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Abstract

Background: Methylated DNA immunoprecipitation (MeDIP) is a popular enrichment based method and can be

combined with sequencing (termed MeDIP-seq) to interrogate the methylation status of cytosines across entire

genomes. However, quality control and analysis of MeDIP-seq data have remained to be a challenge.

Results: We report genome-wide DNA methylation profiles of wild type (wt) and mutant mouse cells, comprising 3

biological replicates of Thymine DNA glycosylase (Tdg) knockout (KO) embryonic stem cells (ESCs), in vitro

differentiated neural precursor cells (NPCs) and embryonic fibroblasts (MEFs). The resulting 18 methylomes were

analysed with MeDUSA (Methylated DNA Utility for Sequence Analysis), a novel MeDIP-seq computational analysis

pipeline for the identification of differentially methylated regions (DMRs). The observed increase of

hypermethylation in MEF promoter-associated CpG islands supports a previously proposed role for Tdg in the

protection of regulatory regions from epigenetic silencing. Further analysis of genes and regions associated with

the DMRs by gene ontology, pathway, and ChIP analyses revealed further insights into Tdg function, including an

association of TDG with low-methylated distal regulatory regions.

Conclusions: We demonstrate that MeDUSA is able to detect both large-scale changes between cells from

different stages of differentiation and also small but significant changes between the methylomes of cells that only

differ in the KO of a single gene. These changes were validated utilising publicly available datasets and confirm

TDG's function in the protection of regulatory regions from epigenetic silencing.
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Background
DNA methylation is an important epigenetic modification,

playing a vital role in genome dynamics. In conjunction

with histone modifications, remodeling complexes and

non-coding RNAs, it modulates chromatin density and

thereby accessibility of the underlying DNA to the tran-

scriptional machinery. As a result, DNA methylation is

involved in a diverse range of processes including embryo-

genesis, genomic imprinting, cellular differentiation, DNA-

protein interactions, and gene regulation [1].

In mammalian genomes, methylation predominantly

occurs symmetrically on both DNA strands at palin-

dromic CpG dinucleotides, but the preference between

CpG and non-CpG methylation appears to vary with the

degree of cell differentiation [2]. Of the methylcytosines

detected in human somatic cells (fetal lung fibroblasts),

more than 99% have been shown to be in a CpG context.

In contrast, in embryonic stem cells there is abundant

methylation in non-CpG contexts, comprising approxi-

mately 25% of the total number of methylcytosines

detected [3].

There are a plethora of methods available for the ex-

ploration of DNA methylation [4,5]. Since the advent of

high throughput sequencing, methods for genome-wide

methylome profiling are both available and increasingly
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affordable. Methylated DNA immunoprecipitation (MeDIP)

[6] is a popular enrichment based method, in which an

antibody capable of recognizing 5-methylcytosine (5mC) is

utilised to immunoprecipitate the methylated fraction of

the genome. A number of tools have been developed for

the analysis of MeDIP data, including Batman [7], MEDME

[8], MEDIPS [9], MeQA [10], and SeqMonk [11]. MeDIP,

originally developed for use on arrays, can be combined

with sequencing (termed MeDIP-seq) to interrogate the

methylation status of cytosines across entire genomes.

MeDIP-seq has been used in numerous studies, including

the first mammalian methylome [7] and the first cancer

methylome [12].

Thymine DNA glycosylase (TDG), a member of the

uracil DNA glycosylase (UDG) superfamily of DNA re-

pair enzymes, has been shown to be essential for embry-

onic development [13]. However, its exact functionality

is still unclear. The protein structure and biochemical

properties suggest it has a role in DNA repair, whilst

interactions with other proteins indicate involvement in

the regulation of gene expression [14]. A recent study

has shown TDG to have a dual role in epigenetic main-

tenance. Firstly, as a structural component, TDG is

involved in the maintenance of active and bivalent chro-

matin through interactions with activating histone modi-

fiers. Secondly, TDG appears to provide DNA repair

functionality leading to the ability to erase aberrant

methylation at GC-rich promoter regions. This dual-role

suggests that TDG is important for the protection of

critical genomic regions from de-novo DNA methylation

and heterochromatinization during development [13,15].

Data description
Here, we present a comprehensive resource comprising

data and tools for the study of genome-wide methylation

profiles in mouse. 18 methylomes were generated using a

dataset of over 251 million uniquely mapped fragments

(>502 million mapped paired-end reads) and were pro-

cessed using our novel MeDIP-seq computational analysis

pipeline (Methylated DNA Utility for Sequence Analysis,

or MeDUSA). The methylomes represent 6 biological

cohorts, demonstrating robust detection of differentially

methylated regions (DMRs) in the context of both differ-

entiation and, more subtly, a gene KO system, in this case

Tdg. Further analysis of these DMRs by integration with

Chromatin Immunoprecipitation (ChIP) data provides

new insights into the functionality of TDG.

The MeDIP-seq data from this study have been sub-

mitted to the NCBI Gene Expression Omnibus [16]

under accession no. GSE27468. Wig tracks displaying

normalised read depth can be accessed through the

Ensembl HEROIC portal [17] or http://www2.cancer.ucl.

ac.uk/medicalgenomics/tdg_web/trackList.php. MeDUSA

can be downloaded from our MeDUSA homepage [18].

All supporting data and associated files from the MeDUSA

pipeline are also available from GigaScience [19].

Analysis
Genome-wide mapping of 18 mouse methylomes

MeDIP-seq was performed, as described in Feber et al.

[12], on 18 samples, representing 6 biological cohorts. 6

samples were derived from mouse embryonic stem cells

(ESCs) (3 Tdg+/−, 3 Tdg−/−), 6 samples were from mouse

neural precursor cells (NPCs) (3 Tdg+/−, 3 Tdg−/−), and 6

samples were obtained from mouse embryonic fibroblasts

(MEFs) (3 Tdg+/+, 3 Tdg−/−). The biological samples were

generated as described by Cortázar et al. [13].

Over 500 million reads were uniquely mapped to the

reference genome (NCBIM37), using BWA [20] (alignment

score>= 10), representing over 250 million mapped

fragments (Additional file 1: Table S1). Additionally,

fragment length normalisation was performed in order

to eliminate potential bias in coverage resulting from

discrepancies in the distribution of fragment lengths

between samples. Correlation in genome-wide sequence

coverage between replicates was calculated. The correlation

between the 3 biological replicates of the NPC and

MEF cohorts was high (>0.83 and >0.90 respectively)

(Additional file 1: Table S2). Correlation in the ESC

cohorts was considerably lower (>0.51), perhaps reflecting

greater epigenetic dynamism in the undifferentiated cells.

Non-CpG methylation, believed to be prevalent in

undifferentiated cells, has been shown to display both

lower methylation levels within a cell population and

lower conservation between cell lines [21,22]. If true,

this dynamism would not be seen in technologies such as

MethylCap [23] that only pull back methylation from

CpG dinucleotides, and could potentially contribute to the

increased variation between ESC replicates. Correlation

between ESC samples in CpG islands was notably higher

(0.85-0.89). Whilst the increased variation in ESCs,

reflected by the lower correlation, could present challenges,

our method for DMR identification can locate true

biological variation whilst minimizing false positives.

In addition to determining the correlation between

biological replicates, we determined the proportion of

CpG sites in the reference genome that were covered

by aligned fragments (Additional file 1: Table S1 and

Additional file 1: Figure S1). Furthermore, both saturation

analysis [9] and between replicate correlations [24]

indicated we had sufficient reads to provide reproducible

genome-wide methylation profiles (Additional file 1: Table

S2). An example of the output from the saturation and

coverage analysis performed in the MeDUSA pipeline, by

MEDIPS is shown in Additional file 1: Figure 1.

We validated our MeDIP-seq results, utilising previously

published reduced representation bisulphite sequencing

(RRBS) data from wild type (wt) ESCs, wt NPCs and wt
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MEFs [25], and whole-genome bisulphite sequencing

(BS-seq) of wt ESC and wt NPC [26]. For the purpose of

validation, absolute methylation values were calculated

from the MeDIP read counts for the ESC Tdg+/−, NPC

Tdg+/− and the MEF Tdg+/+ cohorts using MEDIPS [9].

Reads from each of the replicates within each cohort

were merged into a single cohort-specific dataset.

Validation was performed for all CpG sites in ESC and

NPC that were covered (minimum depth of 10) in both

the RRBS and the BS-seq datasets. Only RRBS data was

available for MEFs. Overall correlation was high between

the data types, ranging from 0.86 for the ESC comparison,

to 0.80 for the NPCs and 0.67 for the MEFs. This val-

idation also supported our saturation analysis, as regions

lacking coverage in MeDIP-seq reads were shown to be

largely unmethylated as opposed to being an artifact

resulting from insufficient sequencing (Figure 1). The

decrease in correlation as the cells become increasingly

differentiated could be an artifact of the CpG subset

analysed, though it may also reflect true clonal effects.

This is supported by the decrease in correlation between

the RRBS and Bis-seq data for ESC (0.96) and NPC

(0.86).

Our dataset can be accessed through Ensembl [27] as

part of the HEROIC portal [17] (Additional file 1: Figure

S2) and the GigaScience database [19].

MeDUSA computational pipeline

The MeDIP-seq data were processed using our novel

analysis pipeline MeDUSA (Methylated DNA Utility for

Sequence Analysis). MeDUSA brings together numerous

software packages to perform a full analysis of MeDIP-

seq data, including sequence alignment, quality control

(QC), and determination and annotation of DMRs. In

contrast to previously published tools for MeDIP-seq

analysis (e.g. Batman [7], MEDIPS [9]) in which the primary

focus was the ability to accurately call absolute methylation

values based on CpG density, the focus for MeDUSA is the

accurate and statistically rigorous identification of DMRs.

To achieve this, relative changes in DNA methylation

between cohorts (rather than absolute changes within

cohort) need to be determined, and as such the problem

has much in common with identifying differential expres-

sion between RNAseq cohorts. MeDUSA utilises several

applications from within the USeq software suite [24], and

in turn uses the R Bioconductor [28] package DESeq [29]

Figure 1 Comparison of MEDIPS normalised MeDIP-seq data with RRBS [25] and BS-seq [26] data. (a) ESC Tdg+/− MeDIP vs ESC wt RRBS.

(b) NPC Tdg+/− MeDIP vs NPC wt RRBS. (c) MEF wt MeDIP vs MEF wt RRBS. (d) ESC Tdg+/− MeDIP vs ESC wt BS-seq. (e) NPC Tdg+/− MeDIP vs NPC

wt BS-seq.
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for differential count analysis. In addition, MeDUSA con-

trols several other important functions from the alignment

(BWA [16]) and subsequent filtering (SAMtools [30])

through the generation of numerous quality control

metrics (FastQC[31] and MEDIPS [9]), and preliminary

annotation of the DMRs (utilising the capabilities of BED-

Tools [32]).

There are several issues that can hinder MeDIP-seq

analysis, particularly when identifying DMRs. Firstly, se-

quencing depth between samples will vary and so read

counts need to be normalised. Whilst global read count

normalisation can help address this problem, it does not

account for ‘competition’ effects. Such competition can

be seen in RNA-seq, in which sample specific highly

expressed genes can lead to a depressed normalised read

count in other genes and hence a bias when comparing

samples [33]. Analogous situations can be found in

MeDIP-seq, where sample-specific repeat methylation

could potentially bias analyses, particularly given the

large proportion of methylated repetitive sequence found

in the genome, or samples with high levels of non-CpG

methylation could lead to an underestimation of methy-

lation levels at CpG sites. Secondly, MeDIP-seq experi-

ments will often have small numbers of biological

replicates, and hence it can be difficult to obtain reliable

estimates of model parameters to fit statistical models

and locate real differences between samples. MeDUSA

utilises DESeq to address these challenges. DESeq esti-

mates variance in a local fashion and in doing so

removes potential selection biases [29]. Additionally, ra-

ther than attempting to reliably estimate the variance

and mean parameters of the distribution from limited

numbers of replicates, DESeq estimates a more flexible,

mean-dependent local regression. Typically, there is

enough data available in these experiments to allow for

sufficiently precise local estimation of the dispersion [29]

and hence avoid bias towards certain areas of the dynamic

range when identifying DMRs. Finally, it is possible that

differences in DNA fragment size distributions between

samples could compromise accurate biological interpret-

ation. MeDUSA provides the option to perform fragment

length normalisation through read sub-sampling to

equalize the distributions, thus eliminating this potential

bias.

Additionally, taking advantage of the genome-wide na-

ture of MeDIP-seq and the affinity of the MeDIP-seq

antibody for methylated cytosine (i.e., not in a CpG-

methylation specific context), MeDUSA also allows iden-

tification of potential non-CpG methylation [11]. By de-

termining the ratio of fragments originating from each

strand, we can infer the strand from which the methyla-

tion signal originated. An even distribution on both

strands would be anticipated for a methylated region

driven by symmetric CpG methylation. In contrast an

asymmetric fragment distribution, preferentially aligning

to one strand, could indicate the presence of non-CpG

methylation, particularly when supported by sequence

motif analysis. Compared to previous methods, the

MeDUSA-analysed profiles result in 3 separate tracks

per methylome, with the proportion of reads indicated

that are mapping to both, forward or reverse strands,

allowing assessment of CpG and potential non-CpG

methylation (Figure 2). The potential to search for

DMRs driven by non-CpG methylation illustrates the

flexibility inherent when performing a relative analysis of

MeDIP samples. This flexibility means that the pipeline

will also be equipped to analyse enrichment data for

other DNA modifications such as hydroxymethylcyto-

sine, formylcytosine and carboxylcytosine.

Identification of methylation differences associated with

differentiation

MeDUSA utlises USeq MultipleReplicaScanSeqs [24]

and the DESeq R Bioconductor package [29] to locate

statistically significant DMRs. Using MeDUSA, we com-

pared the MeDIP-seq methylation profiles of ESC Tdg
+/−, NPC Tdg+/− and the MEF Tdg+/+ samples to define

large numbers of statistically significant DMRs asso-

ciated with different stages of differentiation. As

expected, more DMRs (maximum FDR 5%) were found

between ESCs and MEFs (366,980 hypomethylated in

MEFs, 109,694 hypermethylated in MEFs) than between

ESCs and NPCs (125,335 hypomethylated in NPCs,

75,496 hypermethylated in NPCs) or NPCs and MEFs

(263,911 hypomethylated in MEFs, 100,365 hypermethy-

lated in MEFs). DMRs ranged in size from 29 bp to

46,820 bp (Additional file 1: Figure S3a). The distance

between adjacent DMRs was largely dependent on total

number of DMRs identified (correlation =−0.92) and

ranged from 500 bp to 7,501,000 bp (Additional file 1:

Figure S3b). Comparison of global methylation status

suggested a trend for decreased methylation during

differentiation (shown by the increased numbers of

hypomethylated DMRs versus the numbers of hyper-

methylated) (Figure 3a). This is supported by data from

previous studies of human cells [2,3]. Of the 125,335

hypomethylated DMRs found between NPCs and ESCs,

85% were also deemed to be hypomethylated between

MEFs and ESCs (Additional file 1: Figure S4). Addition-

ally, 31% underwent further hypomethylation between

the NPC and MEF state, illustrating that in some cases

hypomethylation is a continuous process through mul-

tiple stages of differentiation. A contrast to this global

hypomethylation with differentiation was shown in CpG

island regions. We saw more instances of increased

methylation in CpG islands along the transition to differ-

entiated cells (p-value =< 0.001) (Figure 3b). This sup-

ports the idea of an increasingly restrictive pattern of
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gene expression associated with differentiation [2].

These dynamic islands include many regions associated

with system development, including numerous members

of the Hox, Pou, Six, Klf, and Tcf gene families. Enrich-

ment analysis of genes associated with these islands

shows significant enrichment in roles for tissue develop-

ment (p-value = 2.02e-56) and embryonic development

(p-value =8.11e-43). Additionally, as expected, the

Homeobox domain was found to be strongly associated

within these island regions (FDR=4.85e-32).

To perform a large-scale validation of all the DMRs

(maximum FDR 1%) called between ESC and NPC

cohorts, BS-seq data [26] was utilised (Figure 4). The

methylation score for each CpG dinucleotide was

determined from the BS-seq data. The NPC methyla-

tion score (NPCms) was subtracted from the ESC

methylation score (ESCms) to determine the difference

in methylation for each CpG. For each MeDIP DMR,

the overall methylation change (Δms) was calculated.

Of the 16,592 hypomethylated MeDIP ESC DMRs tested,

13,644 showed decreased methylation (ESCms – NPCms=

Δms< 0) in the BS-seq data. 7,884 showed a Δms of

<−0.1, in contrast only 147 showed Δms >0.1. Similarly,

of the 738 hypermethylated ESC DMRs tested, 545

also showed increased ESC CpG methylation in the

BS-seq data (ESCms – NPCms =Δms> 0). Of these,

Figure 2 Mouse NPC methylomes viewed in the UCSC browser. Each sample has 3 tracks representing total coverage (red) and coverage on

forward (green) and reverse (blue) strands. The data range on the Y-axis of each track represents the read depth in reads per million (RPM). Box a

highlights a Tdg−/− hypomethylated DMR in exon 2 of Prdm6. Box b indicates an example of potential non-CpG methylation where the

methylation signal is driven by a single strand, in this case the reverse strand.
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246 had Δms >0.1, compared with only 2 with Δms

<−0.1. According to this analysis, 82% of the called DMRs

are supported by independent data (p-value< 0.001).

Tdg KO-associated differences in methylation

Having demonstrated the ability to call DMRs between

cohorts expected to have large numbers of DMRs, we

used the MeDUSA pipeline to try and identify DMRs

between cohorts expected to have small numbers of sig-

nificant DMRs using MEFs wild type and single gene

(Tdg) knockout. By comparing cohorts from within the

same differentiation state, the effect of the absence of

TDG on the global methylation profile could be

explored. DMRs were called for each cell type with a

maximum false discovery rate (FDR) of 5%. Using this

approach we identified 32,975 (13,590 hypermethylated

in Tdg−/−, 19,385 hypomethylated in Tdg−/−) DMRs in

MEFs (Additional file 1: Figure 5Sa), 942 (609 hyper-

methylated in Tdg−/−, 333 hypomethylated in Tdg−/−) in

NPCs (Additional file 1: Figure 5Sb), and 0 in ESCs.

Whilst attempts to locate DMRs between the ESCs may

have been restricted by the increased background vari-

ability in the undifferentiated cells (intra-cohort mean

correlation = 0.56), these data suggest that the direct im-

pact on methylation of loss of TDG is greater in more

differentiated cell types.

Figure 5 shows the proportion of DMRs found in

different genomic features within the MEF comparison.

The majority of DMRs were found in intronic (n= 16,092,

44% hypermethylated in Tdg−/−, 56% hypomethylated

in Tdg−/−) and intergenic regions (n = 16,746, 41%

hypermethylated in Tdg−/−, 59% hypomethylated in

Tdg−/−). Of the MEF DMRs found in CpG islands

(n= 3,675), the majority were hypermethylated (n= 3,398).

This supports the hypothesis that TDG, when recruited to

regions of high GC content, protects against de-novo

methylation [13]. In the absence of TDG, an increase in

methylation in such regions is observed.

Enrichment analysis of tdg KO-associated DMRs in MEF

To gain preliminary insights into their possible function,

the Tdg KO-associated MEF DMRs were subjected to fur-

ther bioinformatic analyses. Using GREAT [34], it was

possible to interrogate annotations from 20 different

ontologies utilising the genomic coordinates of the DMRs.

Hypermethylated DMRs (Additional file 1: Table S3a)

were found to be associated with transcription regulation

(q-value =<e-300), DNA binding (q-value =<e-300),

system development (q-value =<e-300), as too were

sequences implicated in the regulation of various metabolic

processes (q-value= e<−300). There was strong associ-

ation with Polycomb targets, specifically H3K27me3-

marked genes (q-value=<e-300) and targets of SUZ12 and

EED (q-value=<e-300), both of which are key components

of the PRC2 complex [35]. Additionally, the significant

association with genes expressed during Theiler stage

20 (embryonic day 12) (q-value =<e-300) and stage 17

(embryonic day 10.5) (q-value= e<−300) supports previ-

ous work showing that it is at this stage of the development

of Tdg null embryos when internal haemorrhage is detected

[13]. PANTHER Pathway analysis (q-value=1.52e-33) and

MSigDB Pathway analysis (q-value = 1.79e-25) both

highlighted genes involved in the Wnt signaling pathway

as being significantly associated with hypermethylated

MEF DMRs. Additionally, the data were analysed with

integrated pathway analysis (IPA, IngenuityW Systems[36]).

Figure 3 Number of DMRs identified in comparisons of samples from different stages of differentiation. DMRs hypermethylated in the

more differentiated state are shown in blue, those hypomethylated in the more differentiated state are in yellow. (a) All DMRs. (b) DMRs located

in CpG Island regions.
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IPA Canonical Pathway Analysis also highlighted the Wnt

signaling pathway (BH p-value=4.15e-11) (Additional file

1: Figure S6a). This pathway has been shown to be import-

ant during cell differentiation and has also been linked with

cancer [37]. Cancer related pathways on the whole were

also shown to be enriched (q-value=3.01e-45). Enrichment

of the embryonic stem cell pluripotency canonical pathway

(human) was also highly significant (BH p-value=8.57e-11)

(Additional file 1: Figure S6b). Of the 153 genes involved in

this pathway, 78 were associated with a DMR. The signal

from the hypomethylated DMRs was less strong than from

the hypermethylated (Additional file 1: Table S3b). Interest-

ingly, there was a significant enrichment relating to terms

associated with ion channel activity (q-value=1.97e-46), ion

transport (q-value=1.07e-28) and extracellular structure

organization (q-value=1.22e-38).

Using the resource hmChIP [38], the DMRs were

compared to publicly available ChIP (ChIP-chip and

ChIP-seq) datasets to determine if significant association

existed with specific chromatin marks and transcription

factor binding sites. The analysis showed a significant

overlap between hypermethylated DMRs and regions

Figure 4 Difference in methylation score (ESCms – NPCms) calculated from BS-seq data [26] for each DMR called from the MeDIP

cohorts. Regions displaying ESC hypermethylation in the BS-seq data will score >0, those displaying hypomethylation will score <0. Frequency

of hypermethylated MeDIP DMRs are shown in red, hypomethylated DMRs in blue, indicating the concordance between datasets.
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marked with H3K27me3 [39] (FDR< e-96) and H3K9me3

[40] (FDR< e-45) in numerous mouse ESC datasets.

Additionally, highly significant overlap was seen with

occupation by SUZ12 [41] (FDR< e-190), JARID2 [42]

(FDR< e-190) and EZH1 [39] (FDR< e-190). As previ-

ously noted, SUZ12 is a component of PRC2. JARID2 is

an associating partner of PRC2 and facilitates its access to

chromatin [43]. EZH1 has also been shown to maintain

repressive chromatin [44]. Hypermethylation in these

regions in Tdg−/− cells supports a possible role of TDG in

the protection of polycomb repressed but poised gene

promoters from de-novo methylation. On the other hand,

the hypomethylated DMRs show significant association

with regions occupied with the activating histone mark

H3K9ac [45] (FDR=1.90e-165).

MEF DMRs preferentially locate in low-methylated regions

(LMRs)

Low-methylated regions (LMRs) have recently been identi-

fied as a distinct genomic feature capable of performing as

CpG poor, distal regulatory regions [26]. These regions

form dynamically through the binding of transcription fac-

tors. Once the transcription factor is bound, demethylation

follows. The evidence for TDG transcription factor inter-

actions, coupled with its ability to maintain CpGs in an

unmethylated state suggests a potential role for TDG in

the formation or maintenance of these regions. In the

absence of TDG ChIP-seq data, we sought to identify

regions of overlap between LMRs and DMRs. A significant

number of MEF Tdg−/− hypermethylated DMRs located

in LMR regions (p< 0.001) (Figure 6), supporting a pro-

spective role for TDG in LMR formation. Interestingly,

this association was found despite comparing NPC

LMRs to MEF DMRs. LMRs are reported to be dynam-

ically formed during differentiation and only a small

fraction are shared between ESCs and NPCs [26]. Surpris-

ingly, significant association was not found between LMRs

and hypermethylated NPC Tdg−/− DMRs. Further work is

required to elucidate the significance of these associations.

Discussion
Here we report a murine methylome resource, which is

publicly accessible to the wider research community

through a dedicated Ensembl portal. All 18 methylomes

are available to be viewed in their genomic context or

downloaded for further analysis. The resource includes

the ability to view strand-specific methylation changes,

allowing inference of respective signal contributions

from CpG and/or potential non-CpG methylation. This

property is of particular use when interrogating stem cell

datasets in which non-CpG methylation is reportedly

prevalent. Additionally, the development of the MeDUSA

pipeline allowed for the analysis of the MeDIP-seq data

from alignment and QC through to calling and annotation

of significant DMRs. MeDUSA does not seek to replace

existing tools that generate absolute methylation profiles,

instead, through pipelining currently available software, it

quickly and easily facilitates to study relevant biological

Figure 5 Proportion of DMRs found in different genomic features. DMRs hypermethylated in MEF Tdg−/− are shown in blue, those

hypomethylated in MEF Tdg−/− are in yellow. The numbers represent the amount of DMRs found in each feature type.

Wilson et al. GigaScience 2012, 1:3 Page 8 of 13

http://www.gigasciencejournal.com/content/1/1/3



questions that researchers may have concerning their

specific cohorts. MeDUSA is easily customizable and

can be easily extended with additional applications.

Using Tdg wt and mutant cells as example we demon-

strate the utility of MeDUSA for detecting small but signifi-

cant DMRs in KO studies. As predicted from previous

observations [13], the number of KO-associated DMRs

increased with increasing differentiation. By performing a

range of computational analyses, we were able to con-

sistently link Tdg KO-associated DMRs with regulation

of transcription during developmental processes and

regions involved in the maintenance of repressive chro-

matin, particularly those occupied with PRC2. These

findings support the notion that TDG may be involved

in the protection of critical regions from de-novo

methylation by actively demethylating erroneously

methylated cytosines. Recent studies have shown that

TET catalyses the oxidation of 5-methylcytosine (5mC)

to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine

(5fC) and 5-carboxycytosine (5caC), the latter two

being substrates for TDG and, thus, readily replaced

by unmodified cytosine via base excision repair (BER)

[46,47]. Additionally, we linked Tdg KO-associated

DMRs in MEFs with distal regulatory low-methylated

regions (LMRs), possibly suggesting a role for TDG in the

formation of these regions. The potential role of Tdg in

mediating these changes is subject of on-going studies.

Methods
Samples

The Tdg KO strategy, cell culture conditions and in-vitro

differentiation procedure used to generate the 18 wt

and mutant samples analysed here were as described in

Cortázar et al. (2011) [13].

MeDIP-seq

5 μg of DNA from each sample was sonicated to between

50 and 350 bp. Sonicated DNA was then subjected to

Illumina’s paired-end library preparation and MeDIP

enrichment was performed as described previously [12].

Next generation sequencing (37 bp paired-end reads)

was performed on the libraries (size-selected to be be-

tween 150 and 200 bp) using an Illumina GAIIx for each

sample.

Data analysis

The generated MeDIP-seq data were analysed using our

computational pipeline MeDUSA, which constitutes

several discrete stages of analysis and is publicly available

from our homepage [18] and via GigaScience [19]).

Sequence alignment, filtering and quality control

Paired end alignment against the mouse genome (Build

NCBIM37) was performed using BWA (v0.5.8) [20] with

default settings. Initial filtering to remove those reads

Figure 6 Overlap between MEF Tdg−/− DMRs and LMRs [26] represented by Observed/Expected ratio. Data for randomly selected

genomic regions also shown, bars indicate the maximum and minimum ratio achieved from 1,000 permutations.
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failing to map as a proper pair was performed using

SAMtools (v0.1.9) [30]. Further filtering removed pairs

in which neither read scored an alignment score>=10.

Additionally, for each group of non-unique reads (i.e.,

reads aligned to the exact same start and stop position

on the same chromosome), all but one read were dis-

carded. The filtered paired reads were written to file in

bed format, where each line represented a uniquely

mapping sequenced DNA fragment. This filtering was

performed using a custom perl script.

The Bioconductor (v2.7) [28] package MeDIPs (v1.0.0)

[9] was used to normalise for size of the sequence li-

brary, done by calculating reads per million (RPM) in

tiled windows across the genome. Significant differ-

ence in fragment length distributions between sam-

ples can in turn lead to artificial variation in read

counts between samples. Simply trimming aligned frag-

ments to a pre-determined size will not solve the prob-

lem, as the bias will have occurred in the initial MeDIP

enrichment. Therefore, to reduce any possible bias

caused by difference in fragment lengths between sam-

ples, fragment length normalisation was performed

using a custom perl script. This method seeks to

equalize the fragment length distributions through read

sub-sampling. The current method requires the re-

moval of fragments that do not fit the normalised

distribution.

Wig tracks, for visualization in genome browsers such

as Ensembl [27] and UCSC [48], representing library size

normalised alignment were generated using a combination

of MEDIPS [9] and custom R scripts. In addition to the

total alignment wig track, strand specific wig tracks

were also generated, enabling the user to infer whether

the MeDIP signal is derived by methylation on the for-

ward and/or reverse strand.

To determine our sequence data was of acceptable qual-

ity, the tool FastQC (v0.9.4) [31] was used to generate

graphical representations of numerous quality metrics

such as per base sequence quality and sequence duplica-

tion levels. FastQC utilises the Picard suite of utilities [49].

MEDIPS was used to ascertain the reproducibility and

CpG coverage of our samples through performing sat-

uration and coverage analyses. Additionally between

replicate genome-wide correlations were calculated

using QCSeqs from the Useq package [24]. Correlations

were calculated using a window size of 500 bp, increas-

ing in 250 bp increments. A minimum number of 5

reads in a window was required prior to inclusion in the

correlation.

Identification of differentially methylated regions

The USeq (v6.8) [24] suite of tools, specifically Multi-

pleReplicaScanSeqs (MRSS) and EnrichedRegionMaker,

were used to identify DMRs between cohorts. MRSS

processes Point data for use in the BioConductor package

DESeq [29]. Window size was set at 500. MRSS was run

using a depth threshold of 10, meaning only regions with

a combined depth between all samples of 10 or more were

parsed to DESeq for further analysis. DESeq uses a model

based on the negative binomial distribution to analyse

count data from high-throughput sequencing projects.

Significant regions were passed to EnrichedRegionMaker

to determine if multiple regions could be combined to

create single larger regions. The area of strongest signal

within the region was also identified. Output files display-

ing potential DMRs were generated at various Benjamini

& Hochberg (BH) FDRs. For further downstream analysis

we used DMRs with an FDR<=5%.

Initial annotation of differentially methylated regions

Output files for further biological interpretation were

generated using custom perl scripts and feature annota-

tion files in GFF format. The BEDTools software package

[32], specifically intersectBed and windowBed, was used

extensively to determine the locality of the DMR regions

within different feature types. Metadata describing each

DMR (e.g., CpG density, nearest gene, genomic region in

which the DMR was found and read count within DMR)

was obtained. Additionally, counts of DMRs mapping to

specified genomic features were generated.

MeDIP-seq validation

Our MeDIP-seq data were compared with RRBS data from

Meissner et al. [25] and BS-seq data from Stadler et al.

[26] for validation. CpG data for 3 RRBS samples (MEF

(GSM278888), NPC p9 (GSM278893), ESC (GSM278905))

were obtained from GEO (accession number GSE11034).

liftOver [48] was used to convert the files from NCBIM36

to NCBIM37. The CpG data for 2 BS-seq samples, ES and

NP, were obtained from GEO (GSE30202). Only CpGs

with coverage depth>=10 (in both RRBS and BS-seq for

ESC and NPC) were used for validation. CpG sites were

extended to create 500 bp windows. A random subset

of 5,000 smoothed CpGs was passed to the MEDIPS

Bioconductor package [9] which calculated absolute

methylation scores from our MeDIP read files for each

of our cohorts. Methylation scores were calculated for

each extended CpG site in the validation set using default

values.

DMR validation

DMRs generated from the MeDIP comparison were com-

pared to the ESC and NPC BS-seq data (GEO GSE30202).

DMRs were filtered to remove those regions containing

<10 CpGs, or overlapping an annotated simple repeat

region. This was to remove potential biases caused by

the presence of non-CpG methylation in the ESC samples

undetectable in the BS-seq CpG methylation files. Only
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CpGs in the BS-seq data with a read depth of>=10 were

included. Additionally, the ESC and NPC BS-seq data

were quantile normalised to remove biases caused by po-

tential global hypermethylation in the samples. For each

DMR, the methylation score for each CpG within the

DMR was determined and the value of the NPC score

subtracted from the ESC score. Permutation analysis was

performed to calculate empirical p-value (permutations =

1,000). The proportion of randomly selected regions

deemed hypermethylated or hypomethylated by the BS-

seq data was compared to the observed result to deter-

mine p-value.

Enrichment analysis of DMRs

GREAT (v1.7.0) [34] and IPA (v9.0) (IngenuityW Systems

[36]) were used for enrichment analysis. The genomic

co-ordinates of the DMRs were passed to GREAT via

the web interface [50]. The analysis was run using

‘Basal + extension’ method with default proximal dis-

tances of 5,000 bp upstream and 1,000 bp downstream.

The maximum extension was set at 100 kb.

Unlike GREAT, IPA requires gene identifiers rather than

co-ordinates. DMRs were associated with their nearest

gene up to a maximum of 10 kb upstream and 5 kb down-

stream of the gene. Using these associated gene identifiers

a core analysis against the Ingenuity knowledgebase (genes

only), including both direct and indirect relationships was

run. Canonical pathways analysis identified the pathways

from the IPA library of canonical pathways that were most

significant to the dataset. The significance of the associ-

ation between the dataset and the canonical pathway was

measured in 2 ways. Firstly, a ratio of the number of

molecules from the dataset that map to the pathway

divided by the total number of molecules that map to

the canonical pathway. Secondly, Fisher’s exact test was

used to calculate a p-value determining the probability

that the association between the genes in the dataset

and the canonical pathway is explained by chance alone.

The database hmChIP [38] was used for integrating

DMRs with publicly available ChIP data. hmChIP contains

>2,000 samples from >500 ChIP-seq and ChIP-chip

experiments, representing a total of >170 proteins. Using

liftOver to convert our DMR co-ordinates from NCBIM37

to NCBIM36, we were able to interrogate the hmChIP

database for significant overlap between our DMRs and

specific ChIP datasets. The analysis was performed against

both available ChIP types (TF or DNA-binding proteins

and chromatin modifications) including both ChIP-chip

and ChIP-seq datasets. Significant overlaps were deter-

mined by calculating a p-value based on the ratio of the

observed overlap to the expected overlap. An FDR, using

the BH procedure, adjusting for multiple tests was also

calculated.

Integration of MEF DMRs in LMRs

NPC LMR coordinates were obtained from Stadler et al.

[26]. MEF DMRs were intersected with LMR regions and

base pair overlap determined. Expected base pair coverage

was calculated from total DMR, total LMR and genomic

base pair counts. Observed/Expected ratios were deter-

mined. Random genomic regions (500 bp, n=1,000-15,000)

were analysed in a similar manner. 1,000 permutations of

the random data were performed; from this an empirical

p-value could be calculated.

Availability of supporting data
The dataset supporting the results of this article is available

in the Gene Expression Omnibus repository, GSE27468,

and the GigaScience database [19].

Additional files

Additional file 1: Figure S1. Example of saturation and coverage analysis,

performed in MeDUSA using the MEDIPS bioconductor package. a)

Saturation analysis for ESC1 b) Coverage analysis for ESC1. Additional file 1:

Figure S2. Methylomes available through Ensembl (Flicek et al. 2011) as part

of the EU project HEROIC. Additional file 1: Figure S3. Boxplots displaying a)

the DMR size (bp) and b) the genomic distance between DMRs across

different cohort comparisons. In b) the width of each box represents the

relative number of DMRs in the comparison. Additional file 1: Figure S4: Read

density (RPM) at DMRs found between NPC and ESC cohorts. MEF RPM also

shown for these sites. Additional file 1: Figure S5. Read density (RPM) at

DMRs between a) MEF Tdg+/+ and MEF Tdg–-/–- b) NPC Tdg+/–-and NPC

Tdg–-/–-. Additional file 1: Figure S6. Significant pathways obtained from IPA

Canonical Pathway Analysis (IngenuityW Systems, www.ingenuity.com). Filled

symbols represent genes associated with DMRs. a) Enrichment of

hypermethylated MEF Tdg-/- DMRs associated with Wnt signaling pathway.

95 of 172 genes associated with DMR (BH corrected p-value = 4.15E-11), b)

Enrichment of hypermethylated MEF Tdg-/- DMRs associated with

embryonic stem cell pluripotency pathway (human). 78 of 153 genes

associated with DMR (BH corrected p-value = 8.57E-11). Additional file 1:

Table S1. 18 mouse methylomes, representing 6 biological cohorts, were

generated using PE MeDIP-seq. Additional file 1: Table S2. Between replicate

MeDIP-seq correlations, generated by QCSeqs, for the methylomes.

Additional file 1: Table S3. Summarised output from GREAT analysis (McLean

et al. 2010). a) Hypermethylated in MEF Tdg-/-, b) Hypomethylated in MEF

Tdg-/-.
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