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ABSTRACT

With the increasing interest in compounds containing heavier elements, the experimental and theoretical community requires com-
putationally efficient approaches capable of simultaneous non-perturbative treatment of relativistic, spin-polarization, and electron cor-
relation effects. The ReSpect program has been designed with this goal in mind and developed to perform relativistic density func-
tional theory (DFT) calculations on molecules and solids at the quasirelativistic two-component (X2C Hamiltonian) and fully relativis-
tic four-component (Dirac–Coulomb Hamiltonian) level of theory, including the effects of spin polarization in open-shell systems at
the Kramers-unrestricted self-consistent field level. Through efficient algorithms exploiting time-reversal symmetry, biquaternion alge-
bra, and the locality of atom-centered Gaussian-type orbitals, a significant reduction of the methodological complexity and computa-
tional cost has been achieved. This article summarizes the essential theoretical and technical advances made in the program, supple-
mented by example calculations. ReSpect allows molecules with >100 atoms to be efficiently handled at the four-component level of
theory on standard central processing unit-based commodity clusters, at computational costs that rarely exceed a factor of 10 when
compared to the non-relativistic realm. In addition to the prediction of band structures in solids, ReSpect offers a growing list of
molecular spectroscopic parameters that range from electron paramagnetic resonance parameters (g-tensor, A-tensor, and zero-field
splitting), via (p)NMR chemical shifts and nuclear spin–spin couplings, to various linear response properties using either conventional
or damped-response time-dependent DFT (TDDFT): excitation energies, frequency-dependent polarizabilities, and natural chiroptical
properties (electronic circular dichroism and optical rotatory dispersion). In addition, relativistic real-time TDDFT electron dynamics
is another unique feature of the program. Documentation, including user manuals and tutorials, is available at the program’s website
http://www.respectprogram.org.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0005094., s

I. INTRODUCTION

The electronic motion in atoms, molecules, and solids is
described by the (time-dependent) Dirac equation.1,2 However, the
majority of quantum-chemical calculations use instead the (time-
dependent) Schrödinger equation,3 effectively assuming the speed of

light to be infinite. The difference between the results obtained from
solving the Dirac and the Schrödinger equations is often referred
to as relativistic effects. These effects are, in general, assumed to
be so small that they can be either ignored or treated approx-
imately by using corrections to the Schrödinger equation. Such
approximations either utilize effective core potentials4,5 or introduce
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correction operators derived from the Dirac–Coulomb–Breit
Hamiltonian,6 which are applied either variationally or through
perturbative corrections.7

While relativistic effects can, in many cases, be safely ignored,
there exist numerous examples where these effects are of tremen-
dous importance even when considering the properties of light ele-
ments. When studying the core levels of atoms, as done in x-ray
spectroscopy,8 it is well known that the three- and fivefold degen-
eracy of the orbital part of the atomic p and d functions is lifted
by spin–orbit (SO) effects, giving rise to the L2,3/M2,3 and M4,5

edges, respectively. Consideration of relativistic spin–orbit effects
is also essential when analyzing the electronic absorption spectra
of compounds for medical imaging or photosensitizers involving
lanthanides.9 Another example where relativistic effects are crucial
for the analysis of spectroscopic observations is the so-called heavy-
atom on light-atom (HALA) effects observed in Nuclear Magnetic
Resonance (NMR) spectroscopy,10,11 where relativistic corrections
have been shown to far exceed the non-relativistic value even for
the proton NMR shielding constant.12 Relativistic spin–orbit effects
are also omnipresent in the solid state and at the core of important
research areas in the development of novel materials for use in spin-
tronics13,14 and topological insulators.15,16 Relativistic effects have
also been shown to affect reaction pathways in both inorganic17 and
biochemical reactions.18

The fact that relativistic effects are ubiquitous and cannot
a priori be ignored, combined with increased interest in heavy-
element compounds that cannot be handled by more approximate
methods, calls for computationally efficient treatments of the elec-
tronic structure ofmolecules and solids at the fully relativistic level of
theory. The ReSpect program has been designed and developed with
this challenge in mind, and this article provides an in-depth intro-
duction to the program and, particularly, to its theoretical and algo-
rithmic foundation that emerges as solutions to challenges posed
by the two- and four-component relativistic theory. In addition,
the program’s capabilities, in terms of both functionality and per-
formance, are demonstrated for applications where the variational
treatment of relativistic corrections, in particular the spin–orbit
interaction, is indispensable.

Work on the ReSpect code started around 1998 by two of
the co-authors of this paper (V.M. and O.M.). Before 1998, they
had been working with the DEMON code19 developing original meth-
ods for DFT calculations of NMR and electron paramagnetic reso-
nance (EPR) parameters, including spin–orbit corrections to NMR
shifts.20–24 Further method development within the DEMON code
became problematic, however, due to the absence of four-center
integrals, among other limitations of the program. Moreover, the
publication of pioneering papers on the calculation of the EPR g-
tensor by two-component (2c) approaches25,26 stimulated the deci-
sion to write a new and flexible 2c code specifically designed for
relativistic DFT and Hartree–Fock calculations of NMR and EPR
parameters. The primary goal was to create a “sandbox” for explor-
ing new ideas and developing new methods, computational effi-
ciency being at the time a secondary issue. This code was named
ReSpect. This early version of the ReSpect code was made possi-
ble by the very kind permission by Dennis Salahub for the use of
parts of the DEMON code and from the authors of the HERMIT inte-
gral block.27 At the beginning of the development of the 2c ReSpect

code, great help was provided by the late Bernd Schimmelpfen-
nig and also by Roman Reviakine. This original code allowed a
few groups to easily implement and explore new ideas in the field
of 2c relativistic methods. A new era of the code started when
M.R. and S.K. joined the Malkin group. The original program
was fully re-designed, re-implemented, and significantly extended
in order to make it an efficient two- and four-component DFT
program, including a new integral block InteRest developed by
M.R. and tailored specifically for relativistic calculations. Due to
the philosophy and structure of the new ReSpect, the program
inherited the old code’s raison d’etre of providing a platform for
exploring new ideas, but with the addition of high computational
efficiency and parallel scalability for production calculations. The
most recent era of the program started around 2010 when K.R.
brought to the project his expertise with calculations of dynamical
molecular properties. Since then, the program has grown beyond
the domain of magnetic properties and now includes some fast-
developing theoretical and computational areas such as real-time
electron dynamics and a relativistic electronic structure of periodic
systems, pursued mainly by the younger team members (L.K. and
M.K.).

Currently, ReSpect supports a variety of exchange–correlation
(XC) functionals and basis sets suitable for relativistic property cal-
culations. Basis sets are of uncontracted form and built with prim-
itive Gaussian-type functions. The standard sets in the ReSpect
database range in quality from minimal double-zeta to very large
quadruple-zeta plus polarization. To maximize performance, vari-
ous advanced computational techniques have been implemented in
ReSpect, such as a vectorized and parallel integral library InteRest,
an efficient and parallel XC numerical integrator, RI-J technology
for the two-electron Coulomb problem, and hybrid Message Passing
Interface (MPI)/OpenMP parallelization.

ReSpect is distributed as proprietary software at no cost
and is currently available as OpenMP parallel static binaries for
Linux OS and x86_64 architecture on the program’s home website:
http://www.respectprogram.org. The program is limited to non-
commercial, academic, and non-profit private use. More specific
license terms, in addition to the documentation, user manuals, and
tutorials, are available on the program’s homepage. A comprehen-
sive list of functionalities that are either part of the current stable
release or are in the performance optimization phase (the beta ver-
sion) is given in Table I. Estimates for the dates of forthcoming pub-
lic releases of novel features are provided on the ReSpect homepage.

The rest of this paper is organized as follows: in Sec. II, we
provide some technical information about the underlying theoret-
ical basis on which the functionality and efficiency of the ReSpect
program is based. The reader more interested in the chemistry that
can be studied with the program may choose to skip this section.
In Sec. III, we outline how the molecular Kohn–Sham determinants
and densities are optimized and give some illustrative examples
of the systems that can be addressed by ReSpect. Section IV pro-
vides a similar overview for the solid-state functionality of ReSpect.
Section V gives an overview of the functionality for calculating
electron paramagnetic resonance (EPR) parameters, and Secs. VI
and VII provide an overview of the calculation of nuclear mag-
netic shielding (NMR) properties for closed-shell and open-shell
molecules, respectively. Sections VIII–X describe how dynamic,
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TABLE I. List of properties implemented in ReSpect alongside the specification of
Hamiltonians, theoretical methods, Kramers-restricted/unrestricted formalisms, and
literature references. Abbreviations in alphabetical order: DR, damped response
TDDFT; EAS, electronic absorption spectroscopy; ECD, electronic circular dichro-
ism; EE, excitation energies; EFG, electric field gradient; KR, Kramers-restricted; KU,
Kramers-unrestricted; LR, linear response TDDFT; NSR, nuclear spin-rotation con-
stant; ORD, optical rotatory dispersion; PCM, polarizable continuum model; PT1/2,
static perturbation theory of the first/second order; RT, real-time TDDFT; and ZFS,
zero-field splitting. The boldface values refer to a different spectroscopy classes.

Property Hamiltonian Method KR KU Reference

Self-consistent field (SCF)

Molecular 1c, 2c, 4c ✓ ✓

Solid-state 1c, 4c ✓ 28

Electron paramagnetic resonance (EPR)

g-tensor 4c PT1 - ✓ 29 and 30
A-tensor 4c PT1 - ✓ 31 and 30
ZFS 4c LR - ✓ This work

Nuclear magnetic resonance (NMR)

σ-tensor 4c PT2 ✓ - 32 and 33
J-tensor 4c PT2 ✓ - 34

Paramagnetic nuclear magnetic resonance (pNMR)

σ-tensor 4c PT2 - ✓ 35 and 36
J-tensor 4c PT2 - ✓ This work

Optical properties

EE/EAS 1c, 2c, 4c RT ✓ ✓ 37
1c, 2c, 4c DR ✓ 38
1c, 4c LR ✓ ✓ 39, this work

Polarizability 1c, 2c, 4c RT ✓ ✓ 40
1c, 2c, 4c DR ✓ 38
1c, 4c LR ✓ ✓ 39, this work

X-ray EAS 1c, 2c, 4c RT ✓ ✓ 41
1c, 2c, 4c DR ✓ This work

Rad. lifetimes 1c, 4c LR ✓ ✓ 39, this work

Natural chiroptical properties

ECD 1c, 2c, 4c RT ✓ ✓ 42
1c, 2c, 4c DR ✓ 38

ORD 1c, 2c, 4c RT ✓ ✓ 42
1c, 2c, 4c DR ✓ 38

Additional properties

EFG 1c, 2c, 4c PT1 ✓

Mossbauer 1c, 2c, 4c PT1 ✓

NSR 1c, 4c PT2 ✓ 43 and 44

Continuum solvent model

PCM 1c, 2c, 4c ✓ ✓ 45 and 46

linear-response properties can be obtained using the ReSpect imple-
mentation of real-time, damped response of linear response time-
dependent density functional theory. Finally, some concluding
remarks are given in Sec. XI.

II. GENERAL

The relativistic description of many-electron systems poses sev-
eral theoretical and technical challenges, in particular, those asso-
ciated with the choice, design, and algebraic manipulation of basis
sets suitable for relativistic calculations involving electric and mag-
netic fields. The necessity of using kinetically/magnetically balanced
basis introduces additional theoretical and algorithmic challenges
associated with the efficient evaluation and processing of elec-
tron repulsion integrals. In addition, to fully capture spin–orbit
coupling effects and to ensure rotational invariance of the total
energy, the standard non-relativistic collinear parameterization of
DFT functionals is no longer adequate. To effectively deal with the
increased complexity of relativistic theory, several advances have
been made in the ReSpect program. The main goal of this sec-
tion is to highlight these fundamental theoretical and technical
concepts.

As discussed throughout this work, the unique ability of the
ReSpect program is to treat both closed- and open-shell systems
at the relativistic level. However, in the relativistic DFT frame-
work with spin–orbit included variationally, it is somewhat unfor-
tunate to refer to a Kohn–Sham (KS) determinant as a closed-shell
or an open-shell. In this work, therefore, we will use “closed-shell
KS determinant” to mean a single-determinant Kramers-restricted
wave function and “open-shell KS determinant” to mean a single-
determinant Kramers-unrestricted wave function. In this termi-
nology, closed-shell systems have a non-degenerate ground state
with a time-reversal symmetric density matrix, and open-shell sys-
tems have a degenerate ground state with a density matrix with-
out any time-reversal symmetry. For the sake of simplicity of lan-
guage, throughout this paper, we use “Kohn–Sham determinant”
to mean the determinant of a reference system of non-interacting
electrons.

Unless otherwise stated, the Hartree system of atomic units will
be employed, setting the elementary charge, the electron rest mass,
and reduced Planck’s constant to unity. Throughout this paper,
Einstein’s implicit summation over repeated indices is assumed.

A. Dirac–Coulomb and X2C Hamiltonians

The ReSpect program utilizes the four-component (4c) many-
particle Dirac–Coulomb (DC) Hamiltonian, composed of a sum of
the single-particle Dirac Hamiltonian ĥD and the two-particle inter-
action Hamiltonian derived from the non-relativistic instantaneous
Coulomb interaction ĝ(r1, r2) ≙ 1/∣r1 − r2∣ between N particles,

Ĥ ≙
N

∑
i

ĥ
D
i +

1

2

N

∑
i≠j

ĝ(ri, rj). (1)

Within the Born–Oppenheimer approximation, ĥD describes a rela-
tivistic spin-1/2 particle with charge qmoving in R

3 and interacting
with an external electrostatic scalar potential ϕ(r) due to the fixed
atomic nuclei,1,2

ĥ
D
≙ (β − I4)c2 + c(α ⋅ p) + qϕ(r)I4
≙

⎛
⎝
qϕ(r)I2 c(σ ⋅ p)
c(σ ⋅ p) (qϕ(r) − 2c2)I2

⎞
⎠.

(2)
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Here, In is the n × n identity matrix, c ∼ 137 is the speed of light,
r ∈ R3 is the particle position vector, and p = −i(∂x, ∂y, ∂z) is the
canonical momentum operator. In 1928, Dirac introduced four new
dynamical variables,1,2

β ∶≙
⎛
⎝
I2 02

02 −I2

⎞
⎠, α ∶≙

⎛
⎝
02 σ

σ 02

⎞
⎠, (3)

in order to formulate a relativistic quantum-mechanical equation
of motion for an electron subjected to an electromagnetic field.
These new variables, the so-called Dirac matrices, fulfill the anti-
commutation rules

∥αk,β∥+ ≙ 0, ∥αk,αl∥+ ≙ 2δklI4 (4)

and are customarily constructed using the two-component (2c)
Pauli spin matrices

σ1 ∶≙ (0 1

1 0
), σ2 ∶≙ (0 −i

i 0
), σ3 ∶≙ (1 0

0 −1
). (5)

The properties and the physical interpretation of the Dirac Hamil-
tonian can be found in several standard textbooks6,7,47,48 and will
therefore not be covered extensively here. Instead, we will summa-
rize some important points that are of relevance for the rest of this
paper.

1. Energy spectrum of ĥ
D

In the absence of an external potential ϕ(r) in the Dirac Hamil-
tonian, the solution of the time-independent Dirac wave equation,

[βc2 + c(α ⋅ p)]ψ ≙ Eψ, (6)

gives a continuous spectrum of scattering states lying in two dis-
joint energy intervals (−∞, −c2⟩ and ⟨c2,∞). In contrast, the pres-
ence of an attractive interaction potential in Eq. (6), such that the
potential energy of interaction of the electron (q = −1) with the
external field ⟨V⟩ ∶≙ ⟨qϕ⟩ is within 0 > ⟨V⟩ > −2c2, gives rise to a
countable set of discrete electronic bound states in the energy region
c2 > E > −c2.49 These bound eigenstates are of importance for rel-
ativistic quantum chemistry and bear the form of four-component
functions in the complex linear space C4—the Dirac spinors

ψ(r) ≙ ⎛⎝
ψL

ψS

⎞
⎠ ≙
⎛⎜⎜⎜⎜⎜⎜⎝

ψ1

ψ2

ψ3

ψ4

⎞⎟⎟⎟⎟⎟⎟⎠
∈ C

4(R3). (7)

The notation in terms of the 2c large-component (ψL) and small-
component (ψS) Pauli spinors reflects the relative size of these
components—ψL is of the orderO(c0) and gives the dominant con-
tribution to the positive-energy solutions, whereas ψS is a factor c
smaller (and vice versa for the negative-energy solutions).

2. Nuclear model

In non-relativistic theory, the external electrostatic scalar
potential ϕ(r) is often given in terms of a point-charge nuclear
model (pn),

ϕpn(r) ≙ M

∑
A

ZAϕ
pn
A (r) ≙ M

∑
A

ZA∣r − RA∣ , (8)

where the summation runs over M fixed nuclei, each characterized
by a nuclear charge Z and a position vector R. An advantage of
this model is that it has the same form for all nuclei, independent
of their nuclear mass. However, the use of a point-charge nuclear
model in relativistic calculations results in a weak singularity in the
electronic wave function at the nucleus (the wave function remains
normalizable), and not a cusp as in the non-relativistic case. Since
the weak singularity cannot be described by the conventional finite
basis sets of Slater or Gaussian type, the point-charge model is
replaced by a finite-sized nuclear model (fn) that results in a regu-
larized wave function at the origin. For integral efficiency reasons,
ReSpect adopts the finite-size nuclear model of Gaussian type, with
a parameterization according to Ref. 50,

ϕfn(r) ≙ M

∑
A

ZAϕ
fn
A (r) ≙ M

∑
A

ZA ∫ GA(∣R − RA∣)∣r − R∣ d
3
R. (9)

Here, GA refers to a normalized s-type Gaussian function

GA ≙ (ηA
π
)3/2 exp∥−ηA(R − RA)2∥, (10)

with an element-specific exponent ηA related to the nuclear mass of
the element.50

3. Exact two-component (X2C) Hamiltonian

The higher computational cost traditionally associated with
solving the 4c Dirac equation has motivated the development of
the computationally less demanding quasirelativistic 2c Hamiltoni-
ans. Of these, X2C has gained popularity in recent years because
it reduces the original 4c problem to its 2c form at the expense of
applying only simple algebraic manipulations, without the need for
generating explicit operator expressions for higher-order relativis-
tic corrections and/or property operators.51–53 While the computa-
tional cost of any 2c approach with full picture-change-transformed
one- and two-electron integrals is even higher than the parent 4c
problem, the main efficiency gain comes from the additional
approximation of neglecting this picture change transformation for
the two-electron integrals. This approximation is also adopted in
ReSpect. The current implementation of X2C utilizes the one-step
noniterative X2C decoupling procedure of Ilias and Saue53 and
facilitates block diagonalization of the one-electron Dirac Hamilto-
nian represented in a restricted kinetically balanced (RKB) spinor
basis hD,

h
D
→ h

X4C
≡ U

†
h
D
U ≙
⎛
⎝
hX4C+ 0

0 hX4C−

⎞
⎠→ h

X2C
≡ h

X4C
+ . (11)

The unitary decoupling matrix U is obtained from the eigenvectors
of hD by solving a simple set of algebraic equations. More details
about the X2C implementation in ReSpect are provided in Ref. 40.

B. Restricted kinetically balanced (RKB) basis

The search for single-particle eigenfunctions [Eq. (7)] of the
Dirac Hamiltonian is performed in ReSpect in the space spanned
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by 4n basis spinors {χ1a(r), . . . , χ4a(r)}na=1,
ψ(r) ≙ n

∑
a=1

C
1
aχ

1
a(r) + C

2
aχ

2
a(r) + C

3
aχ

3
a(r) + C

4
aχ

4
a(r), (12)

where n refers to the size of a scalar basis and C1−4
a ∈ C are dis-

tinct scalar expansion coefficients defined in the field of complex
numbers. The four different terms in Eq. (12) reflect the spin and
charge degrees of freedom associated with the particle in question.
If ψ(r) denotes an electronic solution of the Dirac equation, then
the large-component basis spinors χ1a(r) and χ2a(r) can, just as in
the non-relativistic realm, be constructed as a direct product of a
scalar real-valued spatial function fa(r) ∈ R(R3) and a spin vector
in R

4,

χ1a(r) ∶≙ N L
a

⎛⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

⎞⎟⎟⎟⎟⎟⎟⎠
fa(r) ∈ R4(R3),

χ2a(r) ∶≙ N L
a

⎛⎜⎜⎜⎜⎜⎜⎝

0

1

0

0

⎞⎟⎟⎟⎟⎟⎟⎠
fa(r) ∈ R4(R3).

(13)

In this notation, we select the eigenvectors of the Pauli spin zmatrix
as the spin basis and f a(r) as the spatial basis. In ReSpect, f a(r) is
chosen to be an ordinary non-relativistic scalar basis function of the
Gaussian type. The normalization factor N L

a ∈ R > 0 is obtained
from the orthonormality condition,

∫
R3
(χka(r))†χlb(r) d3r ≙ δabδkl; k, l ∈ 1 − 4, (14)

where (χka)† denotes complex conjugation and transposition of

χka . For k ∈ 1, 2 and non-zero f a(r), the normalization condition
reduces to the evaluation of the reciprocal square root of the overlap
integrals.

The two remaining spinors χ3a(r) and χ4a(r) in Eq. (12) form
the basis for the small-component ψS in Eq. (7), and their contribu-
tion dominates in the solutions associated with a charge-conjugated
particle (positron). Early numerical experiments with the variational
solution of the Dirac equation in a strictly identical spinor basis
for both ψL and ψS resulted in severe shortcomings in the com-
puted kinetic energy that persisted even in the nonrelativistic limit.54

Schwarz and Wallmeier related this problem to an inadequate basis
representation of ψS to which they attributed the primary mecha-
nism of variational failures observed in the early days of relativis-
tic molecular calculations.55 As shown by Stanton and Havriliak,
the error in the kinetic energy can be significantly reduced if the
Dirac eigenstates are expanded directly in a finite basis satisfying
the so-called restricted kinetically balanced (RKB) relation.56 RKB
thus relates χ3a(r) and χ4a(r) to their large-component basis coun-
terparts defined by Eq. (13). In the absence of any electromagnetic
vector potential in the Dirac Hamiltonian, the RKB relation takes

the following operator form:56

Ô
RKB
∶≙

1

2c
α ⋅ p

≙
−i

2c

⎛⎜⎜⎜⎜⎜⎝

0 0 ∂z ∂x − i∂y

0 0 ∂x + i∂y −∂z

∂z ∂x − i∂y 0 0

∂x + i∂y −∂z 0 0

⎞⎟⎟⎟⎟⎟⎠
. (15)

Applying the RKB operator to the large-component basis spinors in
Eq. (13), one obtains the analytic expression for the basis spinors of
the small component,

χ3a(r) ≙ NaÔ
RKB

χ1a(r)

≙ N
S
a

⎛⎜⎜⎜⎜⎜⎝

0

0

−i∂z

∂y − i∂x

⎞⎟⎟⎟⎟⎟⎠
fa(r) ∈ C4(R3),

χ4a(r) ≙ NaÔ
RKB

χ2a(r)

≙ N
S
a

⎛⎜⎜⎜⎜⎜⎝

0

0

−∂y − i∂x

i∂z

⎞⎟⎟⎟⎟⎟⎠
fa(r) ∈ C4(R3),

(16)

written in terms of Cartesian derivatives of the scalar basis f a(r).
Here,N S

a ≡ NaN
L
a /(2c) is the small-component normalization fac-

tor derived from Eq. (14) whose evaluation requires the reciprocal
square root of the scaled kinetic energy integrals,

N
S
a ≙ [∫

R3
(∂fa(r)) ⋅ (∂fa(r)) d3r]−1/2 ∈ R > 0. (17)

A very important consequence of the preceding discussion is
the fact that the expansion in Eq. (12), together with the explicit form
for χ1a−χ

4
a derived from RKB, can be recast in a compact matrix form

[with the spinor components ψ2 and ψ3 swapped as compared to
Eq. (7)],

ψ(r) ≙ n

∑
a=1

X
RKB
a (r)Ca

≙

n

∑
a=1

⎛⎜⎜⎜⎜⎜⎜⎝

f La 0 0 0

0 −i∂z f
S
a 0 −(∂y + i∂x)f Sa

0 0 f La 0

0 (∂y − i∂x)f Sa 0 i∂z f
S
a

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝

C1
a

C3
a

C2
a

C4
a

⎞⎟⎟⎟⎟⎟⎟⎠
. (18)

Here, a short-hand notation for elemental scalar functions
f La ≡ N

L
a fa(r) and f Sa ≡ N

S
a fa(r) has been introduced. The matrix

notation for the basis in Eq. (18) provides not only a direct link
between the relativistic basis XRKB(r) ∈ C

n×4n(R3) and its non-
relativistic scalar counterpart f (r) ∈ Rn(R3) but also amathematical
foundation for introducing the relativistic RKB basis as real quater-
nion functions H2×2

R in R
3. This quaternion-based formalism has

J. Chem. Phys. 152, 184101 (2020); doi: 10.1063/5.0005094 152, 184101-5

Published under license by AIP Publishing

https://scitation.org/journal/jcp


The Journal
of Chemical Physics

ARTICLE scitation.org/journal/jcp

significant computational benefits, as we shall discuss later in this
section, which can be recognized by noting that every basis spinor in
Eq. (18) has a built-in time-reversal symmetric (TRS) structure, i.e.,

X
RKB
a ≡ X

RKB
a (r) ≙ ( A B

−B
∗

A
∗
)
a

∈ C
4×4
+ (R3), (19)

with elements

Aa ≡ Aa(r) ∶≙ ⎛⎝
f L(r) 0

0 −i∂z f
S(r)
⎞
⎠
a

∈ C
2×2(R3),

Ba ≡ Ba(r) ∶≙ ⎛⎝
0 0

0 −(∂y + i∂x)f S(r)
⎞
⎠
a

∈ C
2×2(R3).

(20)

Furthermore, there exists an algebraic isomorphism between the
algebra of 4 × 4 complex TRS matrices and the algebra of 2 × 2
quaternion matrices over the field of real numbers R, i.e.,
C

4×4
+ ≃ H

2×2
R , such that for every q ∈ C4×4

+ , it holds that

q ≙ ( q0 + iq1 q2 + iq3

−q2 + iq3 q0 − iq1
) ≃ q0 + q1i + q2j + q3k ∈ H

2×2
R . (21)

Here, q0, q1, q2, q3 are 2× 2matrices overR, and i, j, k are orthogonal
unit vectors inH, which satisfy the identities,

i
2
≙ j

2
≙ k

2
≙ ijk ≙ −1, (22)

and are represented inC2×2 by the product of the Pauli spin matrices
σ1, σ2, σ3 with the imaginary unit i,

i ≃ (i 0

0 −i
), j ≃ ( 0 1

−1 0
), k ≃ (0 i

i 0
). (23)

An essential consequence of this isomorphism is that it is possi-
ble to perform an isomorphic mapping of the relativistic TRS RKB
spinor basis XRKB

a (r) in Eqs. 19 and 20 into a real quaternion format,
qX

RKB
a (r),
X
RKB
a (r) ≃ q

X
RKB
a (r) ≙ 0

Xa +
1
Xai +

2
Xaj +

3
Xak ∈ H

2×2
R (R3), (24)

with the quaternion constituents defined as

0
Xa(r) ≙ R(Aa) ≙ ⎛⎝

f L(r) 0

0 0

⎞
⎠
a

∈ R
2×2(R3),

1
Xa(r) ≙ I(Aa) ≙ ⎛⎝

0 0

0 −∂z f
S(r)
⎞
⎠
a

∈ R
2×2(R3),

2
Xa(r) ≙ R(Ba) ≙ ⎛⎝

0 0

0 −∂y f
S(r)
⎞
⎠
a

∈ R
2×2(R3),

3
Xa(r) ≙ I(Ba) ≙ ⎛⎝

0 0

0 −∂x f
S(r)
⎞
⎠
a

∈ R
2×2(R3).

(25)

Note that the real quaternion format for the RKB basis can be
used as a starting point for formulating 4c electronic structure the-
ory in the algebra of quaternions. As discussed in Subsection I C,
the quaternion formalism can also be applied to relativistic bases
that satisfy the restricted magnetically balanced (RMB) condition.32

RMB plays an indispensable role in 4c calculations that involve an
electromagnetic vector potential as a perturbation.32–34

Let us conclude this section by introducing a compact nota-
tion for quaternions that will be useful in Secs. II C, II D, and III. It
utilizes the decomposition of qXa into a sum of a scalar and a vec-
tor, called the real part R(qXa) ≙ 0Xa and the pure part P(qXa)
≙

1Xai +
2Xaj +

3Xak. It is convenient to denote the pure part by a
boldface letter so that qXa ≙

0Xa + Xa.

C. Restricted magnetically balanced (RMB) basis

The coupling of a quantum molecular system to a classi-
cal static electromagnetic field derived from the time-independent
scalar potential ϕ(r) and vector potential A(r) is performed through
the principle of minimal electromagnetic coupling substitution,57

p → π = p + A/c, where the canonical momentum of an electron
p is substituted by the mechanical momentum π.

In relativistic electronic structure theory, the electromagnetic
coupling manifests itself in two ways. First, the gauge transforma-
tion of the vector potential by means of a scalar function Λ(r),
A → A + ∇Λ, results in a phase change of the Dirac spinors. As
advocated by London andDitchfield, it is necessary to directly incor-
porate this phase change into a finite basis to achieve gauge origin
independence of computational results and rapid convergence with
basis set size.58,59 In general, the modification to an elemental basis
function f a(r) (13) is

fa(r)→ fa(r,Λ) ≙ exp[− i
c
Λa] fa(r). (26)

In the case of a vector potential due to a uniform external magnetic
field B, the gauge function Λa has the following form:

Λa ≡ Λa(r) ≙ 1

2
∥B × (Ra − R0)∥ ⋅ r, (27)

and shifts the vector potential from an arbitrary gauge-origin R0 to
the origin Ra of f a. As a result, the final magnetic field-dependent
basis, often referred to as gauge-including atomic orbitals (GIAO) or
London atomic orbitals (LAO), leads to gauge-origin independent
results for molecular properties involving a uniform external mag-
netic field as perturbation.58,59 Second, the RKB coupling between
the large- and small-component basis should also be substituted by
a more general restricted magnetically balanced (RMB) operator32,34

in order to account for the effects of the minimal electromagnetic
coupling substitution,

Ô
RKB
→ Ô

RMB
≙

1

2c
α ⋅ π ≙ Ô

RKB
+

1

2c2
α ⋅ A. (28)

In fact, the development and implementation of the concept of
the RMB-GIAO basis was pioneered in the ReSpect program.32–34 In
practice, this required the utilization of field-dependent GIAOs for
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the large-component basis spinors,

χ1a(r,Λ) ∶≙ N L
a

⎛⎜⎜⎜⎜⎜⎝

1

0

0

0

⎞⎟⎟⎟⎟⎟⎠
fa(r,Λ) ∈ C4(R3),

χ2a(r,Λ) ∶≙ N L
a

⎛⎜⎜⎜⎜⎜⎝

0

1

0

0

⎞⎟⎟⎟⎟⎟⎠
fa(r,Λ) ∈ C4(R3),

(29)

embedded by an additional field-dependence through RMB for the
small-component basis spinors χ3a , χ

4
a ∈ C

4(R3),
χ3a ≡ χ

3
a(r,A,Λ) ≙ NaÔ

RMB
χ1a(r,Λ)

≙ N
S
a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝

0

0

−i∂z

∂y − i∂x

⎞⎟⎟⎟⎟⎟⎠
+
1

c

⎛⎜⎜⎜⎜⎜⎝

0

0

Az

Ax + iAy

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
fa(r,Λ),

χ4a ≡ χ
4
a(r,A,Λ) ≙ NaÔ

RMB
χ2a(r,Λ)

≙ N
S
a

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎜⎜⎜⎜⎜⎝

0

0

−∂y − i∂x

i∂z

⎞⎟⎟⎟⎟⎟⎠
+
1

c

⎛⎜⎜⎜⎜⎜⎝

0

0

Ax − iAy

−Az

⎞⎟⎟⎟⎟⎟⎠

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
fa(r,Λ).

(30)

Since ReSpect currently supports relativistic calculations ofmagnetic
properties that require linear response functions to either a uni-
form external magnetic field or nuclear magnetic dipole moments,
only the linear dependence of the basis spinors on these perturba-
tions is required. Therefore, truncation of the exponential phase to
first order, together with recasting the column vectors in Eqs. (29)
and (30) into a matrix form similar to Eq. (18), results in the final
expression for the RMB-GIAO basis-spinors,

Xa ≡ Xa(r,A,Λ) ≙ XRKB
a + X

RMB
a ∈ C

4×4(R3). (31)

The first RKB term (XRKB
a ) was already discussed in Sec. II B in terms

of real quaternions and time-reversal symmetry [see Eq. (19)]. In
contrast to RKB, the RMB term linear in A and Λ has a time-reversal
antisymmetric (TRA) matrix structure,

X
RMB
a ≡ X

RMB
a (r,A,Λ) ≙ ( C D

D
∗
−C
∗
)
a

∈ C
4×4
− (R3), (32)

with elements

Ca(r,A,Λ) ≙ 1

c

⎛
⎝
−iΛa f

L
a (r) 0

0 Λ
S
a,z f

S
a (r)
⎞
⎠ ∈ C2×2(R3),

Da(r,A,Λ) ≙ 1

c

⎛
⎝
0 0

0 (ΛS
a,x − iΛ

S
a,y)f Sa (r)

⎞
⎠ ∈ C2×2(R3),

Λ
S
a,k ≙ Ak − (∂kΛa) −Λa∂k, k ∈ x, y, z.

(33)

Similarly to Eq. (21), it is possible to establish an algebraic iso-
morphism between the algebra of 4 × 4 complex TRA matrices and
the algebra of 2 × 2 quaternion matrices over the field of pure imag-
inary numbers iR, i.e., C4×4

− ≃ H
2×2
iR , such that for every q ∈ C4×4

− , it
holds that

q ≙ (−q1 + iq0 −q3 + iq2

−q3 − iq2 q1 + iq0
) ≃ i∥q0 + q1i + q2j + q3k∥ ∈ H2×2

iR , (34)

where q0, q1, q2, q3 ∈ R
2×2. As a consequence, the RMB spinor

basis in Eqs. (32) and (33) can be mapped onto a pure imaginary
quaternion format

X
RMB
a ≃

q
X
RMB
a ≙ i∥4Xa +

5
Xai +

6
Xaj +

7
Xak∥ ∈ H2×2

iR (R3) (35)

with the following quaternion constituents 4−7Xa ∈ R
2×2(R3):

4
Xa(r,A,Λ) ≙ I(Ca) ≙ −1

c
(Λa 0

0 0
) f La (r),

5
Xa(r,A,Λ) ≙ −R(Ca) ≙ −1

c

⎛
⎝
0 0

0 Λ
S
a,z

⎞
⎠ f Sa (r),

6
Xa(r,A,Λ) ≙ I(Da) ≙ −1

c

⎛
⎝
0 0

0 Λ
S
a,y

⎞
⎠ f Sa (r),

7
Xa(r,A,Λ) ≙ −R(Da) ≙ −1

c

⎛
⎝
0 0

0 Λ
S
a,x

⎞
⎠ f Sa (r).

(36)

The unconventional labels for constituents of 4-7 were selected
on purpose, since it allows a uniform formulation of the general
field-dependent RMB-GIAO spinor basis in Eq. (31) in the abstract
algebra of complex quaternionsH2×2

C (also known as biquaternions),

Xa ≙ Xa(r,A,Λ) ≃ q
Xa(r,A,Λ)

≙ [(0Xa + i
4
Xa) + (1Xa + i

5
Xa)i + (2Xa + i

6
Xa)j

+ (3Xa + i
7
Xa)k] ∈ H2×2

C (R3), (37)

with 0−3Xa and
4−7Xa as defined in Eqs. (25) and (36), respectively.

Since an atomic basis of general symmetry can always be decom-
posed into the sum of TRS and TRA components, the abstract alge-
bra of complex quaternions presented here is capable of covering all
basis types with multicomponent character.

Note that the use of quaternion algebra for reducing the com-
putational complexity of relativistic 4c calculations has already been
advocated by several authors, with a primary focus either on matrix
diagonalization60–62 or on the handling of point group symmetry in
a relativistic framework.63 All these approaches, however, are lim-
ited to Kramers-restricted (closed-shell) molecular cases and thus
require only the algebra of real quaternions. In contrast, the present
approach is based on a generalized concept of complex quaternions
or biquaternions and formulates all basic ingredients such as basis
and algebraic operators in a uniform formalism. In our experi-
ence, a significant reduction in memory and arithmetic operations
can be achieved in this way. In ReSpect, complex quaternions have
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been applied in cases where the Kramers-unrestricted treatment
is indispensable, such as theories involving open-shell species,29–31

real-time electron dynamics,37,41,42 molecular properties,33–35,39 or
periodic systems.28

D. Evaluation and processing of relativistic electron
repulsion integrals (ERIs)

One matrix quantity that plays a very important role in the
design of efficient algorithms for the evaluation of relativistic elec-
tron repulsion integrals (ERIs) is the overlap distribution functionΩ.
In general, we define the matrix element Ωab of Ω associated with
the basis pair qXa ∈ H

2×2
C (R3) and qXb ∈ H

2×2
C (R3) as

Ωab ≡ Ωab(r,A,Λ) ∶≙ q
X

†
a(r,A,Λ) qXb(r,A,Λ) ∈ H2×2

C (R3). (38)

Here, qX†
a denotes transposition and complex quaternion conjugation

of the quaternion basis element qXa in Eq. (37). It is easy to prove
that transposition and complex quaternion conjugation in H

2×2
C is

equivalent to Hermitian conjugation inC4×4. Conjugation of a com-
plex quaternion results in a sign change in the pure part of H2×2

R as
well as in the real part ofH2×2

iR .
The overlap distribution function composed of a simple RKB

basis Eq. (24) has a time-reversal symmetric structure and thus
belongs toH2×2

R (R3). In this case, quaternion multiplication yields

ΩRKB
ab ≡ Ω

RKB
ab (r) ∶≙ (qXRKB

a )†qXRKB
b

≙
0
Xa

0
Xb + (Xa ⋅ Xb) − (Xa × Xb) ∈ H2×2

R (R3), (39)

where one can recognize the usual scalar and cross products in
the vector space R3. In fact, the cross product is responsible for H
being a non-commutative algebra. Note that we have followed here
the compact notation for quaternions introduced in the last para-
graph of Sec. II B. More importantly, there are only five non-zero
scalar elements in the definition of the final quaternion constituents
0−3Ω

RKB
ab ∈ R

2×2(R3),
0Ω

RKB
ab ≙

0
Xa

0
Xb + (Xa ⋅ Xb) ≙ ⎛⎝

f La f
L
b 0

0 (∂f Sa ) ⋅ (∂f Sb )
⎞
⎠,

1Ω
RKB
ab ≙ −(Xa × Xb)i ≙ ⎛⎝

0 0

0 ϵzkl(∂k f Sa )(∂l f Sb )
⎞
⎠,

2Ω
RKB
ab ≙ −(Xa × Xb)j ≙ ⎛⎝

0 0

0 ϵykl(∂k f Sa )(∂l f Sb )
⎞
⎠,

3Ω
RKB
ab ≙ −(Xa × Xb)k ≙ ⎛⎝

0 0

0 ϵxkl(∂k f Sa )(∂l f Sb )
⎞
⎠

(40)

where ϵ is the Levi-Civita symbol and k, l ∈ x, y, z. As we shall
discuss later, these five scalar elements form the fundamental build-
ing blocks of an algorithm for the efficient evaluation of relativistic
electron repulsion integrals. In addition, as pointed out by Dyall,64

the small–small elements of the scalar and cross products in ΩRKB,
when multiplied with a scalar multiplicative one-electron operator

and integrated over R3, can be associated with contributions to the
scalar and spin–orbit relativistic corrections, respectively.

Similarly toΩRKB, one can define the overlap distribution func-
tion linear in a vector potential A and a gauge function Λ as the
quaternion product between RKB (24) and RMB (35) basis elements,

ΩRMB
ab ≡ ΩRMB

ab (r,A,Λ) ∶≙ (qXRKB
a )†qXRMB

b

≙ i[0Xa
0
Xb + (Xa ⋅ Xb) − (Xa × Xb)] ∈ H2×2

iR (R3), (41)

ΩRMB has the time-reversal antisymmetric structure inherited from
the RMB basis, with the quaternion constituents consisting again
only of five non-zero scalar elements,

0Ω
RMB
ab ≙

0
Xa

0
Xb + (Xa ⋅ Xb)

≙
1

c

⎛
⎝
−Λb f

L
a f Lb 0

0 (∂f Sa ) ⋅ (ΛS
b f

S
b )
⎞
⎠ ∈ R2×2(R3),

1Ω
RMB
ab ≙ −(Xa × Xb)i
≙
1

c

⎛
⎝
0 0

0 ϵzkl(∂k f Sa )(ΛS
b,l f

S
b )
⎞
⎠ ∈ R2×2(R3),

2Ω
RMB
ab ≙ −(Xa × Xb)j
≙
1

c

⎛
⎝
0 0

0 ϵykl(∂k f Sa )(ΛS
b,l f

S
b )
⎞
⎠ ∈ R2×2(R3),

3Ω
RMB
ab ≙ −(Xa × Xb)k
≙
1

c

⎛
⎝
0 0

0 ϵxkl(∂k f Sa )(ΛS
b,l f

S
b )
⎞
⎠ ∈ R2×2(R3),

(42)

where Λ
S is an operator related to the vector potential and gauge

function and is defined in Eq. (33).
The discussed quaternion formalism of Ω significantly reduces

the time spent on evaluating and processing molecular integrals,
since it identifies a unique nonredundant set of scalar integral com-
ponents that enter into 4c theory. This formalism has therefore
been encoded into ReSpect’s integral library, called InteRest, which
is based on the Obara–Saika integration technique over Cartesian
Gaussians65 and allows the handling of various types of overlap
distribution functions. For instance, the electron–nuclear Coulomb
contribution to the Fockmatrix can be computed as the simple prod-
uct of a scalar multiplicative potential ϕ(r) and an arbitrary overlap
distribution function Ωab ∈ H

2×2
C (R3),

J
n
ab ≙ −∑

A

ZA ∫ ϕA(r)Ωab(r) d3r ∈ H2×2
C . (43)

Here, ϕA(r) is the external electrostatic scalar potential due to an
atomic nucleus A, bearing the form either of a point-sized, Eq. (8),
or of a finite-size nucleus model, Eq. (9).

The most computationally expensive part of InteRest, how-
ever, is associated with the evaluation 4c electron repulsion Coulomb
integrals (ERIs), which, for a generalΩ ∈ H2n×2n

C (R3), reads as
∥Ωab∣Ωcd∥ ≡∬ Ωab(r1)Ωcd(r2)

r12
d
3
r1d

3
r2 ∈ H

2×2
C ⊗H

2×2
C . (44)
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Here, ⊗ denotes the tensor product and r12 = |r1 − r2|. In the sim-
plest case ofΩ =ΩRKB and/orΩ =ΩRMB, a single 4c ERI requires the
evaluation and processing of 25 timesmore real scalar integrals than
the non-relativistic case. This should be compared with the factor of
100 presented by some authors and obtained by incorrectly assum-
ing that the small-component scalar functions f Sa are simply derived
for the RKB case as f Sa ≙ {∂xf La ,∂yf La ,∂zf La } and are used in this form
to evaluate all integral classes: [LL|LL], [SS|LL], [LL|SS], and [SS|SS].
In addition, the size of the integrals in these classes decays in powers
of c−2 and thus gradually decreases along the series

∥LL∣LL∥ > ∥LL∣SS∥ ∼ ∥SS∣LL∥ > ∥SS∣SS∥. (45)

Therefore, it is reasonable to exclude some computationally inten-
sive [SS|SS] contributions that are of the order O(c−4). For this
purpose, InteRest enables the use of the so-called one-center approx-
imation for [SS|SS], where all integrals from this class are discarded
unless the scalar functions defining [SS| (bra) as well as the scalar
functions defining |SS] (ket) share the same origin. This approxima-
tion is now the program’s default and leads to a speed-up of the ERI
evaluation by a factor of 2–3 for ΩRKB while introducing negligible
errors of about 10−5 Hartree in the total self-consistent field (SCF)
energies. Note that in contrast to some other approaches,66 the one-
center approximation treats the [SS|SS] integrals self-consistently
when evaluating the Coulomb and exchange Fock contributions
and does not rely on any pre-calculated small-component atomic
densities.

Let us conclude this section by defining a general algebraic rep-
resentation of the two-electron Coulomb interaction operator (G).
In the 4c DKS framework, as implemented in ReSpect, G includes
both the two-electron Coulomb (Je) and exchange (K) contributions,
with the elements

Gab ≙ J
e
ab + ξKab ∈ H

2×2
C , (46)

where ξ ∈ R is a scaling parameter associated with hybrid exchange–
correlation functionals. For pure DFT, ξ = 0, whereas for hybrid
DFT, 0 < ξ < 1. In the most general case of a one-electron reduced
density matrix D ∈ H2n×2n

C , the Coulomb and exchange interaction
terms are given by the expressions

J
e
ab ≙ ∥Ωab∣Tr{ΩcdDdc}∥
≙∬ Ωab(r1) 1

r12
Tr{Ωcd(r2)Ddc} d3r1d3r2 ∈ H2×2

C ,

Kab ≙ ∥Ωad∣Ddc∣Ωcb∥
≙∬ Ωad(r1)Ddc

r12
Ωcb(r2) d3r1d3r2 ∈ H2×2

C .

(47)

Here, Tr denotes a trace inH
2×2
C ,

Tr{} : H2×2
C → C, (48)

whose final values depend on the time-reversal symmetry of the
argument. For q ∈ H2×2

R in Eq. (21), Tr{q} = 2(0q11 +
0q22), whereas

for q ∈ H2×2
iR in Eq. (34), Tr{q} = 2i(4q11 +

4q22). It is important to
emphasize that the non-commutative nature of H forbids any rear-
rangement of the density and overlap distribution matrices in the
two-electron exchange expression (47). This also holds for complex
algebra in both the 2c and 4c frameworks.

In addition to the exact treatment of ERIs, all property mod-
ules of ReSpect are also equipped with an approximate ERI evalua-
tion technique based on the resolution of the identity (RI).67 In the
sense of Dunlap’s robust fit,68 RI allows the approximation of the

exact ERIs in Eq. (44) by ∥Ω̃ab∣Ωcd∥ in such a way that the residual
Coulomb-repulsion integral,

∥ΔΩab∣ΔΩcd∥ ≙ ∥Ωab∣Ωcd∥ − ∥Ω̃ab∣Ωcd∥, (49)

is bilinear in the errors ΔΩab and ΔΩcd. It is customary to approx-
imate the overlap distributions |Ωab] by a superposition of real,
scalar, atom-centered auxiliary basis functions |α]. We can then
write

∣ΔΩab ∥ ≙ ∣Ωab ∥ − cabα ∣α ∥. (50)

The individual expansion coefficients cabα are then obtained by min-
imizing the residual Coulomb-repulsion integral with respect to cabα .
This leads to a set of linear equations

∥α∣β∥cabβ ≙ ∥α∣Ωab∥, (51)

whose solution, when inserted into the expression for Je with
approximate integrals, gives

J
e
ab ≈ ∥Ωab∣α∥∥α∣β∥−1∥β∣Tr{ΩcdDdc}∥. (52)

An additional efficiency gain yielded by 4c RI, not present for its
non-relativistic counterpart, results from the possibility of using an
identical auxiliary basis for expanding both the large- and small-
component overlap distributions. This approach has been success-
fully examined in 4c SCF optimizations69–71 as well as in property
calculations in the static70,72 and the time domain.42

E. Noncollinear DFT potential and kernel

To fully capture spin–orbit coupling effects and to ensure rota-
tional invariance of the total energy in the relativistic framework, the
standard non-relativistic collinear parameterization of DFT func-
tionals is no longer adequate. In this section, we shall describe the
different strategies by which we seek to remedy this problem within
the generalized gradient approximation of DFT.

In this subsection, we assume the following: complex algebra,
the four-component flattened atomic orbital basis indices μ, ν, λ,
and τ (for more details, see Ref. 39), and if not otherwise speci-
fied, we indicate either matrix or vector quantities, depending on
the context, by bold font. In addition, Einstein’s implicit summation
over repeated indices is assumed. Furthermore, we use the auxiliary
variables vt and ktw ,

v
t
≙
∂εxc

∂t
, k

tw
≙

∂εxc

∂t∂w
, (53)

where εxc represents the exchange–correlation energy density. The
charge, ρ0, and the spin density, ρ, variables have the form

ρ0 ≙ (XRKB
μ )†XRKB

ν Dνμ, (54)

ρk ≙ (XRKB
μ )†Σk X

RKB
ν Dνμ, (55)
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where Σk is the four-component matrix composed of Pauli matrices,

Σk ≙ (σk 0

0 σk
), k ≙ 1, 2, 3, (56)

and the four-component overlap distributions are defined as

Ωm
μν ≙

∂ρm
∂Dνμ

, ∇Ωm
μν ≙

∂(∇ρm)
∂Dνμ

, m ≙ 0, . . . , 4. (57)

1. Noncollinear exchange–correlation energy

In the case of a time-reversal symmetric density matrix (closed-
shell Kramers-restricted KS determinant), the spin density and its
gradient vanish. The exchange–correlation energy then has the
particularly simple form

E
xc,cs
≙ ∫ εxc∥ ρ0,∇ρ0∥d3r. (58)

In the case of a density matrix without any time-reversal sym-
metry (an open-shell Kramers-unrestricted KS determinant), the
situation is more complex. In the non-relativistic (nr) spin-density
functional theory (SDFT), functionals of the generalized-gradient
approximation (GGA) are parameterized in terms of the electron
charge density and the z component of the spin density. The
exchange–correlation contribution to the molecular energy is then
defined as

E
xc,nr
≙ ∫ εxc∥ρ0,∇ρ0 ⋅∇ρ0, ρz ,∇ρz ⋅∇ρz ,∇ρ0 ⋅∇ρz ∥d3r (59)

or

E
xc,nr
≙ ∫ εxc∥ ρ0,∇ρ0, ρz ,∇ρz ∥d3r. (60)

However, the parameterization of the exchange–correlation energy
density, which depends only on the z component of the electron spin
density, is inadequate for theories that include spin–orbit coupling
effects. In such cases, the spatial and spin variables are not indepen-
dent, and the parameterization with collinear variables in Eq. (59) or
Eq. (60) gives results that lack rotational invariance with respect to
the rotation of the coordinate axis system.

To circumvent this problem, we employ the so-called non-
collinear ansatz, i.e., all functionals in the ReSpect program are bor-
rowed from collinear SDFT, with the collinear variables replaced
by the corresponding noncollinear ones. We use two different non-
collinear schemes for the calculation of the exchange–correlation
energy.

The first approach utilizes a technique where the z compo-
nent of the spin density, ρz , is replaced by its magnitude, |ρ| (see
Ref. 73); this is directly extended to GGA functionals by replacing
the gradient of ρz with the gradient of |ρ|,

ρz → ∣ρ∣, (61)

∇ρz → ∇∣ρ∣. (62)

Although the extension to GGA functionals in Eq. (62) results in
numerical instabilities in the evaluation of noncollinear DFT poten-
tials and kernels, it causes no problems for the calculation of the
exchange–correlation energy. Using the noncollinear variables in

Eqs. (61) and (62), the exchange–correlation energy has the form

E
xc,ut
≙ ∫ εxc∥n,∇n, s,∇s ∥d3r, (63)

where we define the auxiliary variables as n ≡ ρ0 and s ≡ |ρ|.
The second approach is based on the noncollinear ansatz intro-

duced by Scalmani and Frisch,74 which substitutes the variables in
Eq. (59) depending on the z quantization axis by more adequate
rotationally invariant variables,

ρz → s,

∇ρ0 ⋅∇ρz → f∇g,

∇ρz ⋅∇ρz → ∇ρk ⋅∇ρk,

(64)

where k = 1, 2, 3, g ≡ |g|, and g and f∇ are defined as

gk ≙ ∇ρ0 ⋅∇ρk,

f∇ ≙ sgn(g ⋅ ρ). (65)

The noncollinear exchange–correlation energy then becomes

E
xc,sf
≙ ∫ εxc∥n,∇n ⋅∇n, s,∇ρk ⋅∇ρk, f∇g ∥d3r. (66)

2. Noncollinear exchange–correlation potential

Here, again, we consider two cases: a time-reversal symmet-
ric density matrix (a closed-shell Kramers-restricted KS determi-
nant) and a density matrix without any time-reversal symmetry
(an open-shell Kramers-unrestricted KS determinant). In the first
case, the spin density and its gradient are zero everywhere, and the
noncollinear DFT potential has the form (l = 1, 2, 3)

V
xc,cs
μν ≙

dExc,cs

dDνμ
≙ ∫ (vnΩ0

μν + v
∇ln∇lΩ

0
μν)d3r. (67)

In the second case, the situation is more challenging because
of the numerical instabilities39,74 that affect the GGA part of the
noncollinear DFT functionals when the noncollinear ansatz for gra-
dients of the spin density described in Eq. (62) is used. There are two
approaches implemented in the ReSpect program, which resolve this
issue.

The first approach rotates the local axis system at each point in
space in such a way that the z axis is aligned with the direction of
the spin density, ρ(r). In this transformed axis system, the standard
collinear SDFT potential is first calculated and then rotated back to
the original axis system using a unitary matrix U(r) defined by the
vector ρ(r). For amore detailed discussion, see, for example, Refs. 44,
75, and 76. After this procedure, the noncollinear DFT potential has
the form

V
xc,ut
μν ≙

dExc,ut

dDνμ

≈ ∫ (vnΩ0
μν + v

∇ln∇lΩ
0
μν + v

s ρk
s
Ωk
μν + v

∇ls ρk
s
∇lΩ

k
μν)d3r,

(68)

with k, l = 1, 2, 3. Note that the first three terms in Eq. (68) are
variational, i.e., they arise from the chain rule involving the vari-
ables n,∇ln, and swhen evaluating the derivative of the noncollinear
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exchange–correlation energy [Eq. (63)] with respect to the density
matrix D. Because the same rotational matrix U(r) is used for the
back-transformation of both collinear functions vρz and v

∇lρz , the
last term in Eq. (68) is not variational, and thus, the second equality
in Eq. (68) is only approximate. Another problem is that all func-
tions vt in Eq. (68) are evaluated as vt(∇ls), where ∇ls is a func-
tion describing only the longitudinal change of the spin density by
projecting the vector ∇lρ onto the local direction of ρ, and there-
fore, the important transverse components of the gradients ∇lρ are
neglected.77

The second approach resolving numerical instabilities for
open-shell noncollinear DFT potentials is based on the noncollinear
variables defined in Eq. (64). In this case, the exchange–correlation
potential has the form

V
xc,sf
μν ≙

dExc,sf

dDνμ

≙ ∫ (vnΩ0
μν + v

s ρk
s
Ωk
μν + v

gnn 2∇lρ0∇lΩ
0
μν

+ vgss 2∇lρk∇lΩ
k
μν + v

gns f∇
gk
g
∇lρk∇lΩ

0
μν

+ vgns f∇
gk
g
∇lρ0∇lΩ

k
μν)d3r, (69)

where gnn ≡∇ρ0 ⋅∇ρ0, gns ≡ f∇g, and gss ≡∇ρk ⋅∇ρk. We pay special
attention to the evaluation of the exchange–correlation potential in
Eq. (69) in the limiting cases where the s or g functions approach
zero. A detailed description of this procedure is given in Ref. 39.

3. Noncollinear exchange–correlation kernel

In the case of the closed-shell Kramers-restricted reference
state, there are three types of noncollinear exchange–correlation
kernels available in the ReSpect program. We recommend using
the following formulation,78 because of its good performance in
LR-TDDFT calculations:39

K
xc,cs
μν,λτD̃τλ ≙

dVxc,cs
μν

dDτλ
D̃τλ

≙ ∫ {(knn ρ̃0 + k
n∇ln∇lρ̃0)Ω0

μν

+ (kn∇mn ρ̃0 + k
∇ln∇mn∇lρ̃0)∇mΩ0

μν

+ (kss ρ̃k + k
s∇ls∇lρ̃k)Ωk

μν

+ (ks∇ms ρ̃k + k
∇ls∇ms∇lρ̃k)∇mΩk

μν}d3r, (70)

where ρ̃0 and ρ̃ are the induced charge and spin density, respectively.
Note that if the perturbation is magnetic, the use of the magneti-
cally balanced basis in the evaluation of ρ̃0 and ρ̃ is mandatory (see
Sec. VI).

The second option is the exchange–correlation kernel used
until now in all applications of the ReSpect program (with the ana-
lytical evaluation of the kernel) to the prediction of NMR chemical
shifts, indirect nuclear spin–spin coupling constants, and nuclear

spin rotation constants,

K
xc,ut
μν,λτD̃τλ ≙ ∫ (kss ρ̃kΩk

μν + k
s∇ls ρ̃k∇lΩ

k
μν + k

s∇ls ∇l∣ρ̃∣
ρ̃

ρ̃kΩ
k
μν

+ k∇ls∇ms ∇l∣ρ̃∣∣ρ̃∣ ρ̃k∇mΩk
μν)d3r. (71)

The formulation of Eq. (71) follows the same procedure as used in
the derivation of the exchange–correlation potential (68), where the
local unitary transformation, U(r), is defined by the orientation of
the spin vector ρ̃.44 However, it was recently shown that the exten-
sion of this formulation to the calculation of excitation energies gives
unsatisfactory results.39 Although so far all test calculations per-
formed for magnetic properties have shown negligible differences
between the results obtained by the exchange–correlation kernels
Eqs. (70) and (71), we recommend reconsidering the use of the latter
and we keep it mostly for the reproducibility of previously published
scientific data.

The third option is to use an approximation where the gra-
dients of the charge and spin density are neglected in the evalua-
tion of the xc kernel for the closed-shell reference KS determinant,
regardless of the type of the DFT functional used. This approxima-
tion is known as the adiabatic local density approximation (ALDA).
The use of the ALDA kernel is not recommended in production
calculations,32 although it is useful for evaluating the effect of the
approximation on the final results, and for comparison with other
published results using this approximation. The ALDA noncollinear
exchange–correlation kernel has the simple form

K
xc,alda
μν,λτ D̃τλ ≙ ∫ {knn ρ̃0Ω0

μν + k
ss ρ̃kΩ

k
μν}d3r. (72)

Finally, for the case of the open-shell Kramers-unrestricted
reference state, we have recently implemented a noncollinear
exchange–correlation kernel that is consistent with the xc energy
equation [Eq. (66)] and xc potential equation [Eq. (69)].39 Expres-
sions for this noncollinear xc kernel are too lengthy to be compactly
presented in this work. In Ref. 39, we paid special attention to the
proper behavior of the noncollinear potential and kernel in the lim-
iting cases where the length of the ρ or g vectors approaches zero.
As a result, an important difference in the ReSpect implementation
as compared to other approaches is its increased numerical stabil-
ity, improved rotational invariance in the limiting cases, guaranteed
closed-shell limit, and treatment of systems with non-degenerate
and degenerate ground states on an equal footing.

III. MOLECULAR SCF

In the 4c relativistic Dirac–Kohn–Sham (DKS) DFT theory, the
SCF working equation for molecular systems takes the matrix form

FC ≙ SCϵ, (73)

where F and S are the Fock and overlap matrices, respectively, C
is the matrix of molecular orbital/spinor coefficients, and ϵ is a
diagonal matrix consisting of MO energies. For a scalar basis of
size n, the DKS equation is of size 4n × 4n and can be solved
either in the complex algebra C

4n×4n or in the quaternion alge-
bra H

2n×2n. ReSpect utilizes the former option as it greatly ben-
efits from existing optimized and parallel math libraries such as
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LAPACK/BLAS. The necessity of using special libraries highlights
the fact that the eigenvalue problem, which scales nearly cubically
with the system size, is 32 times larger than its non-relativistic coun-
terpart. Therefore, diagonalization can easily become bottlenecks in
our 4c calculations even for systems of medium size (∼50 atoms), in
particular, when utilizing the RI approach for Fock matrix builds.
Various attempts have been reported in the literature to reduce the
computational burden associated with the solution of the 4c eigen-
value problem, such as the diagonalization-free approach imple-
mented in ReSpect.79 In the case of the two-component X2C Hamil-
tonian, the eigenvalue equation is only 2n × 2n in size, and hence,
its solution poses a lesser computational challenge than the full 4c
treatment.

Additional computational complexity arises in 4c SCF in the
evaluation of the overlap and Fock operators in the RKB basis. Here,
ReSpect takes the full advantage of the quaternion algebra that is
explicitly built into the program’s integral library InteRest. The over-
lapmatrix S ∈ C4n×4n

+ in Eq. (73) is thus obtained from its quaternion
isomorphic image qS ∈ H2n×2n

R ,

Sab ≃
q
Sab ≙ ∫

R3

0Ωab(r) d3r ∈ H2×2
R . (74)

Obviously, qSab has non-zero elements only in its quaternion real
part when evaluated from the RKB overlap distribution function
qΩab [see also Eq. (39)]. Evaluation of the Fock matrix, on the other
hand, is significantly more elaborate and depends on the TR sym-
metry of the one-electron reduced density matrix D = CfC†. Here, f
stands for a diagonal matrix of occupation numbers.

In the absence of an external electromagnetic potential, the
density matrix of closed-shell molecular systems is Hermitian and
TR-symmetric, i.e., D ≙ D†

∈ C
4n×4n
+ . In the RKB basis, the Fock

matrix also obeys the same algebraic properties as D, and solutions
of Eq. (73) come in degenerate Kramers pairs. We shall commonly
refer to this case as being Kramers-restricted (KR). In actual KR cal-
culations, F ∈ C

4n×4n
+ is obtained from its quaternion isomorphic

image qF ∈ H2n×2n
R with the elements

Fab ≃
q
Fab ≙

0
Fab + Fab

≙
0
Fab +

1
Fabi +

2
Fabj +

3
Fabk ∈ H

2×2
R . (75)

Here, the real and pure quaternion parts read

0
Fab ≙

0
Tab +

0
J
n
ab +

0
J
e
ab∥qD∥ + 0

Kab∥qD∥ + 0
V

xc
ab∥qD∥,

(76)
Fab ≙ J

n
ab + J

e
ab∥qD∥ + Kab∥qD∥ +V

xc
ab∥qD∥,

where Tab, J
n
ab, J

e
ab, and Kab are the matrix elements of the kinetic,

nuclear–electron and electron–electron Coulomb, and Hartree–
Fock exchange energy operators introduced in Eqs. (43) and (47),
respectively. In the context of the SCF discussion, both qΩab and
qΩcd in Eq. (47) refer to the RKB basis as defined by Eq. (39). The
last term in Eq. (76) refers to the DFT noncollinear exchange–
correlation potential, details of which have already been discussed in
Sec. II E 2.

For open-shell molecular systems, ReSpect supports the
Kramers-unrestricted (KU) formalism in which the time-reversal
symmetry is no longer preserved and Kohn–Sham solutions do not
consist of degenerate Kramers partners. This effect is known in

non-relativistic theory as spin polarization and plays an essential
role in calculations of molecular core-level properties for open-shell
species, for instance, the EPR hyperfine coupling tensor. In the KU
approach, both the density matrix and the Fock matrix are Hermi-
tian and TR-general, and hence, the algebra of complex quaternions
H

2n×2n
C is required for their representation. Similarly to Eq. (37),

ReSpect calculates the KU Fock matrix elements Fab ∈ C
4×4 by

means of their quaternion isomorphic images qFab ∈ H
2×2
C ,

Fab ≃
q
Fab ≙

q
F
+
ab +

q
F
−

ab ≙
0
F
+
ab +

0
F
−

ab + F
+
ab + F

−

ab. (77)

The evaluation of the TR-symmetric Fock contribution qF
+
ab ∈ H

2×2
R

proceeds similarly to the KR case [Eq. (76)] and involves only the
TR-symmetric component of the density matrix qD+

∈ H
2n×2n
R ,

except for the exchange–correlation contribution, which depends on
the density matrix of both TR symmetries,

0
F
+
ab ≙

0
Tab +

0
J
n
ab +

0
J
e
ab∥qD+∥ + 0

Kab∥qD+∥ + 0
V

xc+
ab ∥qD∥,

F
+
ab ≙ J

n
ab + J

e
ab∥qD+∥ + Kab∥qD+∥ +V

xc+
ab ∥qD∥. (78)

Here, qV
xc+
ab refers to the TRS component of qV

xc
ab. The TR-

antisymmetric Fock contribution qF
−

ab ∈ H
2×2
iR arises, on the other

hand, through the Hartree–Fock exchange and XC potential only
and accordingly depends on both qD+

∈ H
2n×2n
R and qD− ∈ H2n×2n

iR ,

0
F
−

ab ≙
0
Kab∥qD−∥ + 0

V
xc−
ab ∥qD∥,

F
−

ab ≙ Kab∥qD−∥ + V
xc−
ab ∥qD∥. (79)

Note that the presence of the additional TR-antisymmetric Fock
contribution makes the KU 2c/4c SCF calculations, similarly to the
non-relativistic 1c case, twice as expensive as in the KR regime.
ReSpect is currently the only relativistic code that performs 4c
SCF calculations directly in the KU mode and thus includes spin-
polarization effects variationally right from the start. To decompose
the Hermitian and TR-general KU density matrixD ∈ C4n×4n,

D ≙ (D11 D12

D21 D22

), D11,D12,D21,D22 ∈ C
2n×2n, (80)

we follow the procedure discussed in Ref. 42 and map D onto
the matrix of complex quaternions in agreement with Eq. (37):
qD ≃ qD+ +qD− ∈ H2n×2n

C , where

q
D

+
≙

0
D + 1

Di + 2
Dj + 3

Dk,
q
D
−
≙ i(4D + 5

Di + 6
Dj + 7

Dk). (81)

The complex quaternion constituents 0−7D ∈ R2n×2n are given by

0
D ≙ R(D11 +D

∗
22)/2, 4

D ≙ I(D11 −D
∗
22)/2,

1
D ≙ I(D11 +D

∗
22)/2, 5

D ≙ −R(D11 −D
∗
22)/2,

2
D ≙ R(D12 −D

∗
21)/2, 6

D ≙ I(D12 +D
∗
21)/2,

3
D ≙ I(D12 −D

∗
21)/2, 7

D ≙ −R(D12 +D
∗
21)/2,

(82)

and because D is Hermitian, they have the following matrix proper-
ties:

k
D ≙

k
D

T
, l

D ≙ −
l
D

T
, k ∈ 0, 5, 6, 7; l ∈ 1, 2, 3, 4. (83)
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Summary: The SCF module of ReSpect (SCFun) currently
supports the following:

● Kramers-restricted and Kramers-unrestricted formalism for
1c (KS), 2c (X2C), and 4c (DKS) Hamiltonians,

● point and finite models for the nuclear charge,
● resolution-of-the-identity integral acceleration for the

Coulomb term (RI-J),42

● PCM solvent model,45,46

● diagonalization-free SCF approach,79

● initial guess based either on a superposition of atomic den-
sities or on a restart from approximate 1c/2c Hamiltonians,
and

● hybrid MPI/OpenMP parallelization.

Readers can find the up-to-date feature list on http://www.
respectprogram.org.

A. SCF application

To demonstrate the performance of the SCFun module in
ReSpect, we performed a ground state SCF optimization for
trans-[PtCl2(N–Adam@CB7)2], where Adam stands for adaman-
tane and CB7 for cucurbit[7]uril, using the Perdew-Burke-Ernzerhof
(PBE) functional,80,81 RI-J,42 and either the scalar relativistic DKH2
(1c), two-component X2C (2c), or four-component Dirac–Coulomb
(4c) Hamiltonian. Uncontracted basis sets of double-ζ quality were
employed: dyall-vdz82,83 for Pt and Dunning’s cc-pVDZ84 for the
remaining light elements. In total, the molecular system contained
311 atoms and 6283 scalar Cartesian GTOs, corresponding to 12 566
2c or 25 132 4c basis spinors. The structure of the studied system is
depicted in Fig. 1.

Figure 2 compares wall-clock times spent in a single SCF iter-
ation on the computationally most intensive SCF steps, namely,

FIG. 1. The molecular structure of trans-[PtCl2(N–Adam@CB7)2] used to explore
the SCF performance in ReSpect (see Fig. 2).

FIG. 2. Wall-clock time per one SCF iteration spent on the matrix diagonalization
(diag), and the evaluation of the two-electron Fock (eri) and DFT exchange–
correlation (xc) terms. The OpenMP parallel calculations were performed with the
scalar relativistic DKH2 (1c), two-component X2C (2c), and four-component Dirac–
Coulomb (4c) Hamiltonians on a single dual-socket computer node equipped with
a 2.50 GHz Intel Xeon E5-2680v3 processor with 24 CPU cores and 128 GB of
memory. The Intel ifort 17.0 compiler with -O2 optimization and the parallel Intel
MKL library were used for compilation and linking.

the evaluation of the two-electron Fock (eri) and DFT exchange–
correlation (xc) terms and the matrix diagonalization (diag). The
wall-clock time for the diagonalization step increases (nearly) cubi-
cally with thematrix dimension, as it is expected for a process involv-
ing dense matrices. This is the case for the transition from 2c to 4c,
whereas an additional pre-factor of about 4 arises in the step from 1c
to 2c. This pre-factor can be explained by the change of algebra from
real (1c) to complex (2c).

Interestingly, the wall-clock time spent on eri and xc is almost
identical for 1c and 2c. This is because the two-electron Coulomb
algorithm can be designed such that all computationally intensive
parts are identical for 1c and 2c. The entire difference in the total
computational cost here is thus due to diag, which is the time-
determining step in 2c. In total, the 2c approach is just a factor of
3.2 more expensive than 1c for the studied system. On going from
2c to 4c, the time spent on eri and xc increases only by a factor of
2.7 and 4.9, respectively, which is the result of the extra computa-
tions associated with the presence of a small-component RKB basis
in 4c. The already-dominant diag grows still further in 4c by a factor
of 6.5. However, this is good news for molecular property calcula-
tions where the diagonalization step is absent and almost the entire
computational cost is that of rebuilding the Fock matrix. Since our
interest lies in property calculations, and the 4c Fock construction
can cost only as little as 3.4 times more than 1c, we may abandon
the (still widespread) opinion of the infeasibility of fully relativistic
approaches.

IV. SOLID-STATE SCF

Systems in the solid state exhibit a discrete translation invari-
ance, i.e., are periodic (and infinite) in one, two, or three spa-
tial dimensions. The Fock operator and the electron density are
invariant with respect to translations by a Bravais lattice vector
R.85 Since most properties of solids are determined by the valence
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and conduction-band electrons, the majority of electronic structure
codes employ pseudopotentials with plane waves to mitigate the
increased computational cost that is inherent in DFT simulations of
periodic systems. However, the periodic SCF recently implemented
in ReSpect28 uses GTOs for all electronic states, treating all Kohn–
Sham orbitals on an equal footing. Combining such an all-electron
approach with relativistic theories offers several advantages. First,
the locality of the real-space GTO basis can be exploited to obtain
algorithms whosememory and computational cost increase only lin-
early with the system size.86,87 Second, direct access to all-electron
wave functions makes it possible to study core-related properties
of solids, such as x-ray spectroscopy and NMR parameters, with-
out the need to use additional partial-wave basis functions (as in the
projector-augmented wave method88,89) to recover the core region.
Third, GTOs allow for molecules and solids to be treated within a
single theoretical framework, transferring concepts and tools from
molecules to the solid-state domain.

A. Periodic SCF theory

Translation invariance requires a number of modifications to
themolecular SCF procedure described in Sec. III. The SCF equation
acquires a dependence on the reciprocal lattice vector k ∈ K that
labels irreducible representations of the translation group. Here, K
denotes the 1st Brillouin zone. Therefore, thematrix form of the SCF
equation for periodic systems takes the form

F(k)C(k) ≙ S(k)C(k)ϵ(k), (84)

where F(k) and S(k) are the Fock and overlap matrices, respectively,
C(k) is the 4c matrix of crystalline orbital (CO) coefficients—the
solid-state analog of theMO coefficients [see Eq. (73)]—and ϵ(k) is a
diagonal matrix containing the band energies. The Fock and overlap
matrices are expressed using the symmetry-adapted 4c basis,

Xa(k; r) ≙ 1√∣K∣∑R e
ik⋅R

Xa(r − R), (85)

where we replicate and translate the 4c atom-centered basis func-
tions Xa ≡ XRKB

a ∈ C
4×4
+ (R3) from Eq. (19) to each unit cell located

at a lattice site R. This construction ensures that both the Bloch con-
dition and the RKB condition are satisfied at the level of the basis.
The COs ψi(k; r) are then expanded in this basis as

ψi(k; r) ≙ n

∑
a=1

Xa(k; r)Cai(k), (86)

where n is the number of scalar basis functions in a unit cell. All
matrices that enter Eq. (84) are block-diagonal in reciprocal space,
i.e., the matrices evaluated for different k points are independent.
For each k, therefore, solving Eq. (84) proceeds in the same man-
ner as in the molecular case. However, it is sufficient to construct
the direct inversion in the iterative subspace (DIIS) error vectors
(e ≡ ∥F,D∥) only for the Γ (k = 0) point.87,90 The updated real-space
density matrix D is assembled using CO coefficients of all k points
as a quadrature

DaR,b0 ≙
1∣K∣ ∫K e

ik⋅R(C(k)f(k)C†(k))
ab
d
3
k, (87)

where f is the diagonalmatrix of occupation numbers obtained as the
zero-temperature limit of the Fermi–Dirac distribution. The inte-
gral over K is evaluated on a uniform mesh of k points with equal
weights.

During each SCF cycle, the density matrix is used to compute
the Fock operator in real space. Employing the real-space basis func-
tions together with their periodic images Xa(r − R), one would have
to evaluate N2n2 matrix elements for each operator, where N is
the (formally infinite) number of unit cells. However, translation-
ally invariant operators A (such as the Fock operator or the over-
lap matrix) exhibit a Toeplitz structure AaR ,bR′ = Aa0 ,bR′−R, which
reduces the number of nonequivalent matrix elements to Nn2. Fur-
thermore, the product of two GTOs X†

a(r)Xb(r − R) decays expo-
nentially with increasing distance between the basis function cen-
ters. This enables a very sparse storage of matrix elements, with
the number of significant matrix elements increasing only linearly
with system size. This data compression is essential to dramatically
reduce the memory cost of solid-state simulations in the 4c periodic
SCF module of the ReSpect code. We evaluate the overlap integrals,
neglecting the angular part of the basis functions in order to iden-
tify and store a list of significant shell pairs before initiating the loop
over SCF cycles. Since the reciprocal-space matrices are calculated
on-the-fly for each individual k point, our current implementation
will only reach the memory limit of standard HPC clusters if one
such matrix becomes too large (e.g., for 4c calculations of unit cells
with a very large number of atoms). Therefore, ground-state opti-
mizations of the electronic structure of solids are not more memory
demanding than for single molecules.

Periodic SCF in ReSpect operates in the KR regime, i.e., TR
symmetry is assumed for all operators. Contributions to the 4c
real-space Fock matrix [kinetic operator, Coulomb interactions,
and exchange–correlation (XC) term] are formulated and calcu-
lated entirely using quaternion algebra (see Sec. II),28,42,61 which
significantly reduces the number of computations required at the
4c level of theory. Combining the translational symmetry with the
TR symmetry gives the following structure of the real-space Fock
matrix:

Fa0,bR ≙ ( A B

−B
∗

A
∗
)
a0,bR

. (88)

Using the product of two quaternion RKB-basis elements Ωa0,bR(r)
≡

qX
†
a(r)qXb(r−R) ∈ H2×2

R (R3), as defined in Eq. (39), we can write
the Coulomb term as

J
e
a0,bR ≙∑

R′
∫
R3×R3

Ωa0,bR(r1)ρ̃(r2)∣r1 − r2 − R′∣ d
3
r1d

3
r2, (89)

where

ρ̃(r) ≡∑
R

Tr∥Ωa0,bR(r)DbR,a0∥ (90)

is the auxiliary electron density and Tr denotes the quaternion trace
in H

2×2
R , which is a special case of the trace defined in Eq. (48). In

order to evaluate the infinite long-range lattice sums of electrostatic
interactions ∑R′ in Eq. (89), we employ the multipole expansion of
the Coulomb 1/r12 operator91 and the renormalization procedure
applied to the lattice sums of interaction tensor elements.92,93 The
integration grid used for calculating the XC contribution, as well as
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the construction of the XC term itself, is adapted to respect the infi-
nite nature of periodic systems according to the scheme of Towler
et al.94 Further details on our implementation can be found in
Ref. 28.

The reciprocal-space Fockmatrix is obtained from Fa0 ,bR as the
Fourier series,

Fab(k) ≙∑
R

e
ik⋅R

Fa0,bR. (91)

The TR symmetry of the real-space matrix elements [Eq. (88)] leads
to the following matrix structure in reciprocal space:

F(k) ≙ ( A(k) B(k)
−B
∗(−k) A

∗(−k)). (92)

Note that, despite assuming the TR symmetry, the k-space Fock
matrix formally has a KU structure for each individual k point
because, in general, A(k) ≠ A(−k) and B(k) ≠ B(−k). As a conse-
quence, the eigenspectrum of F(k ≠ 0) does not consist of degenerate
Kramers partners. The spin splitting due to the lifted degeneracy
of Γ point, ϵ̄(0) ≙ ϵ(0), for an arbitrary k point, ϵ̄(k) ≠ ϵ(k), is
known as the Dresselhaus effect95 in bulk materials and the Rashba
effect96 in two-dimensional surfaces and interfaces. Similarly to the
KU case described in Sec. III, the k-space Fock matrix is TR-general
and requires the use of complex quaternion algebra HC,

28,42 i.e.,
F(k) ∈ H2n×2n

C . Finally note that the TR symmetry of the real-space
Fock matrix (88) leads to Kramers partners being each part of a
different eigenspectrum, F(k) and F(−k) with ϵ̄(k) ≙ ϵ(−k).

Summary: The periodic SCF module of ReSpect (pSCF) cur-
rently supports the following:

● Kramers-restricted formalism for 1c (KS) and 4c (DKS)
Hamiltonians,28

● LDA and GGA XC functionals,
● point and finite models for the nuclear charge,
● all-electron and full-potential setting,
● explicit periodicity for one-, two-, and three-dimensional

periodic systems,
● full k-point sampling of the Brillouin zone and the use of

irreducible unit cells with arbitrary geometries,
● construction of band-structure diagrams for arbitrary paths

consisting of line segments in k space and calculation of the
density of states,

● initial guess based on a superposition of atomic or molecular
densities or on a restart from an approximate 1c Hamilto-
nian, and

● hybrid MPI/OpenMP parallelization.

Readers can find the up-to-date feature list on http://www.
respectprogram.org.

B. User’s perspective on periodic SCF

The periodic SCF (pSCF) module is a standalone library in
ReSpect that shares most keywords and features with the molecular
SCF. As a result, the Hamiltonian, basis sets, XC integration grid,
nucleus model, convergence threshold, and DIIS parameters are
specified using the same keywords as for molecules. The geometry

block defines the atoms that constitute a unit cell. In addition, users
can provide lattice parameters in the lattice block, each line in
this block consists of at most three coordinates of one primitive

lattice vector that defines a periodic dimension, and the number of
k points associated with that dimension. This enables the definition
of arbitrary Bravais lattices and unit cell shapes. The total number
of periodic dimensions is given by the number of lines in this block,
which may range from 0 to 3. For instance, the lattice parameters of
a two-dimensional hexagonal periodic system with a 33 × 33 mesh
of k points are given as

lattice:

primitive1: 33 1.23 −1.50

primitive2: 33 1.23 1.50

The initial guess for the density in pSCF can be constructed
using a superposition of atomic densities. Alternatively, it is possible
to use a converged density matrix from molecular SCF. The default
values for the parameters required for the integral approximations
(screening and multipole expansion) are chosen to give the best bal-
ance between accuracy and performance. However, if needed, these
parameters can be adjusted in the input block called peri.

The pSCF solver backs up the density matrix on the hard drive
every couple of iterations. This backup can be used to restart the
solver from the stored density matrix in case the previous calculation
was interrupted before finishing.

To obtain band-structure diagrams of periodic systems, pSCF

can calculate band energies ϵn(k) for arbitrary k points in the final
SCF iteration. Any path consisting of line segments in k space can
be set up by the user. For some crystal structures, preset paths are
available that traverse high-symmetry k points. The program then
evaluates and prints the energies for the k points across the given
path. Figure 3 illustrates such a diagram for the AgI crystal in the
face-centered cubic (fcc) phase together with the density of states
evaluated using all band energies. For two-dimensional periodic sys-
tems, it is possible to plot the bands ϵn(kx, ky) for all (kx, ky) ∈ K.
Figure 4 depicts such a surface plot for germanene (a heavier analog
of graphene) with a buckled honeycomb structure. Without spin–
orbit coupling, germanene is a semimetal—the valence and conduc-
tion bands touch at a set of isolated (Dirac) k points, forming Dirac
cones. Inclusion of spin–orbit coupling, however, opens a bandgap
between the cones and turns germanene into a two-dimensional
topological insulator.97

C. Example: Silver iodide

To demonstrate the capabilities of the pSCF module of ReSpect,
we calculated the ground state and the band structures of AgI
in the fcc crystal phase at the 4c level of theory.28 We employed
the uncontracted all-electron double-ζ-quality basis sets of Dyall,
dyall-dz.98,99 The unit cell contained 255 scalar Cartesian GTOs
(92 shells). The basis functions were replicated to form an 11 × 11
× 11 supercell, consisting of 2662 heavy atoms in total. The large size
of the supercell is due to diffuse functions in the basis set that extend
through several unit cells in each direction and thus give a non-
negligible contribution to the overlap integrals. The total number
of significant shell pairs in the AgI supercell is 96 788.

Table II shows the memory required to store one 4c real-space
operator (Fock or density matrix) for AgI. Using straightforward
complex matrix data structures to store all elements of operators
within the given supercell consumes approximately 22 GB of mem-
ory. A significant saving is achieved by employing quaternion alge-
bra and by storing only nonzero elements of the quaternion-valued
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FIG. 3. Band-structure diagram for a path traversing high-
symmetry points in reciprocal space (left) and the density of
states (right) of AgI. The solid and dashed lines represent
the 4c and 1c levels of theory, respectively. The horizontal
dashed black line separates the occupied and the vacant
states.

matrix in H
2×2
R . Furthermore, the memory is reduced by an addi-

tional factor of 138 if only the significant basis-function pairs are
stored (see Sec. IV A). The linear scaling of the data structures
is crucial for molecular systems containing heavy elements with
many basis functions but becomes inevitable when studying periodic
systems with large unit cells.

Figure 5 depicts the scaling of the hybridMPI/OpenMP parallel
implementation of the method with respect to the number of cen-
tral processing units (CPUs) used. Each computational node has the
dual-socket 16-core architecture. We utilized 16 OpenMP threads
per socket and the Message Passing Interface (MPI) for inter-socket
and inter-node communication. The reduction of the total wall-
clock time (speedup) for both the Coulomb and XC contributions
exhibits a near-linear pattern, with a slope very close to the ideal
value even when 2048 CPUs (64 nodes) are used. Compared to a
similar figure we showed in Ref. 28, the XC term now displays the

FIG. 4. The highest occupied (blue) and lowest unoccupied (orange) bands of the
two-dimensional germanene. Dirac cones can be seen at two distinct Dirac points.
A small bandgap opens up between the valence and conduction bands at the Dirac
points when spin–orbit coupling is included in the calculation.

proper scaling behavior for larger numbers of CPUs. This is due to
a minor modification to the XC routine. Timings for the remaining
parts of the algorithm are negligible.

Solid-state calculations employing GTOs are often hampered
by numerical instabilities caused by the diffuse functions present in
common molecular basis sets,86,100 and all-electron basis sets opti-
mized for solid-state calculations are only available for light elements
(Z < 36).100 Approximations introduced for the evaluation of the
Fock matrix elements often break down when very small exponents
(<0.1) are used to express the periodic potential of an extended
system. These issues can be circumvented by removing the diffuse
functions from the basis.100–102 However, we found that deleting
the smallest exponents in the Ag basis produced errors as large as
1.2 eV for some bandgaps of AgI.28 For comparison, the relativis-
tic correction to the bandgap amounts to 1.1 eV, and the splitting
induced by spin–orbit coupling in high-symmetry k points in the
valence band reached 1.13 eV. In our earlier implementation, we
only experienced issues with diffuse functions in the 4c scheme,
where some of the negative-energy states intruded into the positive-
energy region. It was possible to obtain the proper ground state by
identifying the intruder states and leaving them vacant. We recently
found that this problem originated in the one-center approxima-
tion of the [ΩSS|ΩSS] integrals. We have not seen any problems
with this approximation when applied to molecules, although a
similar issue due to the combination of linear dependency and
the one-center approximation for two-electron integrals was noted

TABLE II. Memory requirements (in GB) of various data structure storage options for
the 4c real-space Coulomb and XC operators. The numbers are reported for AgI.

Storing

Scalar basis-function Multicomponent
pairs matrix elements Memory (GB)

All All in C
4×4 22

All Nonzero inH
2×2
R

3.5
Significant only Nonzero inH

2×2
R

0.025
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FIG. 5. Reduction of the wall-clock time needed for assembling the real-space
Fock matrix terms (Coulomb and XC) for one SCF cycle of the 4c AgI calculation
as a function of the number of CPUs used. The computational resources used for
this study range from 128 to 2048 CPUs distributed across several nodes, each
node containing 32 CPUs. The dashed line denotes the ideal linear scaling with
the number of computational resources.

for molecules by another study.103 Nevertheless, accurate treat-
ment of [ΩSS|ΩSS] integrals turned out to be essential for achieving
rapid SCF convergence and avoiding the intruder negative-energy
states.

V. ELECTRON PARAMAGNETIC RESONANCE (EPR)

Electron paramagnetic resonance (EPR) spectroscopy is an
important tool in the study of electronic structure of open-shell sys-
tems. EPR spectra are usually interpreted in terms of the electronic g-
tensor, the hyperfine coupling tensor (A-tensor), and the zero-field
splitting (ZFS) tensor. Calculations of molecular properties such as
the EPR parameters are still a considerable challenge for quantum-
chemical methods due to the spin–orbit-dominated nature of g-
tensors and ZFSs and the dependence of A-tensors on spin-density
distributions near the nuclei. For EPR parameters, spin–orbit and
scalar relativistic effects range from important to crucial, and they
increase toward the lower regions of the Periodic Table. In this sec-
tion, we discuss details of the 4c DKS calculation of the g-tensor
and A-tensor, while the calculation of ZFS energies is described
in Sec. X.

In wave-function theories, EPR tensors are obtained by map-
ping an effective spin Hamiltonian to the quantum-chemical Hamil-
tonian expressed in the basis of its unperturbed eigenfunctions. In
the Kramers-unrestricted DFT formalism, this approach can lead to
disastrous results, as discussed in Ref. 104. In the ReSpect program,
this is resolved by calculating three Kohn–Sham (KS) determinants
with their magnetization oriented along the three Cartesian axes.
This is usually achieved by using a scalar-relativistic KS determi-
nant with a well-defined spin oriented in the x, y, or z direction as a
starting guess for the four-component calculation. The g-tensor and
A-tensor are then evaluated as first-order properties29,31 (in SI units)

as follows:

guv ≙
1

μB⟨̃Sv⟩
dE(Jv)
dBu

RRRRRRRRRRRB=0, (93)

A
M
uv ≙

1

h⟨̃Sv⟩
dE(Jv)
dIMu

RRRRRRRRRRRIM=0, (94)

where ⟨̃Sv⟩ is the effective spin of the system, h is Planck’s constant,
μB denotes the Bohr magneton, Jv is the vth component of the mag-
netization vector, B is the uniform external magnetic field, and IM

represents the spin of nucleusM. Applying the Hellmann–Feynman
theorem,4,105 the g- and A-tensors can be expressed in terms of
a perturbation-free density matrix D(Jv) with the magnetization
vector oriented along the v direction,

guv ≙
2c

⟨̃Sv⟩Tr[h
BuD(Jv)], (95)

A
M
uv ≙

γM

2π⟨̃Sv⟩Tr[h
μMu D(Jv)], (96)

with

h
Bu
μν ≡ ⟨X(0)μ ∣ 12(r⃗G × α⃗)u∣X(0)ν ⟩, (97)

h
pn/fn,μMu
μν ≡ ⟨X(0)μ ∣(α⃗ × ∇⃗ϕpn/fnM )

u
∣X(0)ν ⟩. (98)

Here, μM = h̵γMIM , with γM representing the gyromagnetic ratio of
nucleusM, the RKB basis,X(0)

≡XRKB, as defined in Eq. (18), and rM
and rG are the electron position vector, r, expressed relative to the
position of nucleus M, RM , and to the position of the gauge origin,
R0, respectively. The A-tensor is expressed in terms of either point
(pn) or finite (fn) magnetic moment distribution model with func-
tions ϕpnM and ϕfnM defined by Eqs. (8) and (9), respectively; and the
perturbation-free density matrix, D, is acquired by solving the SCF
equation as described in Sec. III.

A useful feature of the ReSpect program for analysis of the g-
and A-tensor is plotting them as a function of the strength of the
spin–orbit interaction or of the speed of light.30,104,106,107 To scale the
SO effects in the four-component framework, we multiply the 0F−

and F+ components of the Fockmatrix (77) by a scaling factor, where
zero corresponds to the scalar four-component calculation, and one
represents the full four-component calculation.

Summary: The calculation of EPR parameters by ReSpect is
available for doublet and triplet open-shell molecular systems with
the degenerate ground state described by a Kramers-unrestricted KS
determinant (paramagnetic systems), and it currently includes the
following features:

● 4c (DKS) Hamiltonian,
● noncollinear DFT potentials [(68) and (69)],
● PCM solvent model,45,46

● point and finite models for the nuclear charge,
● point and finite models for the nuclear magnetic dipole

moment,
● MO analysis of EPR tensors,
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● separation of the A-tensor into Fermi-contact, spin-dipolar,
paramagnetic spin–orbit, and relativistic contributions
according to Ref. 108, and

● spin–orbit analysis, either by scaling SO matrix elements or
by using PT2107 and PT3 theories.

Readers can find the up-to-date feature list on http://www.
respectprogram.org.

A. EPR applications

The first 4c DKS implementation of EPR parameters in the
ReSpect program was reported in 201029,31 and utilized an earlier 2c
approach based on three Kramers-unrestricted self-consistent-field
(SCF) DKS determinants with orthogonal orientations of the mag-
netization vectors.109 An initial assessment of themethod for smaller
heavy-atom containing radicals and for medium-sized molybde-
num(V) and tungsten(V) complexes revealed that variational inclu-
sion of relativistic corrections by the 4c method offers a significant
advantage over earlier approaches based on the leading-order per-
turbation theory.106 This can easily be understood by performing
a scaling analysis where the EPR parameters are plotted as a func-
tion of the strength of the spin–orbit interaction or as a function
of the speed of light. The resulting curves were found to be clearly
nonlinear for both the g- and A-tensors, and in fact, the analysis con-
firmed that higher-order spin–orbit (HOSO) contributions may be
of the same magnitude as the leading first-order contributions, thus
altering the computed EPR tensors fundamentally, in particular for
5d species.106 For the g-tensors, the HOSO effects were roughly an
order of magnitude larger for the 5d than for the 4d complexes, for
instance, amounting to −180 ppt (−95 ppt) for Δg∥ (Δg�) in the case

of [OsOF5] (see Fig. 6).106 Somewhat smaller deviations from lin-
earity were observed for the hyperfine coupling tensors, indicating a
smaller HOSO effect overall.

The initial 4c implementation, however, was restricted to
DFT functionals of the local spin density approximation (LSDA)
and generalized-gradient approximation (GGA) types, which are

known to underestimate the spin density on metal centers. Since
it is known that a judicious admixture of Hartree–Fock exchange
(HFX) in hybrid functionals can improve both the g-tensors110

and the isotropic metal A-tensors of transition-metal complexes,111

the ReSpect EPR implementation was therefore extended to hybrid
functionals.30 For the A-tensors, the main issue is the description
of the spin polarization of the metal s-type core–shells (e.g., 2s and
3s orbitals for 3d centers), which is underestimated by (semi)local
functionals and enhanced by the HFX admixture.111 For g-tensors,
the too-covalent metal–ligand bonding at semilocal DFT levels is
the main factor that is corrected for by the HFX admixture. In the
case of metal-centered spin density, the latter is underestimated
at the LSDA or GGA levels, and the admixture of HFX increases
the metal spin density in such cases. As the major SO contribu-
tions to the g-tensor often arise from the SO coupling associated
with the metal, a larger HFX admixture tends to increase the g-
tensor anisotropies in those cases110 (heavy ligand atoms may mod-
ify the picture, and ligand-centered radicals behave in an opposite
manner112).

Systematic benchmarking of hybrid functionals and basis sets
on a series of 17 small 4d1 and 5d1 complexes suggested the compu-
tational protocol DKS/PBE0-40HFX80,81,113/dyall-tz82,83,99/iglo-iii114

(Hamiltonian/Functional/MetalBasis/LigandBasis), where PBE0-
40HFX refers to the hybrid functional of PBE0 with 40% HFX.
This protocol performed well for both the g- and hyperfine cou-
pling A-tensors, and in general, the need for an appreciable admix-
ture of HFX in hybrid functionals was apparent, particularly for
the A-tensor.30 As an independent test and an application of the
selected computational protocol, larger Ir(II) and Pt(III) complexes
with 5d7 (S = 1/2) configuration were chosen. Available experimen-
tal EPR data reveal unusually large g-tensor anisotropies in these
systems. The largest complex in the test set contained 133 atoms
(see the structure in Fig. 7), 607 electrons, and more than 3000
scalar GTOs (12 000 4c spinor functions) in total. Application of
the 4c DFT-based computational protocol confirmed its accuracy
for metal complexes with large g-tensor anisotropies and demon-
strated the importance of spin–orbit effects beyond the leading order

FIG. 6. Analysis of the dependence of Δg- and A-tensor components on the speed of light (and thus on relativistic corrections) for [OsOF5]. Results obtained with the 4c
DKS/PBE0-40HFX/dyall-tz/iglo-iii computational protocol (see text for more details).
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FIG. 7. The molecular structure of [PtI2(IPr’)2]
+, a system with an unusually large

g-tensor anisotropy. In the IPr’ ligand, the isopropyl groups of IPr(=1,3-bis(2,6-
diisopropylphenyl)imidazole-2-ylidine) were replaced by methyl groups.

in perturbation theory. This holds particularly true for the extreme
g-tensor anisotropies, where the higher-order SO effects can easily
amount to several hundreds or even thousands of ppt and change
the appearance of the g-tensor fundamentally.30

VI. NUCLEAR MAGNETIC RESONANCE (NMR)

Nuclear Magnetic Resonance (NMR) parameters (NMR chem-
ical shifts and indirect nuclear spin–spin coupling constants) pro-
vide important information about the electronic structure of systems
under study, and NMR is routinely used in many research fields.
Calculation of NMR parameters by ab initio methods has become
an indispensable tool for analysis and interpretation of experimen-
tal data. In the presence of one or several heavy atoms (HA) in the
system, an adequate theoretical description of the NMR parameters
requires the inclusion of relativistic effects. This holds not only for
the prediction of NMR parameters of the HA themselves but also
for light atoms, especially, if they are in the vicinity of the HA. For
example, the SO effects can shift NMR signals to a completely unex-
pected range (see Sec. VI A). This can be partially attributed to the
fact that magnetic interactions are relativistic in their nature and to
the sensitivity of the NMR signals to the electronic structure near the
spectator atom.

In this section, we describe the main aspects of the calculation
of the NMR shielding tensor, σN , and the indirect nuclear spin–spin
coupling tensor, JMN , in the framework of four-component DFT
theory.32–34 In the case of diamagnetic systems, i.e., systems with
a non-degenerate ground state and with excited states that are not
thermally accessible, the NMRparameters are calculated as a bilinear
derivative of the ground state electronic energy (in SI units),

σNuv ≙
d2E

dBudμNv
∣
B,μN=0

, (99)

J
MN
uv ≙ h

γM
2π

γN
2π

d2E

dμMu dμNv
∣
μM ,μN=0

, (100)

where B represents a uniform magnetic field and μN and μM are the
magnetic moments of the nuclei N andM, respectively.

In this section, we use complex algebra and employ the four-
component flattened atomic orbital basis indices μ, ν, λ, and τ (for
more details, see Ref. 39), and bold font indicates either a vec-
tor or matrix quantity, depending on the context. Furthermore, we
use the following index conventions: i and j represent occupied
MO orbitals, a and b denote unoccupied positive- and negative-
energy MO orbitals, respectively, and p and q are general MO
orbitals.

The bilinear derivatives of the energy in Eqs. (99) and (100)
may be expressed as a sum of diamagnetic and paramagnetic
contributions,

d2E

dζudμNv
∣
ζ,μN=0

≙ Tr[h(u,v)D(0,0)] + Tr[h(0,v)D(u,0)]. (101)

In the following discussion, setting the parameter ζ to B or μM will
provide the expressions for the NMR shielding tensor or the indirect
nuclear spin–spin coupling tensor, respectively. The matrix h(0,v )

has the same form for both properties (99) and (100),

h
(0,v)
≙ h

pn,μN
v , (102)

where the matrix hpn,μ
N
v is defined in Eq. (98). In order to achieve

faster convergence with respect to the basis in the four-component
relativistic framework, it is necessary to use the RMB basis for the
description of the small component of the molecular orbitals. Fur-
thermore, in the case of the NMR shielding calculations, the so-
called gauge-including atomic orbitals must be employed along with
the RMB condition, as discussed in Sec. II C. The use of the RMB
or RMB-GIAO allows one to obtain the explicit diamagnetic con-
tribution [the first term on the RHS of Eq. (101)].32 If neither of
these conditions is fulfilled, four-component theories of the mag-
netic properties yield paramagnetic terms only. The bilinear matrix
h(u ,v ) can then be written as

h
(u,v)
μν ≙ ⟨X(0)μ ∣(α⃗ × ∇⃗ϕpnN )v ∣Xζu

ν ⟩ + h.c. (103)

Here, the function ϕpnN is defined in Eq. (8), the RKB basis

X(0)
≡ XRKB is defined in Eq. (18), and the basis induced by

the magnetic field Xζu
ν can be constructed from the basis spinors

XRMB
ν (r,Λ,A) [Eqs. (32) and (33)] using the corresponding gauge

function and vector potential,

X
Bu
ν ≡ X

RMB-GIAO,Bu
ν ≙

d

dBu
(XRMB

ν ), (104)

X
μMu
ν ≡ X

RMB,μMu
ν ≙

d

dμMu
(XRMB

ν ), (105)

A ≙ 1
2(B × rG), Λν ≙ [Eq. (27)], (106)

A ≙ ∇ϕpnM × μ
M , Λν ≙ 0. (107)
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The perturbation-free and response density matrices have the
form

D
(0,0)
≡ D

(0)
≙ Cf

o
C

†, (108)

D
(u,0)
≡ D

o,u +D
v,u, (109)

D
o,u
≙ −D

(0)⟨Ωζu⟩D(0), (110)

D
v,u
≙ Cf

v
β
ζu f

o
C

† + h.c., (111)

with the selection matrices and the RMB overlap distribution
defined as

f
o
pq ≙ δpiδiq, f

v
pq ≙ δpaδaq, (112)

Ω
ζu
≙ Ω̃

ζu + (Ω̃ζu)†, Ω̃ζu
μν ≙ (X(0)μ )†Xζu

ν . (113)

The perturbation-free MO coefficients, C, and one-electron ener-
gies, εp, are solutions of the eigenvalue equation (73). Although it
is possible to solve the response equations in the AO basis,115,116 in
practice this is rarely done. The best convergence is obtained byMO-
based solvers, i.e., the best preconditioning of the residuum vectors
is known in the MO basis. Another advantage of MO-based solvers
is that it becomes necessary only to search for the vacant-occupied
block of the response density matrix, βai. The linear response equa-
tions for the NMR shielding and indirect nuclear spin–spin cou-
pling tensor correspond to the damped response TDDFT equation
[Eq. (137), vide infra] when ω = 0, γ = 0, X = β, and Y = β∗, and the
RHS of the equation contains both the magnetic moment operator
and contributions from the RMB basis. Due to these constraints on
Eq. (137), the problem can be reduced to

Aβ
ζu + B(βζu)∗ ≙ −Pζu , (114)

where the matrices A and B have the form

Aai,bj ≙ (εa − εi)δabδij + Kμν,λτC
∗
μaCνiC

∗

λjCτb,

Bai,bj ≙ Kμν,λτC
∗
μaCνiC

∗

λbCτj.
(115)

The perturbation matrix P can be written as

P
ζu
ai ≡ P

ζu
μνC
∗
μaCνi, (116)

P
Bu
μν ≙ h

Bu
μν − εi⟨ΩBu

μν⟩ + Kμν,λτ(ξ)Do,u
τλ + ⟨X(0)μ ∣hD∣XBu

ν ⟩ + h.c.

+ V
xc(ΩBu

μν , ξ) + K
xc(Ω(0)μν , ΩBu

λτ , ξ)D(0)τλ

+ {[Ω(0)μν ∣ΩBu

λτ ] + [ΩBu
μν ∣Ω(0)λτ ]}D(0)τλ

− ξ{[Ω(0)μλ ∣D(0)λτ ∣ΩBu
τν ] + [ΩBu

μλ ∣D(0)λτ ∣Ω(0)τν ]}, (117)

P
μMu
μν ≙ h

pn,μMu
μν + (εa − εi)⟨Ω̃μMu

μν ⟩ + Kμν,λτ(ξ)Do,u
τλ

+ {Kxc(Ω(0)μν , Ω
μMu
λτ , ξ) + [Ω(0)μν ∣ΩμMu

λτ ]}D(0)τλ

− ξ{[Ω(0)μλ ∣D(0)λτ ∣(Ω̃μMu )∗
ντ
] + [Ω̃μMu

μλ ∣D(0)λτ ∣Ω(0)τν ]}, (118)

where

V
xc(Ωμν, ξ) ≡ Vxc

μν(ξ), (119)

K
xc(Ωμν, Ωλτ , ξ) ≡ Kxc

μν,λτ(ξ), (120)

Kμν,λτ(ξ) ≡ [Ω(0)μν ∣Ω(0)λτ ]−ξ[Ω(0)μλ ∣Ω(0)τν ]+Kxc(Ω(0)μν , Ω(0)λτ , ξ), (121)

with both Vxc
μν and Kxc

μν,λτ as defined in Sec. II E, while the matrices

hBu and hD are described in Eq. (97) and Sec. II A, respectively. The
construction of the two-electron repulsion integrals, [Ω|Ω], is dis-
cussed in Sec. II D with the final expression in Eq. (44) written in the
complex quaternion algebra. To obtain ERIs in the complex algebra
used in this section, it is necessary to use the algebraic isomorphism
described in Eqs. (21) and (34).

The difference in the formulation of the response equation
[Eq. (114)] for NMR shielding and indirect nuclear spin–spin cou-
pling tensors lies in the choice of the variational parameters,

C
∗
μa

d

dBu

⎛
⎝

dL

dC∗μi

⎞
⎠
RRRRRRRRRRRB=0 ≙ 0, (122)

⟨φa∣ d

dμMu
( δL
δφ†

i

)⟩
μM=0

≙ 0, (123)

with the Lagrangian defined as

L ≙ E − εi(⟨φi∣φi⟩ − 1). (124)

First, note that the difference between these approaches is due to the
magnetically dependent basis set. Therefore, when using basis sets
that have no dependence on the perturbation, employingMO coeffi-
cients or MOs as variational parameters results in the same working
equations. On the other hand, when the basis depends on the per-
turbation, using MO coefficients as variational parameters leads to
methods with a faster basis set convergence. However, because the
RMB basis for the magnetic moment of the nucleus34 is of order c−2,
the convergence with the basis is acceptable, and triple-zeta quality
basis sets usually give satisfactory results.117 Themainmotivation for
using a potentially inferior formulation for the calculation of indirect
nuclear spin–spin coupling tensors is to decrease the importance of
the two-electron Coulomb integrals for the final results, since these
are neglected in our current implementation [the last three terms in
Eq. (118)]. Note that in the case of non-hybrid DFT calculations of
closed-shell systems, there is no approximation involved, since these
integrals do not contribute to the final results.

The expressions in Eqs. (101)–(121) are valid, regardless of the
nature of the reference Kohn–Sham (KS) determinant (Kramers-
restricted or Kramers-unrestricted), and they can thus be applied
for the calculation of NMR parameters of closed-shell (diamagnetic)
systems as well as for the calculation of the orbital term of the
open-shell (paramagnetic) systems (see Sec. VII). However, in the
case of the closed-shell reference KS determinant, the two-electron
terms in the response equation [Eq. (114)] simplify considerably,
since the trace of the matrix product of the Hermitian time-reversal
symmetric and the Hermitian time-reversal anti-symmetric matrix

is zero. Thus, for example, the Coulomb integral ∥Ω(0)μν ∣ΩBu

λτ ∥D(0)τλ
vanishes.
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Summary: The calculation of NMR parameters by ReSpect is
available for closed-shell molecular systems with a non-degenerate
ground state described by a Kramers-restricted KS determinant
(diamagnetic systems), and it currently includes the following fea-
tures:

● 4c (DKS) Hamiltonian,
● noncollinear DFT potentials and kernels as listed in

Table III,
● resolution-of-the-identity integral acceleration for the

Coulomb term (RI-J),42

● PCM solvent model for both perturbation-free45,46 and
response MOs,

● analysis of spin–orbit and scalar relativistic effects by turn-
ing off SO interactions and by increasing the speed of light
(a factor of 10 is usually sufficient to reach the non-
relativistic limit),

● point and finite models for the nuclear charge,
● point and finite models for the nuclear magnetic dipole

moment and nuclear spin–spin couplings,
● MO analysis of the paramagnetic NMR contributions,
● MO analysis of the spin–orbit contributions to the NMR

shielding tensor using PT3,118,119 and
● hybrid MPI/OpenMP parallelization.

Note that the feature list related to NMR for paramagnetic systems
(pNMR) is listed in Sec. VII. Readers can find the up-to-date feature
list on http://www.respectprogram.org.

A. NMR applications

One of the areas where applications of ReSpect have had the
largest impact so far is in the 4c relativistic computation of NMR
parameters for heavy-atom systems. The initial 4c DKS implemen-
tation of NMR in ReSpect, which introduced a new theoretical
RMB-GIAO concept,32–34 was successfully assessed on the 1H shift

TABLE III. Expressions used by the NMR module for the calculation of the non-
collinear exchange–correlation potential and kernel.a

Reference KS determinant Method Exc Vxc Kxc

Closed-shell
GGAb (58) (67) (70) c

GGAd (58) (67) (71)
ALDA (58) (67) (72) c

Open-shell
GGAb (66) (69) e

ALDA (66) (69) f

ALDAd (63) (68) f

aThe numbers in parentheses indicate the corresponding equations in this article.
bRecommended option.
cFor closed-shell systems, the magnetically induced charge density and its gradient are
zero, and there are, therefore, no contributions from terms containing these quantities.
dThis option has been used up to now in all applications of the ReSpect program, where
the analytical evaluation of the kernel was used.
eThe noncollinear xc kernel as defined by Table I in Ref. 39.
fThe noncollinear xc kernel as defined by Eq. (25) in Ref. 39, neglecting terms containing
the gradients of the charge and spin density.

predictions in transition-metal hydride complexes with large spin–
orbit (SO) effects.120 While the importance of SO effects for the
large positive 1H shifts of d10 mercury hydride complexes had
already been shown in perturbational SO treatments,121,122 the occa-
sionally large negative shifts in heavy d6 and d8 complexes were
assumed to arise only partly from SO effects. A clear-cut confirma-
tion was obtained from 4c ReSpect calculations in Ref. 120, which
were done with the generalized-gradient approximation (GGA)
type of functionals as hybrid functionals had been implemented
in ReSpect’s NMR property module a bit later.36,123 Up to 66% of
the record negative 1H shifts (from −50 to −60 ppm) in certain
iridium hydride complexes were shown to be due to SO effects,
whereas about one third of the large shielding was assigned to the
Buckingham–Stephens effect (paramagnetic shielding contributions
due to off-center ring-current effects).124 These observations sub-
sequently led to a systematic evaluation of trans-ligand influences
(TLI) on the 1H shifts in a series of platinum(II) hydride com-
plexes,125 and ultimately to an even more general appraisal of TLI
for 5d6, 5d8, and 5d10 complexes, where sometimes even the sign
of the SO effects could change with the choice of the trans lig-
and.118,126 The most detailed interpretations of the sign and magni-
tude of such SO effects on neighbor-atomNMR shifts were obtained
with a third-order perturbation analysis implemented in ReSpect,118

allowing the interpretation of various trends in SO-induced shield-
ings over the Periodic Table.119 A recent comprehensive review
of relativistic neighbor-atom effects on NMR chemical shifts127

emphasized the same third-order perturbation scheme but also used
4c ReSpect shielding calculations to illustrate the most important
mechanisms, augmented by plots of real-space functions such as
the spin–orbit electron deformation density (SO-EDD),118 the SO-
and-magnetically induced spin density (SOM-ISD),119 and induced
current densities.128

The work of Hrobarik et al. on uranium complexes129 that pre-
dicted the record positive 1H shifts of more than +100 ppm for
uranium(VI) hydride complexes, and the related large 13C shifts
in organouranium(VI) complexes, highlighted large discrepancies
between 4c ReSpect and 2c ZORA ADF computations that have also
been observed elsewhere.130,131 Whereas the ZORA results were
used in the initial work, it was subsequently found that the ADF 2c
ZORA implementation had been lacking the exchange–correlation
kernel, thus explaining the observed discrepancies. Using a mod-
ified ADF implementation with an approximate kernel gave much
better agreement between the 2c ZORA and 4c ReSpect DKS shift
calculations for both of the above-mentioned studies of TLI, con-
firming the correctness of the kernel in ReSpect and correcting
the preferred exact-exchange admixture to be used in hybrid func-
tionals to predict such SO-induced shifts when the XC kernel is
present.123

Four-component NMR chemical shift computations with
ReSpect have also been used to predict unusual 13C and 29Si NMR
signals of ligand atoms directly bonded to Tl(I) or Pb(II) heavy-
element centers, which resonate at very high frequencies, up to
400 ppm for 13C and over 1000 ppm for 29Si, outside the typi-
cal experimental ranges for those nuclei. These unusual chemical
shifts have been ascribed to sizable relativistic SO effects, which
can amount to more than 200 ppm for 13C and more than 1000
ppm for 29Si, values unexpected for diamagnetic compounds of
main-group elements.12 Interestingly, the theoretical prediction of
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+30.8 ppm for the 1H shift in a Pb(II) hydride (Fig. 8)132 led
to the experimental preparation and characterization of a long-
sought lead(II) hydride complex with a world record 1H chem-
ical shift of +31.4 ppm.133 In this case, the SO effect accounts
for about +26 ppm and thus lifts the 1H shift outside the exper-
imentally established chemical shift range of +20 to −60 ppm
for heavy-metal hydrides, which is why the system had remained
undiscovered for many years. The theoretical prediction was based
on the DKS/PBE80,81/dyall-vtz98/dyall-vdz98 computational protocol
(Hamiltonian/Functional/MetalBasis/LigandBasis), and the studied
system contained 102 atoms and more than 2800 scalar GTOs
(11 200 4c spinor functions).

Beyond predicting new ranges of NMR shielding and aiding the
interpretation of SO-induced NMR shifts in various heavy elements-
containing systems, 4c chemical shielding calculations with ReSpect
have also been used successfully for determining new absolute
shielding scales of heavier nuclei.43,134–137 It was observed that the
disagreement between experimental determinations and 4c relativis-
tic calculations of the absolute shielding constants of heavy nuclei is
due to the breakdown of the commonly assumed Flygare relation138

between the electronic contribution to the nuclear spin-rotation
constants and the paramagnetic contribution to the NMR shield-
ing constants.43 The implementation of the relativistic method for
the calculation of the nuclear spin-rotation constants within the
ReSpect program was presented in Ref. 44 and followed closely the
theoretical works.139–141 Since the absolute chemical shielding con-
stants are important for determining the nuclear magnetic dipole
moments, the breakdown of the Flygare relation that results in an
error of about 1000 ppm for 119Sn43 has significant consequences
and has called for the revision of many nuclear magnetic dipole
moments.142

Finally, we would like to note that the 4c nuclear spin–spin cou-
pling implementation in ReSpect is as efficient as the code for NMR
shieldings [for example, see Ref. 117 with a platinum(II) system con-
taining 110 atoms]. However, the implementation was limited so
far to closed-shell diamagnetic systems.143–145 This limitation has
now been lifted, and Sec. VII reports the first 4c nuclear spin–spin
coupling results for paramagnetic systems.

FIG. 8. The molecular structure of [ArPb(μ-H)2PbAr], which holds the world record

for the experimental 1H chemical shift. Ar = C6H3-2,6-Mes2, Mes = C6H2-2,4,

6-Me3. The experimental 1H shift of +31.4 ppm133 agrees well with the ReSpect

prediction of +30.8 ppm of which +26.0 ppm is due to the spin–orbit interaction.132

VII. NUCLEAR MAGNETIC RESONANCE
FOR PARAMAGNETIC SYSTEMS (pNMR)

NMR spectroscopy of open-shell (paramagnetic) species pro-
vides significant challenges from both a theoretical and an exper-
imental point of view. Fast nuclear spin relaxation may result in
significant broadening of the NMR peaks, which decreases the use-
ful information that can be extracted from the spectrum. On the
other hand, the expansion of the spectral window by hundreds (for
1H) or even thousands (for 13C or 15N) of ppm, and the temper-
ature dependence of signals, increases the complexity of the spec-
tra and thus the possible amount of accessible information. From
the theoretical point of view, the often multi-configurational nature
of the paramagnetic systems, and the importance of core atomic
regions for the proper description of the spin polarization effects,
makes post-Hartree–Fock methods unsuitable for the full descrip-
tion of paramagnetic NMR (pNMR) spectra. Although DFT is more
successful in describing spin polarization than post-Hartree–Fock
methods, its single-determinant nature limits its area of applica-
tion. For these reasons, it is today common to predict paramagnetic
NMR spectra either combining post-Hartree–Fock and DFT meth-
ods or using DFT methods alone for systems in which the ground
state is well described by a single-determinant. The latter is possi-
ble mostly for systems with a doubly degenerate ground state (with
one unpaired electron) or in cases where low-spin triplet states can
be sufficiently described by orienting the magnetization of a sin-
gle Kohn–Sham (KS) determinant. An added advantage when using
DFT-only methodologies, such as used in the ReSpect program, is
their internal consistency.

A distinct feature of open-shell systems is that at thermal equi-
librium, there is more than one thermally accessible state. In this
case, it is necessary to perform a thermal average of the energy when
calculating NMR parameters. The NMR shielding tensor and indi-
rect nuclear spin–spin coupling tensors are then defined as (in SI
units)

σNuv ≙
d2⟨E⟩
dBudμNv

∣
B,μN=0

, (125)

J
MN
uv ≙ h

γM
2π

γN
2π

d2⟨E⟩
dμMu dμNv

∣
μM ,μN=0

. (126)

Thermally accessible states include Zeeman-split ground states,
zero-field split (ZFS) states, or other low-lying excited states. In the
absence of ZFS and when the 2S + 1 degenerate ground state is well
separated from excited energy levels, i.e., the system obeys the Curie
law, and Eqs. (125) and (126) can be rewritten as (in SI units)

σ
M
≙ σ

M,orb
−

1

kT

S(S + 1)
3

μB
h̵γM

g (AM)T, (127)

J
MN
≙ J

MN,orb
−

1

kT

S(S + 1)
3

1

h
A
M(AN)T, (128)

where kT is the thermal energy and 2S + 1 is the multiplicity
of the ground state. Equations (127) and (128) follow closely the
theory developed by Kurland and McGravey,146 which was origi-
nally formulated for the NMR shielding tensor. The inclusion of
the ZFS effects and other low-lying excited states would require
more involved theoretical descriptions of the σ- and J-tensor (for
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more details, see Refs. 147–150). Work in this direction is currently
ongoing.

Obtaining the NMR shielding and indirect nuclear spin–spin
coupling tensor for paramagnetic species [Eqs. (127) and (128)]
requires the calculation of orbital (orb) contributions (described
in Sec. VI) and EPR tensors (described in Sec. V). All features
described in Secs. V and VI are therefore available for the predic-
tion of pNMR parameters as well. Note that a distinctive feature
of the ReSpect program is the calculation of the orbital term using
open-shell Kramers-unrestricted KS determinants36,151,152 instead of
the more commonly used approximation where the orbital term is
replaced by the NMR tensor of a closed-shell analog of the system
studied. To achieve robust convergence of the response function in
the calculation of the orbital term, we use a perturbation-free KS
determinant with the magnetization oriented in the direction of the
magnetic perturbation.

Summary: The calculation of pNMR parameters by ReSpect is
available for doublet and triplet open-shell molecular systems with
the degenerate ground state described by a Kramers-unrestricted KS
determinant (paramagnetic systems), and it currently includes the
following features:

● 4c (DKS) Hamiltonian,
● noncollinear DFT potentials and kernels as listed in

Table III,
● resolution-of-the-identity integral acceleration for the

Coulomb term (RI-J),42

● point and finite models for the nuclear charge,
● point and finite models for the nuclear magnetic dipole

moment in nuclear spin–spin couplings,
● PCM solvent model for both perturbation-free45,46 and

response MOs,
● analysis of spin–orbit and scalar relativistic effects by turn-

ing off SO interactions and by increasing the speed of light (a
factor of 10 is usually sufficient to reach the non-relativistic
limit),

● MO analysis of the paramagnetic NMR contributions,
● MO analysis of the spin–orbit contributions to the NMR

shielding tensor using PT3,118,119 and
● hybrid MPI/OpenMP parallelization.

Note that the feature list related to NMR for diamagnetic systems
is listed in Sec. VI. Readers can find the up-to-date feature list on
http://www.respectprogram.org.

A. pNMR applications

To demonstrate the performance of the ReSpect program in
the prediction of the paramagnetic NMR shifts and indirect nuclear
spin–spin couplings, we examined two systems (see Fig. 9), which
are predicted to have a triply degenerate (S = 1) ground state by
scalar relativistic or nonrelativistic theories.

The calculated results of 1H pNMR shifts for a recently syn-
thesized [IrRu2(dpa)4Cl2]

+ complex153 are presented graphically in
Fig. 10 together with the available experimental data. Whereas the
ReSpect program has the unique ability of evaluating ZFS from the
LR-TDDFT approach, the ZFS parameter calculated for the present
system (less than 40 cm−1, see Sec. X E) was not used in this pNMR
study. As demonstrated in Ref. 148, such low ZFS values have only

FIG. 9. The molecular structure and atom numbering of [MRu2(dpa)4Cl2]+ used in
the 4c DKS/PBE0 pNMR study in Sec. VII A. M = Rh,Ir.

a minor effect on the pNMR shifts of triplet systems. The calcula-
tions were performed at the 4c DKS/PBE080,81,113 and DKS/PBE0-
50HFX levels using the geometry obtained from Ref. 153. Dyall’s
uncontracted valence double-zeta basis82,83,99 for Rh, Ru, and Ir and
Jensen’s uncontracted pc-1 basis154–157 for the light atoms (pcJ-1 for
H) were used. The effect of the environment on the NMRparameters
was modeled with the IEFPCM solvation model (ε = 8.93).

The effect of different exchange–correlation functionals is min-
imal for this complex (note the minor difference between the orange
and red solid lines). In the original paper, the authors did not spec-
ify the reference compound for the 1H shifts or the expression used
for calculating the shifts. We therefore converted the calculated

FIG. 10. Experimental (exp) and calculated (cal) data for the complex presented
in Fig. 9 with M = Ir. Here, cal1 and cal2 correspond to the calculations using
the PBE0 and PBE0-50HFX functionals, respectively, exp1 refers to the original
experimental data taken from Ref. 153, exp2 is obtained by multiplying exp1 by
the factor −1, and exp3 corresponds to the reassignment of exp1 as follows:
H1 → H2, H2 → H1, H3 → H5, H4 → H6, H5 → H3, H6 → H4, H7 → H8,
and H8 → H7.
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shieldings to chemical shifts using TMS as the reference compound
according to the conventional formula for 1H shifts, δM ≙ σMref −σ

M
calc.

At first glance, the calculated data (presented by solid lines) are in
complete disagreement with the original experimental data (the gray
dashed–dotted line). However, the agreement becomes much better
if one assumes that the authors of the experimental work used an
alternative expression for the determination of shifts that results in
the change of signs for all 1H peaks (the green dashed line). Alter-
natively, the agreement can be achieved by assuming that there was
misassignment of the signals in the original publication:153 the alter-
native assignment is presented in Fig. 10 as the blue dashed line. It
is clear that after reassignment of the proton peaks, the agreement
between experimental and calculated results becomes reasonable.
Similar conclusions can be drawn for the calculated 1H pNMR shifts
for the [RhRu2(dpa)4Cl2]

+ complex presented in Fig. 11. We note
that for this complex, the difference between the results obtained
with the PBE0 and PBE-50HFX functionals is bigger than for the
[IrRu2(dpa)4Cl2]

+ complex. Again, the agreement with experiment
becomes much better if one assumes that the authors of the exper-
imental work used an alternative expression for the determination
of shifts or accepts the possibility of a misassignment of signals.
For the [RhRu2(dpa)4Cl2]

+ complex, we also calculated the 3JH-H

nuclear spin–spin couplings [including the temperature-dependent
contribution, see Eq. (126)] as 3J1-2 = 6.4 Hz and 3J7-8 = 5.7 Hz
for PBE0 and 3J1-2 = 5.4 Hz and 3J7-8 = 4.8 Hz for PBE0-50HFX.
These are in good agreement with experiment, 3J1-2 = 5.7 Hz and
3J7-8 = 4.8 Hz. The calculated 3 JH-H provided additional constraints
for the possible reassignment of peaks (see Fig. 11 for more details).
The remaining deviation between the calculated and experimental
shifts in Figs. 10 and 11 can be attributed to the issue of simulat-
ing the experimental conditions in the calculations. The counterion
present in the experiment was omitted in the calculations, and the
calculations were furthermore performed for a static system. Even
though we used a polarizable continuum model to simulate the sol-
vent effects, which typically improves agreement with experimental
data, this approach is still inferior compared to the inclusion of
explicit solvent molecules. On the whole, these examples demon-
strate that the ReSpect program has a huge potential for predicting
and interpreting the pNMR spectra of compounds containing heavy
elements.

FIG. 11. M = Rh, otherwise see the caption of Fig. 10.

VIII. REAL-TIME TDDFT ELECTRON DYNAMICS
(RT-TDDFT)

The methods for dynamical molecular property calculations
available in the ReSpect program stem from the solution of the
equation of motion for a molecular system subjected to the external
electromagnetic field, the Liouville–von Neumann equation (LvN).
For Kohn–Sham TDDFT in an orthonormal basis, the LvN equation
takes the form

i
∂

∂t
Dpq(t) ≙ ∥F(t),D(t)∥pq − iγpq(Dpq(t) −Deq

pq) (129)

and describes the time evolution of the one-electron reduced density
matrix D(t). The time evolution is driven by the Fock matrix F(t)
that contains the external electric and/ormagnetic fields while taking
into account relaxation to the equilibrium (ground) state Deq with a
rate of relaxation γpq for the pq element of the density matrix.

Real-time (RT) TDDFT represents the most straightforward
approach to the solution of the Liouville–von Neumann equa-
tion (129): the electronic density is propagated directly in time.158,159

Due to this non-perturbative nature, RT-TDDFT allows strong
time-dependent external fields of arbitrary shape to be used and
non-linear effects in spectra to be described, while at the same time
allowing several spectral regions to be addressed in a single run.
Moreover, it does not suffer from divergences at resonant frequen-
cies and does not require the evaluation of response kernels. Inter-
ested readers can find more discussion on RT-TDDFT in a recent
review.160

A. RT-TDDFT theory

The dynamics of electrons in the presence of a time-dependent
external field is described by the Liouville–von Neumann equation
[Eq. (129)] with the Fock matrix F(t) expressed in the RKB basis as

F∥D(t), t∥ ≙ F0∥D(t)∥ +V
ext(t). (130)

Here, F0[D(t)] is the field-free Fock matrix, which is Hermitian and,
due to the presence of the imaginary unit in the Liouville–von Neu-
mann equation, time-reversal general. The Fock matrix F0[D(t)] is
therefore constructed in the KU formalism, as described in Eq. (77)
and in the accompanying discussion. While the Fock matrix in
Eq. (130) is assumed to be 4c, it can also be transformed into a 2c
form bymeans of the X2C decoupling.40,161 In addition, the adiabatic
approximation is assumed in the construction of the Fock matrix,
i.e., XC potentials developed in the context of time-independent
DFT are employed. The second term in Eq. (130), Vext(t), is the
matrix describing the interaction of the electrons with an external
time-dependent field,

V
ext(t) ≙ −κf (t)n ⋅ P, (131)

defined by its amplitude κ, directional unit vector n, a scalar func-
tion f (t) defining the field’s time dependence, and field-interaction
operator P. Currently, ReSpect supports interaction with an exter-
nal electric field within the dipole approximation, and thus, P is the
matrix representation of the electric dipole moment operator.

The damping parameter γ is commonly omitted when solving
the LvN equation (129) since it can be applied after the simula-
tion in a post-processing step. The Fock matrix therefore remains
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Hermitian, allowing the use of a unitary propagator. However,
due to the implicit time dependence in the Fock matrix, the LvN
equation is non-linear and requires the use of sophisticated self-
consistent propagation techniques.162,163 Our implementation uti-
lizes the second-order mid-point Magnus propagator164 approach,
combined with an extrapolation–interpolation scheme, in order to
ensure the stability of the time propagation. Details of the solver are
described in Ref. 37. At each time step, the density matrix is updated
using

D
MO(t + Δt) ≙ U(t + Δt, t)DMO(t)U†(t + Δt, t), (132)

with the evolution operator taking the form

U(t + Δt, t) ≈ exp[−iF(t + Δt

2
) ⋅ Δt]. (133)

The presence of a future-time Fock matrix F(t + Δt
2 ) in Eq. (133)

results from the non-linear self-consistent nature of the LvN
equation.

1. Calculations of spectra

A straightforward application of RT-TDDFT is the calcula-
tion of electronic spectra. Such calculations begin with a time-
independent DFT calculation to obtain the reference density matrix
DMO(0). This initial state is perturbed by an external field in the form
of an initial delta-type pulse, i.e., the function f (t) in Eq. (131) cor-
responds to the Dirac delta function δ(t − t0) centered at the initial
time t0 = 0. The ReSpect program analytically applies this pulse and
perturbs the initial density matrixDMO(0) as

D
MO(0+) ≙ eiκn⋅PDMO(0) e−iκn⋅P, (134)

where κ, n, and P are defined according to Eq. (131). The ana-
lytic pulse requires fewer input parameters and allows for a proper
description of higher frequencies compared to alternative numeri-
cal representations of the delta function, such as the rectangular or
Gaussian pulse.

The delta-type pulse excites all electronic modes simultane-
ously, including both valence and core excited states. However, core-
electron spectra are often hampered by the presence of transitions
from valence to high-lying virtual orbitals. Such excitations occur
at above-ionization energies and are thus non-physical and repre-
sent only an artifact of the finite basis-set representation. One way
of identifying these transitions is to recalculate the spectra in var-
ious basis sets, as the spurious non-physical peaks are much more
sensitive to the changes in the basis set. A much simpler alternative,
however, is to keep only certain elements of the perturbation oper-
ator, Pai, where i corresponds to the targeted core occupied orbitals
and a spans sufficiently many virtual orbitals to cover the desired
spectral range while setting other elements to zero.41 An additional
effect of applying this MO window in RT-TDDFT is the possibility
of singling out a selected spectroscopic range, as demonstrated in
Figs. 12(e) and 12(f).

The perturbed state is then evolved in time, while the induced
electric or magnetic dipole moment is recorded on the fly [see
Fig. 12(a)]. Depending on the symmetry of the molecule, up to
three simulations with external fields in different Cartesian direc-
tions may be necessary to capture all of the relevant components

of the property tensors. The frequency-dependent molecular prop-
erties are obtained by a discrete Fourier transform of the time-
domain signal [see Figs. 12(b) and 12(c)] or by means of alternative
techniques such as Padé approximants.

Since the damping parameter γ is omitted from the Liouville–
von Neumann equation [Eq. (129)], singularities in the absorption
spectra arise at resonant frequencies. To regularize these singular-
ities, the time-domain signal is multiplied by the damping factor
e−γt during the transformation to the frequency domain, i.e., the
Fourier transform is replaced by the Laplace transform. As a result,
the absorption spectra consist of Lorentzian-shaped peaks with a
finite width.

For a simulation consisting of N time steps of length Δt, the
frequency-domain interval is (−π/Δt,π/Δt) with a resolution of
Δω = 2π/(NΔt). It follows that increasing the resolution of the cal-
culated spectra requires increasing the total simulation length NΔt.
This can be achieved by increasing either the number of time steps
(making the simulation more time-consuming) or the size of the
time step (putting extra demands on the solver). However, since
the frequency-domain interval depends inversely on the time-step
length, short time steps are required to describe the high-frequency
parts of spectra. Therefore, a balance between the resolution, fre-
quency range, and computational cost has to be made by choosing
suitable simulation parameters.

In a weak-field regime, RT-TDDFT yields spectra equivalent
to the first order of perturbation theory, while stronger external
fields can be used to investigate non-linearities in electronic spec-
tra. However, caution must be exercised with intense fields, since
the underlying assumption of the single-determinant nature of the
RT-TDDFT electronic state may become invalid.165 Higher-order
molecular properties can be extracted from time-dependent induced
electric or magnetic dipole moments using different post-processing
techniques,166 aided by the ability of RT-TDDFT to straightfor-
wardly accommodate arbitrary pulse shapes numerically via Vext(t)
in Eq. (130). As an example, in Ref. 40, an enveloped cosine exter-
nal field, combined with numerical derivatives with respect to the
field strength at each time step, was used to obtain the first and sec-
ond hyperpolarizabilities in order to investigate relativistic effects on
these non-linear optical properties.

2. Analysis of excitations

To resolve the longstanding problem of analysis and interpre-
tation of RT-TDDFT signals in terms of MOs, we proposed a dipole-
weighted transition matrix analysis.37,41 The essence of the method
is the Fourier transform of the individual virtual (a)-occupied (i)
elements of the induced dipole moment,

μindai (t) ≙ PiaDai(t) + PaiDia(t) ∫ dteiωt−γtÐÐÐÐ→ μindai (ω), (135)

and the subsequent visualization of μindai (ω) at a selected frequency
ω. In addition, this partitioning into virtual-occupied MO contribu-
tions leads to an accelerated approach for calculating spectra from
RT-TDDFT simulations. The MO-pair contributions μindai (t) can be
transformed to the frequency domain by means of Padé approxi-
mants and then combined into the final spectra. Since the individual
frequency-domain quantities μindai (ω) contain much fewer resonant
frequencies than the full spectrum, the Padé approximants converge
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FIG. 12. Examples of dynamical molecular properties calculated by means of real-time (RT) TDDFT and the molecular systems involved. The properties were treated
using both pure and hybrid density functionals and at levels of theory ranging from one-component KS (1c), via quasirelativistic two-component (X2C), to fully relativistic
four-component (4c) description. For details and discussion, see Sec. VIII B. (a) Induced time-dependent electric dipole moment, (b) electronic absorption spectrum (EAS),
(c) electronic circular dichroism spectrum (ECD), (d) non-linear optical (NLO) properties: the first hyperpolarizabilities, (e) several EAS spectral regions obtained from one
simulation, (f) sulfur L-edge spectrum isolated by applying the perturbation to a selected MO window, (g) PoC2H2(CH3)2, (h) [W(CO)5(py)], and (i) SF6.
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and yield spectra with higher resolution from shorter simulations
than the Fourier transform. This approach was first advocated by
Bruner, LaMaster, and Lopata167 and is now available in the ReSpect
program package as well.

Summary: The RT-TDDFT electron dynamics module of
ReSpect allows the calculation of the following molecular proper-
ties:37,40–42

● frequency-dependent electric dipole polarizability,
● electronic absorption spectra,
● electronic/natural circular dichroism spectra,
● optical rotatory dispersion spectra

and these are all available for both closed-shell and open-shell
molecular systems with the ground state described by Kramers-
restricted or Kramers-unrestricted KS determinants. The current list
of features includes the following:

● 1c (KS), 2c (X2C),40 and 4c (DKS)37 Hamiltonians,
● possibility of addressing arbitrary spectral regions (from

UV/vis to x-ray),
● external field of analytic delta, Gaussian, and (linearly

enveloped) harmonic form,
● possibility of applying perturbation/response operators only

to a selected MO window,41

● evaluation of spectra by means of Fourier transform or Padé
approximants,

● analysis of spectral lines in terms of MO transitions,37,41

● restart from previous calculations,
● resolution-of-the-identity integral acceleration for the

Coulomb term (RI-J),42 and
● hybrid MPI/OpenMP parallelization.

Readers can find the up-to-date feature list on http://www.
respectprogram.org.

B. RT-TDDFT applications

A collection of RT-TDDFT results for a variety of dynami-
cal molecular properties is shown in Fig. 12. First, the graphs in
Figs. 12(a)–12(c) illustrate the process of obtaining electronic spec-
tra. The electric dipole moment induced by a short external elec-
tric pulse [Fig. 12(a)] is transformed to the frequency domain, the
imaginary part of which corresponds to the electronic absorption
spectrum [Fig. 12(b)]. The induced magnetic dipole moment, on
the other hand, leads to the electronic circular dichroism spectrum
[Fig. 12(c)].

The results depicted in Figs. 12(a)–12(c) are for the
dimethylpolonirane molecule, a heavy-element analog of dimethy-
loxirane [Fig. 12(g)], and a popular test system for chiroptical prop-
erty calculation methods. The molecule was treated at the 1c KS, 2c
X2C, and 4c DKS levels of theory using the PBE functional,80,81 com-
bined with resolution-of-the-identity for the Coulomb term (RI-J)42

and an all-electron uncontracted GTO basis: Dyall’s augmented
cVDZ basis98 for Po, and Dunning’s augmented cc-pVDZ basis84

for all other elements. In order to calculate the spectra, the molecule
was perturbed by a delta-type external field of strength 0.0001 a.u.
and left to evolve for 30 000 time steps of length 0.15 a.u. (0.0036 fs),
which corresponds to the total simulation time of approximately
109 fs and a frequency-domain resolution of 0.0014 a.u. (0.038 eV).

The final spectra were broadened by a damping factor of 0.004 a.u.
The aim was to study the importance of relativistic effects in chi-
roptical spectra with increasing atomic number of the heteroatom.
Notably, in the region between 4 eV and 7 eV in Fig. 12(c), the
relativistic and non-relativistic electronic circular dichroism (ECD)
spectra give the impression of being mirror images, i.e., the use
of the non-relativistic method would lead to incorrect enantiomer
assignment. Both relativistic Hamiltonians, on the other hand, yield
virtually identical results, with the X2C approach being over 7 times
faster than the 4c calculation. The interested readers can find further
results and discussion in Ref. 42.

Second, Fig. 12(d) illustrates the procedure for obtaining
higher-order responses from RT-TDDFT. The second derivative of
an induced electric dipole moment with respect to the strength of

an external harmonic field reads μ(2)xxx(t) ≙ 1
4 [βSHG

xxx cos(2ωt) + βORxxx],
where ω is the frequency of the external field and the first hyperpo-
larizabilities βSHG

xxx and βORxxx are the xxx components of the second
harmonic generation (SHG) and optical rectification (OR) coeffi-
cients, respectively. In order to obtain the second derivative, several
simulations with different external field amplitudes are performed
and the numerical derivative is taken in each time step. The hyperpo-
larizability tensors are determined by fitting the simulation results to
the analytic formula. The example shown in Fig. 12(d) is that of the
[W(CO)5(py)] complex, where py stands for pyridine [Fig. 12(h)].
The system was treated at the X2C level of theory using the B3LYP
functional,168–170 Dyall’s VDZ basis82,83 for W and Dunning’s aug-
mented cc-pVDZ basis84 for all other elements. The system was
propagated for 7000 time steps of length 0.15 a.u. under the influ-
ence of external fields of cosine time dependence with frequency
0.0239 a.u. and a linear envelope in the first period and amplitudes
0.002 a.u., 0.004 a.u., −0.002 a.u., and −0.004 a.u. Note that shorter
overall simulation times were sufficient to calculate the non-linear
properties due to the use of the monochromatic harmonic field.
It was shown that relativistic effects contributed to about 35% of
the final values of the SHG and OR coefficients. The results were
reported in Ref. 40 where further information is available.

Finally, Figs. 12(e) and 12(f) illustrate how a choice of an active
MO window in the perturbation operator in RT-TDDFT allows the
selection of one particular spectral range of interest. In the presented
electronic absorption spectra of the SF6 molecule [Fig. 12(i)], the
application of the full perturbation excited all electronic modes, and
as a result, the valence, sulfur L-edge, and carbon K-edge spectra
were all obtained together. By restricting the perturbation to sulfur
2p orbitals only, its L-edge spectrum could be isolated. The calcula-
tions were performed using the B3LYP functional,168–170 the aug-cc-
pV(T+d)Z basis171 set for sulfur, and a modified aug-cc-pVTZ basis
for fluorine (all f and the most diffuse d functions removed).84 An
external δ-type pulse with amplitude 0.0005 a.u. was applied to excite
the molecule, which was afterward evolved for 56 000 time steps of
length 0.025 a.u., and the resulting signal was damped with a fac-
tor of 0.0038 a.u. Further results, including discussion of the selec-
tive perturbation used to remove nonphysical valence-to-continuum
excitations in RT-TDDFT simulations, are available in Ref. 41.

IX. DAMPED RESPONSE TDDFT (DR-TDDFT)

A different approach to solving the Liouville–von Neumann
equation, Eq. (129), is the response theory that seeks to obtain
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the density matrix in the form of a perturbation expansion. The
resulting method, the so-called damped response (DR) TDDFT
[also known in the literature as the complex polarization propa-
gator (CPP) approach],172 is a perturbation theory-based method
that determines the response of a molecular system directly in the
frequency domain for the spectral range of interest while explicitly
including the damping parameter γ in the Liouville–von Neumann
equation, Eq. (129), thus preventing divergences at near-resonant
frequencies and allowing the description of absorption processes.
The method is therefore well suited for the treatment of high-
frequency or high density-of-states spectral regions that may prove
challenging for alternative approaches.

The ReSpect program currently contains DR-TDDFT in the
linear response regime and allows the calculation of linear elec-
tric dipole polarizability, optical rotation, electronic absorption, and
electronic circular dichroism spectra in the visible, UV, and x-ray
spectral regions.38

A. DR-TDDFT theory

In linear response theory, the calculation of the spectra depends
only on the virtual-occupied block of the first-order density matrix,
which is parameterized as

D
(1)
ai (t) ≙ Xaie

−iωt + Y
∗
aie

iωt , (136)

where ω is the frequency of the driving external field and Xai and Yai

are undetermined coefficients. By expanding the Liouville–von Neu-
mann equation, Eq. (129), to first order in the applied perturbation
and taking the ansatz in Eq. (136), an algebraic equation

[(A B

B∗ A∗
) − (ω + iγ)(1 0

0 −1
)](X

Y
) ≙ −(P

P∗
) (137)

is obtained whose solution is the central problem of DR-TDDFT.
The matrices A and B are defined in Eq. (115). The right-hand
side of Eq. (137) describes the interaction of the molecular system
with an external field of frequency ω, and γ is a common relaxation
(damping) parameter, used as an approximation for the individual
relaxation rates γpq of Eq. (129). For now, we only consider interac-
tions with an external electric field within the dipole approximation.
In the current release of ReSpect, DR-TDDFT is restricted to molec-
ular systems with closed-shell ground states, and the matrices A
and B include the noncollinear kernel as described in Eq. (70) and
Ref. 38. The adiabatic approximation of TDDFT is assumed. Note
that the omission of the damping factor γ in Eq. (137) leads to the so-
called standard response equation, which, however, cannot describe
absorption processes and suffers from divergences at near-resonant
frequencies.

The numerical solution of Eq. (137) is performed by means of
an iterative subspace algorithm, since, for realistic molecular sys-
tems, the size of the matrix on the left-hand side of the equation
prohibits its direct inversion or the use of elimination techniques.
The essence of such an algorithm is a projection of the large matrix
equation onto a basis of trial vectors, yielding a smaller, so-called
reduced equation for the expansion coefficients, which can be solved
directly. In the iterative subspace solver adapted for relativistic
4c DR-TDDFT, the response vector is divided into components
characterized by their hermicity and time-reversal symmetry that

are, however, sought after as linear combinations of trial vectors
characterized by their hermicity only.173 To achieve stable conver-
gence, it is necessary to use a proper noncollinear kernel, param-
eterization of trial vectors, and control of numerical precision of
algebraic operations. The details of the iterative subspace algorithm
implemented in the ReSpect program can be found in Ref. 38.

1. Calculations of spectra

The complex linear response functions (susceptibilities) are
calculated from the DR-TDDFT response vectors as

⟨⟨R,P⟩⟩ω ≙ XaiRia + YaiRai, (138)

where R is the matrix representation of the operator corresponding
to a property induced by the external field. The calculation of spec-
tra with DR-TDDFT then amounts to solving the linear response
equation for a number of frequencies in the spectral range of inter-
est in order to obtain the response vectors for each frequency and
using Eq. (138) to evaluate the response functions. ReSpect currently
supports electric dipole perturbation [right-hand side of Eq. (137)],
enabling the calculation of the frequency-dependent linear dipole
polarizability, as well as electronic absorption (EAS), optical rotatory
dispersion (ORD), and electronic circular dichroism (ECD) spectra.
The dispersive and absorptive molecular properties correspond to
the real and imaginary parts of the response functions, respectively.
Note that in order to get nonzero imaginary parts of the response
function, the damping parameter γ must have a nonzero positive
value.

DR-TDDFT is particularly suited for calculating x-ray spec-
tra,174 since it directly calculates molecular responses at the given
frequencies. However, when addressing core-excited states with DR-
TDDFT, non-physical transitions arising from electronic excitations
between valence and high-lying virtual orbitals appear, as was the
case for RT-TDDFT. A simple prescription for their elimination is
to zero out certain elements of the dipole moment operator Pai if
orbitals a and i lie outside a selected range corresponding to the spec-
troscopy of interest. This procedure was introduced in the context of
RT-TDDFT41 and is explained in Sec. VIII.

The spectra obtained from damped response theory can be
analyzed in terms of transitions between ground-state MOs by
considering individual virtual-occupied orbital-pair contributions,

∥⟨⟨R,P⟩⟩ω∥ai ≙ XaiRia + YaiRai, (139)

i.e., by omitting the summation over repeated indices in Eq. (138).
This so-called dipole-weighted transition analysis was first intro-
duced in the context of real-time TDDFT37 [see also Eq. (135) and
the accompanying discussion] but can be straightforwardly applied
in DR-TDDFT. The results of DR-TDDFT transition analysis are
identical to the weak-field regime of RT-TDDFT.

Summary: The DR-TDDFT module of ReSpect allows the
calculation of the following molecular properties:38

● frequency-dependent electric dipole polarizability,
● electronic absorption spectra,
● electronic/natural circular dichroism spectra,
● optical rotatory dispersion spectra

and these are all available for closed-shell molecular systems with
a non-degenerate ground state described by a Kramers-restricted
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KS determinant (diamagnetic systems). The current list of features
includes the following:

● 1c (KS), 2c (X2C), and 4c (DKS) Hamiltonians,38

● noncollinear DFT potentials and kernels,
● possibility of addressing arbitrary spectral regions (from

UV/vis to x-ray),
● possibility of applying a perturbation only to a selected MO

window,
● analysis of spectral lines in terms of MO transitions,
● restart from previous calculations,
● resolution-of-the-identity integral acceleration for the

Coulomb term (RI-J),42 and
● hybrid MPI/OpenMP parallelization.

Readers can find the up-to-date feature list on http://www.
respectprogram.org.

B. DR-TDDFT applications

1. Valence spectroscopies

To illustrate the capabilities of molecular property calculations
using DR-TDDFT, we first present an application to the chiral
transition metal complex Δ-[Os(phen)3]

2+, where phen stands for
phenanthroline [Fig. 13(e), 67 atoms]. This system was the subject
of earlier theoretical studies using TDDFT with the approximative
scalar ZORA Hamiltonian175–177 as well as an experimental inves-
tigation.178 The results presented here are adapted from our ear-
lier work38 and extended by the inclusion of two-component X2C
results.

In these calculations, the system was treated at the relativistic
four-component (DKS), two-component (X2C), and non-relativistic
one-component levels of theory, employing the PBE0 exchange–
correlation functional.80,81,113 Uncontracted versions were used of
Dyall’s cVDZ basis82,83 for Os and Dunning’s cc-pVDZ84 basis for
other elements (1545 scalar basis functions, 3090 2c and 6180 4c
basis spinors). The spectral region between 1.5 eV and 5.5 eV
was covered in the damped response calculations, with resolution
0.05 eV and 20 points treated simultaneously in the multi-frequency
solver regime.

The resulting spectra are presented in Figs. 13(a) and 13(b).
The ECD spectra have been multiplied by a factor of 6 in the region
between 1.5 eV and 4.0 eV to zoom in on the lower-intensity part of
the spectra (the same scaling was applied in Ref. 175). While there is
a relatively good agreement in both EAS and ECD spectra between
the 1c, 2c, and 4c results, some differences are observed between the
results obtained with non-relativistic and relativistic theories. Specif-
ically, the low-frequency peaks (below 4.0 eV) are red-shifted, and
new peaks emerge at the relativistic level of theory. An analysis of the
spectrum in terms of MO transitions was applied and revealed that
the signals below 4.0 eV result from metal-to-ligand charge transfer
(MLCT) excitations from d-type spinors of the central atom to lig-
and orbitals, while the intense higher-energy transition results from
a ligand-to-ligand excitation (corroborating the assignment made in
one of the earlier studies175). The noticeable differences between the
relativistic and non-relativistic results in the low-intensity parts of
the spectra can thus be explained by their MLCT origin: the orbitals
of the central Os atom are expected to bemore affected by relativistic
effects than orbitals of the lighter ligand atoms.

2. X-ray spectroscopies

An interesting example for simulation of x-ray spectra is pro-
vided by the neutral complex [RuCl2(DMSO)2(Im)2] [Fig. 13(f), 41
atoms], a molecule investigated while developing a protocol for x-
ray studies of Ru-based anti-cancer drugs.179 A specific feature of
the complex is the proximity of the Cl K-edge and Ru L3-edge
absorption regions, allowing the accuracy of DFT in the x-ray region
to be studied. Moreover, the calculation of x-ray spectra involving
L edges requires a relativistic treatment to correctly describe the
p1/2–p3/2 splitting, even for elements in the third row of the Periodic
Table.41

In order to obtain the [RuCl2(DMSO)2(Im)2] spectra, lin-
ear damped-response calculations were performed at the rela-
tivistic four-component (DKS), two-component (X2C), and the
non-relativistic one-component levels of theory, employing the
PBE0 exchange–correlation functional.80,81,113 Uncontracted ver-
sions were used of Dyall’s cVDZ basis99 for Ru and Dunning’s cc-
pVDZ84,180 basis for other elements (893 scalar basis functions, 1786
2c and 3572 4c basis spinors). The spectral region of 2770–2810 eV
was covered with a resolution of 0.1 eV, and 100 frequency points
were treated simultaneously in the multi-frequency solver. When
constructing the perturbation operator, the Cl 1s and Ru 2p orbitals
were selected.

The resulting x-ray spectra are presented in Figs. 13(b) and
13(d). The spectra consist of absorption near the Cl K-edge as well as
at the Ru L3 edge. The calculated spectra were shifted to align the first
peak with the value found in the experimental spectrum (2810 eV).
The 4c spectra were shifted by 48 eV and the 2c and 1c spectra by an
additional 1.06 eV and 10.85 eV, respectively.

The MO transition analysis was used to assign peaks to their
respective absorption edges. The first peak at 2822 eV corresponds to
the transition from Cl 1s1/2 to the LUMO orbital, with the following
signals up to 2847 eV also belonging to the Cl K-edge spectrum. The
Ru L3 edge begins with the intense peak at 2852 eV and 2849.5 eV at
the 4c and 2c levels, respectively. At the non-relativistic level, the L
absorption edge does not appear in the plotted part of the spectrum
but rather starts at 2867 eV.Moreover, a 1cmethodology without SO
coupling predicts only a single L-edge consisting of excitations from
all p orbitals, while both 2c and 4c relativistic techniques correctly
predict splitting into L3 and L2 edges. This splitting for Ru is more
than 130 eV, and, as a result, the L3 and L2 absorption edges are not
observed together, highlighting the need for proper treatment of SO
interaction when studying x-ray spectra.

A well-known challenge in calculations of molecular spectra
in the x-ray region is the shifts of spectral lines with respect to
experimental observations. There are several possible causes, includ-
ing shortcomings of DFT such as the self-interaction error or the
absence of proper inclusion of relativistic effects in the case of
quasirelativistic or non-relativistic approaches. For example, in the
case of [RuCl2(DMSO)2(Im)2], one observes (in addition to the
absolute shifts) a difference in the energy separation of the Cl K edge
and Ru L3 edge. In the experiment, this separation is approximately
20 eV, while the calculations predict approximately 30 eV. This dis-
crepancy is speculated to arise from different DFT self-interaction
errors for the two nuclei. Moreover, we can also hypothesize that the
difference in the position of the Ru L3 edge in the 2c and 4c calcu-
lations arises from the consideration of only the 1-electron part of
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FIG. 13. Examples of electronic absorption (EAS) and electronic circular dichroism (ECD) spectra in UV–vis and x-ray regions, calculated by means of linear damped-
response (DR) TDDFT, and the molecular systems involved. The spectra were described at the one-component KS (1c), quasirelativistic two-component X2C (2c), and fully
relativistic four-component DKS (4c) levels of theory using the PBE0 hybrid density functional. For discussion and analysis of the spectra, see Sec. IX B. (a) UV–vis EAS, (b)
x-ray EAS, (c) UV–vis ECD, (d) x-ray ECD, (e) Δ-[Os(phen)3]2+, and (f) [RuCl2(DMSO)2(Im)2].

the Hamiltonian when generating the X2C transformation matrix.
However, these suggested explanations require further investigation.

In general, though, the calculated spectrum reproduces the
essential features of the experimental spectrum, such as the shoulder
of the main experimental Ru L3 edge peak, which appears as a sepa-
rate peak in the calculated spectrum. Moreover, this example serves

to illustrate the computational protocol, as well as the methodolog-
ical advantages and challenges in the application of DR-TDDFT to
x-ray spectra. Owing to the formulation of the DR-TDDFT equa-
tion, the spectral function can be calculated directly in the frequency
domain for the spectral range of interest, without consideration of
other parts of the spectrum. In addition, a wide range of frequencies
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can be treated together in the multi-frequency solver. The chemical
interpretation of the signals is then aided by the transition analysis.

X. EXCITATION ENERGIES FROM LINEAR-RESPONSE
TDDFT (LR-TDDFT)

The central theoretical concept in the calculation of excitation
energies in the framework of DFT is that the exact linear response
function has poles at the excitation energies of the system.181 In
response theory, the response of the Kohn–Sham (KS) determinant
is induced by changes in the external potential, which are usually
caused by electric or magnetic fields. The DFT-based calculation of
excitation energies thus corresponds to the calculation of poles of the
DFT-based linear response function. The resulting linear-response
TDDFT (LR-TDDFT) theory is often referred to as conventional
TDDFT or eigenvalue TDDFT theory.

In addition to a simpler approach based on the closed-
shell Kramers-restricted reference state, we recently have devel-
oped a four-component LR-TDDFT approach based on an open-
shell Kramers-unrestricted reference state (4c-LR-KU-TDDFT).39

The implementation in ReSpect is, therefore, applicable to both
closed- and open-shell systems and thus capable of addressing a
wide variety of relativistic phenomena. Since the method includes
spin–orbit effects variationally, it is inherently capable of describ-
ing spin-flip and spin-forbidden transitions. In the case of closed-
shell systems, this leads to nonzero singlet–triplet transition dipole
moments, and thus, the method naturally describes the physi-
cal phenomenon of phosphorescence. The radiative lifetimes of
phosphorescent complexes are of importance for designing effi-
cient organic light-emitting diodes (OLEDs). Furthermore, the 4c-
LR-KU-TDDFT method treats all states on an equal footing. The
first excitation energy of an effective doublet system is therefore
zero due to the energetic degeneracy of the Kramers pair. More-
over, fluorescence (singlet–singlet transitions) and phosphorescence
(singlet–triplet transitions) are described simultaneously. This also
means that the spin–orbit-driven zero-field splitting effect, i.e., the
lifting of an otherwise degenerate 2S + 1 multiplet, can be triv-
ially obtained from the 4c-LR-KU-TDDFT calculations as energetic
excitations.

The starting point for LR-TDDFT methods is the Liouville–
von Neumann equation without the damping factor, i.e., without
the description of relaxation effects [see Eq. (129) in Sec. VIII].
The poles of the DFT linear response function correspond to the
excitation energies and are obtained as solutions of the eigenvalue
problem,

( A B

−B∗ −A∗
)(XN

YN

) ≙ ωN(XN

YN

), (140)

whereωN is a vertical electronic excitation energy from the reference
electronic state (usually the ground state) to the Nth excited elec-
tronic state and (XN YN)T is the corresponding transition vector.
Matrices A and B are defined in Eq. (115).

The implemented four-component linear response TDDFT
approach is based on a Kramers-unrestricted reference state and
utilizes the noncollinear DFT methodology and the modified
Davidson–Olsen algorithm (eigenproblem solver).39 The former

guarantees the invariance of the obtained results with respect to rota-
tions of the coordinate system, and the latter allows one to achieve
a robust convergence for systems with both non-degenerate and
degenerate ground states.

A. Noncollinear DFT methodology

The ReSpect program allows the calculation of excitation ener-
gies and transition electric dipole moments within the LR-TDDFT
method for both closed- and open-shell systems, i.e., for systems
with both Kramers-restricted and Kramers-unrestricted KS refer-
ence determinants. In Table IV, we summarize all possible combina-
tions of the noncollinear exchange–correlation potential and kernel
for closed- and open-shell reference states. It is recommended to use
the full GGA expression for both the noncollinear DFT potential and
the kernel (the GGA method in Table IV). The use of the ALDA
approximation is recommended only for comparison with imple-
mentations in other program packages and for its assessment with
respect to the full GGA implementation.

B. Eigenvalue solver

The expression in Eq. (140) has the same matrix form, regard-
less of the relativistic level of the Hamiltonian. It might therefore
seem that the eigenvalue solver (ES) algorithm is independent of
the form of the Hamiltonian. This is, however, not the case, and the
internal structure of theHamiltonian greatly influences the form and
robustness of different ES algorithms. To obtain good convergence
and stability of the ES for systems with degenerate ground states
(open-shell Kramers-unrestricted reference states), it is necessary to
improve upon the standard Davidson–Olsen algorithm.182–184

It was first recognized by Olsen et al.184 that one way to stabilize
the convergence process of ESs for solving Eq. (140) is to add two
(paired) trial vectors in each iteration,

(x
y
), (y∗

x∗
). (141)

The improved version of the Davidson–Olsen algorithm imple-
mented in the ReSpect program considers two extra trial vectors,

TABLE IV. Expressions used by the LR-TDDFT module for the calculation of the
noncollinear exchange–correlation potential and kernel.a

Reference KS determinant Method Exc Vxc Kxc

Closed-shell
GGAb (58) (67) (70)
ALDA (58) (67) (72)

Open-shell
GGAb (66) (69) c

ALDA (66) (69) d

aThe numbers in parentheses indicate the corresponding equations in the present
article.
bRecommended option.
cThe noncollinear xc kernel as defined in Ref. 39 by Table I.
dThe noncollinear xc kernel as defined by Eq. (25) in Ref. 39, neglecting terms containing
the gradients of the charge and spin density.
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which correspond to the left eigenvectors of the eigenproblem
(140),

(x
y
), (y∗

x∗
), (x

−y
), ( y∗

−x∗
). (142)

In our experience, it is usually sufficient to include only the paired
trial vectors in Eq. (141) for systems with non-degenerate ground
states, i.e., for systems with a single-determinant Kramers-restricted
configuration. However, for systems with a degenerate ground state
(a Kramers-unrestricted reference KS determinant), the use of all
four trial vectors is mandatory. For a more detailed description of
ES, see Ref. 39.

C. Electronic absorption spectroscopy
and polarizability from LR-TDDFT

Transition electric dipole moments between the reference
(ground) state and the Nth excited state read as

tN ≙ (XN)aiPia + (YN)aiPai, (143)

where Pai corresponds to the electric dipole moment in the molecu-
lar orbital basis,

Pai ≙ ⟨φa∣μ∣φi⟩, μ ≙ −(r − RC). (144)

Here, r is the electron position operator, RC is the nuclear charge
center of the molecule, and φi (φa) are occupied (vacant) four-
component molecular orbitals of the reference Slater determinant
(see Sec. III). Note that, unlike the analogous Eq. (138) of damped
response TDDFT, in Eq. (143), the response vectors do not include
any external perturbation, and thus, their contraction with the prop-
erty matrix yields transition moments rather than directly suscepti-
bilities.

The isotropic part of the complex linear electric dipole polariz-
ability tensor in the framework of the LR-TDDFT can be obtained
using the formula

α(ω) ≙ 1

3
∑
N

[ ∣tN ∣2
ω + ωN + iγ

−
∣tN ∣2

ω − ωN + iγ
], (145)

where the damping factor γ describes the rate of relaxation. The elec-
tronic absorption spectrum is calculated as the imaginary part of
α(ω),

S(ω) ≙ 4πω

c
I∥α(ω)∥. (146)

Similarly, the real part of α(ω) leads to the frequency-dependent
linear electric dipole polarizability.

D. Radiative lifetime from LR-TDDFT

The radiative rate kN and radiative lifetime τN from the Nth
electronic state to the ground state can be calculated using the
Strickler–Berg relationship185 (in SI units),

kN ≙
1

τN
≙

4α3mee
4

3h̵3(4πε0)2 nωN ∣tN ∣2, (147)

where n is the refractive index of a medium, α is the fine struc-
ture constant, ωN is the Nth excitation energy, and tN represents the
transition electric dipole moment.

The experimental radiative lifetime is then obtained as the
Boltzmann average over a subset of electronic excitations,

τbav ≙
1

kbav
≙
∑N e−ωN/kT

∑N kNe−ωN/kT
. (148)

Summary: The LR-TDDFT module of ReSpect allows the cal-
culation of the following molecular properties:39

● excitation energies, including zero-field splittings,
● transition electric dipole moments,
● electronic absorption spectra,
● frequency-dependent electric dipole polarizability,
● radiative rates and radiative lifetimes using Boltzmann aver-

aging

and these are all available for closed-shell and open-shell doublet
and triplet molecular systems, with the ground state described by
Kramers-restricted or Kramers-unrestricted KS determinants. The
current list of features includes the following:

● 4c (DKS) Hamiltonian,
● noncollinear DFT potentials and kernels as listed in

Table IV,
● solution of the full eigenvalue problem (140) as well as

Tamm–Dancoff approximation with B = 0,
● restart from previous calculations if these did not finish suc-

cessfully or, for example, the user requires more excitation
energies,

● PCM solvent model,
● resolution-of-the-identity integral acceleration for

the Coulomb term (RI-J),42 and
● hybrid MPI/OpenMP parallelization.

Readers can find the up-to-date feature list on http://www.
respectprogram.org.

E. LR-TDDFT applications

As our first example of the performance and capabilities of
the LR-TDDFT method implemented in ReSpect, we calculated the
excited state ZFS and radiative lifetimes of a closed-shell iridium(III)
complex. Ir(III) complexes are regarded as the best candidates for
the construction of organic light emitting diodes based on phos-
phorescent emitters.186–188 Prediction of the phosphorescence phe-
nomenon is sensitive to the accuracy at which the spin–orbit cou-
pling (SOC) is treated, wherefore the four-component relativistic
approach is especially suited for this task. The chosen Ir(III) com-
plex (see Fig. 14) was studied both experimentally and theoretically
in Ref. 189 (labeled therein as complex 1). All calculations were
done at the 4c DKS/PBE080,81,113 level using the geometry taken from
Ref. 189, the uncontracted Dyall’s valence triple-zeta basis82,83 for
Ir, and the uncontracted cc-pVTZ basis84 for light atoms. First, we
calculated the ZFS of the lowest triplet state, 14.1 meV. The value
is close to the presented result in Ref. 189, 11.6 meV, where the
SOC effects were included perturbatively. To compute the radia-
tive rate at room temperature, we calculated the first 9 excited states
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FIG. 14. The molecular structure of [Ir(ptz)3] used in the 4c LR-TDDFT radiative
lifetime study (experimental data in Ref. 189), ptz = fac-tris(1-methyl-5-phenyl-3-
n-propyl-[1,2,4]triazolyl).

and used Eqs. (147) and (148). The obtained value 2.2 × 105 s−1

(τ = 4.5 μs) agrees reasonably well with the one presented in Ref. 189,
4.3 × 105 s−1, although it underestimates the experimental result
of 6.1 ± 0.8 × 105 s−1. The convergence of the results with the
number of excited states was confirmed by calculating 17 states
with the double-zeta basis quality. The discrepancy between the
calculated and experimental results can be attributed to the lack
of environmental effects and to the shortcomings of DFT itself,
since as an example, TDDFT favors low-spin states over high-spin
states.190,191

Finally, we present for the first time the calculation of a ground-
state ZFS using the four-component LR-TDDFT methodology. We
have applied a recently developed 4c-LR-KU-TDDFT method39 to
the [IrRu2(dpa)4Cl2]

+ complex shown in Fig. 9. The calculations
were performed using the 4c DKS/PBE080,81,113 level of theory with
Dyall’s uncontracted valence double-zeta basis82,83,99 for Ru and Ir
and Dunning’s uncontracted cc-pVDZ basis84 for light atoms. The
system has C1 symmetry and has a triply degenerate ground state
according to the scalar relativistic or nonrelativistic levels of the-
ory. This degeneracy is lifted in the relativistic theory due to spin–
orbit coupling. We performed two calculations, with the magneti-
zation oriented along the z and x Cartesian directions with respect
to the geometry obtained from Ref. 153. For the x direction, we
obtained a first excitation energy of 22.53 cm−1, and for the z direc-
tion, we obtained −35.46 cm−1. Taking into account that the differ-
ence in SCF energies between the z and x directions is 21.41 cm−1,
and using the computed first excitation energies, the following ZFS
parameters were obtained: D = 24.2 cm−1 and E = 11.3 cm−1. In
this work, we have omitted the Gaunt interaction, and therefore,
the spin–spin dipole contribution is not included in the calculated
values. However, this contribution was found to be insignificant
for systems containing heavy elements (see, for example, Ref. 192
and references therein). This implementation of the 4c-LR-KU-
TDDFT method, the first of its kind, opens the door to new areas of
application.

XI. SUMMARY AND OUTLOOK

Since its inception in 1998 as a program mainly designed to
facilitate the exploration of novel ideas and concepts regarding rel-
ativistic effects on NMR and EPR parameters, ReSpect has grown
into a computationally efficient one-, two-, and four-component
relativistic DFT code that can address a wide range of problems
in chemistry and physics. The introduction of complex quater-
nion algebra, restricted kinetic and magnetic balance bases, effi-
cient integral and exchange–correlation routines, and a hybrid
MPI/OpenMP parallelization scheme makes it possible to routinely
treat molecules with more than 100 atoms at the 4c relativistic level
of theory, and even more at the 2c X2C level of theory, even on
modest workstations. In recent years, ReSpect has also extended
its range of available molecular properties to include real-time,
damped response, and linear response TDDFT and now includes
both linear and nonlinear frequency-dependent molecular prop-
erties involving electric and magnetic fields. At the same time,
ReSpect continues to provide unique functionality in the study of
relativistic effects on EPR and NMR parameters, including a vari-
ety of tools for the analysis and interpretation of the obtained
results.

The computational efficiency of the code and the under-
lying structure used in the implementation of the theory have
also allowed ReSpect to include unique features such as Kramers-
unrestricted Kohn–Sham determinants for systems with a degen-
erate ground state (paramagnetic systems) as well as efficient
handling of Kramers-restricted (closed-shell) systems. The Kramers-
unrestricted approach in the ReSpect program now offers unique
functionality for computational studies of the ground-state zero-
field splitting parameters using the LR-TDDFT methodology, the
calculation of indirect nuclear spin–spin coupling constants for
paramagnetic NMR spectroscopy, and inclusion of solvent effects
by means of the polarizable continuum model (also available
now for paramagnetic NMR parameters). The first ever applica-
tions of these features have been presented in this article. The
Kramers-unrestricted approach can also be used to study dynam-
ical (frequency- and time-dependent) properties by means of the
linear response and real-time TDDFT modules. A recent exten-
sion of the program to the solid-state domain enables fully rel-
ativistic four-component all-electron DFT calculations using a
Gaussian basis for 1D, 2D, or 3D periodic systems.28 This devel-
opment is expected to allow studies of relativistic phenomena for a
wide range of different solid-state materials, particularly for prop-
erties depending on the electron density in the vicinity of the
nuclei.

ReSpect is still in active development, and we expect new
advances in the coming years, such as the possibility of geome-
try optimizations using external optimization modules in combi-
nation with analytic gradients. Nevertheless, ReSpect is designed
to be user-friendly, providing a simple input structure and a rich
library of basis sets suited for relativistic calculations, a well-
documented manual, and test examples for different calculations.
In combination with a variety of different visualization and anal-
ysis tools and its computational efficiency, we expect ReSpect to
be a valuable part of the toolbox for computational chemists inter-
ested in the energetics and properties of heavy element-containing
compounds.
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137T. B. Demissie, M. Jaszuński, S. Komorovsky, M. Repisky, and K. Ruud, J.
Chem. Phys. 143, 164311 (2015).
138W. H. Flygare, J. Chem. Phys. 41, 793 (1964).
139I. A. Aucar, S. S. Gómez, M. C. R. de Azúa, and C. G. Giribet, J. Chem. Phys.
136, 204119 (2012).
140Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013).
141G. A. Aucar and I. A. Aucar, Annual Reports on NMR Spectroscopy (Elsevier,
2019), pp. 77–141.
142A. Antušek and M. Repisky, Phys. Chem. Chem. Phys. 22, 7065 (2020).
143T. B. Demissie, N. Kostenko, S. Komorovsky, M. Repisky, J. Isaksson, A. Bayer,
and K. Ruud, J. Phys. Org. Chem. 28, 723 (2015).
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