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Abstract
Mounting evidence suggests that air pollution contributes to the large global burden of respiratory
and allergic diseases including asthma, chronic obstructive pulmonary disease, pneumonia and
possibly tuberculosis. Although associations between air pollution and respiratory disease are
complex, recent epidemiologic studies have led to an increased recognition of the emerging
importance of traffic-related air pollution in both developed and less-developed countries, as well
as the continued importance of emissions from domestic fires burning biomass fuels primarily in
the less-developed world. Emissions from these sources lead to personal exposures to complex
mixtures of air pollutants that change rapidly in space and time due to varying emission rates,
distances from source, ventilation rates, and other factors. Although the high degree of variability
in personal exposure to pollutants from these sources remains a challenge, newer methods for
measuring and modeling these exposures are beginning to unravel complex associations with
asthma and other respiratory disease. These studies indicate that air pollution from these sources is
a major preventable cause of increased incidence and exacerbation of respiratory disease.
Physicians can help to reduce the risk of adverse respiratory effects of exposure to biomass and
traffic air pollutants by promoting awareness and supporting individual and community-level
interventions.
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Introduction
Worldwide increases in rates of asthma and COPD over the past several decades have
motivated intensive investigation of the role of environmental factors, including air
pollution, in their causation. Recent research also suggests that air pollution contributes to
the substantial worldwide burden of disease from acute lower respiratory infections and
possibly tuberculosis. While the health effects of air pollution have been an international
public health concern since at least the 1950’s, recent research has heightened the focus on
two broad sources of air pollution: biomass fuels (BMF) and motor vehicles. Understanding
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of the health effects of BMF and traffic-related air pollution (TRAP) has lagged behind that
of ambient air pollution, at least in part due to challenges in estimating highly-variable
individual exposure from these widespread, but very localized, air pollution sources.

Of course, air pollution is only one of many environmental (non-genetic) factors for which a
causative role in exacerbation or incidence of complex respiratory diseases has been
suggested. Indeed, based on ecological analyses from the International Study of Asthma and
Allergies in Childhood (ISAAC)(1), generally less-polluted developed countries (DCs) have
much higher rates of asthma than many countries with higher levels of air pollution.
However, studies with individual-level analyses that control for potential confounding have
demonstrated associations between air pollutants, including TRAP, and asthma
exacerbation, as well as possible links to increased asthma incidence. Additional evidence
suggests that exposure to TRAP is correlated with the rising rates of allergic respiratory
disease.(2) Although tobacco smoke is clearly the dominant cause of COPD worldwide,
BMF smoke is now recognized as a major cause of COPD, especially among women in less
developed countries (LDCs). Current evidence also indicates that BMF smoke plays a
causative role in mortality from lower respiratory infections among children living in homes
where BMF is used. The effects of indoor air exposures and individual ambient pollutants on
asthma have recently been discussed in this forum.(3) Here, we emphasize the growing body
of recent research pertaining to the relationship between respiratory health effects and
exposure to TRAP and biomass air pollution. For recent reviews of the respiratory health
effects of traffic exposures see Kelly and Fussell (2011)(4) and Salam et al. (2008)(5), and for
BMF see Torres-Duque C (2008)(6), Balmes (2010)(7), Fullerton (2008).(8)

Exposures to Biomass and Traffic Pollutants
Exposures to BMF smoke and TRAP are widespread. Domestic fires burning biomass
(wood, charcoal, dung, crop residues, and other raw plant materials) for cooking and/or
heating remain the most pervasive and important source of exposure to air pollution for
much of humanity. About 2.4 billion people live in households in which BMF is the primary
cooking and/or heating fuel(9–10), with more than 90% of individuals in rural areas of LDCs
using BMF.(9) Exposures are often exacerbated by use of open fires or traditional stove
designs that lack flues or hoods to exhaust emissions away from the living area.(7)

While stationary industrial “smokestacks” continue to be a major source of outdoor air
pollution from the burning of fossil fuels throughout the world, TRAP from motor vehicles
are a growing concern in both DCs and LDCs.(11) Regulation of ambient (widespread,
regional) ‘criteria’ pollutants in the US and other DCs has resulted in relatively effective
stationary and mobile source controls. However, an increased number of vehicles and
vehicle-miles-driven has lessened the impact of vehicle emissions controls. At the same
time, heavy industry has moved to LDCs, resulting in a higher relative contribution from
mobile sources in DCs, while in LDCs both total stationary and mobile source emissions
have been increasing. Most of the worldwide growth in fleets of gasoline and diesel vehicles
is occurring in LDCs.(11) As discussed below, in addition to making large contributions to
background ambient air pollution, mobile sources may dominate exposures near roadways in
urban areas, where a growing proportion of the world’s population lives.

Although one is rooted in longstanding cultural practices and the other arises from modern
economic development, emissions from domestic fires and from motor vehicles have
similarities in composition, toxicity, and exposure characteristics. Complex aerosol
emissions from use of BMF share many components with TRAP and other outdoor PM,
including particulate matter, carbon monoxide, nitrogen oxides, and scores of toxic organic
compounds, such as formaldehyde, acrolein, and polynuclear aromatic hydrocarbons
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(PAHs).(12) However, the physical and chemical characteristics of both BMF smoke and
TRAP can vary substantially depending on the type of fuel burned and combustion
conditions.(13)

Based on robust epidemiological associations between ambient particulate matter (PM) and
respiratory and cardiovascular health effects, much attention has focused on the PM
component of BMF and motor vehicle emissions.(14) PM of respirable size is classified by
size fractions based on aerodynamic diameter. Ultrafine PM (UFP) with diameters ≤ 0.1 µm
(PM0.1) is a major component of emissions near fires and tailpipes, but in seconds to
minutes accumulates into somewhat larger “fine PM,” or PM2.5 with diameters ≤ 2.5 µm,
within short distances from the point of release. PM10, with diameters ≤ 10 µm, consists of
PM2.5 and larger particles of mainly crustal or biological origin, including many
aeroallergens. Based on epidemiological and laboratory studies, PM2.5 appears to be more
potent for respiratory and cardiovascular disease effects compared to PM10.(15) According
to the “ultrafine hypothesis,” ultrafine PM may be still more toxic due to increased surface
area and other characteristics.(16) Although they contribute little to the mass concentration of
PM due to their small size, ultrafine particles emitted by combustion dominate the particle
number concentrations near these sources.

In contrast to large-scale industrial sources of air pollution, the sources of biomass and
traffic emissions tend to be in close proximity to individual “receptors.” Biomass emissions
occur primarily indoors, where women and children are most highly exposed during cooking
and other domestic activities. Exposures are exacerbated by reduced ventilation in homes
where biomass in used(7), or under conditions in which vehicle emissions may be
concentrated as in urban street canyons or tunnels.(17) Concentrations of TRAP have steep
gradients near roadways, with heightened exposure to individuals living, attending school,
or working near major roads in urban areas, and return of TRAP to background levels within
several hundred meters away from roadways.(18–19) For both BMF emissions and TRAP,
time-activity patterns are a critical determinant of exposure. Household members who cook
have high peak exposures, as when standing over the fire, as well as high time-averaged
exposures to biomass pollutants.(20) Individuals living and working in urban areas may have
a substantial part of their daily air polllutant exposure during usually relatively brief
commuting times on roadways where TRAP are concentrated.(21–22) Substantial differences
in TRAP concentrations and in inhaled doses as a consequence of travel mode, biking vs car
vs bus, have been demonstrated, with bicyclists generally having the highest doses and
electric bus riders the lowest.(23) Moreover, with distance and time away from sources, both
BMF and vehicle emissions undergo complex “aging” processes that include oxidation,
other chemical reactions and physical processes that alter exposure and toxic properties in
ways that are not fully understood.(24)

The levels of BMF air pollutants measured in homes are typically far higher than ambient air
pollutants, but they have received less attention from the international research community.
Concentrations of PM and other air pollutants in indoor air during biomass burning can be
orders of magnitude higher than levels that occur in ambient air in developed cities.(20)

Levels of PM10 in homes using BMF often exceed several thousand µg/m3 (20), compared to
the EPA 24-hr ambient air quality standard of 150 µg/m3 PM10 and the WHO guideline of
50 µg/m3 PM10.(25). Little data is available on PM2.5 and UFP indoors from BMF burning.
The near-roadway microenvironment is mainly impacted by freshly-emitted UFPs and gas-
phase compounds such as carbon monoxide, nitrogen oxides, and VOC’s although
resuspended road dust, mainly in the “coarse” mode of the PM10 fraction, may be an
important exposure.(11)
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The uneven distributions of exposure to BMF smoke and TRAP leads to uneven distribution
of health risks, and environmental justice considerations at local, regional, national, and
global scales.(26) There are age, gender, and socioeconomic differences in who is most
exposed and most vulnerable to the health effects of BMF emissions and TRAP.(8) Exposure
to BMF smoke is greatest among women and among young children who may be carried on
mother’s back during cooking activities, or spend more time indoors with mother.(26) BMFs
that are least expensive and more affordable for impoverished households also burn less
efficiently, increasing pollutant emissions.(8) TRAP exposures are concentrated in areas of
greater traffic density, which, at least in the US, tend to be inner city communities of lower
socioeconomic status with a higher burden of environmental contamination/impacts.

Epidemiology of Health Effects of BMF and TRAP
Individual exposure assessment has been a major challenge for epidemiological studies of
both BMF and TRAP, in contrast to studies of ambient air pollution, in which assigning
personal exposure based on central air monitoring data has had demonstrated utility. Few
epidemiologic studies of respiratory effects of BMF smoke have measured exposure, relying
instead on self-report of fuel use, despite evidence for wide variation in exposure depending
on combustion and ventilation conditions and time-activity patterns. More recent studies,
including controlled trials of stove interventions, have begun to measure exposure. As
described above, the spatial and temporal distributions of urban air pollutants are
characterized by significant variability with steep gradients in intensity near sources.(27–28)

Thus, the use of land use regression and other techniques for modeling microenvironmental
exposures for various particle and gas pollutants has become widespread and is featured in a
number of the newer studies of TRAP to be described below. Land-use regression (LUR)
uses the monitored levels of the pollutant of interest as the dependent variable and variables
such as meteorology, traffic, topography, building shapes and sizes, and other geographic
variables as the independent variables in a multivariate regression model.(29) Levels of
pollution may then be predicted for any other geographic locations, such as residences or
schools, using the parameter estimates derived from the regression model. A limitation is
that LUR often captures only one time period, and may miss prior or neonatal exposures,
however some studies have overcome this.(30–31) Further details are available in recent
reviews.(32–33)

The most firmly established health effects of BMF emissions are acute lower respiratory
infections in children and COPD in adults. While studies of ambient pollution effects have
repeatedly demonstrated increased cardiovascular and respiratory morbidity and mortality
for a variety of outcomes(14), those which have studied TRAP specifically have largely
focused on asthma and related phenomena, with some investigations of allergy. The World
Health Organization has estimated that BMF smoke exposure is responsible for about 1.5
million premature deaths per year,(34) and a global burden of disease of approximately 2.5%
of all healthy life-years lost. Most of this burden of disease is due to respiratory infections,
mainly among children less than 5 years of age, and COPD among adult women(35). Several
case-control and cross-sectional studies have evaluated associations between use of biomass
fuels and prevalence of asthma with equivocal results among children and women.(36–43)

Other studies have found strong associations between BMF smoke and COPD among non-
smoking women.(9, 20, 44) Important new studies, discussed below, have strengthened the
link between TRAP and asthma incidence in children,(30, 45–47) incidence in adults(48) and
severity in adults.(49)
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BMF and COPD
Given that cigarette smoke is a type of biomass smoke, a causal association between
exposure to BMF smoke and COPD would not be surprising. Three recent meta-analyses
have evaluated associations between BMF smoke and COPD.(50–52) In a systematic review
and meta-analysis of 23 studies, Kurmi et al found that exposure to all types of BMF smoke
was consistently associated with COPD with risk more than doubled, with greater risk
suggested for woodsmoke compared to other fuels.(50) Hu et al analyzed 15 studies and
found that BMF smoke was associated with increased risk of COPD among both women and
men, and in both Asian and non-Asian populations.(52) In a meta-analysis of 6 studies that
evaluated COPD among women using biomass compared to alternative fuels, Po et al also
found a statistically significant pooled estimate of greater than 2-fold increased risk.(51) In
another 6 studies that assessed chronic bronchitis, the pooled risk estimate was also greater
than 2-fold. However, most studies have lacked direct exposure measurements, none have
described a dose-response relationship, and estimated effect sizes have varied widely. This
variation may be due to heterogeneity in fuel types and conditions of use, as well as in study
design and differences in control of confounders such as exposure to mainstream or second-
hand cigarette smoke, occupational exposures, socioeconomic factors, and changes in fuel
use over time.(50) In a study of 841 nonsmoking women in Mexico that was notable for
objective exposure and outcome measurements, Regalado et al found that peak PM10 over
2,600 µg/m3 among those using biomass fuels was related to small, but significant,
reductions in FEV1 (81 ml), FVC (122 ml), and FEV1% predicted (4.7) compared to women
who cooked with gas.(53) In an accompanying editorial, Jaakola noted that these effects were
comparable to the estimates from environmental tobacco smoke exposure in adults.(54)

Cigarette smoking rates are relatively low in most LDCs, especially among women.(55)

Among women living in rural Turkey, the fraction of COPD attributed to exposures to BMF
smoke was 23% after adjusting for possible confounders.(56)

TRAP AND COPD
A number of studies have established that children living in more polluted areas,have
reduced lung growth compared to those living in cleaner areas, and that moving from a more
polluted to a cleaner area demonstrates improved growth.(57) Similar findings for lung
function have been reported in adults, as well as a limited data base of studies documenting
an association between ambient air pollutants and objectively defined COPD.(57)

Most recently, a 35 year prospective study of over 57,000 Danes, used individual modeled
assignments of traffic pollution and extensive control of confounders, with the end point of
first hospital admission for COPD.(58) This outcome was associated with chronic NO2
exposure (HR=1.08, 1.02–1.14) with a stronger association in asthmatics. This is the first
longitudinal study of COPD with hard outcomes in association with modeled TRAP
exposures, and seems to confirm the previous findings of cross-sectional studies that TRAP
is likely to be a cause of COPD.

TRAP and Asthma Overview
Studies have long shown that asthma can be exacerbated, often measured as visits to
emergency rooms, on days with higher levels of ozone and other pollutants.(59) More
complex cohort study designs have been required to understand whether or not traffic-
related pollutants play a role in the genesis, or causation, of asthma. To date all such
investigations in a non-occupational setting have related to chronic, rather than acute, air
pollution exposures. More sophisticated designs have been used in recent years and this part
of the review will focus on those reported since 2009.
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TRAP and Childhood Asthma
Initial studies of air pollution and asthma examined associations in children, looking first at
exacerbations and more recently, through cohort studies, at incidence. Initial reports of
incidence in children were variable in their results. Investigators interpreted these
inconsistencies to result from misclassification of pollution exposure to the individual cases,
likely due to reliance on central or regional air monitoring stations that do not reflect urban
microgeographies. Subsequent studies using LUR or dispersion modeling produced
significant associations in both children. and adults, with refinement of exposure through
use of LUR techniques yielding larger and significant associations with chronic pollution
exposure.

Two recent studies, one a birth cohort, add substantially to our confidence that TRAP
exposure of young childen contributes to the development of asthma.(30, 45) Both used
sophisticated exposure assessment in the form of LUR or a related technique to study the
association between childhood asthma and TRAP exposure at home and/or school. Increased
risk of for childhood asthma incidence demonstrated significant increases of 26% up to
51%, with good control of relevant confounders. Interestingly the birth cohort study did not
find corresponding associations of potentially explanatory mechanistic variables such as
atopic eczema, allergic sensitization, and bronchial hyperresponsiveness, leaving open
questions about pathophysiology and roles of irritancy versus allergy. For the Southern
California Children’s Study(60) non-freewway pollutants demonstrated a stronger effect than
those from freeways, possibly reflecting an effect of frequent acceleration and deceleration
on TRAP characteristics.

In a smaller study, Carlsten et al (2011)(31) recruited infants at high familial risk for asthma
and examined birth year home exposures to NO, NO2, black carbon, and PM2.5 by land use
regression with follow up at 7 years of age. Birth year PM2.5 (IQR=4.1ug/m3) was
associated with a significantly increased risk of asthma with an OR of 3.1 (1.3–7.4). NO and
NO2 demonstrated similar associations but black carbon did not. This dramatic finding with
relatively small exposure magnitude is intriguing but needs replication.

A study of self-reported allergic disease (using the ISAAC questionnaire) and home traffic
density based on distance to major roadways, found approximately 1.5 to 3 fold prevalence
ratios for heavy traffic density for wheeze, asthma, rhinitis and rhinoconjunctivitis, with no
associations for children who slept in air conditioned homes,(46) with obvious important
implications for prevention in atopics and others at heightened risk.

Using a cross sectional design and an “enhanced” ISAAC protocol for outcomes,(47) 6683
children in the French Six Cities Study were studied, with exposures based on a 3-year
dispersion model for each school address to assign individual school exposures,. Asthma
(either past year, or lifetime) was significantly associated with benzene, SO2, PM10, NOx,
and CO. All of those but SO2 were associated with eczema, and allergic rhinitis with PM10,.
Sensitization to pollens was associated with benzene and PM10, The findings for benzene
and CO are somewhat surprising, and given their presence as constituents of motor vehicle
fuel and/or exhaust, uncontrolled confounding may be present.

TRAP and Adult Asthma
The recent data base on asthma and traffic is less robust in adults. The Swiss Cohort Study
on Air Pollution and Lung Diseases in Adults (SAPALDIA) is a Swiss population-based
cohort of adult lung disease-free non-smokers initiated in 1991 with 11y follow in 2002.(48)

Using a dispersion model that included hourly meteorological and emission data on
industrial, construction, heating, agricultural and forestry, and traffic emissions, the latter
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separated by type of vehicle (truck vs. car), each participant was assigned an exposure to
PM10. Outcomes were adjusted for age, gender, baseline atopy, BMI, bronchial reactivity,
and maternal allergies. They found a hazard ratio for doctor-diagnosed asthma of 1.30
(1.05–1.61) new cases for a given (1ug/m3 as PM10) change in traffic pollution over the 10
years, more frequent in those with baseline atopy or bronchial hyperreactivity.

Trupin et al looked at the simultaneous impact on FEV1 percent and an asthma severity
score of diverse social and physical environmental exposures on adult asthma in 176
subjects. Their final model had an R2 of 0.30 for FEV1 percent predicted and 0.16 for
Severity of Asthma Score. Distance to nearest road was a significant predictor of FEV1 but
not Severity of Asthma Score. The importance here is that even when other variables
strongly associated with usual clinical management of asthma are accounted for, a role for
roadway traffic still persists.

Based on high quality studies discussed herein there is an increasingly robust literature that
supports a causal relationship between various aspects of TRAP and new onset asthma or
worsened asthma in children and adults. These risks need to be both incorporated into both
public policy and explored for their role in medical decision making at the individual level.

BMF and asthma
In contrast to the abundance of studies showing exacerbation of asthma from increased
exposure to ambient air pollution and TRAP, asthma prevalence has been the main outcome
considered in studies of BMF smoke. Using Burden of Obstructive Lung Disease (BOLD)
data on self-reported prevalence of asthma among 508 individuals in Southeastern
Kentucky, increased odds of reporting current asthma was associated with cooking indoors
with wood or coal for more than 6 months of one’s life (OR 2.3, CI 1.1–5.0), but not with
history of domestic heating with wood or coal (OR 0.8, CI 0.4–1.8).(61) However, a handful
of earlier studies had not found compelling evidence of an increased risk of asthma among
women or children in households using BMF.(36, 40) Among six studies that examined risk
of asthma among women using BMF in rural India, Iran and Turkey, two found a
statistically significant increased risk,(62) and two showed increased risks that were not
statistically significant.(38, 41) Using national health survey data, Mishra (2003)(62) found
that elderly Indian men and women who lived in households using BMF had a higher
prevalence of self-reported asthma compared to those who used cleaner fuels (OR=1.59, CI
1.30–1.94). Also in India, Padhi(63) found increased physician-diagnosed asthma and decline
in lung function among rural biomass burners. In a recent meta-analysis, Po et al (2011)(51)

found that pooled risk estimates did not provide evidence of overall increased risk of asthma
in children or women using BMF. Limitations of the available studies include likely
exposure misclassification, outcome misclassification, low power, and/or incomplete control
for confounding.

Respiratory Infection
The WHO has concluded that exposure to indoor air pollution doubles the risk of pneumonia
and other acute lower respiratory infections, and may account for half of the roughly
800,000 annual worldwide deaths in children under 5 years of age attributed to
pneumonia.(25, 64) Dherani et al conducted a meta-analysis of 24 studies, and found that
exposure to BMF increased the risk of pneumonia by almost 2-fold.(65) In a meta-analysis
that included 8 studies, Po et al found a greater than 3 fold increased risk of acute respiratory
infection in children.(51) Deaths among children contribute disproportionately to years of life
lost in global burden-of-disease calculations. Increased rates of chronic bronchitis and viral
infection have been associated with both gaseous and particulate ambient pollutants,
although not specifically with TRAP.(4, 66)
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Tuberculosis
Greater use of BMFs appears to be correlated with higher rates of TB infection in global
geographic regions, but few studies have evaluated associations at the individual level. In a
cross-sectional study of a large national sample of Indian households, Mishra 1999 found
increased risk of self-reported TB infection with BMF use (OR 2.58, CI 1.98–3.37), but
neither active nor passive smoking was measured. In a later well-designed case-control
study in India, Shetty et al 2006 found that risk of bacteriologically or radiographically-
confirmed TB was not increased after adjustment for smoking, education, income and other
possible confounders.(67) Although a recent systematic review concluded that there was not
sufficient epidemiological evidence to support an association between BMF and TB
infection,(68) and no epidemiological associations between TRAP and TB have been
reported, ambient particles and diesel exhaust particles have been shown to impair
macrophage function in animal models, suggesting that such associations are biologically
plausible.(69–70)

Mechanistic Insight
As discussed above, oxidative stress is a commonly cited mechanism for the relationship
between air pollutants, many of them with oxidant constituents, and asthma worsening or
onset. Both particles and gases may produce oxidative stress and may act in concert.
Polymorphisms of GSTM1, GSTP1, and TNF-alpha are all reported to have associations/
interactions with asthma and air pollution, but data are not consistent enough to allow firm
causal conclusions. (71–72) Further support for oxidative stress as an explanatory mechanism
as to how TRAP exerts effects on intracellular regulation of inflammation and the oxidative
stress response comes from an experimental study of air pollution aerosols, including fresh
diesel exhaust demonstrating approximately a 10% decease in WBC proteasome activity
following 2 hr of aerosol exposure.(73)

Diesel exhaust inhalation is frequently used as a model for acute inhalation of TRAP. Acute
exposure to diesel exhaust in a real-world street canyon setting has been shown to
significantly reduce pulmonary function in asthmatics (up to 6% decline in FEV1) along
with an increase in sputum inflammation as measured by myeloperoxidase(74). However,
experimental exposures to diesel exhaust, despite showing increased airway reactivity in
asthmatics, have not elicited evidence of airway inflammation in asthmatic subjects, in
surprising contrast to elicitation of inflammatory changes in healthy subjects.(75–77) Diesel
exhaust particles have been shown to have adjuvant effects on IgE synthesis in atopics, so
that allergen-specific IgE production upregulates by as much as 50-fold with a skew towards
a TH2 profile.(78) Diesel exhaust has been shown to acutely produce human bronchial
epithelial inflammation characterized by inflammatory cell recruitment, increased
expression of vascular endothelial adhesion molecules, cytokines, mitogen-activated protein
kinases, and transcription factors. It has been proposed that epithelial damage from diesel
exhaust may lead to decreased mucociliary clearance and consequent increased access of
allergens to immune cells in the mucosa.(76–77) Another recent study examined diesel
exhaust produced under realistic conditions to simulate actual driving conditions and
emissions.(79) Evaluating inflammatory markers 6 hours after a 1 hour exposure, they found
increased expression of p-selectin (p=0.036) and vascular cell adhesion molecule-1
(p=0.030) in bronchial mucosal biopsies as well as the novel finding of increased
eosinophils in bronchial alveolar lavage (p=0.017), not previously seen under idling engine
conditions. The implications for diesel potentiation of allergic respiratory disease are
substantial, especially in light of previous experimental work.(80)
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To improve understanding of biological pathways underlying respiratory and cardiovascular
effects, a number of panel or experimental studies have measured biomarkers of oxidative
stress and inflammation following exposure to TRAP.(63) Examining respiratory effects
associated with studies in commuters, there were modest effects of two hour commuting
exposures on peak flow, eNO, and airway resistance.(81) Particle number (PN) doses were
associated with decreased maximum mid-expiratory flow (MMEF) and FEV1 6 hours after
exposure. PN and soot were associated with decreased MMEF and FEV1 immediately after
exposure, and increased FeNO after car and bus but not bicycle trips. PN was also associated
with an increase in airway resistance immediately but not 6 hours following exposure. There
were no associations of exposures or doses with symptoms. They interpreted these findings
in healthy individuals to show modest effects of a 2-hour in-traffic exposure on peak flow,
eNO, and airway resistance. Examining inflammation and coagulation as a consequence of
TRAP exposure, an accompanying study in the same subjects found no consistent
associations in blood cell counts, CRP, IL-6, IL-8, IL-10, and TNFa, aPTT, fibrinogen,
Factor VII, vWF, and CC 16 6 hours after the commute.(82) Thus these data do not indicate
that short term changes predict the serious long-term consequences seen with chronic
exposure.

Pollution Intervention studies
Beijing Olympics Intervention Studies

Natural (or politically organized) changes in the environment are viewed by researchers as
great opportunities to study the effects on human health of greater than usual degrees of
independent variable (pollution) change. This has been applied to the effects of sudden or
dramatic changes in air pollution.(83–84) When these changes are anticipated, detailed
clinical studies can be designed.(85) One such example was the Beijing Olympics of 2008.
(see Figure 1) One study that came out of this examined visits for outpatient treatment of
asthma at a Beijing Hospital.(86) During the Olympics, the Chinese government endeavored
to reduce air pollution by substantial amounts.(87) While somewhat sparse in clinical detail,
they reported a reduction from 12.5 visits per day to 7.3 visits per day, a 41.6% reduction
during the Olympic Games.

Also based on the Beijing Olympics, Lin et al (2011)(88) measured serial FeNO as a function
of ambient black carbon, a marker of diesel exhaust, in 36 fourth grade Beijing children,
before, during, and after the 2008 Beijing Olympics.(88) FeNO was significantly lower
during the Olympic period, and increased 16.6% (14.1%–19.2%) per interquartile range
increase in BC, particularly in the first hours after exposure, suggesting rapid changes in
inflammation. Asthmatics were not significantly different from healthy children.

Intervention Studies for BMF
Romieu (2009)(89) randomized an improved stove (Patsari stove) among 668 households in
central Mexico where open wood-burning fires were used for cooking. The stoves had been
shown in previous studies to reduce indoor air pollution levels by 70%.(90) At one-year
follow-up, among the 50% of households still using the stove, there was a significant
reduction in respiratory symptoms and a significantly lower decline in FEV1.(89) Using a
randomized controlled trial, Smith et al found that an improved cooking stove halved
average exposure to carbon monoxide, but did not significantly reduce physician-diagnosed
pneumonia among infants in Guatemala.(91) However, there was a significant reduction in
severe pneumonia, and a 50% reduction in exposure was significantly associated with a
lower rate of diagnosis of pneumonia. Other randomized controlled trials of improved stoves
are underway, but results are yet to be published (Bruce 2007).(92)
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Clinical Guidance
Reducing the impact of BMF smoke and TRAP on respiratory health will require both
public policy and the actions of individual patients. Consensus standards recognize the
importance of air pollutants in the prevention and management of asthma and COPD, and
have recommended that clinicians counsel patients to become aware of, and avoid,
exposures to air pollution (GOLD and NHLBI Expert Panel 3 report on asthma).
Interventions at the individual level may include recommendations by clinicians that patients
avoid exercising or cycling near busy roadways to reduce exposure toTRAP, and to improve
ventilation in homes were BMF are used. Public policy can encourage or mandate
engineering solutions that drastically reduce emissions from cook stoves and vehicles, but
adoption of new technologies can be slowed by lack of awareness of health risks, traditional
cultural practices, and economic costs.(8) In some respects public health and regulatory
approaches to traffic emissions may be considered the low hanging fruit for opportunities
toward health improvement on a societal scale. “Experiments” such as the Beijing Olympics
have demonstrated how such changes may have health implications.

Abbreviations

TRAP Traffic-related air pollution

DC Developed countries

LDC Less developed countries

PM Particulate Matter

BMF Biomass fuel

LUR Land use regression

GST G;utathione S-Transferase

FeNO Fractional exhaled Nitric Oxide
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Figure 1.
Cooking with wood biomass fuel in Nigeria.
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Figure 2.
A and B Two photographs in Beijing taken from the same vantage point and time of day.
Figure 2A was taken in early June of 2008, while the one on Figure 2B was taken in mid-
July during the height of the Olympic reductions in heavy industry, power generation,
construction, truck traffic, and a 50% reduction in automobile traffic.
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