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Abstract Hate Speech in social media is a complex phenomenon, whose detection

has recently gained significant traction in the Natural Language Processing com-

munity, as attested by several recent review works. Annotated corpora and

benchmarks are key resources, considering the vast number of supervised approa-

ches that have been proposed. Lexica play an important role as well for the

development of hate speech detection systems. In this review, we systematically

analyze the resources made available by the community at large, including their

development methodology, topical focus, language coverage, and other factors. The

results of our analysis highlight a heterogeneous, growing landscape, marked by

several issues and venues for improvement.
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1 Introduction

Within the field of AI, and Natural Language Processing (NLP) in particular,

techniques for tasks related to Sentiment Analysis and Opinion Mining (SA&OM)

grew in relevance over the past decades. Such techniques are typically motivated by

purposes such as extracting users’ opinion on a given product or polling political

stance. Robust and effective approaches are made possible by the rapid progress in

supervised learning technologies and by the huge amount of user-generated contents

available online, especially on social media. More recently the NLP community

witnesses a growing interest in tasks related to social and ethical issues, also

encouraged by the global commitment to fighting extremism, violence, fake news

and other plagues affecting the online environment. One such phenomenon is hate

speech, a toxic discourse which stems from prejudices and intolerance and which

can lead to episodes, and even structured policies, of violence, discrimination and

persecution.

Hate Speech (HS), lying at the intersection of multiple tensions as expression of

conflicts between different groups within and across societies, is a phenomenon that

can easily proliferate on social media. It is a vivid example of how technologies

with a transformative potential are loaded with both opportunities and challenges.

Implying a complex balance between freedom of expression and defense of human

dignity, HS is hotly debated and has recently gained traction in the AI community,

that can play a leading role in developing tools to confront pervasive dangerous

trends such as the escalation of violence and hatred in online communication, or the

spread of fake news.

The motivation to study HS from a computational perspective is manifold. On the

one hand, as a linguistic and pragmatic phenomenon, computational linguistic

techniques enable the scholar to gain insights and empirical evidence on its intrinsic

characteristics. On the other hand, several actors—including institutions and ICT

companies to comply to governments’ demands for counteracting the HS

phenomenon1—have an increasing need for automatic support to moderation or

for monitoring and mapping the dynamics and the diffusion of HS dynamics over a

territory (Capozzi et al. 2019), which is only possible at a large scale by employing

computational methods.

HS is a complex and multi-faceted notion that has proven difficult to recognize,

both by humans and machines. Researchers who recently started tackling this issue

from an NLP perspective are designing operational frameworks for HS, annotating

corpora with several semantic frameworks, figuring out the most representative

features, and testing automatic classifiers. Moreover, the involvement of the

scientific community resulted in a number of evaluation tasks organized in different

1 See for instance the Code of Conduct on countering illegal hate speech online issued by EU

commission (EU Commission 2016).
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languages, releasing benchmark corpora and encouraging participants to develop

their own classification systems.

Being the subject in a yet recent stage, it suffers from several weaknesses, related

to both the specific targets and nuances of HS and the nature of the classification

task at large, that prevent systems from reaching optimal results. One of the major

issues consists in the intrinsic complexity in defining HS and in a widespread

vagueness in the use of related terms (such as abusive, toxic, dangerous, offensive or

aggressive language), that often overlap and are prone to strongly subjective

interpretations. As we will also show in the present survey, this results in a sparsity

of heterogeneous resources each reflecting a subjective perception, and in a variety

of systems each trained on a different resource.

Given the considerable amount of research produced in recent years, we

undertook the task of writing a systematic and up-to-date review on the subject,

focusing on shared tasks organized and resources released so far for HS detection.

Purposes of a systematic survey include summarizing existing work, helping

identify gaps and weaknesses in current research, suggesting areas for further

investigation, and providing a solid framework for improving NLP research on HS

detection.

This contribution aims at complementing other surveys proposed in this field, in

particular by Lucas (2014), Schmidt and Wiegand (2017) and Fortuna and Nunes

(2018). In fact, we analyzed their work, bearing in mind a number of objective

questions meant to help point out their strengths and weaknesses. In doing so, we

focused in particular on the main reviews’ objectives, the sources and depth of the

search of the reviewed studies, the inclusion/exclusion criteria adopted to select

these studies, how data were extracted, synthesized and combined, and whether

conclusions flow from the evidence.

These reviews mention either explicit research questions, open issues or

suggestions about future work, and are conducted with varying degrees of

systematicity. Overall, their main objective is to provide an overview of the

approaches proposed in literature for automatic HS detection, focusing either on

high-level descriptions of methods (Lucas 2014) or on specific computational

approaches, with a special emphasis on NLP (Fortuna and Nunes 2018; Schmidt and

Wiegand 2017), thus analyzing models, features and algorithms.

As regards the sources and depth of the search, in Schmidt and Wiegand (2017)

there is no explicit mention of how sources were explored, and in Lucas (2014)

potential sources have been admittedly overlooked, while in Fortuna and Nunes

(2018) the methodology was meant to be systematic and aimed at finding as many

documents as possible in the areas of interest (computer science and engineering).

Among these three surveys, the latter is also the only one that states explicit

inclusion/exclusion criteria to select the studies and that reports numerical results

from the surveyed papers. The conclusions drawn from such results are that it is not

clear which approaches perform better, also due to differences in the datasets used

(among other factors). The need for benchmark datasets that allow comparative

studies is also highlighted in Schmidt and Wiegand (2017). However, it must be

noted that many of the resources included in this survey had not yet been released

when the previous surveys were published (or, at least, when their search was
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carried out), especially those released for shared tasks—which proves, once again,

how dynamic and fast—growing the field is. What is more important, a large

proportion of HS resources developed in the recent past includes data in languages

other than English, thus broadening the HS detection scenario to a multiplicity of

linguistic—as well as cultural—perspectives. Such linguistic diversity, on the other

hand, also confirms the need to provide a complete picture of the resources available

to the research community, especially for those aiming to adopt multilingual

approaches. In this respect, it is worth mentioning a repository2 that attempts to

gather all the corpora on HS and related phenomena that have been released so far,

cataloguing them according to the language involved. Such repository, however,

just provides a list with concise information on the datasets to those interested in

using the data for computational purposes. To the best of our knowledge, a complete

overview of such resources that would also take into account of different viewpoints

and dimensions is still missing. This work aims therefore at providing a more

comprehensive view of the datasets, lexica and evaluation campaigns that are

centered on the notion of HS.

Furthermore, similarly to what has been done in Fortuna and Nunes (2018) with

respect to papers on HS detection, we apply a systematic approach based on explicit

research and evaluation criteria, in order to draw conclusions on the state of the art

and suggestions for future work that can only emerge from a comprehensive

analysis of the subject.

This paper describes first how the research was conducted, analyzing the criteria

adopted and the search results (Sect. 2). It then provides an overview of the

resources found (Sects. 3 and 4), also proposing a lexical analysis of some of them

(Sect. 5), aiming to highlight how topic biases can be pervasive in such kind of

resources. Some concluding remarks (Sect. 6), drawn from the survey findings,

close the paper.

2 Methodology

In compiling this survey, we relied on the guidelines provided by Kitchenham

(2004) for writing systematic reviews on the subject of software engineering,

adapting them to the peculiarities of our field. In this section, we will mention the

main steps we followed in the research process. A set of keywords was set up and

used to browse search engines and repositories. We picked English keywords since

English is used worldwide as working language among scholars; however, we did

not restrict our search to works based on English data alone, instead including as

many languages as possible.

2 https://hatespeechdata.com/.
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2.1 Sources

We collected any peer-reviewed academic work found on Google Scholar3 and

Google Books4, limiting our query to the first ten pages for each keyword and

sorting results by relevance, without time filter. The systematic search was

conducted in two occasions: the main search was carried between June 2018 and

April 2019, and subsequently the results were updated with a new search by the

same parameters, conducted between March and April 2020. We also collected

resources for which references to the used methodology or the implemented system

were provided on public version control repositories on Github5, Gitlab6 and

Bitbucket7. Finally, the first two pages of results of the general Web search by

Google8 have been accessed. We furthermore scanned the proceedings of

workshops and shared tasks found on these sources with the same keywords (see

Sect. 4.2 for a complete list).

We carefully read each work and labeled it with a set of specifically-designed

labels, sorting our list by research field (e.g., field-socialsciences, field-NLP, etc.),

main focus (e.g., content-resource, content-system, etc.), methodology (e.g.,

method-nn for neural nets, method-ml for machine learning, etc.), specific

phenomena investigated (e.g., topic-hs for HS at large, topic-racism when the

topical focus is on racist speech, etc.) and language (e.g., lang-en, lang-it, etc.).

Although we collected a much larger number of works, the present review only

describes those labeled as resources or shared task overviews.

2.2 Inclusion and exclusion criteria

All works not related to HS (and similar subjects), not presenting a NLP approach or

not peer-reviewed were discarded, with the exception of a few datasets only

published on the Web. A major issue we had to deal with are the fuzzy boundaries

between HS and broader concepts such as abusive language, offensive language and

toxic language on one hand, and between HS and more specific focus-driven labels

such as racism, anti-semitism, sexism, misogyny and homophobia on the other

hand. The lack of a common framework among scholars from a variety of

disciplines leaves room for subjective interpretations, so that the same linguistic

phenomenon can be given different names, or conversely the same label used for

different phenomena.

In order to ground our study in a methodologically sound foundation, we rely on

the definition of HS given by Sanguinetti et al. (2018), here rephrased and

summarized: a content defined by its action—generally spreading hatred or inciting

violence, or threatening by any means people’s freedom, dignity and safety—and by

3 https://scholar.google.com.
4 https://books.google.com.
5 https://github.com.
6 https://about.gitlab.com/.
7 https://bitbucket.org/.
8 https://www.google.com.
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its target—which must be a protected group, or an individual targeted for belonging

to such a group and not for his/her individual characteristics. This definition is in

turn based on a thorough investigation of definitions proposed in a variety of fields,

including computational linguistics, pragmatics, law and social sciences, and is the

result of an attempt to merge some key points into a structured framework apt for

computational purposes. Different definitions may in fact stress different aspects of

HS: some focus on the linguistic form, others on the writer’s intention, others yet on

the potential effect on the victim. In compiling a survey, we are not called to

propose our own original definition; but it is of primary importance to recognize

those works and resources that are related to the concept, even though some of them

call it with a different name.

Figure 1 shows a depiction of our working framework, and an attempt to clarify

the matter, based also on the reviewed literature. While we consider HS an instance

of abusive language, not all manifestations of hatred towards certain targets are

categorized as HS under our definition. For instance, racial microaggressions (Sue

et al. 2007) are definitely expressions of racism, but they do not necessarily contain

a call to violent action that would put them in the HS class of our framework.

Below we show some examples of the various concepts related to HS in Fig. 1,

that is texts extracted by the benchmark corpora and HS detection resources for

different languages we reviewed, that were labeled as representative samples of

such phenomena:

altro che profughi? sono zavorre e tutti uomini (refugees? They are
deadweights and all men)

Source: (Bosco et al. 2018) Label: hateful Language: Italian

tutto tempo danaro e sacrificio umano sprecato senza eliminazione fisica dei
talebani e dei radicali musulmani e tutto inutile (it’s all a waste of time, money
and human lives without the extermination of Taliban and radical Muslims it’s
all useless)

Source: (Sanguinetti et al. 2018) Label: aggressive Language: Italian

@USER Figures! What is wrong with these idiots? Thank God for @USER
Source: (Zampieri et al. 2019b) Label: offensive Language: English

Abusiveness/Toxicity

Aggressiveness

Offensiveness

Hate Speech
Misogyny

Racism 
Homophobia

...

Fig. 1 Relations between HS and related concepts
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You should be fired, you’re a moronic wimp who is too lazy to do research. It
makes me sick that people like you exist in this world

Source: Hate Speech Hackathon Label: toxic Language: English

I’ve yet to come across a nice girl. They all end up being bit**es in the end
Source: (Fersini et al. 2018a) Label: misogynous Language: English

These savages invade Our Country, disrupt cities, turn many into sh***es like
where they came from and WE THE PEOPLE are paying for this SH*T. [...]

Source: (Basile et al. 2019) Label: hate speech Target: migrants

Language: English

oltre 2300 miliardi diuro. Il P.D. va a caccia , ora, dei soli voti di ricchioni,
omosessuali, trans, naziskin , ... URL

(over 2300 billionuros. PD is now hunting only votes from fags,
homosexuals, trans, skinheads, ... URL )

Source: Akhtar et al. (2019) Label: homophobic Language: Italian

To further clarify the concepts under study and their relationships with each other,

we compiled a glossary of the terms in Fig. 1 and their definitions according to

several sources from recent literature, shown in Table 1. Partial attempts to

precisely classify overlapping abusive phenomena are found in the literature, such

as Malmasi and Zampieri (2018) exploring the distinction between HS and

profanity. Davidson et al. (2017) further distinguish HS from offensive language,

citing examples such as:

• Stupid f*cking n*gger LeBron. You flipping jun- gle bunny monkey f*ggot (Hate

Speech)

• Why you worried bout that other h*e? Cuz that other h*e aint worried bout
another h*e (Offensive)

Moreover, (Waseem et al. 2017) contributes to the critical reflection on the

relationships between different phenomena that have been grouped under the

‘‘abusive language’’ label, by introducing a two-fold typology that considers (i)

whether the abuse is directed at a specific target or towards a generalized group, and

(ii) the degree to which it is explicit or implicit. Authors argue about the

implications for annotation of the proposed classification, which inspired the multi-

layer annotation scheme proposed for the dataset of the OffensEval2019 shared task

(Zampieri et al. 2019b) and other works, including the target-aware annotation in

Basile et al. (2019) and the implicit-explicit distinction in the annotation of Caselli

et al. (2020).

The present survey wants to draw attention to the recent efforts towards a

structured NLP community concerned with hateful language recognition, efforts

that necessarily include not only systems implementation but also, and primarily,

the development of solid resources from different sources and in different

languages. Unlike HS detection systems, resources and tasks in this field have

received little or no coverage by previous review works (see Sect. 1), also due to

their very recent spread: this, too, is why we chose to focus on this subject.
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2.3 Analysis of search results

The works retrieved by our systematic search are critically analyzed and compared

according to five dimensions:

• TYPE: what is the structure of the resource;

• TOPICAL FOCUS: how HS and related phenomena are distinguished according to

their topical focus or targets, and to what extent such topics or targets are

studied;

• DATA SOURCE: where data have been collected from;

• ANNOTATION: how and by whom data have been labeled, according to what

framework, and how quality has been assessed;

• LANGUAGE: how different languages are covered, and how resources and

definitions vary across languages.

Note that we deliberately excluded the high-level motivation for building a resource

(e.g., automatic moderation, or monitoring and mapping the HS dynamics in a

territory) from the dimensions used for their categorization. While some works

explicitly mention their end goal, e.g., Sanguinetti et al. (2018) for monitoring, most

do so implicitly at best, or do not indicate a motivation at all.

Overall, we have found 64 original resources, described in 60 papers published in

journals or in conference proceedings (four papers present both a dataset and one or

more lexica). Among these, 11 are resources specifically released as benchmark

datasets for shared tasks, and are all available on request or by a public URL. As for

the remainder, 23 are publicly available resources; 1 is available on request9; 29

resources are not available inasmuch as no valid URL is provided nor any other

ways to access data is suggested. We have not performed further research in the

attempt to find these latter resources; yet, since they are described in detail, we

included them in this review.

We located 54 papers browsing Google or Google Scholar with the keywords

hate speech nlp, hate speech detection, dataset hate speech, hate speech lexicon,

hate speech shared task and hate speech detection syntax; 3 were found on GitHub

and 3 on the ACL Anthology, both browsed with the keywords hate speech. Several

entries appeared as results of more than one search string, but we associated them

only with the first string that returned them.

In a few cases, more than one resource is described in one paper: some authors

have built different corpora for comparison purposes, others extract one or multiple

lexica from a dataset and describe all of them, others yet describe non-novel

resources from which they derive a novel one. In all these cases, we count all items

of the same type presented in a paper as one, and provide detailed explanations

when they are mentioned.

It is interesting to point out that all the material we found is dated from 2016

onward; more precisely, 5 resources were published in 2016, 13 in 2017, 24 in 2018,

9 For all the available resources, see the URLs provided in Tables 11, 12 and 13 in ‘‘Appendix’’.
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20 in 2019 and 2 in 202010. This confirms how the task is in a very recent stage of

development yet, but is at the same time growing popular in the NLP community.

Some resources will be mentioned more than once along the paper, according to

the focus determined by each dimension, as we want to offer multiple perspectives

on the present scenario and provide examples. For the sake of completeness, though,

Sect. 4 gives an overview of all the resources and tasks included in our research.

3 Comparative analysis along five main dimensions

In this section, we describe the different strategies used to design and build

resources for HS detection, according to the five dimensions of comparison

introduced in Sect. 2.3, and will draw general observations on their characteristics.

3.1 Type

A primary distinction is to be made between annotated corpora, meant as

collection of textual instances from various sources, each labeled across one or more

dimensions, and lexica, i.e. lists of words or phrases related to a common semantic

field. 56 of our resources are corpora, while 8 are lexica and four papers contain

both a corpus and one or more lexica. Among corpora, 11 are benchmark datasets

released for shared tasks.

3.2 Topical focus

The most relevant factor of diversity among resources is the topical focus, i.e., the

specific topics and abusive phenomena addressed, which also may depend on the

exact target towards which hate is directed. This may vary according to the reach of

the key concept and to its definition. Not only there is a number of overlapping

concepts, as shown in Fig. 1, but each of these is prone to subjectivity and can be

defined by more or less fuzzy boundaries, depending on the cultural background,

individual perception and so on.

Coherently with our search criteria, HS is the most frequently investigated topic,

often combined with other related phenomena (see Fig. 2).

That HS is an extremely complex notion is well known to those familiar with the

topic, and the variety of definitions proposed in the papers we found proves it. HS is

often conveyed by means of rhetoric devices such as aggressive language, threats,

slurs, obscenity, offenses and even sarcasm; yet, it can be expressed just as well

without any of these devices. Furthermore, depending on the group it targets, it can

be known as racism, misogyny or sexism, homophobia, islamophobia, anti-

semitism, anti-gypsism, and more; yet, all these terms express phenomena that exist

as well outside the boundaries of HS.

Such complexity explains the many attempts to investigate not only HS itself but

also some of its characteristics, related either to the way of expressing hate or to the

10 Our research is last updated on 2020, April 28.
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targeted group. Yet, a certain confusion lingers around this melting pot: some

authors do not provide a clear definition of the phenomenon they propose to

investigate, and take their meaning for granted. As also shown in Table 5, not all the

papers surveyed in this work provide a definition or illustrative examples of the

notions and categories adopted for the corpus annotation. This ‘‘I-know-it-when-I-

see-it’’ approach allows quick progress on a task, but may compromise precision.

For each of these notions there are prototypical instances on which everyone would

agree on, and controversial ones that seem to match more than one definition, or

none at all: this results in blurred lines between concepts, ‘‘twilight zones’’ where

most of the disagreement lies. Such complexity explains the many attempts to leave

behind binary ‘‘black and white’’ definitions and investigate finer shades of HS and

similar concepts, be they related to the way of expressing hate or to the targeted

group.

3.3 Data source

A second key distinction concerns the source from which data are retrieved. The

microblogging platform Twitter11 is by far the most exploited source, due to the

relatively reduced length of texts and to a friendly policy on making data publicly

available: 32 resources contain tweets, one of which (Olteanu et al. 2018) also

features posts from the social aggregator Reddit12, one (Nascimento et al. 2019)

also retrieves comments from the 55chan13 imageboard, while in two works (Bosco

et al. 2018; Mandl et al. 2019) Facebook14 comments are collected along with

tweets. Other resources include as main source several other social media such as

Facebook (Del Vigna et al. 2017; Ishmam and Sharmin 2019; Mossie and Wang

2020; Vu et al. 2019), Reddit (Nithyanand et al. 2017; Schäfer and Burtenshaw

2019; Sabat et al. 2019; Qian et al. 2019a), Gab (Qian et al. 2019a), and Instagram

(Corazza et al. 2019). Users’ comments to newspaper articles are collected in

de Pelle and Moreira (2016), Kolhatkar et al. (2019), Nobata et al. (2016)

Pavlopoulos et al. (2017), and Steinberger et al. (2017); de Gibert et al. (2018)

use sentences from the well-known white-suprematist forum Stormfront; the dataset

released for the Hate Speech Hackathon15 contains posts from the Wikipedia

Topical focus: Abusiveness (5); Aggressiveness (2); Anti-Roma (1); Child sexual abuse
(1); Cyberbullying (2); Flames (1); Harassment (1); Homophobia (4); HS (36); Islamo-
phobia (2); Obscenity, Profanity (3); Offensiveness (13); Personal Attacks (1); Racism (6);
Sexism, Misogyny (9); Threats, Violence (1); Toxicity (1); White supremacy (1).

Fig. 2 Number of resources focusing on HS and/or other related phenomena

11 https://twitter.com.
12 https://reddit.com.
13 http://www.55chan.org.
14 https://facebook.com.
15 https://www.swisstext.org/2018/workshops/Hackathon.html.
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discussion forum; Hammer (2017) and Kumar Sharma et al. (2018) use comments

from controversial Youtube videos16.

Nearly all the resources feature user-generated public contents, mostly micro-

blog posts, often retrieved with a keyword-based approach and mostly using words

with a negative polarity. To address the problem of the biases introduced keyword-

based data collection approaches in corpora development, which will be better

discussed in Sect. 5, some authors have embraced alternative approaches or

combined collection strategies, moving beyond the simple lexicon-based

approaches. In some cases the keyword-based strategy is combined with retrieving

the whole timeline from users or pages considered hateful, i.e., where it is likely to

find hateful contents (Mubarak et al. 2017; Kumar et al. 2018a), or from discussion

threads about controversial topics that can easily trigger a certain language

(Hammer 2017), taking into account the caveat of collecting contents from a large

variety of users. In (Basile et al. 2019; Fersini et al. 2018a) a combined approach

has been applied to collect the hateful and misogynous tweets, by monitoring

potential victims of hate accounts, downloading the history of identified haters and

filtering Twitter streams with keywords. In few other cases (see Nascimento et al.

(2019)), a sort of a priori classification is attributed to the texts according to the

retrieval source, assuming that all the items collected from a given source can be

considered hateful. Quite uniquely, Fišer et al. (2017) use a corpus extracted from

an online platform that collects spontaneous reports by the Internet users of any

material containing HS or child sexual abuse: the corpus is then checked by experts

validation, assessing that more than 40% is not actually disturbing content and that

only 3% can be considered illegal content.

An overall count of the number of resources by source is available in Fig. 3.

3.4 Annotation

We found that data annotation may be a relevant source of variability. For each

resource, we considered the annotation framework, the labels used and the number

and type of annotators involved. Due to space limitations, we will not describe each

work in detail, but only the major trends we observed.

As for the annotation scheme and the label inventory, there are three main

strategies. The first is a binary scheme: two mutually-exclusive values, (typically

yes/no) to mark the presence or absence of a given phenomenon. The second is a

non-binary scheme: more than two mutually exclusive or non-exclusive values,

accounting either for different shades of a given phenomenon, such as strong hate,
weak hate, no hate (Del Vigna et al. 2017), overtly aggressive, covertly aggressive,
not aggressive (Kumar et al. 2018a), hate speech, abusive but not hateful, non-
offensive (Mathur et al. 2018); or for several phenomena at the same time, such as

hate speech, aggressiveness, offensiveness, irony, stereotype (Sanguinetti et al.

2018), racism, sexism, both, neither (Waseem and Hovy 2016), toxic, severe toxic,
obscene, threat, insult, identity hate for the Hate Speech Hackathon dataset.

16 https://youtube.com.
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The third strategy features multi-level annotation, with finer-grained schemes

accounting for different phenomena. This is the most complex annotation

scheme and typically involves both a number of different traits and a scale of

variation. For example, Fišer et al. (2017) use a complex scheme that accounts for

typology, target and metadata of Socially Unacceptable Discourse, where each

dimension has one or two layers of labels; Nobata et al. (2016) distinguish between

clean and abusive language, where the latter can be labeled as hate speech,

derogatory or profane. Fersini et al. (2018a, b) distinguish different behaviors

within the class misogyny, namely stereotyping and objectification, dominance,
derailing, harassment and threat, discredit. Olteanu et al. (2018) use a complex

non-binary, multi-level annotation scheme with several labels for each one of four

dimensions, namely stance, target, severity and framing, while Basile et al. (2019)

adopt a three-layer binary annotation for HS, aggressiveness and nature of the target

(individual or group).

Researchers adopt a wide range of strategies also with respect to the number and
background of the annotators. Again, we traced three main options: having data

annotated by experts (be they developers themselves or other judges with

knowledge of the subject), having them annotated by amateur/non-expert annotators

recruited either as volunteers (often among students) or on a crowdsourcing

platform—those used are FigureEight (now acquired by Appen17 and previously

known as Crowdflower) and Amazon Mechanical Turk18—or, finally, using an

automatic classifier to assign labels.

While 15 works rely only on expert judges, 9 on crowdsourced annotation and 5

on a classifier, the remaining works use a combined annotation: some start by

having a small sample annotated by experts and then obtain a larger corpus by

crowdsourcing, others use a classifier but rely on experts or on crowdsourcing for

validation. Nobata et al. (2016), for example, use news comments reported as

‘‘abusive’’ by users, but rely as well on both expert judges and crowdsourcing for

validation. In some cases, it is not clear what ‘‘expert judge’’ means, whether

someone who has a long experience in that specific subject or someone who has

been briefly trained for performing the task, and whether judges have been provided

detailed instructions and guidelines or just a generic definition of the labels. An

interesting case is that of Waseem (2016), who recruited feminist and anti-racist

activist as trained and experienced annotators.

Source: Facebook (8); Fora (1); Gab (1); Google Image (1); Instagram (1); News websites
(6); Other (6); Reddit (5); Twitter (32); Wikipedia (1); YouTube (2).

Fig. 3 Number of resources by data source. Lexica are not included in the count as they are not directly
extracted from an external source. Resources with multiple sources are mentioned multiple times

17 https://appen.com.
18 https://www.mturk.com/.
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Not all authors give detailed information about the annotation process19. Most of

them mention how many annotators have been involved: numbers range from a few

expert annotators up to a unrestrained community of non-experts or contributors on

a crowdsourcing platform. Individual judges may annotate only part of the dataset,

or partially overlapping subsets.

Overall, we report wide variability and sparsity among different approaches: each

resource is built referring to ad hoc definitions of the phenomena addressed, shaped

so as to be suitable for a specific purpose, but what often lacks is a wider view on the

topic and an eye towards interoperability of resources.

Similar problems of sparsity and lack of data affects the measurement of inter-
annotator agreement: again, 21 papers do not provide information about this,

while those who do it adopt different measures according to the number of judges

and labels. The measures mostly adopted are Cohen’s j, Fleiss’ j, Krippendorf’s a
or a plain numerical or percentage value. Values range from extremely high, as in

Bohra et al. (2018) (Cohen’s j = 0.982 between two expert judges on a binary

classification task) and in Hammer (2017) (two annotators agree on 98% of the

binary labels on a small sample of the data), to extremely poor, as in Del Vigna

et al. (2017) (Fleiss’j = 0.19 among 5 trained judges on a non-binary scheme with 3

labels) and in Kolhatkar et al. (2019) (Krippendorff’s a = 0.18 among CrowdFlower

contributors on a non-binary scheme with 4 labels). Such variability may depend on

a number of factors: how complex the annotation scheme is, how many judges are

involved and how well they have been trained, and more.

Generally speaking, we highlight two opposing trends. Some authors opt for

more straightforward schemes and few annotators, trading off multiple annotation

and computing inter-annotator agreement only on a small sample, with the aim of

obtaining a large labeled corpus in a short time and be able to use it for training

classifiers or extracting lexica. Others try to design complex schemes that account

for different dimensions and hues, and involve more than two annotators in an

attempt to smooth individual biases; they might be more interested in modeling

what certainly is a complex phenomenon, or to train sophisticated systems able to

distinguish shades in natural languages.

In the case of shared tasks, even when the original dataset was annotated with

complex and fine-grained scheme, a trade-off has been sought between the richness

of the description and the data usability.

3.5 Language

Being English the de facto common language among scholars worldwide, we

expected to find a great number of English resources. Indeed, 37 out of 64 are

English corpora or lexica: yet, many other languages are represented too, and this

certainly is of great value to an international community that seeks to tackle a

worldwide social issue spread in many languages. An important role in releasing

non-English resources is played by national evaluation campaigns and shared tasks ,

19 Due to this, we are not able to provide a summarizing figure as the ones proposed for the other

dimensions.
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whose aim is exactly encouraging researchers to work on national languages. An

effort emerges from Indian researchers to create baseline datasets in Hindi and

promote research on dangerous contents on social media at large: the predominance

of Hindi–English code–mixed data could be explained by the large spread of mixed

forms and of Hindi words written in Latin script in non-formal online communi-

cation among Indians.

4 Overview by resource type

In the previous section, we outlined the main factors and issues related to building

resources for HS detection, along five main axes of comparison, citing examples at

need. In this section, we provide a synthetic overview of all the resources included

in our review, based on their type: corpora, resources released for shared tasks, and

lexica.

4.1 Hate speech corpora

The largest typology by number is that of annotated corpora, often specifically

developed for training an automatic system and presented jointly, with observations

on the performance and, sometimes, an error analysis. A classifier for HS (or any

related phenomenon) is often, in fact, the paper’s main focus—which is no surprise,

as the development of solid classifiers outperforming the state of the art is the most

lively area of this field. Our interest here remains nonetheless the linguistic resource,

as we want to stress the importance of quality data for training quality systems.

Among those works that train a classifier on a dataset built ad hoc by the authors

themselves, the room left to the resource description and to the process that brought

it into being vary considerably: in some cases it is little more than a section of the

paper, in other cases it is broader and reports in details the important decision

behind the final product. Essential information are almost always present: the most

neglected piece of information concerns inter-annotator agreement, that is missing

in 15 out of 44 corpora. Guidelines that clearly define the concept to be annotated,

provide examples and suggest how to deal with difficult cases are also not always

present.

Table 2 provides an overview of the resources along with their main charac-

teristics. The label ‘‘no’’ in the column ‘‘Available’’ simply means that no URL to

the resource is provided in the paper. For all the remaining resources, a link to the

data is provided in Table 11.

As for the number of citations in the right-most column, we relied on Google

Scholar for this information, but we opted for not reporting the exact number

measured on a given day, as such number is volatile and may not be the most

reliable indicator of the actual impact of a resource. Instead, we mapped each

number to an interval, as we believe that the reader can get a clearer first-sight

understanding of the order of magnitude of each resource’s impact. Such intervals

are as follows: < 10, < 50, < 100, < 250, < 500, where the upper bound of each class

is the lower bound of the next class.
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We also summarized some of the salient features of the surveyed corpora along

four dimensions of comparison, also described in Sect. 3, i.e. language, data source,

annotation strategy and the presence in the relative paper of annotation guidelines.

Regarding the languages, as expected, most of the resources use English data,

although in some cases they are collected along with texts in Hindi (Bohra et al.

2018; Kumar et al. 2018a; Mathur et al. 2018) or they are part of even larger multi-

lingual collections (Chung et al. 2019; Ousidhoum et al. 2019; Steinberger et al.

2017). It is also worth pointing out that less-resourced languages such as Amharic,

Bengali, Slovene and Swedish, are also represented in the corpora we found, thus

enabling a greater linguistic diversity in this field. Table 3 shows the distribution of

corpora for each of the represented languages.

As for data sources, the distribution shown in Table 4 confirms the general trend

observed in Sect. 3.3, with Twitter establishing itself as by far the most exploited

source. An interesting and promising effort is that by Sabat et al. (2019) and, partly,

by Corazza et al. (2019), who mix up textual and visual data: although still at an

early stage, this path could be explored further, given the amount of image-based

Table 3 Distribution of corpora for each language

Language ISO Reference Count

Amharic amh MW 1

Arabic ara AKM, HUO, MDM 3

(all varieties)

Bengali ben IS 1

Czech cze SBHK 1

English eng BVSAS, CKTG, DWMW, ENNVB, 24

GKH, GPGC, H, HSH, KWCFST, KKS,

KTHS, MGANH, MSSM, NSG, NTTMC, OCBV,

QBLBW, QEBW, QEBW2, SB, SBHK, VY, W, WH

French fre CKTG, SBHK 2

German ger RRCCKW, SBHK 2

Greek gre PMBA 1

Hindi hin BVSAS, MSSM 2

Indonesian ind AMFE 1

Italian ita ABP, CKTG, CMCTV, DCDPT, 7

PBBPS, SBHK, SPBPS,

Portuguese por NCCVG, PM 2

(all varieties)

Slovenian slv FEL 1

Swedish swe FLKA 1

Languages full names are reported here next to their standardized code, in order to make abbreviations

easier to understand across the tables, while resources are only cited by their acronym introduced in

Table 2. Resources including multiple languages appear multiple times
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online communication that takes place everyday—including, of course, hateful

language and violent propaganda by organized groups.

From Table 2 it can be observed that the resources size spans from a few

hundreds to several million items: this information correlates with the collection and

annotation procedure inasmuch as automatic methods allow for much larger data

collection, while human labeling, especially if performed by a few experts, results in

smaller dataset and require a greater effort. On the other hand, if many authors

prefer to collect finer-grained and higher-quality annotation on smaller samples, this

suggests a commitment to creating resources of higher quality, to exploring more

complex nuances and to better understand how HS can be framed with NLP

techniques. It is not rare that the two methods are combined: either starting from a

manually annotated corpus, or a manually compiled list of terms, used as a seed to

obtain a larger corpus or list by implementing a classifier; or, conversely, starting by

automatically classifying a large dataset and then having a small subset annotated

by experts for validation.

Overall, information provided by papers about the number, typology and

characteristics of annotators is not homogeneous enough to aggregate data in a

table effectively. Yet, we could aggregate corpora by the type of annotation strategy

(or of classification, in case of automated labeling) and by whether each paper

describes or at least mentions any guidelines developed for the annotation.

In Table 5 we refer to the same three main strategies described in Sect. 3.4, but

we add four sub-types for the non-binary strategy. The sub-type ‘‘no, low, high’’

uses three labels to indicate a clean or neutral content (in other words, the absence

Table 4 Distribution of corpora for each source. Resources having multiple sources appear multiple

times

Source Reference Count

Facebook DCDPT, IS, KRBM, MW 4

Fora FLKA, GPGC 2

Gab QBLBW 1

Google Image SCG 1

Instagram CMCTV 1

News websites GH, KWCFST, NTTMC, PMBA, PM, SBHK 6

Other CKTG, FEL, HUO, NCCVG 4

Reddit NSG, OCBV, QBLBW, SB, SCG 5

Twitter ABP, AKM, AMFE, BVSAS, DWMW, ENNVB, 24

GKH, KTHS, KRBM, MGANH, MSSM, MDM,

NCCVG, OCBV, PBBPS, OLZSY, PBBPS, QEBW,

QEBW2, RRCCKW, SPBPS,

VY, W, WH

Youtube H, KKS 2

Wikipedia HSH 1
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of the phenomenon), a weak intensity and a strong intensity. The sub-type ‘‘no, A,
B’’ uses three labels to indicate a clean content, and the presence of one of the two

phenomena considered. The distinction between these two sub-types emerged from

the observation of our database: in the first case two different phenomena, e.g. abuse

and hate, are considered as shades of the same concept, so that the stronger (hate)

implies and contains the weaker (abuse) and they only differ quantitatively; in the

second case, the two phenomena are qualitatively different and represent two

separate concepts, so that they are mutually exclusive and do not overlap. This

distinction does not depend on the concepts themselves, but only on the

interpretation given by the authors, and despite being theoretically sound it was

not always straightforward to apply. The sub-type ‘‘A, B, C ?’’ is similar to the

previous one, but makes use of more than two labels (plus a clean label). The last

sub-type ‘‘scale’’ is somehow similar to the first one, but explicitly asks to rate the

intensity of a phenomenon on a numeric scale of varying length, where numbers

may be associated to short definitions. The only work in the type ‘‘other’’ uses a

Best-Worst Scale, which is not comparable to other strategies.

Table 6, finally, shows that little more than half of the corpora we have found

come with by guidelines that support the annotation process and provide explicit

definitions of the concepts and instructions about how to label data. Among those

that do provide guidelines, cases range from terse definitions to long and detailed

descriptions for every class furnished with examples. It is likely that many of the

works that provide no guidelines actually used some operational definitions or rules

Table 5 Distribution of corpora for each annotation strategy

Strategy Sub-type Reference Count

Binary ABP, AMFE, BVSAS, CMCTV, GH, 18

GKH, GPGC, H, KKS, KTHS, NCCVG,

NSG, PBBPS, PMBA, RRCCKW, SB,

SBHK, SCG

Non-binary No, low, high DCDPT, VY 2

No, A, B DWMW, HUO, MDM, MSSM, 6

W, WH

A, B, C ? IS 1

scale FLKA, PBBPS 2

Multi-level AKM, CKTG, ENNVB, FEL, HSH, KRBM, 17

KWCFST, MGANH, MW, NTTMC,

OCBV, OLZSY, PM, QBLBW, QEBW,

QEBW2, SPBPS

Other PBBPS 1

For non-binary schemes, a farther distinction is proposed, based on the number and type of labels applied.

Resources using multiple strategies appear multiple times
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for annotation: perhaps, especially for in-house labeling, they have not been

formalized, or they may have left out for space constraints.

Akhtar et al. (2019) (marked as ABP in Table 2)—1859 tweets in Italian

annotated as ‘‘homophobic/ not homophobic’’ by 5 trained volunteers. This dataset

is used together with existing English datasets, reannotated for racism and sexism

for the specific purpose of the research. Inter-annotator agreement for the novel

dataset is measured with a Fleiss’ j = 0.35.

Albadi et al. (2018) (AKM)—about 6000 tweets in Arabic, annotated with

crowdsourcing for religious hatred (‘‘hateful/ not hateful/ unclear or unrelated’’)

and for religious group (6 groups plus an ‘‘other’’ label). Agreement is measured as

81% for the first class and 55% for the second group. Three polarity lexicon for

Arabic are released along with the dataset.

Alfina et al. (2017) (AMFE)—1100 tweets in Indonesian, annotated as ‘‘HS/ no
HS’’ by 30 students. 100% agreement is reached on 713 tweets, then reduced to 520

in order to obtain a balanced dataset.

Bohra et al. (2018) (BVSAS)—4575 tweets in Hindi-English code-mixed

variety, annotated as ‘‘HS/ normal speech’’ by two annotators. Agreement results

in a Cohen’s j = 0.982.

Chung et al. (2019) (CKTG)—15,024 short text in English, French and Italian,

consisting of HS–counterspeech (CS) pairs created ad hoc by experts. These pairs

have been paraphrased, annotated by non-experts with multiple labels for HS type,

HS sub-topic, CS type, and then translated from Italian and French to English so as

to get parallel data across languages. This is one of the only two corpora built for the

purpose of automatically generating CS.

Corazza et al. (2019) (CMCTV)—6710 Instagram posts in Italian, annotated as

‘‘hateful/ not hateful’’ by expert judges. This novel dataset is combined with

existing Italian datasets from other sources for cross-genre analyses.

Table 6 Distribution of corpora by presence of guidelines, meant as any kind of instructions for the

human annotators: this may include a definition of the concepts and/or some examples for the classes to

be annotated

Guidelines Reference Count

Yes BVSAS, CKTG, CMCTV, DWMW, ENNVB, 24

FEL, GH, GKH, GPGC, HUO, IS, KKS, KRBM,

KWCFST, MSSM, NTTMC, OCBV, OLZSY, QBLBW,

PBBPS, SBHK, SPBPS, VY, WH

No ABP, AKM, AMFE, DCDPT, FLKA, H, MDM, MGANH, 19

MW, NCCVG, NSG, PM, PMBA, QEBW, QEBW2,

RRCCKW, SB, SCG, W

NA HSH, KTHS 2

’’NA’’ includes those papers from which it was not possible to determine whether any guidelines was

provided to the annotators
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Del Vigna et al. (2017) (DCDPT)—6502 Facebook comments in Italian, sorted

by target (‘‘religion/ physical or mental handicap/ socio-economical status/ politics/
race/ sex and gender issues/ other’’) and annotated by five trained judges with the

labels ‘‘strong hate/ weak hate/ no hate’’. Agreement is measured with a Fleiss’ j =

0.19 on comments with five annotations.

Davidson et al. (2017) (DWMW)—24,802 tweets in English, annotated with

crowdsourcing as HS; offensive but not HS; none. Only 5% of tweets are annotated

as HS by the majority. Authors propose a thorough error analysis on both human

annotation and the performance of a classifier, distinguishing different topical

focuses (racism, sexism, homophobia).

ElSherief et al. (2018) (ENNVB)—27,330 tweets in English, annotated with

crowdsourcing as ‘‘hateful [personal attack/ no]/ not hateful’’. Agreement is

measured as 92% for the hate class and 82% for the personal attack class.

Fišer et al. (2017) (FEL)—13,000 instances of online contents in Slovene

reported by web users as hateful or containing child sexual abuse. Data are

annotated by experts with a complex scheme that allows for coarse–, medium– and

fine–grained annotation, and is based on the concept of Socially Unacceptable Dis-

corse, which includes legally prosecutable expressions such as HS, threats, abuse

and defamation, and non prosecutable expressions such as immoral insults and

obscenities.

Fernquist et al. (2019) (FLKA)—3056 comments from Swedish web fora,

annotated by trained students with a scalar scheme summed up as follows: ‘‘–3:

aggression/–2: insult/–1: dislike/0: neutral’’. Agreement is measured with a

Krippendorf’s a = 0.9.

Gao and Huang (2017) (GH)—1528 comments in English posted on 10

discussion threads on the Fox News website. Comments are annotated as ‘‘HS/no
HS’’ by two experts, with a very high agreement expressed as Cohen’s j = 0.98.

Gao et al. (2017) (GKH)—62 millions tweets automatically classified with a

weakly supervised system trained on existing corpora, with a small sample of 1000

tweets annotated manually by two trained judges to evaluate accuracy. Agreement

between the annotators is measured as Cohen’s j = 85%. The process include a seed

list of slurs, manually compiled from existing lexica, which is shown in the paper;

this list is then automatically expanded and exploited for the automated detection of

hateful tweets.

de Gibert et al. (2018)(GPGC)—10,568 English sentences extracted from the

right-wing forum Stormfront and manually annotated by three experts as ‘‘HS/no
HS’’; the labels ‘‘skip’’ and ‘‘relation’’ (meaning that the sentence can only be

understood in relation to its context) are also used. Average percentage agreement

among annotators on the four labels is 90.97%.

Hammer (2017) (H)—24,840 English sentences from YouTube comments posted

under videos related to controversial topics. Sentences are labeled as ‘‘threatening
or violent/ clean’’ by one judge, except a small subset of 120 sentences annotated by

a second judge in order for agreement raating purposes, resulting in a 98%

agreement.
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Haddad et al. (2019) (HUO)—6039 social media comments in Tunisian Arabic,

annotated by three trained judges as ‘‘hateful/ abusive/ normal’’, with an observed

agreement of 81%.

Ishmam and Sharmin (2019) (IS)—5126 Facebook comments in Bengali,

annotated by three trained judges into six classes, namely ‘‘HS/ inciteful/ religious
hatred/ communal hatred/ religious comment/ political comment’’, where the first

four labels identify overall hateful comments while the other two identify non-

hateful comments. Inter-annotator agreement is given for each class, averaging a

percentage of 0.78%.

Kumar Sharma et al. (2018) (KKS)—2235 Youtube comments in English posted

below controversial videos, annotated as ‘‘insulting/ not insulting’’ in relation to

cyberbullyism detection (used in a broad sense).

Kumar et al. (2018b) (KRBM)—39,000 texts between tweets and Facebook

comments in Hindi-English code-mixed variety, annotated by with a multi-level

scheme based on verbal aggression. The first level identifies ‘‘overtly aggressive/
covertly aggressive/ not aggressive’’; the second level, which applies only to

aggressive texts, identifies the discursive role ‘attack/ defend/ abet’’ and the

discursive effect (ten categories based on the reason of the aggression). The

annotation develops in two stages: a first exploratory annotation is performed by

experts, and results in a few minor changes to the scheme; the second stage is done

with crowdsourcing, and reaches an agreement of 72% for the first level and of 57%

for the discursive effect.

Kolhatkar et al. (2019) (KWCFST)—1043 English comments from a Canadian

news website, annotated with regard to four dimensions: constructiveness and

toxicity (annotated with crowdsourcing), negation and appraisal (annotated by

experts). As for the toxicity, four scale-like labels were available: ‘‘very toxic/ toxic/
mildly toxic/ not toxic’’.

Mubarak et al. (2017) (MDM)—three resources for Arabic language including: a

lexicon of 288 obscene words; a test set of 1100 tweets for manual validation; a

dataset of 32,000 comments that have been removed from the popular news website

AlJazeera. The test set is annotated with crowdsourcing as ‘‘obscene/ offensive but
not obscene/ clean’’, reaching a 87% agreement rate.

Martins et al. (2018) (MGANH)—975 tweets in English labeled with a complex

multi-level scheme. Starting from the dataset released by Davidson et al. (2017),

authors first perform statistical analysis to assess its reliability for HS detection; then

extract a subset of 975 tweets, already labeled as ‘‘HS/offensive but not HS/none’’,

and automatically assign to each tweet an emotion (using the model created by

Plutchik (1980)), a score for the intensity of the emotion ‘‘anger’’ on a 0-1 scale, a

score for polarity on a 0–1 scale, and a flag if the tweet matches any offensive word

included in the HateBase lexicon.

Mathur et al. (2018) (MSSM)—3679 tweets in Hindi-English code-mixed

variety, annotated by 10 experts as ‘‘HS/abusive/ not offensive’’.

Mossie and Wang (2020) (MW)—5876 Facebook posts along with 485,548

Facebook comments in Amharic, annotated by trained students as ‘‘HS/no HS’’ and

then as the intent of ‘‘ethnic/ religious/ political/ economic’’ status.
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Nascimento et al. (2019) (NCCVG)—7672 posts from Twitter and 55chan (an

imageboard website) in Brasilian Portuguese. Data are automatically classified as

‘‘offensive/not offensive’’ during on the collection process, combining their source

and some filters based on the emotional categories in the LIWC lexicon for

Brasilian Portuguese.

Nithyanand et al. (2017) (NSG)—168 millions offensive Reddit comments in

English, retrieved by a classifier that was trained on an existing dataset and two lists

of offensive words.

Nobata et al. (2016) (NTTMC)—three corpora of comments in English from the

news websites Yahoo!News and Yahoo!Finance. The primary dataset contains 2

millions comments annotated as ‘‘abusive/clean’’ by Yahoo’s internal staff, and is

used to train a classifier which in turn is used to retrieve a second dataset of 1,1

million comments covering a broader time span. A third, smaller dataset of a few

thousands comments is built for evaluation, and annotated by three trained raters as

‘‘abusive/ clean’’ and for the sub-category of abuse (‘‘hate/ derogatory language/
profanity’’). Agreement rate is 0.922 and Fleiss’ j is 0.843.

Olteanu et al. (2018) (OCBV)—150? millions items from Twitter and Reddit,

plus a list of 1,890 unique terms contained in the data. Such terms are annotated

with crowdsourcing using a complex scheme that includes for dimensions: stance

(‘‘favorable/unfavorable/commentary/neutral’’), target (‘‘Muslims/other religious
groups/Arabs/ethnic groups/immigrants/other groups’’), severity (‘‘promotes vio-
lence/ intimidates/offends or discriminates’’) and framing (‘‘diagnoses
causes/suggests solutions/both’’).

Ousidhoum et al. (2019) (OLZSY)—13,014 tweets in Arabic, English and

French, annotated with crowdsourcing using a multi-level scheme that accounts for

directness (‘‘direct/indirect’’), hostility (‘‘abusive/hateful/offensive/disrespectful/
fearful/normal’’), target (‘‘origin/gender/sexual orientation/religion/disability/
other’’), group (‘‘individual/woman/special needs/African descent/other’’) and the

feeling aroused in the annotator by the tweet (‘‘disgust/shock/anger/sadness/
fear/confusion/indifference’’). Agreement is measured for each language as

Krippendorf’s a = 0.153 (English), 0.244 (French), 0.202 (Arabic).

Poletto et al. (2019) (PBBPS)—4000 tweets in Italian, to which three different

schemes are applied with crowdsourcing. The first scheme is a binary choice (‘‘HS/
no HS’’); the second is an unbalanced rating scale (‘‘– 3/– 2/– 1/0/1’’) that

encompasses content, tone and intention of the tweet; the third is a Best-Worst

Scale, where annotators are presented with randomized sets of four tweets at a time

and are asked to pick the most and the least hateful.

de Pelle and Moreira (2016) (PM)—10,336 comments in Brasilian Portuguese

from a news website, 1250 of which are annotated by three judges as ‘‘offensive/not
offensive’’ and for the target or reason of the offense (‘‘racism/sexism/homophobia/
xenophobia/religious intolerance/cursing’’). Two different dataset are obtained by

computing the agreement, one with majority agreement (2/3) and one with full

agreement.

Pavlopoulos et al. (2017) (PMBA)— 1,5 million comments in Greek from news

portal, retrieved along with a label ‘‘accept/ reject’’ referring to the website

comment moderation.
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Qian et al. (2019a) (QBLBW)—56,100 posts in English from Gab and Reddit,

arranged in dialogical structure as retrieved from the source, plus 41,730

counterspeech (CS) responses. The annotations collected with crowdsourcing

include labeling which turns in the conversation are HS, and for each of them an

instance of CS freely proposed by the contributor. This is one of the only two

corpora built for the purpose of automatically generating CS.

Qian et al. (2018) (QEBW)—3,5 millions hateful tweets in English, associated to

40 U.S.-based hate groups and referencing 13 hate ideologies. Tweets are

automatically labeled as for group and ideologies on the basis of the retrieval

process.

Qian et al. (2019b) (QEBW2)—18,667 hateful tweets in English, retrieved from

a starting list of 2,105 hate symbols used by hate groups, which is in turn collected

from Urban Dictionary. Symbols in the list come from the source associated to one

of the following tags: ‘‘hate/racism/racist/sexism/sexist/nazi’’.
Ross et al. (2017) (RRCCKW)—541 tweets in German, annotated with the labels

‘‘HS/ no HS’’ and with a discrete value for offensiveness on a 1–6 rating scale.

Annotation is performed in two rounds: first by six experts, then by two separate

groups of non-expert, only one of whom is showed a definition of HS. Agreement is

admittedly low, with a Krippendorf’s a ranging between 0.18 to 0.29.

Schäfer and Burtenshaw (2019) (SB)—more than 11 millions Reddit posts and

comments in English, organized in a dialogical structure. Every post or comment is

automatically assigned an offensiveness probability by an algorithm trained on a

dataset annotated as ‘‘offensive/not offensive’’.

Steinberger et al. (2017) (SBHK)—5077 comments from news websites in

Czech, English, French, Italian and German, annotated as ‘‘flames/no flames’’.

Annotation was performed by three experts for English and Czech, and by one

expert for the other languages. Agreement is measured for English and Czech with

different metrics, all scoring little below 0.6.

Sabat et al. (2019) (SCG)—5020 memes, containing images and words (in

English), collected from Google Images and from Reddit. Classification is based on

the collection process: all memes obtained from Google Images (distinguished

between ‘‘racist/jew/muslims’’ are assumed to be hateful, while all memes retrieved

from Reddit are assumed to be non-hateful.

Sanguinetti et al. (2018) (SPBPS)—6009 tweets in Italian, annotated partly by

experts and partly with crowdsourcing. A multi-level scheme is applied, accounting

for HS, stereotype, irony (labeled as ‘‘yes/no’’), aggressiveness and offensiveness

(labeled as ‘‘no/weak/strong’’), plus the intensity of HS when present (labeled with a

rating scale from ‘‘1—mildest’’ to ‘‘4—strongest’’). Agreement is measured with a

Kohen’s j = 0.45 between experts and with a Krippendorf’s a = 0.38 among

crowdsource contributors.

Vidgen and Yasseri (2020) (VY)—4000 tweets in English, annotated by experts

as ‘‘not islamophobic/weakly islamophobic/strongly islamophobic’’. Agreement is

measured with different metrics: percentage = 89.9%, Fleiss’ j = 0.837,

Krippendorf’s a = 0.895. The final dataset is reduced to 1364 in order to have a

balanced distribution.
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Waseem (2016) (W)—6909 tweets in English, expanding the dataset presented in

Waseem and Hovy (2016). Tweets are labeled as ‘‘sexist/racist/neither’’, first by

expert judges, then by crowdsource contributors. Agreement is measured as j =

0.57.

Waseem and Hovy (2016) (WH)—16,907 tweets in English, annotated as

‘‘sexist/racist/both/neither’’ by expert judges. Agreement is measured as j = 0.85.

Two resources are presented separately because they differ in nature from all the

resources described so far. In fact, they are not associated to a scientific paper that

describes their features and gives details about their creation or usage. Nonetheless,

since they are made publicly available for research competition purpose and they

appear among the results of our systematic query, we decided to include them in this

review. Yet, considering that such competitions were organized in a slightly

different way compared to traditional shared tasks—no information on participating

systems, nor on their results, was given—-, we decided to classify them as generic

(not benchmark) corpora.

Hate Speech Hackathon (HSH) is a workshop held within SwissText 2018, the

3rd Swiss Text Analytics Conference, where participants where invited to train and

test supervised classifiers for HS detection. The resource includes about 300,000

comments from English Wikipedia discussions and is annotated with the labels

‘‘toxic/ severe toxic/ obscene/ insult/ threat/ identity hate’’.

The Kaggle Twitter Hate Speech (KTHS) dataset is a resources released in 2018

on the Kaggle platform with the purpose of training supervised systems for HS

detection. It includes about 49,000 tweets in English annotated as ‘‘hateful/not
hateful’’. It is not possible to assess its impact in terms of citations, but some

statistics can be found on the Kaggle webpage of the resource: from its release on

July 2018 it collected 8994 views and 1527 downloads, with a quite constant trend

(verified on May, 5th 2020).

4.2 Shared tasks

Several corpora found in our systematic search have been developed with the

purpose of organizing shared tasks, i.e., open scientific competitions where

benchmark data are made available and participants are invited to submit the

prediction of their systems and a discussion of their methods.

Eleven shared tasks were organized in the context of international (SemEval) and

national20 evaluation campaigns of NLP technologies, while one was organized as

part of the Workshop on Trolling, Aggression and Cyberbullying (TRAC-1). In all

instances, the original data was collected from social media (Twitter and Facebook),

and annotated manually by experts but integrating in two cases crowdsourced

annotations. The tasks, with their main focus, are summarized in Table 7.

HS (against multiple targets) is the main topic in HaSpeeDe (Bosco et al. 2018),

one of the tasks organized at EVALITA 2018; while, more specifically, HS against

women is addressed to in the two editions of AMI (Fersini et al. 2018a, b) and in

HatEval (Basile et al. 2019) (which, in turn, included data also on HS against

20 Namely EVALITA, FIRE, GermEval, IberEval, PolEval, and VLSP.
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immigrants), and a focus on cyberbullying is proposed in Task 6 at PolEval
(Ptaszynski et al. 2019).

Despite our focus being HS, we retrieved shared tasks on related phenomena

such as aggressive identification (AG) and offensive language detection (OF).

Among these, TRAC-1 (Kumar et al. 2018a) deals with online aggression, trolling,

cyberbullying and other related phenomena, while in MEX-A3T (Álvarez-Carmona

et al. 2018), aggressive language detection is one of the two tracks set for the

competition. Offensive language is the main track of OffensEval (Zampieri et al.

2019b, a) and the corresponding task at GermEval campaign in 2018 (Wiegand

et al. 2018b).

Finally, two competitions explicitly focused on the identification of both HS and

offensive language, i.e. HASOC at FIRE 2019 (Mandl et al. 2019) and HSD, the

HS detection task on Vietnamese at VLSP campaign in 2019 (Vu et al. 2019).

In some cases, the need to account for the complexity of the phenomena dealt

with is reflected in the type of predictions required to participating systems, often

going beyond the simple binary classification: this is done either by proposing a

non-binary classification or by introducing finer-grained sub-tasks aiming at

detecting even more specific aspects.

The former scheme was followed in TRAC-1, where a distinction between

overtly and covertly aggressive is drawn, and in the HS detection task at VLSP

Table 7 Shared Tasks on HS detection (HS), aggressiveness (AG) and offensiveness (OF) identification

as main task with specific focuses, languages involved, size of datasets, number of participating teams and

number of citations of the overview paper

Name Event Task Focus Lang. Size Teams Cit.

AMI IberEval 2018 HS Misogyny eng 8115 11 < 50

spa

AMI EVALITA 2018 HS Misogyny eng, 10,000 16 < 50

ita

HASOC FIRE 2019 HS, – eng, 17,657 37 < 50

OF ger,

hin

HaSpeeDe EVALITA 2018 HS Racism, ita 8000 9 < 50

generic

HatEval SemEval 2019 HS Misogyny, eng,

spa

19,600 74 < 100

racism

HSD VLSP 2019 HS, OF – vie 25,431 14 <10

– GermEval 2018 OF – ger 8541 20 < 100

task 6 PolEval 2019 HS Cyberbullying, generic pol 11,041 9 <10

TRAC-1 TRAC 2018 AG – eng, hin 15,000 30 < 100

OffensEval SemEval 2019 OF – eng 14,100 115 < 100

In this table, we adopt the same conventions as in Table 2
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2019, where a three-way classification was proposed to distinguish among hateful,

non-hateful but offensive and neither hateful nor offensive content.

With the exception of HaSpeeDe 2018, the remaining competitions were rather

organized around a first binary-classification task and one or more additional sub-

tasks aimed at further specifying the binary scheme. In HatEval, systems were asked

to classify hateful tweets as aggressive or non aggressive, and to determine whether

the target was a single person or a whole group; the latter aspect was included also

in both editions of AMI (task B), along with the detection of the type of

misogynistic behavior, and in task C of OffensEval: here, the posts classified as

targeted insults in task B (in contrast to generic insults) were to be further

distinguished as targeted to individuals, groups or other (events, organizations, etc.).

In GermEval 2018, the fine-graned sub-task consisted in the classification of the

type of offense detected in the main task , which can be a profanity, an insult or the

strongest type of offense, defined as abuse.

In task 6 at PolEval 2019, harmful tweets had to be classified as either examples

of cyberbullying or of HS. Finally, in HASOC two additional sub-tasks aimed at

labeling non-neutral content in posts as either hateful, offensive or profane (sub-task

B) and to distinguish whether posts contained generic, non-acceptable language or

rather insults or threats towards specific individuals or groups (sub-task C).

The high participation recorded by most of the shared tasks, also considering the

short span of time they took place in, not only is indicative of the interest of the

international community towards the problem of HS detection, but also encouraged

the organizers to propose new editions of such competitions: at the time of writing,

the second edition of OffensEval21 and the TRAC shared task22 have recently closed

(see Sect. 4.4), while the second editions of HaSpeeDe23 and AMI24 have just been

launched. Interestingly, in the rerun of HaSpeeDe, the Hate Speech Detection shared

task for Italian proposed for EVALITA 2020, the organizers chose to go beyond the

simple binary classification (hateful vs not-hateful), giving space also to a pilot task

on finer-grained aspects related, albeit indirectly, to HS, namely the presence of

stereotypes referring to one of the targets identified within the task dataset

(Muslims, Roma and immigrants). In fact, an error analysis of the best performing

systems participating to the HaSpeeDe 2018 dataset (Francesconi et al. 2019)

pointed out that the occurrence of these elements constitutes a common source of

error in HS identification. Moreover, a second pilot task related to the syntactic

realisation of HS is proposed, as a sequence labeling task aimed at recognizing

nominal utterances in hateful tweets. The more systematic exploration of the

relations between the presence of nominal utterance and populist rhetoric in hateful

tweets was inspired by the preliminary investigations in (Comandini and Patti

21 https://sites.google.com/site/offensevalsharedtask/.
22 https://sites.google.com/view/trac2/shared-task.
23 HaSpeeDe 2020: http://di.unito.it/haspeede20.
24 AMI 2020: https://amievalita2020.github.io/.
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2019), suggesting that the most hateful part of hateful tweets are often verbless

sentences or verbless fragments25.

The rerun of the Automatic Misogyny Identification proposed at EVALITA 2020

(AMI 2020) is featured, among other things, by a very interesting novelty related to

the important issue of guaranteeing the fairness of the misogyny detection models

and, therefore, to reduce the error due to unintended bias, a problem that was

initially addressed in (Nozza et al. 2019). On this line, a dedicated subtask of AMI

2020 has been devoted to ask systems to discriminate misogynistic contents from

the non-misogynistic ones, while guaranteeing the fairness of the model in terms of

unintended bias, relying on an ad hoc synthetic dataset released next to the standard

dataset including raw data26.

4.3 Hate speech lexica

We found 8 lexica of HS published as resources (Table 8). However, a number of

approaches to HS detection are based on the development of ad-hoc lexica that are

not given the status of standalone resources by their authors. The user-generated

lexicon from the project Hatebase27 provides a small-sized English lexicon of HS-

related terms, employed, among others, by Davidson et al. (2017), who present a list

of 179 English words derived from HateBase. Wiegand et al. (2018a) propose two

lexica of English abusive words, a base one of 1,650 entries and one of 8,478

expanded with a classifier, where each word is annotated as abusive or not abusive.

Another, slightly larger, monolingual lexicon is distributed as part of the

contribution of the approach to HS detection on Arabic social media by Mubarak

et al. (2017). Three Arabic lexica are also automatically generated in Albadi et al.

(2018), using different feature selection methods, i.e. Bi-Normal Separation, Chi-

square test and Pointwise Mutual Information, thus resulting in the AraHate-CHI,

AraHate-BNS and AraHate-PMI. Each resource consists of words and their relative

score expressing its association to HS, and all of them are publicly available along

with the resource they were extracted from (also included in our survey, see 4.1).

Olteanu et al. (2018) mentions a list of 163 hateful terms created indirectly from

the lexicon presented in Davidson et al. (2017): they collect the most frequent

words that co-occurr with those listed by Davidson, assuming that the latters are

certainly a sign that the tweet is hateful, and that frequent words in hateful tweets

are themselves likely to be hateful. The ONG PeaceTech Lab has distributed, as part

of their humanitarian effort in central Africa, a report containing a lexicon of HS

terms in several languages, including English, Fulani, Hausa, Igbo, Pidgin, and

Yoruba28. In the report containing the lexicon, alternative words and spellings are

provided for the hateful expressions. Qian et al. (2019b) mention 2,105 list of

25 See details about the datasets being released in the task guidelines available here https://github.com/

msang/haspeede/blob/master/2020/HaSpeeDe2020_Task_guidelines.pdf.
26 See details about the datasets being released in the task guidelines available here: https://

amievalita2020.github.io/how_to_partecipate/.
27 https://hatebase.org/.
28 https://www.peacetechlab.org/nigeria-hate-speech-lexicon.
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hateful symbols—meant as acronyms, numbers, slang words and any other sign

used by hate groups to convey hateful messages in a sort of coded language. The

starting point is the Urban Dictionary, from where they collect 1,590 words which

they expand adding alternative forms for the same symbol. Finally, HurtLex is a

multilingual (53 languages) lexicon of offensive and hateful words, built semi-

automatically from an originally handcrafted Italian lexicon (Bassignana et al.

2018), counting roughly 1000 to 10,000 word per language. The words in HurtLex

are divided into 17 overlapping categories and marked for the presence of

stereotype.

4.4 Resources beyond systematic search

During the systematic process of searching and reading papers, we often found

multiple references to other resources. Many are cited in the ‘‘Related Work’’

Section as examples of similar outputs in the field, while some are directly exploited

as a starting point for building a larger dataset, developing a classifier or extract a

lexicon. Whatever the purpose, in most of these cases the reference paper for these

resources either had already been included in our database or it would be included

later, because it was found with our systematic search. Yet six of these papers did

not appear in any of the searches we carried out. Sticking to the criteria we adopted,

such works should be excluded by this survey, as they were not found with the only

method we allowed ourselves to use. Still, after having stumbled upon them in

Table 8 Summary of HS lexica found in our search. Where an explicit name for the resource has not

been provided, we included in the table its corresponding reference. In this table, we adopt the same

conventions as in Table 2. The size of the resources is reported in terms of number of lexical entries

Name/Reference Focus Language Size Av. Cit.

AraHate-BNS/CHI/PMI HS ara 1523 Yes < 50

(Albadi et al. 2018)

(Davidson et al. 2017) HS, racism, eng 179 Yes < 500

sexism,

homophobia

HurtLex abusiveness, 53 languages < 100,000 Yes < 50

(Bassignana et al. 2018) offensiveness

(Mubarak et al. 2017) obscenity, ara 288 No < 100

profanity,

offensiveness

(Olteanu et al. 2018) HS eng 163 No < 50

PeaceTechLab lexicon HS multilingual < 1000 Yes n.a.

(Ferroggiaro et al. 2018)

(Qian et al. 2019b) HS eng 2105 No < 10

(Wiegand et al. 2018a) abusiveness eng 1651/8479 Yes < 50
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papers found systematically, and having verified that these six papers are regularly

peer-reviewed and published and describe novel resources for HS, we could not

simply ignore them.

We intend the rigorous approach of this survey as a guarantee for inclusivity and

reproducibility, but it should not turn into a limit that prevents us from offering a

picture of the current situation as exhaustive and up-to-date as possible. For this

reason we decided to present these six resources in a separate paragraph, so to make

clear that they fall outside the results of our systematic search, but also that they are

no less important contributions to the field than all the others. We acknowledge that,

despite our effort, it is very hard to include every existing work, and something may

still go missing—especially in such a young and lively field. A systematic approach

can at least limit losses and provide explanations for them. Here we briefly describe

these resources, which anyway are not included in the previous Tables.

Founta et al. (2018) (FDCLBSVSK)—80,000 tweets in English annotated with

crowdsourcing. In a preliminary round of annotation several labels are used, then

merged into the following four: ‘‘HS/abusive/spam/normal’’.
Golbeck et al. (2017) (GAB)—35,000 tweets in English annotated as ‘‘harassing/

not harassing’’ by 2 judges, plus a third one to settle cases in disagreement.

Agreement is measured with a Cohen’s j = 0.84.

Ibrohim and Budi (2018) (IB)—2016 tweets in Indonesian, annotated with

crowdsourcing as ‘‘not abusive/abusive but not offensive/offensive’’, with a

minimum of three annotations per tweet.

Ibrohim and Budi (2019) (IB2)—13,169 tweets in Indonesian, annotated with

crowdsourcing using a multi-level scheme, where the first level distinguishes ‘‘HS/
abusive/not HS’’ and the second level, which only applies to hateful tweets, specifies

the intensity (‘‘weak/moderate/strong’’) and the category or target (‘‘religion/
race/physical/gender/other’’).

Mulki et al. (2019) (MHBA)—5846 tweets in Levantine Arabic, annotated by

three trained judges as ‘‘hateful/ abusive/ normal’’, with an observed percentage

agreement of 81%.

Zampieri et al. (2019a) (ZMNRFK)—14,100 tweets in English, annotated with

crowdsourcing using a multi-level scheme. The first level distinguished ‘‘offensive/
not offensive’’; then offensive tweets are labeled as ‘‘targeted insult/ untargeted
insult’’; eventually, targeted insults can be labeled as ‘‘individual/group/other’’.

Agreement is found between two annotators in about 60% of the cases, while a third

judge intervened for the remainder. The paper describes in detail the ‘‘Offensive

Language Identification Dataset’’ (OLID) used in the OffensEval shared task

‘‘Identifying and Categorizing Offensive Language in Social Media’’ (Zampieri

et al. 2019b).

The same rationale explained above motivates the decision to include in this

Section four recently held shared tasks, which did not appear in our search when it

was conducted but whose existence can not be ignored. In a fast-developing field

such as HS detection, the number of shared tasks is constantly growing: we describe

the resources used in the two following tasks with the will to provide a complete and

up-to-date list.
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All four shared tasks are new editions of previously experimented formats.

MEX-A3T (Aragón et al. 2019), held at IberLEF2019, focuses on authorship and

aggressiveness detection in Mexican Spanish: the dataset is the same as 2018

edition’s (see Table 7). The GermEval 2019 Shared Task on the Identification of

Offensive Language (Struß et al. 2019) is similar to the previous year’s, with the

adding of a third level of annotation. The dataset consists of 7025 tweets annotated

as ‘‘offensive/ not offensive’’ and then, if offensive, as ‘‘profanity/insult/abuse/
other’’ according to the type of offense and as ‘‘implicit/ explicit’’ according to the

language used. OffensEval2020, Multilingual Offensive Language Identification in

Social Media (Zampieri et al. 2020) is the second edition of a shared task on

offensive language organized at SemEval 2020. The task features corpora in five

languages (Arabic, Danish, English, Greek, Turkish) annotated for offensiveness

(‘‘offensive/non-offensive’’), type of offense (‘‘targeted/untargeted’’) and target

(‘‘individual/group/other’’). TRAC-2 is the second Workshop on Trolling,

Aggression and Cyberbullying, which proposed a rerun of the shared task on

Aggression identification (Kumar et al. 2020). Participants were provided with a

multilingual dataset of 5,000 texts from YouTube comments in English, Bangla and

Hindi, annotated at two-levels for two different sub-tasks: ‘‘overtly aggres-
sive/covertly aggressive/non-aggressive’’ (Sub-task A: Aggression Identification
Task), ‘‘gendered/ non-gendered’’ (Sub-task B: Misogynistic Aggression Identifica-
tion Task). A description of the development of the multilingual annotated corpus

can be found in (Bhattacharya et al. 2020).

5 Lexical analysis

Most corpora surveyed in this work are collected by querying social media APIs

with lists of keywords. Such keywords are not necessarily explicitly abusive or

offensive terms. In fact, they are often chosen to be neutral with respect to negative

connotations, in order to collect both positive and negative instances of HS or

otherwise abusive language—see for instance Sanguinetti et al. (2018). However,

the keyword-based data collection process still introduces a bias in the data, in terms

of the topics they cover, and therefore it impacts the representativity of the corpora.

Wiegand et al. (2019) analyze the topic bias in several abusive language corpora

collected with keyword querying. They extract lists of words having strong

correlation with abusive microposts by computing their Pointwise Mutual Infor-

mation. The experiment shows that some datasets contain a degree of topic bias,

with negative implications for their application in machine learning: a supervised

system could learn that words related, e.g., to football, are indicative of HS.

We perform a similar analysis of the lexical content of the datasets subject of this

work. Rather than PMI, we compute the Weirdness index (WI) of the words in each

dataset, in order to extract the most characteristic words of each dataset. The WI

was introduced by Ahmad et al. (1999) as an automatic metric to retrieve words

characteristic of a special language with respect to their common usage in general

language. According to this metric, a word is highly weird in a specific collection of

documents if it occurs significantly more often in that context than in a general
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language corpus. In practice, given a specialist text corpus and a general text

corpus, the weirdness index of a word is the ratio of its relative frequencies in the

respective corpora. Calling ws the frequency of the word w in the specialist language

corpus, wg the frequency of the word w in the general language corpus, and ts and tg
the total count of words the specialist and general language corpora respectively, the

weirdness index of w is computed as:

WeirdnessðwÞ ¼ ws=ts
wg=tg

When applied to an annotated corpus of HS (treated as the specialized corpus), we

expect that the words with high WI will reflect the most characteristic concepts in

that corpus, those who distinguish it most from generic language.

We also postulate a variant of WI that takes the labels of the messages into

account. We refer to such variant as Polarized Weirdness Index (PWI). In this

variant, we compare the relative frequencies of a word as it occurs in the subset of a

labeled dataset identified by one value of the label against its complement. Consider

a labeled corpus C ¼ fðe1; l1Þ; ðe2; l2Þ; :::g where ei ¼ fw1;w2; :::g is an instance of

text, and li is the label associated with the text where ei occurs, belonging to a fixed

set L (e.g., fHS; not � HSg). The polarized weirdness of w with respect to the label

l� is the ratio of the relative frequency of w in the subset fei 2 C : li ¼ l�g over the

relative frequency of w in the subset fei 2 C : li 6¼ l�g We hypothesize that high-

PWI words from a class will give a strong indication of the most characteristic

words to distinguish that class (e.g. hate speech) from its complement (e.g. not hate

speech).

We compute the WI of all the words in the shared task datasets described in

Sect. 4.2, in five languages: English, Italian, Spanish, Hindi, and German. For

Italian and German, we use the frequency counts for general language from the

ItWaC and DeWaC corpora (Baroni et al. 2009); for English, we compute the word

frequencies from the British National Corpus (Clear 1993); for Spanish we compute

the word frequencies from the Spanish Billion Word corpus (Cardellino 2016); for

Hindi we use the Leipzig corpora collection (Goldhahn et al. 2012). For the sake of

this analysis, we only performed a standard, light preprocessing involving

tokenization and ignoring cases. We also do not apply a smoothing scheme,

effectively assuming that every word in the specialized corpus is also present in the

general corpus, and simply setting WI ¼ 0 when this is not the case.

For illustrative purposes, we report the 20 highest ranking words according to

their WI and PWI on both classes in the HatEval dataset (English subset), as an

example, in Table 9. From the first column, it is evident that this dataset has a strong

topic bias towards politics, with high-WI words related to such topic, e.g. maga (the

popular Make America Great Again pro-Trump slogan), obama (Democrat U.S.

President), salvini (rightwing Italian politician), gop (the Republican Party).

Looking at the high-PWI words, the most characteristic words in the HS-labeled

tweets of HatEval are, as expected, related to negative connotations of the targets,

e.g., womensuck, nomorerefugees, invading, and so on. However, the analysis

reveals a bias where concepts related to immigrants are more represented than
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concepts related to women, while the two targets are supposed to be represented

equally in the corpus. This kind of unbalance is a reflection of the strategies adopted

to collect the data. In the HatEval English set, for instance, the number of keywords

used for the two targets differ, and therefore the word distributions in the resulting

corpora will be less natural. More in general, the use of keywords to retrieve

potentially abusive messages is prone to introduce topic bias. To this effect, recent

work is exploring the alternative route of collecting data for HS detection from

‘‘hateful’’ users (Ribeiro et al. 2018; Mishra et al. 2018).

We repeated the analysis on a selection of the corpora subject of this paper, in

particular those pertaining to shared tasks. We computed the list of top-WI and PWI

words according to the method described earlier in this section, inspected the

resulting ranked lists of words, and manually assign a label to the most prominent

semantic categories of the concepts found among the top-WI and top-PWI words.

The results, presented in Table 10, summarize the topic bias emerging from this

analysis. While some of the emerging topics are directly related to the datasets (e.g.,

misogyny and homophobia in the MEX-A3T data, collected for a shared task on the

identification of such phenomena in test), others are orthogonal to the intended

modeling goal of the corpora. Politics, in particular, is a highly represented topic in

many datasets. Biases of this kind can be detrimental when corpora are used to

benchmark HS detection systems (all the corpora examined in this section are from

shared tasks), since they could reward systems that model HS in a specific, narrow

domain.

Table 9 List of words from the

English HatEval datasets with

highest Weirdness Index (WI,

left column), and highest

Polarized Weirdness Index

(PWI) for the HS class (center)

and not-HS class (right column)

WI PWI(HS) PWI (not-HS)

maga womensuck ram

obama :sweat_drops: @refugees

wanna indians OSC

nigga carolina relief

skank invasion rohingya

niggas Nomorerefugees palestinian

kunt invading center

illegals assimilate latest

daca invaded blog

tweets @diamondandsilk @unmigration

tryna detain worldrefugeeday

salvini invaders provide

idk peoples sessions

cuz cheated shelters

tweeting nerve director

gop @senategop –

fuckin pl focus

wtf deportillegals lead

yall skinny inhumane

hoes prosecuted arrived
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6 Discussion and conclusions

The high number of resources and benchmark corpora for many different languages

developed in a very narrow time span, from 2016 onward, confirms the growing

interest of the community around abusive language in social media and HS

detection in particular. Being the subject in a yet recent stage, it suffers from several

weaknesses, related to both the specific targets and nuances of HS and the nature of

the classification task at large, that represent an obstacle toward reaching optimal

results. It should be indeed observed that the features of the involved phenomena

make them especially hard to model, and increase the risk of creating data that are

biased or too much related to a specific resource (overfitting).

Some of these issues have been highlighted also by the previous surveys in the

field (Lucas 2014; Schmidt and Wiegand 2017; Fortuna and Nunes 2018), whose

leitmotiv revolves around the need for a common operational framework and

benchmark resources. This recommendation is still valid, but recently steps forward

have been taken, some issues are being tackled while others are emerging. For

example, our survey captures a great availability of benchmark datasets for the

evaluation of abusive language and hate speech detection systems, in several

languages and with several topical focuses. This adds to the challenge of

investigating architectures which are stable and well-performing across different

languages and abusive domains, making it a more and more promising topic to

research (Corazza et al. 2020; Pamungkas and Patti 2019; Ousidhoum et al. 2019).

As this survey shows, there are several interconnected phenomena at stake, but

often only a specific aspect is dealt with. The field would highly benefit from a shared,

data-driven taxonomy that highlights how all these concepts are linked and how they

differ from one another. This would provide a common framework for researchers

Table 10 Topic bias emerging

from the list of top-WI and PWI

words in the shared task datasets

Dataset Language Topic bias

HatEval English U.S. politics

HatEval Spanish Immigrants

HaSpeeDe-TW Italian Italian Politics

HaSpeeDe-FB Italian Insults, TV

MEX-A3T Spanish Misogyny, homophobia

StackOverflow English Swear words, software development

GermEval German Politics

OffensEval English U.S. and world politics

AMI EVALITA English U.S. politics

AMI EVALITA Italian Misogyny, adult content, football

AMI IberEval English African American Vernacular

AMI IberEval Spanish Misogyny

TRAC-1 English Religion

TRAC-1 Hindi Religion
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who want to investigate either the phenomenon at large or one of its many facets. This

direction is explored, for example, in a recent work by Fortuna et al. (2019).

Another major issue are biases in the design and annotation of corpora. For

example, Sap et al. (2019) point out how annotated data may carry racial biases, and

how widespread HS detection models can learn such biases. They show how some

typical African American English, used with no derogatory intent, are mistaken for

abusive language (like the word ‘‘nigga’’ used by African Americans): when a

classifier is trained on such biased data, it will end up showing a negative bias

towards content posted by African Americans. Topic bias is another factor to

consider when developing resources for hate speech detection, as the results of our

lexical analysis shows in Sect. 5. Recent studies are showing how the volatile nature

of topics, especially on social media, can hinder the predictive capability of

supervised models trained on data collected with particular keyword sets (Wiegand

et al. 2019), or in restricted time spans (Florio et al. 2020).

With respect to this, an in-depth error analysis on the results of the systems

trained on a given dataset can be an effective tool to highlight limits and biases in

the data. Among the papers described in this review, this aspect is stressed in

Davidson et al. (2017), who propose an error analysis on both human annotations

and performance of a classifier, pointing out that offensive language is often

mislabeled as hateful due to unclear definitions, and that human coders tend to

consider racist or homophobic terms as hateful more frequently than they do with

sexist terms. Another common source of errors is the one related to the presence of

swear words, which in social media are often used in casual contexts, also with

positive social functions. The lack of understanding of the different functions of

swearing and pragmatic aspects related to vulgarity often lead to false positives in

abusive language automatic identification, when swear words occur in non abusive

contexts. Some recent studies started to address the problem, by proposing specific

annotated resources to go towards a deeper investigation of these phenomena

(Pamungkas et al. 2020; Holgate et al. 2018).

Especially in the context of shared tasks, where multiple systems are trained and

tested on the same dataset, a thorough error analysis should be encouraged by the

organizers, not just for the purposes of the system evaluation, but also to highlight

any critical issue in the dataset scheme and its annotation. A posteriori analysis of

the results of shared tasks are also helpful in gaining insights on the quality of the

data, as done for instance for sentiment analysis in Basile et al. (2018). This, in turn,

would contribute constructively to the debate on good practices to be adopted in the

creation of high-quality corpora, when relating to such complex topics.

As for annotation schemes, in the surveyed works different perspectives and

levels of granularity are assumed. Even if a standard form of annotation is still far, it

often seems possible to recognize a common broad scheme beyond those

implemented in existing resources. Fine–grained or multi–level annotation schemes

start to be widely used in benchmark corpora for shared tasks, as they can be

helpful, also for annotators, in order to better understand the dimensions of the

observed phenomena during the development of the resources.

In addition, we noted that very few are the authors who give a detailed account of

the guidelines used for annotation. More often only the labels of the scheme are
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provided, with no further instruction on how to interpret them. This mostly happens

when plain and straightforward labels are used, such as ‘‘hateful/ not hateful’’ or

‘‘abusive/ not abusive’’, probably assuming that they do not need further

explanation. Another possible reason might be the fact that sometimes the dataset

description is framed within the broader description of the system used to perform a

given task; more emphasis is therefore given to the experiment setups and the results

obtained by the system, rather than to the theoretical issues related to the creation of

the corpus. Yet, our research has shown that even apparently simple terms such as

‘‘hateful’’ or ‘‘abusive’’ convey complex and ambiguous concepts, which can be

subject to various interpretations. Therefore, even though it is clear that detailed

guidelines alone are not a solution to the many issues involved, an effort to clarify

all the concepts and definitions used in the annotation scheme can still be useful to

obtain high quality and comparable resources.

More boldly, Jurgens et al. (2019) call for a paradigm shift in the use of NLP

technologies to address abusive language. Authors point out that only some

phenomena along the spectrum of abusive content are actually addressed, while

others are neglected for being either too subtle or quite rare. Their claim is that the

whole range of toxic or abusive language should be dealt with, including common

instances such as microaggressions and insults, because they too contribute to a

negative environment. Furthermore, they encourage the community to adopt a

proactive approach oriented to justice, claiming that the present attitude is reactive (it

only tackles abusive content that has already been published) and oriented to

moderation and censorship (it simply aims at the absence of explicit abuse, rather than

to a positive environment). Chung et al. (2019) take a similar stand by creating a large

corpus of HS and counter-speech pairs, thus focusing on positive responses rather

than simply on the negative side. An added value of this work lies in the fact that

annotators are NGOs activists, trained and experienced in contrasting and preventing

HS: their insight might be especially valuable for building such resources.

The need for a new paradigm in the detection of HS and negative content at large

develops from the awareness of the delicate social implications of such

phenomenon. In fact, HS detection deals with an actual and serious problem that

affects our society and is spreading fast, especially on the web (Gelber and

McNamara 2016). With this respect, besides developing effective computational

tools that tackle portions of the problem, it is of utmost importance to understand the

phenomenon in its complexity and to work towards solutions that are positive for

the society. A proactive, prevention-oriented attitude is then much needed, as is

cooperation between academy, social platforms and public institutions.

Awareness of these issues and a comprehensive overview on the results achieved

so far can certainly help researchers to gain a deeper understanding of the subject.

Furthermore, it will allow the community to effectively take into account the

specificities related to language and culture, and work towards counteracting HS and

reducing unintended bias and stereotypes underlining the phenomenon.
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Appendix

Below we provide the URLs to the available resources surveyed in this paper,

specifically corpora (in Table 11), benchmark datasets (Table 12) and lexica

(Table 13).

Table 11 List of the available corpora mentioned in Sects. 4.1 and 4.4 along with the link where they can

be found or requested

Reference URL

AKM https://github.com/nuhaalbadi/Arabic_hatespeech

AMFE https://github.com/ialfina/id-hatespeech-detection

CKTG https://github.com/marcoguerini/CONAN

DWMW https://github.com/t-davidson/hate-speech-and-offensive-

language

ENNVB https://github.com/mayelsherif/hate_speech_icwsm18

FDCLBSVSKNS https://dataverse.mpi-

sws.org/dataset.xhtml?persistentId=doi:10.5072/FK2/

ZDTEMN&version=1.0

FEL http://www.spletno-oko.si/english/

GABNS Request to http://jgolbeck@umd.edu

GH https://github.com/sjtuprog/fox-news-comments

GPGC https://github.com/aitor-garcia-p/hate-speech-dataset

HSH https://drive.google.com/uc?id=1nKuo8wN0a1tAsaCB_

6IrNYVOwhaSX3jw

https://drive.google.com/file/d/

1jcJ7BqwK7HAoDpX0jE5io0QQcE567rR3/edit

IBNS and IB2NS https://github.com/okkyibrohim/id-multi-label-hate-speech-

and-abusive-language-detection

KTHS https://www.kaggle.com/vkrahul/twitter-hate-speech

MHBANS https://github.com/Hala-Mulki/L-HSAB-First-Arabic-

Levantine-HateSpeech-Dataset

NCCVG https://github.com/LaCAfe/Dataset-Hatespeech

OLZSY https://github.com/HKUST-KnowComp/MLMA_hate_speech

PM http://inf.ufrgs.br/*rppelle/hatedetector/

PMBA http://nlp.cs.aueb.gr/software.html
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Table 12 List of the shared task datasets mentioned in Sects. 4.2 and 4.4 along with the link where they

can be found or requested (some URLs have been shortened due to space constraints)

Name Event URL

AMI IberEval 2018 https://amiibereval2018.wordpress.com/important-

dates/data/

AMI EVALITA 2018 https://amievalita2018.wordpress.com/data/

(For registered participants)

HASOC FIRE 2019 https://hasocfire.github.io/hasoc/2019/dataset.html

HaSpeeDe EVALITA 2018 https://shorturl.at/uvHQ0

(Google form to get the data)

HatEval SemEval 2019 https://competitions.codalab.org/competitions/

19935

(For registered participants)

HSD VLSP 2019 https://vlsp.org.vn/vlsp2019/eval/hsd

MEX-A3T IberEval 2018 https://mexa3t.wixsite.com/home/contact

(For registered participants)

MEX-A3TNS IberLef 2019 https://sites.google.com/view/mex-a3t2019/

registration

(For registered participants)

OffensEval SemEval 2019 https://competitions.codalab.org/competitions/

20011

(For registered participants)

OffensEvalNS SemEval 2020 https://sites.google.com/site/offensevalsharedtask/

results-and-paper-submission

– GermEval 2018 https://github.com/uds-lsv/GermEval-2018-Data

task 2NS GermEval 2019 https://projects.fzai.h-da.de/iggsa/data-2019/

task 6 PolEval 2019 https://github.com/ptaszynski/cyberbullying-Polish

TRAC-1 TRAC 2018 https://github.com/kmi-linguistics/trac-1

TRAC-2NS TRAC 2020 https://sites.google.com/view/trac2/home

The NS superscript is used to mark the shared task reports that were not found with our systematic search

Table 11 continued

Reference URL

QBLBW https://github.com/jing-qian/A-Benchmark-Dataset-for-

Learning-to-Intervene-in-Online-Hate-Speech

RRCCKW https://github.com/UCSM-DUE/IWG_hatespeech_public

SPBPS https://github.com/msang/hate-speech-corpus

W and WH https://github.com/zeerakw/hatespeech

ZMNRFKNS https://competitions.codalab.org/competitions/20011

The NS superscript is used to mark the resources that were not found with our systematic search
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