In 
other words, there is a direct correspondence between a 
switchbox and a node, and between a switch setting and a flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 assignment. 

incoming (resp., outgoing) arcs of vertex 
- is, I } ,  

F~~ every 

The capacity constraint restricts the amount of flow that can be 
assigned to a link; while flow conservation implies that an 
intermediate node in the flow network does not absorb or 
create flows. 

A legal flow is a flow assignment that satisfies the capacity 
and flow conservation constraints. In a network flow problem, 
it is necessary to find the legal flow that optimizes a given 
objective function. For example, in the maximum flow 
problem, it is necessary to find F, the maximum amount of 
flow that can be advanced from source to sink under the 

To use existing algorithms to solve a flow problem, an 
MRSIN has to be transformed into a flow network such that 
the optimization of request-resource mappings is equivalent to 
the optimization of the corresponding objective function in the 
flow network. To this end, additional nodes may be intro- 
duced, the capacity of a link may be greater than one, and a 
cost may be associated with a link. 

The following transformation produces a flow network such 
that the optimal request-resource mapping can be derived 
from its maximum flow. 

Transformation I :  Generate a flow network G (V ,  E, s, t ,  
c), from a homogeneous MRSIN. 

(Tl) Create three node sets P, A', and R for processors, 
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switchboxes, and resources, respectively. Introduce two addi- 
tional nodes: source zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs and sink zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt. Let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

V ’ = { S ,  t }  U P U X U R. 

(T2) Add an arc leading from the source s to every node 
associated with a processor. Denote this set of arcs by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS, i.e., 

S={(s, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu ) l u  E P } .  

Add an arc between every node associated with a resource and 
the sink t. This set of arcs is called T. 

T = { ( u ,  t ) l u  E R } .  

For each link in the MRSIN that connects two switchboxes, or 
a processor to a switchbox, or a switchbox to a resource, add 
an arc between the corresponding nodes in the flow graph. 
Denote this set of arcs by B. 

B={(u,  W ) ( U  E P U X ,  w E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX U R } .  

Define 

E ’ = S  U T U  B. 

(T3) Assign link capacities according to the following 
function. 

0 associated link is occupied or 
nonexistent in the MRSIN i 1 associated link is free 

c(e) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e E B  

0 associated processor does not generate request 
1 associated processor generates request 

0 associated resource is unavailable 
 ET 1 associated resource is available. 
c(e) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI 

(T4) Obtain arc set E by removing those arcs with zero 
capacity. 

E=E’ - {e le  E E ‘ ,  c(e)=O}. 

Obtain node set V by deleting those nodes that are not 
reachable from s. 

Applying the above transformation to the MRSIN in Fig. 
2(a) results in the flow network in Fig. 2(b). The following 
theorem shows that Transformation 1 can be used to find the 
optimal request-resource mapping. 

Theorem 2: In a homogeneous MRSIN, the number of 
resources allocated by a mapping is equal to the amount of 
integral flow that can be advanced from the source to the sink 
in the flow network obtained by Transformation 1. 

Proof: The nodes in the flow network transformed from 
a multistage interconnection network can be divided into 
stages, and an arc is assigned either zero or one unit of flow. In 
a flow network corresponding to a loop-free interconnection 
network with an arbitrary configuration, dummy nodes can be 
added to equalize all s-t paths and organize the network into 
stages. An integral flow assignment to nodes in stage i defines 
a one-to-one mapping g; that maps a subset of incoming arcs to 
a subset of outgoing arcs. Hence, a legal integral flow 
assignment in such a network can be represented by a 

composite function h = g l  g2 * gL , where L is the number of 
stages. Since g, is one-to-one, h is also one-to-one. For a one- 
to-one function, the norm of its domain is equal to the norm of 
its range. According to Transformation 1, the stage next to the 
source is comprised of nodes associated with the requesting 
processors, and the stage next to the sink is comprised of 
nodes associated with the free resources. Each node in these 
two stages has a single incoming arc and a single outgoing arc. 
Therefore, the one-to-one mapping of h implies the same 
number of nodes involved in the flow assignment in each of 
these two stages. Furthermore, the flow assignment defines a 
path for a requesting processor to a free resource, and the free 
resource can be allocated to the requesting processor through 
this path. The norm of h is equal to the total flow leaving the 
source and entering the sink. Thus, I I1 = I 0 I = F,  where Z 
and 0 represent the domain and range of g,, and F is the value 
of the flow. As a result, every legal integral flow defines a set 
of F nonoverlapping paths from s to t ,  and the number of 
resources allocated is equal to the value of the corresponding 
flow in the flow network. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

From Theorem 2 and a known result that the maximum flow 
of a network with integral capacity is integral [6], we conclude 
that the optimal request-resource mapping can be derived 
from the maximum flow in the transformed flow network. 

Many algorithms have been developed to obtain the 
maximum flow in a flow network. The algorithm by Ford and 
Fulkerson [17] is a primal-dual algorithm in which the flow 
value is increased by iteratively searching for flow nugment- 
ing paths until the minimum cut-set of the network is 
saturated. At this point, no more flow can be advanced since 
the minimum cut-set is the bottleneck. A flow augmenting path 
is an s-t path through which additional flow can be advanced 
from the source to the sink. When an arc e on the s-t path 
points in the same direction as the s-t path, additional flow 
may be advanced through e if the current flow assigned to e is 
less than c(e), the capacity of the arc. In contrast, if arc e 
points in the opposite direction as the s-t path, then additional 
flow may be pushed through the s-t path by cancelling its 
current flow. Advancing flow through an augmenting path in 
this way will always increase the total amount of flow, and the 
flow conservation and capacity limitations will not be violated. 

As an example, in Fig. 3(a), an original flow f is assigned 
along path s-a-d-t. Path s-c-d-a-6-t is a possible flow 
augmenting path [see Fig. 3(b)]. Advancing one unit of flow 
through this augmenting path results in a new flow assignment 
f’ . Two units of flow are pushed through two separate paths s- 
a-b-t and s-c-d-t according to this assignment [see Fig. 

In an MRSIN, advancing a flow through an augmenting 
path is equivalent to a resource reallocation, i.e., a permuta- 
tion of the possible request-resource mappings. Consider the 
MRSIN in Fig. 4(a), which is a counterpart of the flow 
network in Fig. 3.* The original flow f is equivalent to the 
request-resource mapping { ( p a ,  rd), ( pc,  rb)}. The allocation 

3 ~ 1 .  

Although the switchboxes are combined with the processors c+r resources 
in the flow network in Fig. 3, the discussion will not be affected. 
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(C) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 .  An illustration of advancing flow through a flow augmenting path 
(all arcs have unit capacity). (a) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA flow network with an initial flow 
assigned to path zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs-a-d-t. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(b) A flow augmenting path s-c-d-a-b-t exists in 
the netNork. (c) Final flow assignment after advancing a unit of flow 
through the flow augmenting path. 

(b) 
Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4. A resource reallocation corresponding to flow augmentation in Fig. 

3. (a) An initial resource allocation and a possible reallocation. (b) Two 
resources are allocated after reallocation. 

of resource rb to request pc is blocked in this mapping. The 
existence of the flow augmenting path s-c-d-a-b-t shows that 
this blockage can be removed. Fig. 4(b) shows that advancing 
flow through this augmenting path results in a new mapping 
{ ( p a ,  rb), ( p c ,  rd)} and the allocation of both resources. As 

another example, applying the maximum flow algorithm to the 
flow network in Fig. 2(b), the flow assignment as shown in the 
figure is obtained, and the request-resource mapping {(PI,  

mappings that cannot allocate all the free resources are 
eliminated by the maximum flow algorithm. Note that there 
may be more than one optimal mapping. For example, another 
possible optimal mapping in Fig. 2(b) is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{(PI, r3) ,  ( ~ 3 ,  r5),  

Finding a flow augmenting path from the source to the sink 
in a flow network is central in most maximum flow al- 
gorithms. The improvement lies in the efficient search of flow 
augmenting paths [13], [12]. For example, in Dinic’s al- 
gorithm, the shortest augmenting path is always advanced first 
with the aid of an auxiliary layered network, and hence the 
computational complexity is bounded by O( I E 1 3, for general 
networks. In our case, the links have unit capacity, and the 
time complexity is reduced to O( I VI 2’3 1 E 1 ) [35 1. 

C. Homogeneous MRSIN with Request Priority and 
Resource Performance 

In a homogeneous MRSIN with request priority and 
resource preference, each request is associated with a priority 
level, and each resource is assigned a preference value. Many 
application-dependent attributes, such as workload. execution 
speed, utilization, and capability, can be encoded into request 
priorities and resource preferences. The objective of resource 
scheduling here is to maximize the number of resources 
allocated, while requests of higher priority are to be allocated 
and resources of higher preference are to be chosen. However, 
it is not necessary for requests and resources to be allocated in 
order of their priorities and preferences. The allocation of a 
resource to a request may be blocked by requests of higher 
priority, and the resource may be allocated to a request of 
lower priority. A similar argument applies to resources. 

With respect to a flow network, the priority of a request can 
be considered as the cost of carrying a flow through the path 
associated with this request. Likewise, the preference of a 
resource can be considered similarly. As a result, the request- 
resource mapping problem in the class of MRSIN’s can be 
transformed into the minimum cost flow problem, which seeks 
a flow assignment to minimize the total cost of flows in the 
network. 

Consider a flow network G ( V ,  E ,  s, t ,  c, w) ,  in which 
w(e),  the cost per unit flow, is associated with arc e E E.  In 
the minimum cost flow problem, a legal s-t flow assignment is 
sought that allows a given amount of flow zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFo to be circulated 
from source to sink with the minimum cost. The objective is to 
determine the set of least expensive s-t paths through which 
the fixed amount of flow Fo can be advanced. The constraints 
in this problem are the same as those in the maximum flow 
problem. The problem may be defined in a linear program- 
ming formulation. 

r3)9 (p37 r5), (PS, r8), (p7, rl), (p8, r7)) is derived. Those 

(p5, r8), (p7, r 7 ) ,  (p8, r l > > .  
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Minimum Cost Flow Problem: 

Minimize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACeE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE w(e) f (e)  
subject to 

( - F ~  i f u = s  

(flow conservation) 

2) O s f ( e ) s c ( e )  for all e E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE 

(capacity limitation). 

In allocating resources, the objective is to find a correspond- 
ing flow network whose optimal flow leads to an optimal 
request-resource mapping. The main idea behind the transfor- 
mation is to embed priority and preference information into 
the objective function by proper cost assignments on links. 
The amount of flow to be circulated can be considered as the 
number of requests pending for allocation. However, this 
amount may exceed the capacity of the flow network or the 
number of available resources, and additional paths have to be 
introduced to prevent overflow. A possible transformation is 
given as follows. 

Transformation 2: Generate a flow network G (V ,  E,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs, t ,  
c, w) ,  from a homogeneous MRSIN with request priorities and 
resource preferences. 

(TI) Create node sets P, X ,  and R for processors, 
switchboxes, and resources, respectively, and introduce spe- 
cial nodes: source s, sink t ,  and a bypass node zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU. Let 

V ’ = { S ,  t ,  U }  U P U X U  R. 

(T2) Create arc sets S, T, and B as in Step (T2) of 
Transformation 1. Further, add an arc from the node 
associated with a processor to the bypass node, and connect 
the bypass node to the sink. This set of arcs is denoted as L .  

L = { ( u ,  u)lu E P }  U {(U, t ) } .  

Define 

E ’ = S U T U B U L .  

(T3) Define capacity function c as in Step (T3) of 
Transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. In addition, define 

(T4) Define cost function w that represents the cost of 
advancing one unit of flow through a link as follows. 

0 for e E B 

max (y,,, + 1, qmax + 1) for e E L 

Ymax -Yp for e E S, p E P 
4max - 4 w for e E T, w E R 

w(e) = 

where ymax is the highest priority level, yp  is the priority of 
request from processor p ,  qmax is the highest preference level, 
and qw is the preference of resource w. Note that any cost 

function that is inversely related to priorities and preferences 
can be used, for e E S and e E T.  

(T5) Create arc set E and node set V as in Step (T4) of 
Transformation 1. 

(T6) Set the total flow Fo to the number of requests. 
As an example, in the MRSIN in Fig. 5(a), each request is 

attributed a priority level, and an available resource is given a 
preference value. The preference and priority levels range 
from 1 to 10. A minimum cost flow network obtained from 
Transformation 2 is shown in Fig. 5(b). 

The following theorem proves the correctness of Transfor- 
mation 2. 

Theorem 3: The optimal request-resource mapping on a 
homogeneous MRSIN with request priority and resource 
preference can be derived from the minimum cost integral 
flow of the flow network obtained by Transformation 2. 

Proot It is easy to verify that a feasible flow always 
exists since one can always push the required amount of flow 
Fo through the bypass node U. A flow passing through the 
bypass node means that the associated request it not a1 located. 
Thus, minimizing the cost of a flow assignment is equivalent 
to assigning as much flow as possible to the part of the flow 
network other than the bypass node. This is achievable if the 
minimum cost flow assignment minimizes the amount of cost 
flow through the bypass node. The theorem can be proved by 
contradiction. Assume that the minimum cost flow assignment 
does not define the maximum resource allocation, then there 
exists an s-t path such that the bypass node U is not on this 
path, and the path is not saturated such that at least one unit of 
flow can be advanced through it. The additional flow that 
could have passed through this s-t path will pass through the 
bypass node U .  According to the cost function w defined in 
Transformation 2, the cost of advancing flow through such an 
s-t path is less than that of advancing the same amount of flow 
through a path passing through node U. The total cost could be 
reduced if more flow is pushed through this s-t path instead of 
passing through the bypass node U. The existence of sbch a 
path implies that the original assignment is not minimum, 

Edmonds and Karp have developed a scaled out-of-kilter 
algorithm to obtain the minimum cost flow of a general flow 
network in polynomial time [ 18j, [ 131. For a flow network of 
0-1 capacity, the time complexity is bounded by 
O( I VI I E I 2) .  Furthermore, in the minimum cost flow assign- 
ment obtained, the flow assigned to a link is integral if the 
links have integral capacities. Thus, the optimal request- 
resource mapping of homogeneous MRSIN with request 
priorities and resource preferences can be obtained efficiently. 

As an example, applying the minimum cost flow algorithm 
on the flow network in Fig. 5(b) results in the reduest- 
resource mapping { ( p 3 ,  rs), ( p s ,  r l ) ,  ( p s ,  r7)}. The selected 
paths are shown as bold lines in Fig. 5(b).  Note that the 
minimum cost flow obtained may not be unique, although 
alternative mappings will not improve the cost of allcication. 

D. Optimal Resource Scheduling in Heterogeneous 
MRSIN 

A heterogeneous MRSIN consists of multiple types of 
resources, and a processor may generate a request of a given 

which contradicts the assumption. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 



122 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON COMPUTERS, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAVOL. 38, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, JANUARY 1989 

Processors Switching Boxes Resources zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

(b) 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 .  Example to illustrate Transformation 2. (a) An MRSIN with request 
priority and resource preference (highest priority is 10; highest preference 
is 10; thick shaded paths in the network are already occupied; processors 
p ~ ,  ps, and ps are making requests; resources r,, r,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArs,  r,, and r8 are 
available). (b) The flow network transformed from the MRSIN in Fig. 5(a) 
using Transformation 2 (nonzero flows assigned by the out-of-kilter 
algorithm are shown as thick dark lines in the figure; all arcs have unit 
capacity; cost of arc is zero except where indicated). 

type of resource. Such an MRSIN is equivalent to a flow 
network carrying different types of commodities. A multicom- 
modity flow network has multiple source-sink pairs, each of 
which is associated with one type of commodity. A flow 
coming out of a source of a given commodity can only be 
absorbed by the sink of the same type of commodity. Flows of 
different commodities may share a link as long as the total 
flow does not exceed the capacity of the link. 

For a flow network with k types of commodities, there are k 
source-sink pairs, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(si, t i ) ,  for i = 1 to k. Let F' be the flow of 
the ith commodity. The search for the maximum flow can be 
formulated as a linear programming problem [ 11. 

Multicommodity Maximum Flow Problem: 
Maximize Fi 
subject to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

u=si  

1 )  2 f ' ( e ) -  f ' ( e ) =  F' " = t' 
eEu(u)  e€&)  il:' otherwise 

(flow conservation) 
for i = l ,  . * e ,  k 

k 

2) O s z f ' ( e ) s c ( e )  for all e E E 
i =  I 

(capacity limitation). 
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A multicommodity flow network may be visualized as the 
superposition of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk single-commodity flow networks. Each 
layer in the superposition represents a single-commodity flow. 

To obtain the optimal request-resource mapping in a 
heterogeneous MRSIN without priority and preference, a 
transformation similar to Transformation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 can be applied to 
obtain a single-commodity flow network for each type of 
resource, and the single-commodity flow networks are super- 
posed to form a multicommodity flow network. 

The optimal mapping for a heterogeneous MRSIN with 
request priorities and resource preferences can be obtained by 
transforming the problem into the multicommodity minimum 
cost flow problem. Let w’(e) be the cost per unit flow for the 
ith commodity on edge e, andf’(e) be the corresponding flow. 
The problem can be formulated as follows. 

Minimize zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAXf= X e E E  w’(e)f’(e) 
subject to 

Multicommodity Minimum Cost Flow Problem: 

( -FX 

(flow conservation) 
for i = l ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- - . ,  k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k 

2) O s C f ’ ( e ) s c ( e )  for all e E E 
i =  1 

(capacity limitation). 

The equivalent flow network consists of k source-sink pairs 
and k bypass nodes, where k is the number of types of 
requested resources. Similar to the case before, this flow 
network may be regarded as the superposition of k single- 
commodity flow networks, and Transformation 2 can be 
applied to each of them. 

The problem of finding the maximum integral flow in a 
general multicommodity flow network has been shown to be 
NP-hard. Fortunately, interconnection networks of restricted 
topology have transformations that belong to a class of 
multicommodity flow networks in which the optimal flow 
values are always integral [14]. For this class of flow 
networks, the integral multicommodity optimal flows can be 
obtained efficiently by the Simplex Method, which has been 
shown empirically to be a linear time algorithm 1311. 

IV. ARCHITECTURE OF MRSIN TO SUPPORT OPTIMAL 
SCHEDULlNG 

The optimal scheduling algorithms described in Section I11 
can be supported by various architectures. An efficient design 
is needed to avoid an intolerable overhead. 

In a conventional interconnection network using address 
mapping, resource binding is done at the requesting processor. 
To obtain an optimal mapping, a requesting processor has to 
know the status of the network, availability of resources, and 
all requests generated by other processors. This information is 
very costly to obtain because it changes dynamically. In 
practice, resource binding is done without global information. 
A resource mapping so obtained may be suboptimal and may 

lead to heavy resource contention and severe circuit blockage. 
In contrast, it is less costly to maintain global status informa- 
tion in the network. Thus, by carrying out resource binding in 
the RSIN, the overhead of obtaining an optimal resource 
mapping can be reduced. 

Two architectures of an MRSIN for carrying out the optimal 
resource scheduling algorithms have been studied. In the first 
approach, a dedicated monitor is responsible for resource 
scheduling (see Fig. 6). It maintains the status of the 
interconnection network and resources. The monitor enters a 
scheduling cycle when there are pending requests. Requests 
received or resources released during a scheduling cycle will 
not be processed until the next cycle. In a scheduling cycle, a 
flow network is generated according to the status of the 
network. The optimal request-resource mapping is derived by 
the monitor using a flow algorithm implemented in software. 
The monitor then sends an acknowledgment to each requesting 
processor that has been allocated a resource, notifies resources 
that are allocated, and establishes paths in the network. The 
implementation is sequential, and the overhead is measured by 
the number of instructions executed in the algorithm. 

A distributed architecture, on the other hand, distributes the 
scheduling intelligence in the switchboxes of the interconnec- 
tion network. Optimal scheduling is achieved through cooper- 
ation among processes in the switchboxes. No transfcirmation 
to a network flow problem is necessary because the network 
flow algorithm is carried out in a distributed fashion in the 
switchboxes. The complexity of the process in each switchbox 
is central to the design of the distributed architecture. Our 
previous study shows that the maximum flow algorithm for 
homogeneous MRSIN without priority and preference can be 
efficiently implemented in a distributed fashion [ 2 5 ] .  For 
systems with heterogeneous resources or with priorities and 
preferences, there is no significant advantage of a distributed 
implementation over a monitor architecture except for reasons 
such as fault tolerance and modularity. 

In the following sections, we describe a distributed realiza- 
tion of Dink’s maximum flow algorithm to obtain the optimal 
request-resource mapping. 

A. Dink’s Maximum Flow Algorithm 

Dink’s algorithm is based on the flow-augmsntation 
method described in Section 111-B. It improves over Ford and 
Fulkerson’s algorithm by advancing flow through the shortest 
augmenting path, which can be found from a layered network 
derived from the original flow graph. A flow chart surnmariz- 
ing Dink’s algorithm is shown in Fig. 7. it comprises two 
alternating phases. In the first phase, a layered network is 
constructed, while in the second phase, an increment to the 
flow assignment is determined by finding the maximal flow in 
the layered network. The algorithm alternates between these 
two phases until no more flow can be augmented. 

In the layered network, nodes of the original flow network 
are organized into layers. The first layer consists of the source 
node(s) of the network, and the remaining layers are con- 
structed iteratively. A layer consists of nodes that are not 
included in the previous layers and have either an unsaturated 
arc or an arc with nonzero flow originating from any node in 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 .  A monitor architecture to carry out optimal resource scheduling in an 
RSIN. 
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Fig. 7. Control flow of Dinic’s algorithm. 

the layer before it. These two types of arcs, called zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAuseful 
links, are transformed to arcs in the layered network. 
Depending on the direction of the associated useful link, its 
capacity in the layered network can be either the remaining 
capacity or its current flow. As a result, nodes in a layered 
network are arranged into disjoint subsets, Vo, Vl, * * e ,  Vo, 
such that no arc points from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 to V,  for i I j .  

A legal flow in a layered network is said to be maximal if 
every (s, t)-directed path in the layered network is saturated. 
Note that it is not necessary to find the maximum flow of the 
layered network. Finding a maximal flow is sufficient since 
the objective of the layered network is to obtain a net increase 
to the total flow assignment in each iteration. Moreover, 
computing the maximal flow is easier than computing the 
maximum flow. In Dinic’s algorithm, the maximal flow is 
obtained by a depth-first search. 

Since the amount of flow that can be advanced through an 
arc in the layered network is the net increase of flow to the 
associated arc in the original network, the maximal flow 
obtained in the layered network is a net increment to the 
existing flow. Moreover, since the maximum flow of a flow 
network is finite, it can be obtained in a finite number of 
iterations in constructing the layered network. 

An example illustrating the construction of a layered 
network is shown in Fig. 8 .  Fig. 8(a) is a flow network 
associated with an MRSIN in which three processors, p l ,  p2, 
andp,, are making requests and three resources, rl, .r3, and r,, 
are available. The flow assignment shown by darkened arcs in 
Fig. 8(a) results in a mapping such that p 1  is mapped to r4 and 
p4 is mapped to rl. The request generated by p2 is blocked. 
Fig. 8(b) is a layered network constructed from the flow 
network in Fig. 8(a). The layered network shows that there is a 
flow augmenting path from p2 to r3. This path includes the arc 
leading from node 6 to node 5, which is associated with the arc 
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(b) 
Fig. 8. An illustration of a layered-network construction (all arcs have unit 

capacity). (a) A flow network (transformed from a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMRSIN) in which 
flow is advanced through the two dashed paths. (b) The layered network 
derived from the flow network in (a). The darkened zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(s, t)-path is a flow 
augmenting path. 

leading from node 5 to node 6 in the original network [see Fig. 
8(a)]. It indicates that the flow leading from node 5 to node 6 
can be cancelled. New flow should be routed through two 
other arcs: one from node 4 to node 6, the other from node 5 to 
node 7. This flow augmenting path shows that all three 
resources can be allocated if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp4 is reallocated to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAr3 and p2 is 
reallocated to rl . 

B. A Distributed Architecture for  Homogeneous MRSIN 
without Priority 

A distributed MRSIN embedded in an 8 x 8 Omega 
network is shown in Fig. 9. In this architecture, a processor is 
connected to the network through a request server (RQ), a 
resource is monitored by a resource server (RS), and each 
switchbox is controlled by an independent process (NS). A 

common status bus connects these components together. The 
scheduling intelligence is distributed in the switchboxes of the 
MRSIN. In each switchbox, there is an autonomous process 
implemented as a finite-state machine. The process communi- 
cates with other processes via direct links. Processes are 
synchronized by exchanging status information via the status 
bus to cooperatively realize a distributed Dinic’s algorithm. In 
general, the design of a distributed Dinic’s algorithm is not 
trivial. However, it can be greatly simplified in the MRSIN 
due to the property of unit flow capacity. 

A scheduling cycle begins when there are pending requests 
and ready resources. A request generated in the middle of a 
scheduling cycle has to wait until the next cycle. A scheduling 
cycle consists of many iterations. In each iteration, protocols 
governing process interactions are carried out to perform 
layered-network construction and maximal flow assignment. 
Distributed data structures are also needed for remesentine the 

Request Servers (RQ) Switching Boxes (NS) Resource Servers (RS) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ C I  4 

I I I 
I I I 

Status Bus 7 
MRSIN Resources 

t 
Processors 

Fig. 9. A distributed MRSIN embedded in an 8 x 8 Omega network. 

layered network, flow assignment, and other intermediate 
results. 

In the proposed architecture, flow augmentation is done by 
token propagations. Tokens are propagated in the network to 
iteratively search for flow augmenting paths and rearrange 
resource mappings until the optimum is obtained. Because 
each link is of unit capacity and is not to be shared by multiple 
allocated paths, a token can simply be represented by a signal 
traversing from one element to another. It Carrie$, neither 
identification nor other information. Its type is determined by 
the function being performed. With such kinds of tokens, 
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scheduling speed is limited only by the switching delay of 
logic gates. The layered network obtained in each iteration can 
be represented implicitly by recording the token propagation 
status in a bit array associated with each port. The bit pattern 
for the token propagation status is referenced as a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAport 
marking in the sequel. A flow augmenting path in the layered 
network can be identified by token propagation markings 
along the path. 

During a flow augmentation process, a free link may 
become “registered” if the two ports associated with it are 
marked. On the contrary, a registered link may become free if 
the flow assigned to it is cancelled and port markings are 
erased. A scheduling cycle consists of a request-token- 
propagation phase for constructing a layered network, a 
resource-token-propagation phase for finding the maximal 
flow of the layered network, and a path registration phase for 
registering paths associated with the maximal flow. At the end 
of a scheduling cycle, any surviving registered link becomes 
“occupied;” that is, it will be used in an allocated path. A 
request will be bonded to a free resource when a request token 
has successfully propagated to the resource in the request- 
token-propagation phase, and a resource token has success- 
fully propagated to the requesting processor in the resource- 
token-propagation phase. This corresponds to finding a 
maximal flow of the layered network in Dinic’s algorithm. 

Since a token is nothing but a propagating signal, Dinic’s 
algorithm is in fact realized by distributing tokens in the 
network. Token propagation rules for carrying out each 
function and the mechanism for synchronizing token propaga- 
tions are described next. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1) Token Propagation for  Layered Network Construc- 
tion: At the beginning of the request-token-propagation phase, 
each RQ with unbonded pending request sends a token to its 
output port, which is connected to an NS in the first stage of 
the MRSIN. 

For every NS receiving a request token through its input 
port, it duplicates the token and sends one to each of its free 
output ports and registered input ports. Note that an input port 
may be registered in previous iterations of the request-token- 
propagation and resource-token-propagation phases. All re- 
ceiving and sending ports in an NS receiving request tokens 
are marked. 

Token propagation is clocked, i.e., each token traverses 
across one link in a clock period. Propagation direction 
depends on the status of the link over which the token is 
traversing. The token traverses forward if the link is free, and 
backward if the link is registered. Accordingly, an NS may 
receive a request token either from its free input ports or from 
its registered output ports. Tokens may arrive at an NS during 
any clock period. Only the first batch is considered. All of the 
rest are discarded; that is, subsequent token arrivals will not 
cause a port to be marked if the NS had received tokens 
previously. If a token goes backward to a bounded RQ, it is 
absorbed by the RQ. This phase comes to an end when one or 
more RS’s has received a token. In the following theorem, we 
show that the layered network will be obtained correctly by the 
propagation of request tokens. 

Theorem 4: A layered network can be constructed correctly 
by propagating tokens according to the rules described above. 

Proof: Since request tokens are only generated by RQ’s 

in the first clock period of a request-token-propagation phase, 
the RQ’s making requests in this phase can only be included in 
the first layer. A virtual source node can be considered to be 
connected to every RQ in the first layer. Next, we would like 
to show that, given a layer, the next layer can be determined 
uniquely by token propagations. In each clock period, tokens 
are distributed from the current layer to unmarked free output 
ports and unmarked registered input ports, and they traverse 
exactly one link. Thus, only those elements that are directly 
connected to the current layer may receive a token. By 
eliminating those that had received tokens before, we obtain a 
set of elements corresponding to those nodes in the next layer 
of the layered network. If no RS is included in the next layer, 
then these nodes are responsible for token propagation in the 
next clock period. If an RS does appear in the layer. all tokens 
stop propagating, and a virtual sink node is implicitly 
generated in the last layer, although no actual token propaga- 
tion is necessary to construct this virtual layer. In summary, 
given a layer, the next layer can be constructed correctly by 
request-token propagations. By induction, the theorem is 

2) Token Propagation to Find Maximal Flow: The RS’s 

receiving a token in the request-token-propagation phase 
represent resources that have not been allocated to any request 
so far and can possibly be allocated with some rearrangement 
of resource mapping. Since the rearrangement is done by flow 
augmentation in Dinic’s algorithm, a new phase of token 
propagation is started to find the maximal flow in the layered 
network after the layered network has been constructed. 

In this phase, each RS appearing in the last layer sends a 
token (called resource token for convenience) back to the 
layered network hoping to find a matching RQ. In effect, the 
token serves as a positive acknowledgment to the request 
tokens from the RQ’s. The token traverses across one link per 
clock period, and an NS expects to receive tokens only from 
those ports to which a request token was sent, that is, those 
ports that were marked. A resource token is not duplicated by 
an NS since an RS can be assigned to only one RQ. When 
multiple resource tokens arrive at a point where a request 
token was duplicated, only one of them is allowed to go 
through the link from which the request token was received. 
The rest have to backtrack to find alternative paths. If 
backtracking causes a token to return to its originating RS, 

then the token is discarded. This means that the RS cannot find 
a matching RQ in this iteration. The marking of a port is 
cleared whenever a resource token backtracks through the 
port. This prevents subsequent attempts of fruitless backtrack- 
ing. The number of propagating resource tokens is reduced as 
tokens are received by RQ’s or backtracked to RS’s. Resource 
token propagation stops when the number of propagating 
resource tokens is reduced to zero. It is easy to show that the 
set of paths explored by successful resource token propaga- 
tions represents the maximal flow of the layered network. 

The maximal flow of the layered network is the flow to be 
augmented to the original flow assignment in the current 
iteration. Flow augmentation has to be done before the next 
iteration starts. To achieve this, the MRSIN enters a third 
phase. All it needs in this phase is to change the state of those 

proved. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10. A state transition diagram of distributed MRSIN with a status bus. 

paths associated with the maximal flow to being zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA“regis- 
tered.” These paths are readily known at the end of the 
resource-token-propagation phase since they are the paths 
through which resource tokens successfully propagated to 
RQ’s. The RQ’s that received a resource token are bonded to 
the corresponding RS’s. Their binding status bits are set to 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3) Synchronization via Status Broadcasting: To ensure 
that each element of the MRSIN applies the right rule to 
propagate tokens, phase transitions must be strictly synchro- 
nized. A synchronization scheme based on message passing is 
too slow to match the speed of the token-propagation scheme. 
Although a broadcast bus can greatly simplify synchroniza- 
tion, especially when processes are located in close proximity 
[25] ,  the cost of maintaining the status of processes received 
from the bus is too high. In this section, we propose the design 
of an efficient status bus to address this problem. 

Instead of being used as a transmission media for sending 
messages, the status bus is in fact a specialized global 
“memory” device that can be accessed concurrently. Each bit 
of the bus is associated with an event that reflects the collective 
status of a subset of processes. To realize such a bus, each 
process maintains its own status in a single-bit register, and the 
output of the register is connected to a wire-orr logic gate. The 
output of the gate is then connected to the corresponding bit of 
the status bus. Accordingly, the status observable from the bus 
is the logical OR of the status of associated processes. 

To determine what are the necessary events that require 
synchronization, possible phase transitions in an MRSIN are 
examined, and the results are summarized in a state transition 

diagram in Fig. 10. In an idle period, the MRSIN is in one of 
the states in which either no pending request or nlo ready 
resource exists, or no ready resource can be allocated to 
pending requests. The MRSIN may enter a scheduling period 
when there are requests pending and resources ready. How- 
ever, to avoid repeated attempts of allocating blocked re- 
sources (i.e., the case of cycling between states 4 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 in Fig. 
10) and to improve the scheduling efficiency, the MRSIN may 
choose to wait for more requests to arrive and more resources 
to become available before entering a scheduling cycle. Each 
scheduling iteration consists of five states. To conclude a 
scheduling cycle, the MRSIN enters the allocation state in 
which registered paths are changed to being “bonded.” 

Based on the state transition diagram, seven events that 
require synchronization are identified. We have chosen to 
implement the status bus with seven bits. The definition of 
these events and their associated processes are shown in Table 
I. Since these events are observable on the status bus, an 
occurrence of a state transition can be disseminated instantly, 
and processes can react to the new state immediately. For 
example, when an event vector (1 11000~) is observed on the 
bus, an NS knows that the MRSIN is in a request-token- 
propagation phase. (Note that the “DON’T CARE” symbol “x” 
in the state vector means that the designated bit can be 0 or 1 .) 
It can determine immediately which rule to apply whenever it 
receives a token. When propagating a token, elements on the 
propagation path turn on their E3 status bits for one clock 
period in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAturn. This operation keeps bit 3 of the status bus on 
whenever there are tokens propagating. The MRSIN moves to 
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Event Definition 

E,  Request pending zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ez Resource Ready 

E, Request token propagation 

E, Resource token propagation 
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Associated Bit Number zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA01 

Processes Status Bus 

RQs B(MSB) 

RSs 5 

RQ, NSs 4 

RSs, NSs 3 

Scheduling 

Dvleipline 

A R Q  is bonded to a RS RQs 0 (LSB) 

Homogeneous Reaourcea H~lcrogmeoua R~sourcca zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
No PriDrilg Priority zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB Reatrieled General 

B PrcJerencc Pre/crcncc Topology Topology 

a new state (1 11001~) when an RS sets E6 to 1 upon receiving 
a token. The MRSIN will stay in this state for one clock period 
to allow all tokens to come to a stop. At the beginning of the 
next clock cycle, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE6 will be turned off, and E4 will be turned 
on. The MRSIN moves into state (110100~) representing a 
resource-token-propagation phase. The next transition will 
bring the MRSIN into a path registration state (110110~). E4 
and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE5 will be turned off after one clock period. Finally the 
MRSIN returns to state zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(1 11OOOx) for a new iteration. 

Since a token is simply a signal, token propagation rules can 
be expressed in terms of Boolean functions. A distributed 
process at an NS, RQ, or RS does nothing but distribute the 
token according to the global status and local conditions. It can 
be realized easily by a finite-state machine, the design of 
which can be found elsewhere [25]. The design has a very low 
gate count and a very short token propagation delay. 

Overall, the token-propagation architecture has two factors 
that contribute to a significant speedup as compared to a 
monitor architecture: 1) the augmenting paths are searched in 
parallel, and 2) the time complexity is measured in gate delays 
instead of instruction cycles. As a result, the scheduling 
algorithm will run at a much higher speed than a software 
implementation of the network flow algorithm. 

V. CONCLUSIONS 

An RSIN is suitable to support resource sharing in 
multiprocessors. Optimal request-resource mapping in an 
RSIN with homogeneous resources and requests of equal 
priority is obtained by maximizing the number of communica- 
tion paths that interconnect pairs of processors and resources. 
In this paper, we have transformed various request-resource 
mapping problems into network flow problems for which 
efficient algorithms exist. Table I1 summarizes the results we 
have obtained. The proposed method is independent of the 
interconnection structure and is applicable to any network 
configuration in which the requesting processors and free 
resources can be partitioned into two disjoint subsets. In 
particular, the method is applicable to networks with multiple 
paths between source-destination pairs, such as the data 
manipulator [ 151, augmented data manipulator [33], and 
gamma network [36]. The resource utilization, however, will 
depend on the network configuration, the resources available, 
the arrangement of the various types of resources, and the 
arrangement of the reauesting Drocessors. 

Scheduling 

TABLE I1 
SUMMARY OF OPTIMAL RESOURCE SCHEDULING SCHEMES FOR 

RESOURCE SHARING INTERCONNECTION NETWORKS 

Algorithms Ford-Fulkerson, Outof-Kilter Linear NP-hard 

Dink Programming 

Archikclure 

Implcmenlation 

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAEquivolcnl 11 Max.-Flow I Min -Cost I Real Multi- IInteger Mulb- 

Optimal Flow Problem Circulation Commodity Commodity 

Distributed Monitor (Centralized) 
-~ 

Synchronized by 

Status Bus; Software 

Communicate via 

Token Propagation 

131 

141 

151 
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