Respiration and C₂H₄Production in Various Harvested Crops Held in CO₂-enriched Atmospheres

Yasutaka Kubo, Akitsugu Inaba, and Reinosuke Nakamura

Faculty of Agriculture, Okayama University, Tsushima, Okayama 700, Japan

Additional index words. controlled-atmosphere storage, O₂uptake, CO₂disorders, climacteric fruits, nonclimacteric fruits, vegetables

Abstract. The respiration rate (O_2 uptake) and the rate of C_2H_4 , production were measured before, during, and after 24 hours of treatment with 60% CO₂(20% O₂) in 18 kinds of fruits and vegetables by use of an automated system connected to a microcomputer. High CO₂decreased respiration only in climacteric fruit and broccoli, which were producing C_2H_4 . Ethylene production decreased with CO, treatment of peaches, tomatoes, and broccoli, but that of bananas increased. In five nonclimacteric fruits (three citrus species, grapes, and Japanese pears) and several vegetables (carrots, onions, cauliflower, and cabbage), in which C_2H_4 production was not detected, high CO₂affected respiration little, if at all. When eggplants, cucumbers, podded peas, spinach, and lettuce were treated with high CO₂, C_2H_4 production began and respiration increased. These results indicate that the respiratory responses of harvested horticultural crops to high CO₂might be mediated by the effects of CO₂on the action and/or synthesis of C₃H₄.

There have been many studies of the storage of fruit and vegetables since the report of Kidd and West (1927) concerning the beneficial effects of high $CO_2/low O_2$ storage (controlled atmosphere, CA). Since CO_2 is a product of respiration, it would be expected that respiration rate would decrease as CO_2 concentration in the atmosphere increases (Hewer, 1987). Succinic acid accumulates and the activities of enzymes involved in its metabolism decrease in several fruits stored in high CO_2 , which is indirect evidence for this possibility (Biale, 1960; Kader, 1986).

Carbon dioxide inhibits C_2H_4 . action competitively and helps regulate C_2H_4 biosynthesis (Burg and Burg, 1967). Therefore, some of the benefits of storage in a high-CO₂ atmosphere arise when C_2H_4 production or C_2H_4 -mediated reaction is inhibited (Herner, 1987). It is not well-known how high CO, affects respiration and C_2H_4 synthesis; these two may be related (Sisler and Wood, 1988).

The manner in which horticultural commodities respond to CO_2 depends on the nature of the commodity and on the concentration and length of exposure to the gas (Herner, 1987). Although CO_2 concentrations > 5% to 10% should be avoided in long-term storage, short-term exposure to very high $CO_2(20\% to 100\%)$ has beneficial effects on the storage life of some harvested commodities (Herner, 1987; Higashio et al., 1980).

Using an automated microcomputer system for the measurement of O_2 uptake, we determined that respiratory responses to high CO_2 differed among horticultural crops and among developmental stages (Kubo et al., 1989a, 1989b). In these studies, however, the effects of high CO_2 levels on C_2H_4 production were not measured.

The present study was designed to examine the effects of 60% CO_2 in the presence of 20% O_2 on the respiratory activity and C_2H_4 production in various horticultural crops.

Materials and Methods

Eighteen kinds of horticultural crops (Table 1) were used for the high-CO₂treatments. All plant material was obtained from a commercial market in Okayama, Japan.

Treatment conditions. Plant material weighing =1 kg was placed in a respiration chamber (5.5 liter). Air was passed through the chamber for 12 hr, followed by a gas mixture of 60% CO₂ \pm 0.001%, 20% O₂ \pm 0.001%, and 20% N₂ \pm 0.001% for 24 hr, and by air for another 24 hr. The gas flow rate was 100 ml·min⁻¹ and the chamber was at 25 \pm lC.

Measurement of respiration and C_2H_4 production. Both O_2 uptake and C₂H₄ production were measured using an automated system connected to a microcomputer. The details of this system were described previously (Inaba et al., 1989). Briefly, the system consisted of a gas flow system, three gas chromatography (GC), a microcomputer, and interface. Two GCS, equipped with a thermal conductivity detector and molecular sieve 5A and Porapack Q column, were used for measurement of O₂, CO₂, and N₂. N₂ was used as an internal standard to improve the accuracy of measurement of 0_2 . Another GC, with a flame ionization detector and activated alumina column, was used for measurement of C₂H₄. All operations, including gas sample injection, were regulated by the microcomputer. The measurement of O₂ and C₂H₄ could be reproduced with an accuracy of 0.01% and 0.1 ppm, respectively. Uptake and production were measured every 3 hr during the experimental period. All measurements were repeated at least three times per treatment.

Results

Three modes of response to 60% CO₂, in terms of O₂uptake and C₂H₄ production, were observed among the crops examined (Table 1). Typical responses of O₂uptake–decrease, no change, or increase—are shown in Figs. 1, 2, and 3, respectively. Suppression of O₂uptake by 60% CO₂ was observed in the climacteric fruits and in broccoli, which were producing C₂H₄ before the CO₂ treatment. The rate of O₂uptake in peaches decreased to 55% of the control while C₂H₄ production decreased to trace levels during the CO₂ exposure. Both respiration and C₂H₄ production returned to levels close to those of the control when the samples were transferred back to air (Fig. 1).

Received for publication 8 Jan. 1990. The cost of publishing this paper was defrayed in part by the payment of page charges. Under postal regulations, this paper therefore must be hereby marked*advertisement* solely to indicate this fact.

		O ₂ uptake (ml·kg ⁻¹ ·hr ⁻¹) ^y		O_2 uptake in (B) as	C_2H_4 production $(\mu l\cdot kg^{-1}\cdot hr^{-1})^x$	
Respiratory response	Species	. Control (A)	CO ₂ -treated (B)	percent of (A)	Control	CO ₂ - treated
Decrease	Peach (Prunus persica Batsch) Tomato (Lycopersicon esculentum Mill.)	39.2 ± 1.7 17.8 ± 1.2	21.5 ± 0.6 13.2 ± 2.3	55 74	14.2 ± 3.8 10.1 ± 0.3	Trace 2.3 ± 0.9
No change	Banana (Musa sapientum L.) Broccoli (Brassica oleracea L., italica)	66.8 ± 2.5 312 ± 18	49.2 ± 3.3 112 ± 15	74 35	0.8 ± 0.6 2.6 ± 0.8	8.2 ± 0.3 0.5 ± 0.3
	Satsuma mandarin (<i>Citrus unshiu</i> Marc.) Iyokan (<i>Citrus iyo</i> Hort. ex Tanaka)	11.0 ± 0.5 17.4 ± 0.9	12.5 ± 1.9 19.1 ± 0.8	114 110	Trace Trace	Trace Trace
	Lemon (Citrus limon Burm. f.) Grape (Vitis labrusca L. x Vitis vinifera L.)	$\begin{array}{rrrr} 10.6 \ \pm \ 0.6 \\ 9.0 \ \pm \ 0.3 \end{array}$	11.5 ± 1.2 9.5 ± 0.4	108 106	Trace Trace	Trace Trace
Increase	Japanese pear (Pyrus serotina Rehd.) Carrot (Daucus carota L.)	6.0 ± 0.4 15.5 ± 1.1	6.9 ± 0.8 15.9 ± 0.9	115 103	Trace Trace	Trace Trace
	Cauliflower (<i>Brassica cleracea</i> L., botrytis)	14.0 ± 1.0 71.7 ± 4.9 15.5 ± 0.3	14.7 ± 0.8 66.7 ± 3.1 15.1 ± 0.0	105 93 07	Trace Trace	Trace Trace
	Eggplant (Solanum melongena L.)	15.5 ± 0.3 30.0 ± 0.8 21.4 ± 1.3	13.1 ± 0.9 49.6 ± 0.7 49.2 ± 5.6	165 230	Trace	0.4 ± 0.2
	Podded pea (Pisum sativum L.) Spipach (Spipacia oleracea L.)	93.0 ± 5.1 116 ± 5.1	120 ± 7.3 142 ± 7.4	129 122	Trace	2.6 ± 0.3 0.3 ± 0.1
	Lettuce, crisphead type (Lactuca sativa L.)	26.8 ± 0.7	75.2 ± 1.2	281	Trace	1.2 ± 0.2

Table 1. Effects of exposure to 60% CO₂plus O₂ and 20% N₂ at 25C on the rates of O₂ uptake and C₂H₄ production in various fruits and vegetables.^{*i*}

²Crops were exposed to 60% CO₂ for 24 hr at 25C.

^yRates of O₂ uptake just before the end of CO₂ treatment. Means \pm SE. n = 3.

^xRates of C₂H₄ production just before the end of CO₂ treatment. Means \pm SE. n = 3.

Responses in tomatoes and broccoli were similar to those observed for peaches. The rates of O_2 uptake in ripening bananas exposed to 60% CO₂ decreased to 74% of those of the control after 24 hr, and C_2H_4 production increased =10-fold.

Oxygen uptake changed little in five of the nonclimacteric fruits (three species of citrus, grapes, and Japanese pears) and in several vegetables (carrots, onions, cauliflower, and cabbage; Table 1, Fig. 2) exposed to high CO₂. Upon transfer back to airs O₂uptake increased slightly in Japanese pears (Fig. 2) and onions (data not shown), whereas that of the seven other non-climacteric fruits and vegetables remained at the same levels as those of the controls. Ethylene production by crops classified as "no change" types was not detected during or after exposure to 60% CO₂(Table 1).

The presence of 60% CO₂ increased O₂ uptake (Table 1, Fig. 3) and slightly stimulated C_2H_4 production (Table 1) in eggplant and spinach. After return to air, both O₂ uptake and C₂H₄ production increased in these two crops. The response of cucumber to high CO₂ was similar to that of eggplant (Table 1). Oxygen uptake and C₂H₄ production by lettuce increased during CO₂ treatment (Table 1), with 0₂ uptake increasing to almost three times that of the control at the end of the CO₂ treatment. After return to air, both rates increased further (Fig. 3). Oxygen uptake and C₂H₄ production of peas increased during the 60% CO₂ treatment. After return to air, O₂ uptake increased further and C₂H₄ production remained high (Fig. 3).

Discussion

The beneficial effects of high CO_2 in the CA storage of horticultural crops are generally thought to arise through a suppression of respiration (Kader, 1986). Our results showed that O_2 uptake was reduced by high CO_2 only in ripening climacteric fruits and in broccoli, all of which were producing C_2H_4 .

Kerbel et al. (1988) reported that 'Bartlett' pears maintained in a mixture of air plus 10% CO₂ exhibited reduced respiration and C_2H_4 production. Similar observations have been reported for strawberries (Li and Kader, 1989) and apples (Chaves and Tomas, 1984). Inhibition of C_2H_4 production in high CO₂ environments has been reported for tomatoes (Buescher, 1979) and sweet peppers (Wang, 1977).

Treatment of avocados with 5% to 10% CO_2 does not affect the respiration rate at the preclimacteric stage but delays the onset of the climacteric and reduces the respiration rate at the climacteric peak (Young et al., 1962). Similarly, tomatoes and bananas exhibited reduced respiration with high CO_2 levels at the climacteric stage, but CO_2 had little effect at the preclimacteric stage (Kubo et al., 1989b).

The results reported here show that high CO₂ affected the respiration rate little if at all in the fruits (nonclimacteric) and vegetables that were not producing measurable levels of C_2H_4 . High CO₂ levels inhibit the action of C_2H_4 (Biale, 1960). The presence of 10% CO₂ abolishes the biological activity of 1 ppm C_2H_4 (Burg and Burg, 1967). Therefore, suppression of respiration by high CO₂ in crops producing C_2H_4 might occur mainly because of inhibition of the action and/or synthesis of C_2H_4 . If so, high CO₂ levels would not suppress respiration that is not accelerated by endogenous C_2H_4 .

Other evidence of the suppression of respiration by high CO₂ levels is the inhibition of certain enzymes (e.g., succinic dehydrogenase, cytochrome oxidase, and phosphofructokinase) and disturbed organic acid metabolism, for example, the accumulation of succinic acid (Biale, 1960; Kader, 1986; Kerbel et al., 1988). These phenomena have been found in ripening pears (Frenkel and Patterson, 1973; Kerbel et al., 1988) and apples (Monning, 1983; Shipway and Bramlage, 1973). Further investigation of these enzymes and metabolic intermediates in nonclimacteric fruits is needed.

Our findings show that respiration and/or C_2H_4 production in some vegetables were enhanced during high CO₂ treatment. In some cases, further increases occurred after the treatment ended.

Fig. 1. Effects of exposure to 60% CO₂plus 20% O₂ and 20% N₂ on the rates of O₂uptake (\bullet , \bigcirc) and C₂H₄production (A, A) at <u>25</u> ± IC in three species of climacteric fruits and in broccoli (\bullet , \blacktriangle CO₂-treated, \bigcirc , $\grave{\Delta}$ control). Vertical bars are the standard error. n = 3.

This suggests that CO_2 might act simultaneously as an inducer and suppressor of C_2H_4 synthesis or action in some vegetables. Enhanced respiration during CO_2 exposure has been reported for lemons (Young et al., 1962) and potatoes (Perez-Trejo, 1981). Siriphanich and Kader (1985) found that high CO_2 levels promoted respiration and C_2H_4 production in lettuce. These increases in respiration and C_2H_4 production by exposure to excess CO_2 maybe related to physiological injury (Kader, 1986). We observed the development of brown stain, a CO_2 disorder, on lettuce after the CO_2 treatment. No signs of CO_2 -induced disorders were seen in the other crops. Further investigation is needed to determine the mechanism by which high CO_2 influences C_2H_4 production in fruit and vegetable crops.

Fig. 2. Effects of exposure to 60% CO_2 plus 20% O_2 and 20% N_2 on the 0_2 uptake rate at 25 ± 1C in three nonclimacteric fruits and in carrot (\bigcirc CO₂-treated, O control) Vertical bars are the standard error. n = 3.

Literature Cited

- Biale, J.B. 1960. The postharvest biochemistry of tropical and subtropical fruits. Adv. Food Res. 10:293-354.
- Buescher, R.W. 1979. Influence of carbon dioxide on postharvest ripening and deterioration of tomatoes. J. Amer. Soc. Hort. Sci. 104:545-547.
- Burg, S.P. and E.A. Burg. 1967. Molecular requirements for the biological activity of ethylene, Plant Physiol. 42:144-152.
- Chaves, A.R. and J.O. Tomas. 1984. Effect of a brief CO₂ exposure on ethylene production. Plant Physiol. 76:88–91.

Fig. 3. Effects of exposure to 60% CO₂ plus 20% O₂ and 20% N₂ on the rates of O₂ uptake (\odot , \bigcirc) and C₂H₄ production (\blacktriangle , \triangle) at 25 ± 1C in four species of vegetables (\odot , \bigstar CO₂-treated, \bigcirc , \triangle control). Vertical bars are the standard error. n = 4.

- Frenkel, C. and M.E. Patterson. 1973. Effect of carbon dioxide on activity of succinic dehydrogenase in 'Bartlett' pears during cold storage. HortScience 8:395-396.
- Herner, R.C. 1987. High CO₂effects on plant organs, p. 239-253. In: J. Weichman (cd.). Postharvest physiology of vegetables. Marcel Dekker, New York.
- Higashio, H., T. Minamide, and K. Ogata. 1980. Effect of short-term high CO₂treatment on freshness of fruits and vegetables (in Japanese with English summary). Nippon Shokuhin Kogyo Gakkaishi. 27:192-198.
- Inaba, A,, Y. Kubo, and R. Nakamura. 1989. Automated microcomputer system for measurement of O_2 uptake, CO_2 output, and C_2H_4 evolution by fruit and vegetables. J. Jpn. Soc. Hort. Sci. 58:443-448.
- Kader, A.A. 1986. Biochemical and physiological basis for effects of controlled and modified atmospheres on fruits and vegetables. Food Technol.. 40:99-104.
- Kerbel, E. L., A.A. Kader, and R.J. Romani. 19/38. Effects of elevated CO, concentrations on glycolysis in intact 'Barlett' pear fruit. Plant Physiol. 86:1205-1209.
- Kidd, F. and C. West. 1927. A relation between the concentration of oxygen and carbon dioxide in the atmosphere, rate of respiration and length of storage life in apples. Great Britain Dept. Sci. Ind. Res. Rpt. Food Investment Board 1925, 1926. p. 41-45.
- Kubo, Y., A. Inaba, and R. Nakamura. 1989a. Effect of high CO₂ plus low 0₂ condition on respiration in several fruits and vegetables (in Japanese with English summary). Sci. Rpt. Faculty Agr. Okayama Univ., Okayama, Japan. 73:27-33.
- Kubo, Y., A. Inaba, and R. Nakamura. 1989b. Effects of high CO, on respiration in various horticultural crops. J. Jpn. Soc. Hort. Sci. 58:731-736.
- Li, C. and A.A. Kader. 1989. Residual effects of controlled atmospheres on postharvest physiology and quality of strawberries. J. Amer. Soc. Hort. Sci. 114:629-634.
- Monning, A. 1983. Studies on the reaction of Krebs cycle enzymes from apple tissue (cv. Cox Orange) to increased levels of CO₂. Acts Hort. 138:113-119.
- Perez-Trejo, M.S. 1981. Mobilization of respiratory metabolism in potato tubers by carbon dioxide. Plant Physiol. 67:514-517.
- Shipway, M.R. and W.J. Bramlage. 1973. Effects of carbon dioxide on activity of apple mitochondria. Plant Physiol. 51:1095-1098.
- Siriphanich, J. and A.A. Kader. 1985. Effects of CO₂ on total phenolics, phenylalanine ammonia lyase, and polyphenol oxidase in lettuce tissue. J. Amer. Soc. Hort. Sci. 110:249-253.
- Sisler, E.C. and C. Wood. 1988. Interaction of ethylene and CO₂. Physiol. Plant. 73:440-444.
- Wang, C.Y. 1977. Effect of CO₂ treatment on storage and shelf life of sweet peppers. J. Amer. Soc. Hort. Sci. 102:808-812.
- Young, R. E., R.J. Romani, and J.B. Biale. 1962. Carbon dioxide effects on fruit respiration. 11. Response of avocados, bananas, & lemons. Plant Physiol. 37:416-422.