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Abstract
Cooperation between human operators and autonomous
machines in dynamic (not fully controlled) situations implies 
need for dynamic allocation of activities between the agents.
Depending on whether tasks or functions are allocated, the
demands made on human-machine cooperation design are
different. Task and Subtask allocation assumes that both the
human operator and the machine (or its designer) share the
same decomposition of the overall task into subtasks.
Function delegation is less demanding, provided that the
human operator delegates functions to the machine explicitly,
and within the context of a task representation transmitted by
the human. This paper uses an example taken from a series of
studies on human-machine cooperation in air traffic control in
order to illustrates its argument.
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Introduction

Dynamic situations are frequently encountered within
highly complex and risky systems such as air traffic
control, glass-cockpit aircraft piloting, nuclear power
plants, and so on. They are not fully controlled by their
human operators. The reason is twofold. Firstly, the
environment is not fully predictable (e.g., flight plans
over a regional or national area are calculated to avoid
conflicts between aircraft trajectories, but a delay of
only a few minutes can create an unanticipated
conflict). Secondly, not only human operators, but also
autonomous machines are acting upon the same objects
(e.g., in emergency situations, automatic devices are
triggered without any front-line human operator
intention). As Hollnagel and Woods (1983) have
pointed out, modern Human-Machine Systems (HMS)
should be considered as Joint Cognitive Systems.

HMS design implies the definition of activity
allocation between humans and the devices they are
using. Fitts’ seminal work (1951) on principles for 
priori allocation (The Human is best at... The Machine

is best at...) has been widely criticized because of its
restricted adaptive power (e.g., Bainbridge, 1987; Hoc,
2000; Parasuraman, 1997; and many others). For a long
time, human engineering has expended some effort in
defining dynamic allocation principles in real time (e.g.,
Rieger & Greenstein, 1982; Millot & Mandiau, 1995).
Optimization parameters for such a dynamic allocation
are diverse; for example, human workload (maintained
between two boundaries in order to avoid error-prone
overload on the one hand and boredom underload on the
other), accessibility to data (the agent who has easy
access to the necessary data will do the job), and so on.
In recent literature, the real time allocation principle is
referred to in various ways, but using similar concepts
--dynamic task (or function) allocation (McCarthy,
Fallon, & Bannon, 2000; Older, Waterson, & Clegg,
1997) or adaptive automation (Kaber, Riley, Tan, 
Endsley, 2001). Although these concepts place
emphasis on the adaptation of the machine to the
human, the studies also integrate the adaptation of the
HMS to its environment, evaluated by looking at
cognitive costs (for the human), performance (overall
task quality), and risk management.

In this paper, we will consider two extreme dynamic
allocation modes I dynamic task allocation and
function delegation-- in terms of demands made on
Human-Machine Cooperation (HMC) design. Activity
allocation is a cooperative activity, as opposed to a
private activity. The first section will delineate the
framework we have defined in order to analyze
cooperation. It will locate activity allocation within the
other cooperative activities and introduce a crucial
distinction between role, task, and function in the
context of HMC. The second and third sections will
present the respective demands of the two allocation
principles on design, illustrating them in the air traffic
control domain. In conclusion, we will develop a
number of arguments in favor of function delegation in
situations where the machine’s ability to cooperate is
restricted.

30a

From: AAAI Technical Report WS-02-03. Compilation copyright © 2002, AAAI (www.aaai.org). All rights reserved. 



Human-Machine Cooperation

A Theoretical Framework for Cognitive
Cooperation

Our approach to cooperation is more process than
structure oriented. It describes cooperative activities
(and their underlying representations) and must 
complemented by other approaches in terms of relations
and communication flows between agents. As is the

case with Castelfranchi’s theory (1998), ours puts at its
core the notion of (negative or positive) interference
(dependence or inter-dependence between different
agents’ goals and subgoals). We consider cooperative
activities as being mainly motivated by the management
of such interference, in order to facilitate individual
tasks or the overall task (Hoe, 2001).
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Figure 1: Cooperative activities (after Hoc, 2001).
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We define three levels of cooperative activity in relation
to the temporal span (or horizon) covered (Figure 1). 
the action level, cooperation consists of local
interference management. At the planning level, it
enables the agents to maintain and/or elaborate a
COFOR (COmmon Frame Of Reference), a concept
similar to common ground (Clark, 1996) or a shared
mental model (Cannon-Bowers, Salas, & Converse,
1993). It is concerned with the representation of the
environment as well as the representation of the team’s
activity, and it is an internal representation as opposed
to an external support (Jones & Jasek, 1997). Activity
allocation belongs to the planning level. The meta-
cooperation level integrates long-term constructs,
including "translators" between each partner’s

representations or models of oneself, or of the other
agents. The activities that can be found at each level
enable the agent to introduce an anticipative feature into
the activities situated at the previous level. For example,
a model of the other agent can facilitate goal
identification.

Diverse forms of interference are possible. Some of
them have already been widely studied by artificial
intelligence and psychology in the domain of planning
(Hoc, 1988) --precondition or interaction between
goals. Others are specific to cooperation (Hoc, 2001)
--redundancy between agents or mutual control (of
each agent over the others’ activities). Redundancy is
obviously a necessary condition for activity allocation.
As far as HMC is concerned, mutual control is crucial
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since the machine is always supervised by a human
operator and can therefore contribute to the correction
of human errors.

The Problem of Activity Allocation behveen

Humans and Machines

Within the HMC context, the use of concepts borrowed
from human-human cooperation is justified because it
has been proved that humans can transfer cooperative
attitudes to machines (Nass, Fog, & Moon, 1996).
However, to use concepts originated from the study of
human-human cooperation, without a degree of caution,
in order to approach human-machine relationships could
be inappropriate. The most debatable is certainly the
notion of role in which there are two components: the
activity and the related responsibility. Role allocation is
possible between humans, but one cannot allocate a
"role" to a machine that is only able to assume a certain
authority, rather than any responsibility. If an activity is
allocated to a machine, there is always a ’front-line’
human operator responsible for this activity. One of
well-documented difficulty with automation is the
complacency phenomenon that reduces human
responsibility without replacing it with any ’machine’
responsibility (Hoe, 2000). Certainly, in law, there 
always a responsible entity, but it is always of a human
nature (the human designer or the front-line human
operator). Strictly speaking, there is no role allocation
between humans and machines.

The notion of task allocation looks more realistic in
HMC, that is to say, it is a goal that can be reached with
some autonomy. The designers have no problem in
performing hierarchical task analyses, decomposing
overall tasks into subtasks, sub-subtasks, and so on,
until they reach elementary levels. Is putting one foot in
front of the other a task for a walker under ordinary
conditions? When we are confronted by a human
operator performing what we think of as a task, several
problems can arise. An operation such as taking a step
may be considered by the walker to be simply a means
rather than an end. Elaborating a representation of this
particular goal can jeopardize the necessary fluidity of
the walk. Furthermore, when the walker stoops under a
heavy burden, the high level of interaction between the
two operations makes it difficult for them to be
processed independently. This task decomposition is not
then appropriate for the actual execution of this activity.
We have defended elsewhere (Hoc, 1988) the
importance of the consideration of the subject’s task
representation to an understanding of task execution.
During its execution, a task (or sub-task) can 
identified by the representation of a goal as an intention
to be protected (by the performer). Dynamic task
allocation between a human operator and a machine (or
another human operator) is acceptable only if the
designer’s overall task decomposition is compatible
with the task decomposition considered by the operator.

A weak form of task allocation is function
allocation, where human’s responsibility for the overall

task is recognized. A particular function may be
considered, sometimes as a task, sometimes as a means
without any goal in itself, but just related to a
superordinate goal. A function is more generic than a
task because it can be utilized in the performance of
different tasks. The same set of functions can be
considered within different decompositions of the same
(overall) task. However, dynamic function allocation 
not acceptable if the human operator cannot identify the
function to be allocated. Below, we will discuss
function delegation as a particular function allocation
mode where the human operator decides to allocate a
function to a machine explicitly, within the framework
of a task decomposition given by the human.

An Example: Air Traffic Control

In France, a research program has been developed to
explore the possible benefits of adaptive automation as
a solution to the yearly 7% increase in air traffic in
Europe (Debernard, Cathelain, Crevits, & Poulain,
2002; Hoc & Lemoine, 1998; Vanderhaegen, Crevits,
Debemard, & Millot, 1994). It has made use of diverse
Automatic Conflict Resolution Devices (ACRD) 
dynamically allocate some activities, either to the
human controller or to the ACRD, in order to alleviate
the human workload. The distinction we have just made
between task and function applies clearly to this
program.

Figure 2 reproduces part of an air traffic control
radar-like scope. At first, two aircraft (AFR124 and
BAW678) can be identified as conflicting (crossing 
the top left under the acceptable separation gap) if
nothing is done. The third one (BAW678) is not
conflicting. Following the usual rule (that governs
relations between the speeds), the (human) air traffic
controller decides to make AFR124 go behind
BAW456. As soon as this intention is formulated, the
contextual aircraft BAW678 enters into the conflict, in
this instance with AFRI24. A second deviation decision
is made and the problem is completely solved.

This presentation of the problem is very analytical
as opposed to the representation likely to be elaborated
by human controllers who use powerful pattern
recognition processes (Klein, Orasanu, Calderwood, 
Zsambok, 1993). As a matter of fact, controllers
recognize a three-aircraft conflict immediately and the
two-step solution is envisioned straightaway. The first
ACRD utilized in the experiments was a two-aircraft
conflict resolution device. The task unit represented by
the controllers is not of this kind. The two successive
two-aircraft conflicts are not resolved separately, but as
a means (function applications) of executing the three-
aircraft task. In addition, if the device turns AFR124 to
the left in the two-aircraft conflict (AFR124 and
BAW678), it can create a more complex problem,
involving several aircraft on the left, than the initial
three-aircraft problem. This analysis also shows that the
way a task is defined is not independent of intention and
that task decomposition is governed by the reduction of
interference between sub-tasks.
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Figure 2: Resolution of a three-aircraft conflict in air traffic control. A square (followed by after-imagery
dots in relation to speed) represents an aircraft. A thin line represents an airway. Two aircraft
--BAW456 and BAW678-- are going from South-East to North-West. AFR124’s trajectory
crosses the others’ trajectories. Bold lines indicates the effect of the deviation instructions given to
the aircraft

Dynamic Task Allocation

Task Definition

Dynamic Task Allocation (DTA) assumes that the tasks
(and subtasks) to be allocated, either to the human or 
the machine, can be defined beforehand in a generic
way. This generic definition will then be applied in real
time to identify sub-tasks of this kind, resulting in a
decomposition of the overall task. More often than not,
the definition relies on competency of the automatic
device, since it is crucial to that it can take the place of
the human (redundancy). The first part of the Air
Traflic Control (ATC) research program (SPECTRA)
explored the concept of DTA. It assumed that ATC
controllers could accept DTA when two-aircraft tasks
are actually considered (Hoc & Lemoine, 1998;
Vaderhaegen et al., 1994). It was found that the benefits
of using the ACRD were considerably reduced, because
of a number of refusals by controllers to allocate (or to
see allocated) two-aircraft conflicts belonging to three-
or four-aircraft problems. It was felt that the ACRE)
would render the problem more complex to solve.
Despite this, however, the ACRD still appeared to be
effective.

Implicit and Explicit Allocation

A first version of the platform (simulator and assistance:
SPECTRA V l: Vanderhaegen et al., 1994) was
developed to compare two allocation modes: implicit
and explicit. Only Radar controllers (in charge of safety
and expedition in the sector) were employed for night
traffic duty. Planning controllers, in charge of
regulating the radar controllers’ workload and inter-
sector coordination, were not present. The implicit
mode consisted of imposing the allocation on the basis
of an evaluation of the radar controller’s workload and
the maintenance of this workload below a certain level.
In the explicit mode, the radar controller decided on the
allocation. These two modes were compared with a
control situation where no ACRD was used. Despite
using an inappropriate experimental design (one that
lacked balancing order effects), a high degree of
consistency was found between different kinds of
variables (objective and subjective measures). This led
the researchers to draw two main conclusions.

The two modes led to a better performance
than the control situation, in correlation with
the number of conflicts allocated to the ACRD.
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¯ The implicit mode was better than the explicit
mode, in terms of performance, because the
latter mixed strategic (allocation) and tactical
(conflict resolution) activities, which led to 
overload. However, despite its positive effect
on performance, the implicit mode was less
appreciated by the controllers than the explicit
mode. They reported that they were very
anxious to keep control over the entire
situation.

A second platform (SPECTRA V2: Hoc & Lemoine,
1998) was developed in order to reduce the explicit
allocation demands. This necessitated two kinds of
controller --a radar controller and a planning
controller. Two explicit modes were defined --a fully
explicit mode and an assisted explicit mode. The fully
explicit mode enabled the two controllers to allocate the
conflicts. In the assisted explicit mode, the machine
made a proposal, the planning controller could exert a
veto right, but the radar controller was not in charge of
the allocation. The two modes were compared with a
control situation and the order effects were balanced.
Looking beyond the benefits of the two modes over the
control situation, the main results were as follows
(obviously, the problem of task decomposition
remained).

¯ The assisted explicit mode was more effective
than the fully explicit mode, in terms of
performance, but also in terms of private and
cooperative activities. Private strategies were
more anticipative, because time was saved by
the ACRD resolutions (including re-routing)
and the planning controllers’ contribution to
DTA. Cooperative activities (between human
controllers) appeared to be easier to develop,
possibly because of a richer external COFOR
on the interfaces.

¯ However, some evidence of a complacency
phenomenon was found in the protocols. The
radar controllers could not allocate conflict and
thus felt themselves less responsible for the
tasks performed by the machine.

The Demands of Dynamic Task Allocation on
Design

From these SPECTRA experiments, three conclusions
can be drawn when it comes to designing an efficient
DTA between a human and an artificial agent.

¯ There must be compatibility between task
decompositions. The best results ought to be
attained by decomposition into almost
independent sub-tasks, considering the human
intentions. If the machine is unable to produce
such an almost independence and to infer
intentions, DTA cannot be entirely
satisfactory.

¯ The human control should be maintained over
the situation. Explicit DTA is always the best
and purely implicit DTA should be avoided. A

compromise, between the two modes is the
production of proposals, which are then
validated. However the machine should be able
to produce acceptable proposals on a frequent
basis.
The human responsibility should be retained
within the situation. The humans should
commit themselves in the allocation process in
order to avoid complacency, that is to say a
split in the supervision field, where the humans
only supervise their own action fields.
Consequently, implicit DTA should be
avoided.
A mixture between strategic and tactical tasks
should be avoided. There is a compromise to
manage between the human implication in the
allocation and the possible overload.

Dynamic Function Delegation

Task, Intention and Function Definition

In dynamic situations, tasks and intentions are defined
in real time. Dynamic Function Delegation (DED)
implies that the human operator defines the tasks. The
second step of the ATC program (AMANDA:
Debernard et al., 2002) has led to the design of a new
platform where the two controllers are in charge of
defining tasks, shown as "clusters" of related aircraft
(clicking on the interface). The ACRD does not
intervene without any imposed task definition (e.g., the
cluster in Figure 2). Within a task, a function is defined
as an under-specified plan to be fully specified, for
example, "make AFRI24 go behind BAW456" (and
"re-route it as soon as possible" is always implied by
any plan). The machine is then used as a super-
calculator to compute an acceptable deviation. If
necessary, the controllers can introduce further
constraints. If they have not noticed the problem with
the third aircraft (BAW678), the ACRD tells them that
the plan is not feasible because of this other conflict.
Then, the controllers can add the second plan --"make
BAW678 go behind AFR124"-- and receive a final
validation of the solution. DFD takes place when the
controller orders plan execution.

The Demands of Dynamic Function Delegation
on Design

This new principle enables a quite simple machine to
cooperate with the controllers without introducing
negative interference (destroying a correct task
representation, producing new problems to solve in the
future, etc.). It also enables the machine to participate in
the mutual control activity (improving task
representation). Delegating a function is not a strategic
activity since it is fully integrated into the tactical
conflict resolution activity. An evaluation of this
principle is in progress in order to validate the balance
between the development of costly attentional activities
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inside what could be routinized activities and the
benefits of delegation. In comparison with DTA, DFD
is less demanding on machine design since there is no
need for task decomposition and no incompatibility
problems. Human control and responsibility over the
situation are protected. Demands on design are
restricted to direct manipulations on interfaces fully
compatible with radar scopes to avoid destroying those
routinized activities that are absolutely necessary in
ATC.
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Conclusion

Dynamic activity allocation and adaptive automation
are both reactions to numerous criticisms of full
automation and illustrates its drawbacks (Hoc, 2000;
Parasuraman, 1997) including: a decrease in the HMS
adaptive power, an increase in risks because of human
complacency about a badly designed machine, and so
on. Certainly there should be continued research into
the design of machines with more know-how and more
ability to cooperate. Complex task decomposition,
intention recognition, and cooperative planning should
also be greatly improved. However, with the present
state of affairs, dynamic task allocation (DTA) remains
difficult to accept in real dynamic situations where
human expertise should be promoted rather than
impoverished or badly advised by narrow-minded
machines. That is why, after having explored DTA in
ATC, we have adopted the best benefit of dynamic
function delegation (DFA).

Now, returning to the main topics of this workshop,
our experience suggests the followings remarks.

¯ The human agent should decide the allocation
(possibly with computer support).

¯ Intention recognition is needed in task
definition, but human intentions can be
transmitted to the machine at low cost
(schematic plans).

¯ Monitoring (mutual control) can be promoted
in both directions, in other words, not only
from the human to the machine, but also in the
reverse direction.

¯ Shared knowledge and plan (COFOR) 
necessary. As is function delegation within
common problem representations where
feasible at a low cost.

¯ The machine’s autonomy must be restricted if
it is likely to produce negative interference in
human activity.
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