
i

RESPONDING TO DANGEROUS ACCIDENTS AMONG THE ELDERLY: A
FALL DETECTION DEVICE WITH ZIGBEE-BASED POSITIONING

A Thesis presented to

The Faculty of

California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

Of the Requirements for the Degree

Master of Science in Biomedical Engineering

By

Michael Putnam

March 2012

ii

©2012

Michael R Putnam

ALL RIGHTS RESERVED

iii

COMMITTEE MEMBERSHIP

TITLE: Responding to Dangerous Accidents Among the Elderly: A Fall Detection

Device with Zigbee-Based Positioning

AUTHOR: Michael Putnam

DATE SUBMITTED: September 2012

COMMITTEE CHAIR: Dr. Lily Laiho, Biomedical Engineering

COMMITTEE MEMBER: Dr. Dean Arakaki, Electrical Engineering

 COMMITTEE MEMBER: Dr. Tali Freed, Industrial and Manufacturing Engineering

iv

Abstract

Responding to Dangerous Accidents Among the Elderly: A Fall Detection Device with Zigbee-

Based Positioning

By Michael R. Putnam

 The following paper describes a fall detection and activity monitoring system with

position detection based on Zigbee transceivers.The main objective is to reduce the time taken

for emergency personnel to respond to falls among the elderly. Especially when the victim is

unconscious or delirious, position tracking reduces location determination time within a busy

hospital or nursing home environment and facilitates immediate treatment. Reduced response

times correlate to decreased morbidity and mortality rates. Background is provided on the

major wireless network advances currently deployed in a healthcare setting for asset and

personnel tracking, etiology of falls, and several methods of detecting falls using sensors and

image processing techniques. Data analysis proves that a precise coordinate tracking system

was infeasible using the XBee RF module (based on the Zigbee protocol) due to environmental

noise, a poor antenna construction and lack of precise signal strength measurements. A

primitive scheme with lower resolution and higher reliability associating a single location with

each Zigbee transceiver was employed. A pedometer function was added to the project to

monitor the user’s daily activity and to potentially serve as a predictor of falls through the

interpretation of mobility and gait patterns related to step counts.

Keywords: Accelerometer, Zigbee, XBee, Fall Detection, Indoor Positioning, Location Tracking

v

ACKNOWLEDGEMENTS

 I know I cannot do justice to the all the generous, eager, and adept individuals that have

aided with this project in the span of a brief paragraph, nevertheless, I’ll attempt to express my

gratitude for their invaluable assistance. I’d like to thank my family for supporting me in my

decision to return to graduate school to pursue a master’s in the exciting and innovative field of

biomedical engineering. Many thanks to the IEEE student chapter for teaching me how to

accurately characterize the capabilities of the XBee wireless communications. Thanks to the

QL+ lab for providing me with a space to tinker with and test my design. Thanks to Yashar

Bahman for his deft insights into development of the software platform and to Zachary

Tiulentino for his help in guiding me down the tortuous path of initial conceptualization to a

definite project idea. I greatly appreciate Professor Arakaki’s assistance in providing testing

time within the anechoic chamber and aiding in executing and analyzing experiments, which

ultimately allowed me to understand the limitations of the XBee system. I am especially

grateful to Professor Freed for opening my eyes to the capabilities of wireless asset tracking

through her exploratory class on RFID technology. Most of all, I would like to acknowledge the

support and inspiration provided by Professor Laiho, both for suggesting this important project,

with its significance to reducing injuries, deaths and health care costs among the elderly, and

for continued guidance along the way to its completion.

vi

Content
List of Figures ... ix

List of Tables ... x

Introduction .. 1

Objective ... 1

Background ... 2

Home healthcare monitoring .. 2

Methods of Wireless Healthcare Monitoring ... 3

RFID ... 3

Bluetooth and Zigbee .. 6

Ultrasound .. 9

Infrared ... 10

Importance of Fall Detection .. 11

Fall Detection Methods ... 13

User-Activated Alarms .. 13

Acceleration-Based Detection .. 14

Image processing-based classification .. 16

Floor Vibration Based Fall Detectors .. 17

Pedometer-Based Physical Activity Monitoring ... 18

Device Design .. 19

Establishing Design Requirements .. 19

Design Development ... 21

Location Tracking System ... 21

Fall Detection System ... 22

Final System Design .. 24

Hardware Components ... 25

MMA7361 Accelerometer .. 25

Xbee RF Module .. 26

MicroSD Card Reader .. 28

Arduino UNO Microcontroller USB Board .. 28

Li-Ion 9V Battery ... 30

USB Z-Stick .. 31

vii

Fall Alert Software .. 31

Budget ... 32

Microcontroller Software Design .. 33

Fall Detection Algorithm ... 33

Location Tracking .. 35

Position Estimation Algorithms ... 36

Simple Point Matching .. 36

K-Nearest Neighbors ... 36

Bayesian Sampling .. 37

Firmware Implementation of Location Tracking .. 37

Quantitative Testing.. 39

Distance v. Signal Strength Determination ... 39

Location Tracking Test .. 40

Experimental Setup ... 40

Experimental Procedure ... 41

Results ... 41

Simple Point Matching Accuracy .. 41

KNN Accuracy .. 42

Analysis / Discussion ... 42

Anechoic Chamber Testing ... 43

Experimental Setup and Procedure .. 43

Results ... 43

Zone Tracking Test .. 46

Experimental Setup and Procedure .. 47

Results ... 48

Testing of Room to Room Monitoring .. 49

Experimental Setup and Results ... 49

Fall Detection and Pedometer Testing ... 50

Experimental Setup ... 50

Experimental Procedure ... 51

Results ... 52

Analysis / Discussion ... 52

viii

System Validation ... 52

Experimental Setup ... 53

Experimental Procedure ... 53

Results and Analysis .. 53

Future Recommendations .. 59

References .. 61

Image References.. 64

Appendices .. 65

ix

List of Figures

Figure 1: Diagram of an RFID System .. 4

Figure 2: Awarepoint RFID Sensor .. 6

Figure 3: Zigbee Network Deployment ... 8

Figure 4: Wireless Body Area Network ... 9

Figure 5: Active Badge Infrared Tag .. 10

Figure 6: Typical Capacitive Accelerometer .. 14

Figure 7: Philips LifeLine System ... 16

Figure 8: IRISYS Camera Detection Software .. 17

Figure 9: Hardware Components of Access Point ... 21

Figure 10: User Tag in Enclosure and Access Point ... 24

Figure 11: MMA7316 Accelerometer Breakout Board ... 26

Figure 12: XBee RF Module ... 26

Figure 13: MicroSD Card Shield .. 28

Figure 14: Arduino UNO Board ... 29

Figure 15: 9V Rechargeable Battery ... 30

Figure 16: USB Z-Stick ... 31

Figure 17: Distance v RSSI Unshielded Environment .. 39

Figure 18: Friis Formula Test Shielded Environment .. 44

Figure 19: Friis Formula Test using Spectrum Analyzer .. 45

Figure 20: Distance v. RSSI Unshielded Environment ... 47

Figure 21: Software Zone Layout .. 54

Figure 22: FallDetect Initial Screen ... 55

Figure 23: User Input Menu .. 55

Figure 24: User Tag in Zone 1 .. 56

Figure 25: User Tag in Zone 2 .. 56

Figure 26: User Tag in Zone 3 .. 57

Figure 27: User Tag in Zone 4 .. 57

Figure 28: Fall Detected .. 58

x

List of Tables

Table 1: Engineering Requirements .. 20

Table 2: Bill Of Materials ... 33

Table 3: Accelerometer Readings ... 51

Table 4: Single Point Matching Calculations ... 65

Table 5: K-Nearest Neighbors Calculations (Off Center)... 66

Table 6: K-Nearest Neighbors Calculations (On Center) ... 67

Table 7: Zone Tracking Accuracy 15'X15' .. 68

Table 8: Zone Tracking Accuracy 30'X15' .. 69

Table 9: Sample Log File 3/6/2012 12:25p ... 69

1

Introduction

Objective

 According to the population reference bureau, the number of Americans over the age of

65 will more than double from 40 million to 89 million by 2050, while the relative number of

working age adults capable of supporting this growing segment will shrink [1]. Given high health

care costs for seniors coupled with high existing costs driven by spending on technological

services, new drugs and long-term care services for chronic illness, there exists a strong

demand for novel methodologies which can relieve the burden placed on conventional care [2].

Fall detection and pedometer-based physical activity monitoring are two such areas where

medical devices can reduce the pressure on traditional health care infrastructure.

 A combined fall detection and pedometer system with approximate position estimation

capabilities was designed and tested to determine its ability to consistently and accurately track

falls and daily activity within an indoor setting. Numerous studies have examined fall detection

devices as a means of reducing the alarmingly high morbidity/mortality rate associated with

injurious falls among the elderly. Additionally, many have investigated deploying wireless

location tracking within a hospital, nursing home or residential living space in order to monitor

patient activity and physiological data. Integrating these two technologies in an indoor location-

aware fall detection system is a logical next step, providing the general location at which a fall

occurs and further reducing medical personnel response time for fall events. A project named

Complete Ambient Assisted Living Experiment (CAALYX) funded by the European Commission

combined fall detection and GPS location tracking, however its intended focus is outdoor

2

positioning [27]. The pedometer is included to monitor activity, encourage exercise as a form of

preventative care, and to serve as an investigational tool for determining the cause behind fall

instances. The proposed system is designed to detect falls and paces using a differential

capacitive accelerometer and relay indoor position via communication between Xbee wireless

modules.

Background

Home healthcare monitoring

 The integration of wireless networks with diagnostic sensors within a home

environment has the potential to greatly improve health care accessibility and efficiency for the

growing number of seniors and retirees in developed nations, without straining existing

resources. By reducing risks associated with home health-care, more seniors can enjoy the

independence and higher quality of life afforded by living at home. Examples of home

healthcare wireless monitoring include real-time location tracking, telemedicine, blood

pressure monitoring and tracking, alerting the deaf about critical audible information, and fall

detection [3]. According to a study by Varshney, such technologies could improve quality of

service for patients in both cities and rural areas, enhance the productivity and retention of

health-care providers and reduce long-term costs [4]. Wireless devices can provide a constant

update of the health of a subject and can immediately alert medical personnel to any

physiological irregularities or injuries that may occur, enhancing providers’ ability to predict

disease and adverse conditions and reducing complications that may require costly trips to the

emergency room.

3

 There are numerous hospital wireless networks examples that may be extended to a

residential setting. A network of RF-based wireless sensors can be used to track the exact

location and condition of patients and link this real-time information to existing electronic

medical records minimize diagnosis and treatment time allowing physicians to identify patients

in need. In a mass casualty event such a network enhances first responders’ ability to triage and

utilize limited human resources to enable hospitals to handle larger patient loads [15]. Smart

hospitals using wireless networks to track patient IDs have been proposed with the aim of

minimizing the hundreds of thousands of deaths annually attributed to preventable in-hospital

errors. For instance, a nurse can read a patient’s tag using a reader embedded within their

smart phone or PDA in order to gain access to electronic medical records and check that the

correct patient is transferred to the operating room at the correct time [16]. An investigation of

the prominent methodologies used to track and identify the status of assets within a health

care environment is provided below.

Methods of Wireless Healthcare Monitoring

 RFID

 The primary application of Radio Frequency Identification (RFID) in health care is

asset tracking. The technology involves RF communication between tags and a reader, with the

reader requesting data from tags and the tags responding with their unique electronic product

code (EPC) in addition to other relevant data based on the application. The reader transmits

received tag ID information either directly to a computer/smart phone or through a network via

4

a coordinator/router. ID information can be used to acquire more extensive information on the

tagged asset from a database. Figure 1 provides a flow diagram for a typical RFID network.

Figure 1: Diagram of an RFID System

Tags can be classified according to their power source and operating range. Active tags

contain their own power source allowing data transmission without reader interrogation and

operate at high frequencies which allow communication with a reader up to a distance of 500

meters [17]. Passive tags are powered by the read signal sent from the reader, either through

the principle of mutual induction or backscattering. They operate at low frequencies that

correspond to read ranges from a couple of centimeters to 10 meters, making them ideal for

close-contact applications [18]. Semi-passive tags also have their own power source, but like

passive tags must be energized by a reader in order to transmit data. Their signal range falls

within the range for active and passive tags.

 Within a hospital, clinic or nursing home environment, stationary readers can be

used to monitor mobile assets. By placing readers at the entrances and exits to operating

rooms, physicians can determine if any tagged surgical instruments were left within a patient

5

following the operation [17]. Readers can also be placed within medicine cabinets and

prescription medications can be tagged and cross-referenced with patient IDs to ensure that

patients are taking the correct medications at the correct times. The status of expensive

equipment such as automated external defibrillators and artificial heart and lung machines

which are periodically leased or rented to other facilities, can be monitored [17].

 Mobile devices such as smart phones and PDAs can also serve as RFID readers.

Patient records can be accessed through the mobile operating system of such devices by

scanning passive RFID-enabled wristbands. Heart rate, blood pressure, temperature and O2

saturation levels from biological sensors can be accessed and updated from the hospital

database via mobile scanning of RFID tags. By scanning a patient tag in conjunction with

machine read labels placed on blood vials, such “point-and-shoot” capabilities could be used to

update the hospital information system whenever blood samples are collected from patients

[17].

 Some examples of commercially deployed RFID tracking systems include the

Aeroscout system, Ekahau’s Real Time Location Tracking System (RTLS), and AwarePoint’s

Aware360° suite™. All employ IR beacons or exciters that engage any active tags within their IR

footprint, prompting them to send data either through a wireless network of sensors to a

central hub or directly to an RTLS controller where position is approximated. This data can be

sent to a smart phone, tablet, PC or kiosk via a Zigbee or WiFi wireless network. The WiFi option

makes use of existing voice and data infrastructure to route asset data to the controller. The

controller subsequently uses either received signal strength or time of arrival in order to

triangulate position and asset location is displayed in software, typically overlaid on existing

6

floor plans of the facility. Health care applications using these systems include inventory

management, patient flow analysis, hand washing compliance, and automated scheduling of

operations and check-ups. Figure 2 displays the Aeroscout system, including tags, beacons and

connecting bridge module.

Figure 2: Awarepoint RFID Sensor

 Bluetooth and Zigbee

 Bluetooth and Zigbee are modes of short-range (10 meters) wireless

communication based on the IEEE 802 standard which are mostly recommended as a means to

send biometric data concerning a patient’s vital signs to a Wi-Fi enabled terminal. Though both

can be used for location tracking applications, they rely on received signal strength in order to

triangulate the position of an asset, a method which can lead to highly disparate results based

7

on the degree of interference between a source and receiver. In comparison to ultra wide-band

(UWB) and other RFID-related modes of communication which can detect asset position within

50cm, the maximum accuracy achievable with Bluetooth and Zigbee is a couple of meters.

 Bluetooth is a protocol envisioned as a replacement for cables which can be used

to create an ad-hoc personal area network between a master and up to 7 slave devices [18].

Bluetooth has a relatively higher power consumption and higher data rate than Zigbee [18].

Typically Bluetooth provides a machine to machine interface between pairs of devices: mobile

phones, computers, faxes, or In the case of home healthcare, between a biosensor and a

terminal computer [18]. For instance, Bluetooth can be used to transmit systolic and diastolic

pressure readings from a cuffless blood pressure monitor to a PDA [18]. Additionally Bluetooth

enabled phones combined with Bluetooth beacons have been used as part of a location

tracking system for locating patients and personnel within an operating ward [19].

 Zigbee is a method of mesh networking, with each network capable of

supporting up to 65,000 nodes. The physical and medium access control layers are defined

according the 802.15.4 protocol, while the actual Zigbee functionality is provided by the

network and application layers. A mesh network allows end devices to communicate via paths

through other nodes in the network, with a coordinator node managing how information is

transmitted or received [21]. Though it transmits data at a lower rate than Bluetooth, it has a

1000-fold lower latency and a lower power consumption [18], making it ideal for clinical

monitoring where any delay or loss of power can potentially be detrimental to a patient’s

health outcome. Zigbee has been used to establish a wireless body area network (WBAN) which

integrates information from multiple physiological signal devices and transmits it to a mobile

8

system where vital signs can be monitored [22]. Like Bluetooth, it can also be used for coarse

asset tracking. An example of a Zigbee mesh network is provided in Figure 3, while a

hypothetical WBAN setup is described in Figure 4.

Figure 3: Zigbee Network Deployment

9

Figure 4: Wireless Body Area Network

 Ultrasound

 Ultrasound is high pressure audio waves above the frequency threshold for

human hearing which can carry information in a manner similar to RF waves, though at much

lower data rates. Although it is conventionally used as an imaging modality, ultrasound has also

been considered as an alternative to RFID and 802 protocols in health care asset tracking

because metallic objects do not adversely affect signal integrity [23]. The cricket compass is a

system originally developed for context-aware mobile computing such as aiding the visually

impaired in navigation, which detects both the orientation and position of a person. Active

beacons transmit ultrasound pulses to a mobile device or tag, a transducer on a tagged asset

detects the wave and sends an acknowledgement to a number of passive receivers, and the

time-of-flight is used to determine distance of the tag from each receiver [24]. Ultrasound

requires line of sight exposure between transmitter and receiver, which makes it unfeasible in

busy, unpredictable environments. Due to this limitation, it has been recommended that

10

ultrasound be combined with RFID in a multimodal system where a less-accurate RF signal can

be used in case line-of-sight conditions for ultrasound are not met [25].

 Infrared

 Infrared detectors provide short range line-of-sight radiation detection with a

wavelength around 9.4 microns. The active badge system (see Figure 5) employs active infrared

tags which periodically transmit IR signals to nearby IR receivers, providing room-level accuracy

on where an individual is located [26]. In order to distinguish between users, each badge sends

out a unique pulse-width modulated signal [26]. As a means of location detection, IR is

inexpensive, simple to implement and has been widely tested and accepted within health care

facilities, however it has limited range (<6m), low resolution, and requires line-of-sight

exposure and carefully controlled light levels.

Figure 5: Active Badge Infrared Tag

11

Importance of Fall Detection

 Fall detection is one application where the convergence of wireless networks and

diagnostic sensors can improve quality of life, prevent complications resulting from serious

injury and reduce the pressure placed on the existing health care system. According to

Hornbrook et al., the estimated fall incidence among those Americans over the age of 75 each

year is at least 30% [5]. These falls do not only result in major injuries such as hip fractures,

lacerations requiring sutures, dislocations and sprains [6], but also cause psychological distress

which further limits independence [7]. In regards to hip fractures, a 1990 study performed by

Schneider and Guralnik reports that approximately 20% of victims do not survive the first year

following injury, and another 20% have their mobility severely hindered, which can lead to

institutionalization and further loss of personal freedom. As the proportion of the population

65 and older continues to rise, fall-related injuries and associated health care costs will become

an increasing concern for patients and providers alike. According to studies performed by

Gurley and Wild, the earlier falls are detected, the lower the rate of morbidity-mortality [8],

hence the need for devices that can quickly and accurately detect the occurrence of these

events.

 The optimal solution to reducing the morbidity-mortality rate associated with falls is to

prevent their occurrence through appropriate therapies, such as strength and balance training.

Any successful attempt at prevention must answer the question: what biomechanical factors

contribute to a higher susceptibility for falling among the elderly? Age alone is not a reliable

indicator, due to the difference between chronological and physiological aging dependent on

exercise, diet, medical history and genetic makeup. Although its effect on mobility impairment

12

has not been fully investigated, joint range of motion, especially rotation of the hip joint (which

has been shown to decline up to 20% from the age of 45 to 75) may play a role in increased fall

risk. The widely reported decline in muscle strength among the elderly, particularly with

relation to joint torques needed to maintain postural balance, is believed to play a role in falls.

Central nervous system reaction times, characterized as the time from onset of stimulus to the

initiation of myoelectric activity, have also been shown to decline with age, especially when a

choice of response options is involved. Reduced proprioceptive activity, which reduces

neurological feedback and affects the ability to perform repetitive mechanical action such as

walking, can lead to gait instability, which correlates with a higher risk of falling [36]. Decreased

vision, cognition and a wide array of degenerative pathologies ranging from Parkinson’s to

osteoarthritis also make a significant contribution. The mobility impairments brought on by

musculoskeletal changes (and not solely by old age) which increase fall risk are loss of postural

balance, which can manifest as increased swaying, and gait variability.

 Risk factors that significantly increase elderly persons’ susceptibility to falling differ

based on their association with either extrinsic (environmental) or intrinsic (patient-related)

causes. For extrinsic causes, age, diabetes, a prior record of falls, and treatment with

neuroleptics and bronchodilators have proven to be the greatest determinants. For intrinsic

causes, those factors associated with extrinsic causes in addition to alteration of gait and

balance, and dementia were most influential. As determined by Rubenstein et al.,

institutionalized patients are more vulnerable to intrinsic causes, while community-dwelling

individuals are more vulnerable to extrinsic causes. Examining these risk factors, a definitive

method of limiting falls is to closely monitor patient’s drug intake and increase care and

13

surveillance of physical activity for those with diabetes or a history of falls. However, given the

myriad of unique factors associated with each fall, and the disturbing lack of quantitative

studies that provide a correlation between specific biomechanical and physiological factors and

risk of falling (many falls go unreported), it can be difficult to predict and prevent injuries

beforehand. This increases the focus on systems that allow personnel to respond quickly once

the event occurs.

Fall Detection Methods

 There are four different methods currently employed for fall detection among the

elderly, including user-activated alarms, acceleration-based detectors, imaging-based detectors

and passive floor vibration detectors. Each method is described below.

 User-Activated Alarms

 User-activated alarm devices consist of a wireless transceiver integrated into a

wrist or pendant attachment. They require the wearer to manually activate an alarm in the case

of a fall, at which time an alert is transmitted over a telephone or broadband network to the

appropriate medical personnel. User-activated alarms are the most prevalent fall detection

technology, due to their low complexity and affordability. However, they are ineffective in

cases where a patient is incapable of activating the alarm due to loss of consciousness, pain, or

trauma or because of a condition which impedes clear judgment such as dementia [12]. They

also rely on user compliance; if the user takes the device off in the shower then an alarm

cannot be triggered if a fall occurs.

14

 Acceleration-Based Detection

 Accelerometers measure acceleration by converting physical displacement of a

proof mass with respect to its reference frame into an electrical signal. Piezoresistive

accelerometers use piezoresistors arranged in a Wheatstone bridge to produce a voltage

proportional to acceleration [9]. They are simple and low cost, however they are susceptible to

temperature drift and output signals are relatively low [9]. In differential capacitive models the

proof mass is encapsulated between two electrodes and deflection of the mass produces a

proportional change in capacitance across the junction. These models are lower power, have a

higher output range and are more sensitive due to lower noise levels [9]. Figure 6 shows a

representative model.

Figure 6: Typical Capacitive Accelerometer

 Falls result in an “impact shock” where the downward motion produces a strong

acceleration in the opposite direction. Acceleration-based fall detection involves using a

15

threshold to distinguish this large vertical acceleration vector from the smaller accelerations

which are characteristic of activities of daily living (ADL). This is accomplished by tri-axial

accelerometers (which measuring linear acceleration) or gyroscopes (which measure angular

acceleration) placed on the thigh, waist, wrist, or head [8]. The vertical speed of movements

such as rising, bending and sitting are used to set a threshold for fall detection, any speed that

exceeds that associated with these movements is considered to characterize a fall. Due to

subject-to-subject variability, accelerometers are typically calibrated using “supervised” or

“unsupervised” learning. In the former case, subjects are asked to perform ADLs in order to

determine execution speeds, in the latter subject movement is recorded over a couple of days

and statistical analysis is performed to determine average speeds [8]. Accuracy in determining a

fall event varies based on which phases of the event are taken into account (ie: the beginning of

the fall, falling velocity, fall impact, and posture after the fall) [10].

 The primary advantage of acceleration-based detection is its automatic fall

detection capability, which addresses many of the issues associated with manually activated

alarms. However, like manually activated alarms, effectiveness relies on user compliance.

Additionally, users must remember to charge such devices routinely.

 The Lifeline System with AutoAlert™ from Philips (see Figure 7) constantly

monitors changes in height and orientation with respect to a horizontal position in addition to

acceleration to distinguish between ADLs and a fall. A call to on-call emergency personnel is

initiated when either the user presses a button or the user remains inactive for more than 30

seconds following detection of an impact shock. The MCT-241MD PERS system employs similar

16

accelerometer based detection in addition to wireless transmission of a unique alarm code

using anti-collision algorithms to the base station in order to alert emergency personnel.

Figure 7: Philips LifeLine System

 Image processing-based classification

 Visual sensors can detect falls without requiring the subject to wear sensors or

motion detectors. Image processing for fall detection involves a network of cameras which

detects the transient presence and posture of a subject and determines abnormal periods of

inactivity. One example investigated by Spehr, et al. uses a background subtraction algorithm to

filter a person’s image from his or her surroundings within a dense environment and then

analyzes the temporal orientation to detect a fall [13]. Sixsmith developed an IR system called

IRISYS which provides low resolution IR data representing position, size and velocity of a target

to a host computer within a nursing-home environment [11]. IRISYS detects both dynamics

characteristic of a typical fall as well as periods of inactivity in order to minimize the false alarm

rate [11]. The software interface for the IRISYS system is shown in Figure 8.

17

Figure 8: IRISYS Camera Detection Software

 One drawback of image processing-based classification is that it can produce

many false-positives (ie: a non-fall is recorded as a fall) because it cannot easily distinguish

between cases when a subject is lying down or sitting on a sofa as opposed to lying on the floor

following a fall [13]. Such systems are expensive and more complicated to install than

acceleration-based devices, however they are less intrusive than wearable sensors and can be

operated using readily-available image processing software.

 Floor Vibration Based Fall Detectors

 Vibration based detectors operate on the principle that different excitation

activities produce unique vibration patterns. A fall will be detected when the appropriate

pattern is measured. Sensors are embedded in the floor of each room within a nursing home

18

room and detect movement within a 15 ft range. This method can distinguish between human

falls and the dropping of objects typically found in a nursing home [13]. The system’s detection

capabilities outperform the IRISYS system previously mentioned, which could only detect ~36%

of falls within a test facility [13]. The main disadvantage of the vibration-based system is the

costly installation process.

Pedometer-Based Physical Activity Monitoring

 Pedometers, used ubiquitously to monitor exercise, have only recently been

linked to improved health outcomes among users. They are useful motivational tools, enabling

one to set practical goals towards maintaining a healthy lifestyle according to the mandate of

the US Department of Health and Human Services, which recommends at least 30 minutes of

physical activity per day for adults. This has the concomitant benefit of a reduced risk of heart

disease, diabetes and stroke, which has the potential to reduce health care costs by billions of

dollars per annum. In a study performed by Bravata, D, et al. the use of pedometers was found

to positively correlate with increased physical activity, lower body mass index and lower blood

pressure [14].

 In addition to improving independent health outcomes, pedometers can provide

physicians in an out-patient clinic setting with a gauge of a person’s physical wellness, allowing

them to predict the onset of disease and advise the patient to take the necessary precautions

to maintain health. For instance, if a patient’s step count and associated calorie count, which is

monitored by an out-patient clinic on a daily basis, begins to decline significantly, a physician

can use this data to quickly determine if the patient’s sudden lethargy is a result of disease

19

onset, at which point they can request a check-up. Pedometers can also be used to monitor

progress during rehabilitation following surgical procedures or treatment for diseases such as

stroke or Chronic Obstructive Pulmonary Disease.

 The pedometer step count can also be used to provide information leading up to

a fall. A high amount of physical activity prior to the fall would indicate muscle fatigue played a

role in the accident, while a lower amount might indicate that the patient was in a debilitated

state. Pedometers can also be used to detect variability in gait, which is a contributing factor to

a higher fall risk.

Device Design

 Establishing Design Requirements

 In developing the proposed fall-alert system, the most important requirements

are accurate position estimation, high fall-detection and pace sensitivity, compact size and low

power consumption. A target of ±3m was chosen for position estimation accuracy to correlate

with RFID tracking accuracy values mentioned in the literature. Providing the approximate

location was deemed sufficient because medical personnel can quickly locate the injured party

once the general area is known. Fall detection accuracy was determined as the measure of how

many actual falls occurred in relationship to the number of total falls, including false positives

and false negatives, detected by the device. As any undetected fall could mean a potentially

life-threatening injury, it is crucial that the device have close to 100% accuracy. It was

determined that the size of RFID tags should be minimized to avoid encumbering the user’s

movement. Battery life should allow the user to leave the tag unattended for most of the day,

20

and only require recharging/swapping of batteries at convenient intervals. Ideally the beacons

should be wall-pluggable to avoid constant recharging. For the prototype, system coverage

should enable detection of fall location within a conventional residential dwelling, coverage

being limited by the number of nodes available.

Engineering

Requirements

Spec Parameter Target Tolerance Priority

1

Location

estimation

accuracy ±3 m N/a H

2

Fall detection

accuracy 90% ±5% H

3

Size of user tag

and beacons 3" X 6" X 2" ±0.25" H

4 Weight < 1 lb 0.5 lb M

5 Battery Life 12 hours ±1 hr M

6

System

coverage 100 m2 10% L
Table 1: Engineering Requirements

21

Design Development

Figure 9: Hardware Components of Access Point

 Location Tracking System

 All location tracking options are capable of meeting the position estimation

accuracy requirements, including RFID, Zigbee, infrared and ultrasound. An early design uses

RFID reader software built into the user’s cell phone along with passive tags located on the

periphery of the region of interest to trilaterate user position. An advantage of this design is its

low power consumption; passive tags receive power from the reader signal. High cost and

complexity eliminated this idea from further consideration. Trilateration using ultrasound was

also proposed. Time of flight measurements between a tag and a number of passive receivers

are used to determine distance, which is translated into user position with high accuracy.

Similar to the RFID-based system, this idea was abandoned due to high costs and design

22

complexity, in addition to sender to receiver line of sight requirements for accurate

measurements.

 A system based on Zigbee wireless transmission addressed the need for a low-

cost, low-complexity system, while sacrificing some of the accuracy achievable with ultrasound.

Tag location is determined based on signal strength measurements, and devices communicate

via a well-established serial protocol. Power requirements were low compared to other

wireless standards.

 Fall Detection System

 To meet the accuracy requirements of 90%, an accelerometer was chosen to

detect forces associated with a fall. It requires significantly less infrastructure than an imaging

or floor-vibration based system and has a faster response time than manually activated alarms.

A differential capacitive model was chosen due to its wider range of detection, higher

resolution and lower power requirements compared to piezo-resistive models.

23

24

Final System Design

Figure 10: User Tag in Enclosure and Access Point

 The proposed system integrates low granularity location tracking based on the

Zigbee protocol with acceleration-based fall detection to transmit fall time and location within a

room. A battery powered user tag worn around the waist communicates with Zigbee nodes

located throughout the room in order to establish the subject’s position. Through extensive

testing (see following experimental data), it was determined that signal strength measurements

were not a reliable means of pinpointing position. In lieu of such a trilateration system a simpler

model linking each room to a unique tag was implemented. In the case of a fall, an alarm is

triggered, and position data at the time of the fall is sent to a local PC with wireless

connectivity, where software provides a visual indication of the fall event and logs this

25

information for future reference. The current system can be expanded to relays fall alerts to a

home healthcare monitoring system via the internet, notifying medical personnel of fall events.

 Hardware Components

 Location-aware fall detection system hardware components and sub-

components and justification for selecting each one is provided below:

� User Tag

o MMA7361 Accelerometer

o Xbee RF Module

o MicroSD card reader

o Arduino UNO Microcontroller USB Board

o Li-Ion 9V battery

� Locator Beacons

o Xbee RF Module

o Arduino UNO Microcontroller USB Board

o Li-Ion 9V Battery

� Local PC

o ETRX2 USB Stick

o Fall Alert Software

 MMA7361 Accelerometer

26

Figure 11: MMA7316 Accelerometer Breakout Board

 The MMA7361 tri-axial capacitive accelerometer sends an analog voltage

between 0-3.3V representing current accelerations to the Arduino UNO for processing. The

device was selected because it has a range of +/- 6g with a resolution of 210mV/g, sufficient for

reading 3-4g impact shocks associated with a fall event and discriminating these from

accelerations experienced during ADLs such as sitting, lying down and walking. The device has a

1-pole low pass filter with a f3dB = 400Hz to filter out EMI. When the device is not in use, it can

be placed in sleep mode to limit power consumption to 3uA.

 Xbee RF Module

Figure 12: XBee RF Module

27

 The Xbee RF Module wirelessly transmits and receives data in order to estimate

user tag postion via the locator beacons and send fall alerts to the local PC. The module consists

of an ASIC which implements a serial command set on top of the ZigBee 802.15.4 physical layer

and an antenna which sends data within the 2.4 GHz ISM operating frequency band. Operating

at a transmit power of 2mW provides a theoretical indoor signal range of 40 meters, which

allows coverage of a room which is 800m2. The RF Module is mounted on a PCB which provides

the 3.3V operating voltage and connects it to the microcontroller board.

 Zigbee was selected for providing wireless connectivity because the project

requires a communication standard which is designed to send relatively low-volume data

packets and consume minimal power. In addition, Zigbee devices are inexpensive when

compared to RFID and bluetooth, and associated coding for sending and receiving of data is

based on an intuitive serial protocol. Furthermore, using Zigbee’s mesh networking capabilities

and the appropriate number of nodes the project can be expanded to send alerts across

multiple nodes within a network, providing fall detection and localization throughout all rooms

within a home or nursing home environment.

28

 MicroSD Card Reader

Figure 13: MicroSD Card Shield

 In the first design iteration, the card reader periodically writes the user tag 2-D

position to a 1GB MicroSD Card. This data storage device is chosen because it provides

generous space for accommodating extensive periods of data-logging and runs on the SDFAT

file storage protocol, which allows data to be easily read as text files on a PC. The reader was to

be mounted on a PCB which provides connection to the Arduino UNO board. However, when

the final room by room location tracking model took precedence, it was decided that data

saved to the card could be more conveniently saved to the software program, obviating the

need for the SD card reader.

 Arduino UNO Microcontroller USB Board

29

Figure 14: Arduino UNO Board

 The ATMega328 microcontroller housed on the Arduino UNO board calculates

acceleration magnitude based on accelerometer analog voltage readings, controls data

transmission via the Xbee RF module, calculates 2-D position via a trilateration algorithm and

sends fall alerts to the local PC whenever an acceleration threshold is met. The Arduino UNO

was selected primarily due to its low power consumption, USB programming interface and its

intuitive, user friendly development environment. The ATMega328 chip at the core of the

device consists of an 8-bit RISC architecture running at 16MHz, which is sufficient for handling

the low-complexity fixed point calculations involved in determining acceleration and location. It

provides 32kB of flash memory and 2kB of SRAM for storing and running firmware code. In

addition to its favorable hardware characteristics, many hardware peripherals have been

developed specifically for the Arduino UNO and there is extensive code documentation and a

large community of knowledgeable, dedicated users to draw upon in developing projects.

30

 While adequate for a prototype design, the board size could be reduced

significantly in the future by designing a custom PCB using the ATMega328 in a surface

mounted quad flat package footprint.

 Li-Ion 9V Battery

Figure 15: 9V Rechargeable Battery

 9V 600 mAh Li-Ion rechargeable batteries power the user tag and the locator

beacons. Assuming the Arduino UNO has a maximum current requirement of 50mA, these

batteries can theoretically power the tag/beacons up to 12 hours. In reality the lifetime is

significantly lower. In future iterations of the project, batteries with smaller size and longer life

should be considered to reduce reliance on the user for recharging.

31

 USB Z-Stick

Figure 16: USB Z-Stick

 The ZStick operating on the 802.15.4 protocol receives serial data indicating fall

alerts from the user tag and forwards it to the Fall Alert software. Operating in transparent

mode, it serves as another node within the network and can transmit and receive data from any

other node assigned to the same PAN ID.

 Fall Alert Software

 The fall alert software’s main function is to provide a visual indication of when

and where a fall occurs within a room. In addition, data concerning location, steps taken within

each room and falls are automatically logged to a file for future analysis. A user can input

biological data such as age and weight into the program to determine calories consumed during

daily activities. The software is written using the visual C++ programming language, which

allows for design of an event-driven graphical user interface. A fall event is indicated by an ASCII

message which is intended in a future iteration to trigger transmission of an alarm signal to a

remote client program.

32

 A map of the facility to be monitored is hard-coded into the program, with

specific tags assigned to specific rooms within the area. An icon indicating a tagged user’s

position monitors user position, as well as when a fall occurs. It is desirable to be able to load in

schematic layouts and assign tags to rooms as part of a calibration routine, instead of having to

customize the software code for each layout.

 User tag communication is accomplished via a handshake routine to ensure data

transmission is synchronized. First the tag transmits a unique ASCII character, the software

sends back a signal acknowledging the request, and communication is established. The

software receives data (steps, location and fall instances) from the user tag. Following data

exchange, the software sends another character to the user tag indicating end of transmission.

Budget

 Item Name Description Vendor P/N Cost/Unit Units Cost

1

Xbee 1mW

Wire Antenna 2.4 GHz SparkFun

WRL-

08665 $22.95 5 $114.75

2

9V to Barrel

Jack Adapter SparkFun

PRT-

09518 $5.90 5 $29.50

3

USB Cable A

to B

Programming

Cable SparkFun

CAB-

00512 $3.95 1 $3.95

4 Arduino Uno Microcontroller SparkFun

DEV-

09950 $29.95 5 $149.75

5 Xbee Shield

Xbee Adapter

for Arduino

Uno SparkFun

WRL-

09976 $24.95 5 $124.75

6

Arduino

Stackable

Headers Set of 4 SparkFun

PRT-

10007 $1.50 5 $7.50

7

9V Lithium Ion

Battery

Charger SparkFun

PRT-

10265 $9.95 1 $9.95

8

9V Li-Ion

Rechargeable

Battery 350 mAh SparkFun

PRT-

10053 $4.95 3 $14.85

33

9 MMA 7361

Triple Axis

Accelerometer SparkFun

SEN-

09652 $19.95 1 $19.95

10 Xbee Zstick Digi XU-Z11 $49.00 1 $49.00

 Total $523.95
Table 2: Bill Of Materials

 Microcontroller Software Design

 Software loaded into the ATMega328’s onboard flash memory performs the following

key functions

� User Tag

o Fall-based detection

� Acceleration vector calculations from accelerometer readings

� Transmission of fall alerts to local PC

o Location Tracking

� Routinely sends out signals to determine which nodes are in the area

o Communication with User Software

� Routinely sends information concerning location, steps taken, and

occurrence of fall to the GUI Fall Alert Software

� Locator Beacons

o Send data to user tag upon request

 Fall Detection Algorithm

 Acceleration data from the MMA7361 is continuously received by the Arduino in

the form of an analog voltage from 0-3.3V. This value is translated into a digital 10-bit value by

the Arduino’s ADC using the analogRead function. The digital equivalent is converted into a

34

value between 0 mV and 3300 mV and used to determine the acceleration in increments of g =

9.8m/s2 according to the following equation:

�� � �� � ���
�

 where Vx is the x-acceleration value in mV received from the accelerometer, Vxo

is the x voltage offset in mV and σ = 206mV/g indicates the sensitivity of the device (ie:

acceleration detection resolution). The voltage offset is set such that when the accelerometer is

placed on a flat surface, Ax = Ay = 0 and Az = 1g.

From Ax, Ay, and Az (the acceleration in the x, y, and z direction respectively) the magnitude of

acceleration is calculated as:

�	�	
� � ���
 � ��
 � ��

 This value is compared to a predetermined acceleration threshold, when

acceleration exceeds the threshold, the firmware sends a signal along with estimated position

to the software indicating a fall via the sendSPICommand function. The acceleration threshold

is determined by observing accelerations associated with ADLs such as sitting, lying down, and

fast-paced walking and setting the value so as not to trigger a false positives.

 The sendSPICommand sends an alert signal to the USB ZStick along with a

checksum which verifies the data integrity. This signal is read through the serial port by the

FallAlert software which provides a near-real time indication of the event.

 Location Tracking

 Locating the 2-D po

involves the translation of signal s

tagged object into distances. Friis

transmitter and antenna gain of th

received signal in dBm can be det

source and receiver according to t

where λ is wavelength, R is the di

antenna, Gt is the gain of the tran

antenna and Pt is the output powe

 Given distance, a trilaterat

between the reference node signa

estimate position. However, there

expected distances to deviate from

inter-signal interference, multi-pa

35

D position of a tagged object within an indoor envir

nal strength readings between several reference no

Friis’ Transmission Formula indicates that if the pow

 of the transmitter and receiver are known the pow

 determined from the inverse square of the distanc

 to the following formula:

e distance between antennas, Gr is the gain of the

transmitting antenna, Pr is the input power of the r

ower of the transmitting antenna.

eration algorithm which determines the point of in

signal footprints at the tagged object location can b

here are many factors within the environment whic

 from those predicted using the Friis formula. Such

path interference, reflection off metallic surfaces

nvironment

nodes and the

 power of the

power of the

nce between

 the receiving

he receiving

of intersection

an be used to

which cause

uch factors include

ces, diffraction,

36

and attenuation caused by transmission through objects. More sophisticated algorithms that

use noise margins and probability maps are employed to address non-ideal environments.

 Position Estimation Algorithms

 Algorithms investigated in estimating position based on signal strength include

simple point matching, K-nearest neighbors and Bayesian sampling. Each is discussed in some

detail below:

 Simple Point Matching

 In simple point matching, signal strength is compared to a set of

reference values +/- one standard deviation [27]. If the signal strength cannot be assigned to

any zone, the error margin for each reference is doubled until the value matches one of the

zones. Signal strength is measured from multiple access points to enhance accuracy.

 K-Nearest Neighbors

 Using the K-nearest neighbors algorithm, reference readings for each

zone are acquired and nearest adjoining zone values are compared to calculated values and

used to determine weighted averages representing the estimated location of an object. For a

particular zone i and k individual Zigbee nodes, the weight for the ith zone is the product of the

Gaussian distributions for each node signal strength:

37

 �� � ∏ �
������� � ������� ��!� �����"#$%�

where Rij is the signal strength for zone i received from node j, &�$ is the standard deviation of

that signal strength, and '�$ is the mean of the reference signal strength

Using these weights, a position in x and y can be determined based on the relative positions of

each node within the room.

 [x,y] = (∑ *�+�,�-.
∑ *�,�-.

 , ∑ *�0�,�-.
∑ *�,�-.

1

 Bayesian Sampling

 Bayesian Filtering determines position based upon a probability distribution of

the target’s location. A space is discretized and used to develop a Bayesian reference network

derived from conditional probabilities of a target being measured at a particular location and an

a-priori probability of the target being at a different location [28]. The probability distribution is

then obtained by inverting this network [28].

 Firmware Implementation of Location Tracking

 Before a location tracking algorithm was programmed, several of the above

algorithms were tested by processing data through Excel formulas to determine accuracy by

acquiring average signal strength readings and standard deviations. The Xbee RF module

38

continuously outputs received signal strength values from -92dBm to -23dBm as a pulse width

modulated signal with a maximum period of 64 us, the length of each pulse in microseconds is

read by the Arduino microcontroller using the pulseIn command. 100 readings are used to

determine the average and standard deviation in signal strength for each node within each of 9

zones. Experimental setup and data collection are fully described in the following section.

39

Quantitative Testing

 Distance v. Signal Strength Determination

 To develop a tri-lateration algorithm for determining position, it was necessary

to find a mathematical relationship between signal strength and distance. One receiver tag

connected to the computer was used to record average signal strength readings from a source

tag which was placed at discrete 3 foot intervals away from the receiver, with measurements

taken from 3 – 21 ft. The test was performed 5 times at 5 different source power levels in the

QL+ Lab at Cal Poly.

Figure 17: Distance v RSSI Unshielded Environment

-70

-60

-50

-40

-30

-20

-10

0

0 5 10 15 20 25

d
B

m

Distance (ft)

Distance v. dBm Unshielded Environment

Test 1 QL+ Lab

Test 3 QL+ Lab

Test 2 QL + Lab

Test 4 QL+ Lab with PS

40

As shown in figure 17 within 3-9 ft of the receiving antenna, signal strength drops off as

expected, but as the source antenna is moved farther away from the receiver, values rise vary

in a pattern not explicable by the inverse square relationship between signal strength and

distance. In addition readings at a single position varied slightly with time. The likely cause of

this undesirable behavior is inter-signal interference caused by other devices transmitting in or

near the 2.4GHz channel such as Bluetooth, cell phones and other Wi-Fi enabled devices, as

well as multipath, through which multiple paths of signal propagation interfere constructively

and destructively with each other due to reflection. Given the difficulty of determining reliable

distance measurements from signal strength, an alternate scheme based on raw signal strength

values was proposed. This scheme does not rely on a system which follows Friis formula, but

does require that signal strength measurements at individual points are repeatable and

distinguishable.

 Location Tracking Test

 Experimental Setup

 In order to test the raw signal strength scheme, a testing space was

established in Cal Poly’s Engineering Building 192, room 330. A 15’ X 15’ grid of 9 zones with

centers spaced 7.5’ apart was marked. RF nodes (access points) were placed at each corner of

this grid for sending signals to the user tag. Due to slight variations in transmit power caused

by low battery life, initial battery voltage was recorded such that batteries could be recharged

to their initial voltage values between data collection sets.

41

 Experimental Procedure

 To establish a map of reference values, the signal strength received by

the blind node (user tag) from each of the 4 access points was measured at the center of each

zone 4 orientations (N, S, E, W). Location data was gathered for the blind node for two sets of

measurements, one with the blind node placed at the center of each zone in differing

orientations, and one with the tag placed in different orientations at varying off-center points

throughout the grid. Results were tabulated in Excel using both the Simple Point Matching and

KNN algorithms to determine how closely experimental values followed expected values.

 Results

 Simple Point Matching Accuracy

 To determine relative error, the average error distance was calculated as

follows:

233�3444444444 � �567 � 6389:
 � �;� � ;389!

In simple point matching, a comparison determined which set of reference values most

closely approximated the actual values. If actual values were within the noise margin for more

than one zone, the noise margin was halved successively until one zone was isolated. Using this

algorithm, zone accuracy was significantly less than desirable, and any similarities were most

42

likely due to random variations. Mean error distance for all measurements on center was 13.63

ft. The results for simple point matching are detailed in Appendix A-i.

 KNN Accuracy

The KNN method yielded higher accuracy than the SPM method, but did not achieve the

original design requirement of 3 feet. The error distance was 8.81 ft for on-center

measurements and 8.17 ft for off-center measurements. The mean error for on center

measurements was 27.30% in x and 38.65% in y and 36.44% in x and 27.84% in y for off center

measurements. Results for KNN testing are detailed in Appendix A-ii

 Analysis / Discussion

 Neither algorithm for position estimation delivered the accuracy desired

(±4.24 mean error distance maximum). Signal strength variation over time causes inverse

square relationship deviations between signal strength and distance within the test

environment. Possible causes include limitations of the XBee RF module, and/or changes in

interference patterns over time, factors which were subsequently investigated by testing the

system in a low-noise environment.

43

Anechoic Chamber Testing

 In order to investigate the root cause of high errors in detection, a follow up test was

performed in an anechoic chamber with high-RF shielding. If it could be proven that the inverse

square law between signal strength and distance held in a shielded environment, it would

indicate that the high errors in position estimation found outside the chamber are due to RF

interference. Conversely, if chamber data continued to deviate from expected values, it would

indicate an issue with the hardware, most likely due to the transmission capabilities of the X-

Bee RF module or the antenna orientation.

 Experimental Setup and Procedure

 Two sets of tests were performed, one using an XBee transceiver to measure

signal strength and another using a dipole antenna connected via coax cable to an HP8593A

spectrum analyzer. The procedure was similar to the distance v. signal determination

performed in a non-shielded environment with receivers operating at the highest transmit

power. Care was taken to ensure that antennas were oriented in the same vertical position. For

the first test, signals were acquired at 1 ft intervals from 3 ft to 15 ft from an RF source.

Additionally, 30 signal strength measurements were taken at a fixed location of 10 ft from the

source to determine repeatability of an individual reading. For the second test, signals were

acquired at 1 ft intervals from 1 ft to 15 ft from the source transceiver using the dipole antenna.

 Results

44

 Using the conversion from pulse width to dBm (decibels milliwatts), differences

between subsequent dBm values were compared to expected values which followed the

inverse square law relationship. Analyzing the data from the first set of anechoic chamber

measurements, no clear relationship between signal strength and distance was discernible, as

shown in the figure below.

Figure 18: Friis Formula Test Shielded Environment

 Surprisingly, the signal variability was also higher at a fixed point than in the test within

a non-shielded environment. This indicates that either the RF shielding is not adequate or that

high frequency RF interference is not the cause of unexpected variations in signal strength over

time and distance. The results of the spectrum analyzer test provided below confirmed that

signal strength did not vary with the inverse square of distance, as shown in figure 19.

-15

-10

-5

0

5

10

15

6 8 10 12 14 16 18

d
B

 d
e

lt
a

TX/RX Distance (ft)

Delta dBm Ideal v Meas Using XBee Module

Expected Values

Actual Values

45

Figure 19: Friis Formula Test using Spectrum Analyzer

 This ruled out the possibility that the XBee receiver was incorrectly interpreting received

power readings. Rather, the root cause was estimated to be related to an anisotropic antenna

footprint inherent to the XBee transmitter architecture. Due to its non-uniform footprint, the

Xbee is not a reliable means of accurate position estimation. This conclusion was corroborated

in a discussion with support personnel at the XBee manufacturer Digi, who explained that the

RF module signal strength readings are not intended for location determination, but are rather

a rough indicator of link quality between nodes within a mesh network.

 Several modifications were implemented to determine if the XBee antenna transmission

characteristics could be improved. It was noted that the antenna does not possess a ground

plane, contrary to recommended antenna design. Therefore, a set of ground wires were added

to the antenna to see if clearer readings could be obtained. Due to the sensitive nature of the

-5

-4

-3

-2

-1

0

1

2

3

0 2 4 6 8 10 12 14

d
e

lt
a

 d
B

m

TX/RX Distance (ft)

Delta dBm Ideal v Meas Using Spectrum

Analyzer

delta dB

dB Ideal

46

antenna and less than ideal soldering equipment, the received signal strength was severely

attenuated with addition of ground wires. The rudimentary wire antenna was replaced with a

more robust UFL antenna; unfortunately data transmission between source and receiver was

intermittent, with RSSI readings attenuated with respect to readings obtained using the wire

antenna.

 Zone Tracking Test

 Despite its inferior antenna design and deviations from the Friis formula, results

from the previous tests performed in the QL+ lab and the anechoic chamber indicate that there

is a discernible difference in signal strength between readings within a few feet of a fixed node

(near zone) and beyond this limit (far zone), as shown in figure 20.

47

Figure 20: Distance v. RSSI Unshielded Environment

 Given this cutoff it was posited that the XBee system could still serve to distinguish the

location of a subject within a few meters. This meets the system requirements because it is still

adequate for determining within which room a fall occurs.

 Experimental Setup and Procedure

 Two sets of data were acquired, one for a 15’X15’ space and the second for a

30’X15’ space. The experimental setup for each test was identical to the location tracking tests

-70

-60

-50

-40

-30

-20

-10

0

0 5 10 15 20

d
B

m

Distance (ft)

Distance v. dBm Shielded Environment

Test 2 Anechoic Chamber

Test 1 Anechoic Chamber

Test 3 Anechoic Chamber

Antenna

48

for KNN and SPM algorithms, with 4 fixed nodes and 9 zones. The software design involved the

use of a universal threshold RSSI value to distinguish whether the blind node fell within the

near or far zone of each fixed node. For instance, if only the RSSI readings from node 1

exceeded the threshold, the blind node was assigned to zone 1. 9 sets of measurements were

acquired for each of 9 possible zones, with 3 readings taken at each zone.

 Results

 For the smaller grid, the XBee blind node was tracked correctly for only 2 of the 9

zones (see Appendix A-iii). For the larger grid this accuracy increased to 5 out of 9 zones (see

Appendix A-iv). Despite a high error rate, it is promising that an increase in grid area leads to an

increased accuracy. If fixed nodes are placed in four different rooms, the results may provide an

adequate means of rough position tracking. Other improvements could be to set a unique

threshold for each node, and differentiate further into a near, mid and far zone of signal

strength values, since many of the zones with overlapping signals would fall within this mid

zone classification.

 A test performed with only 4 coverage zones (one for each access point) yielded more

accurate results. When the blind node was placed within 1 m of an access point it was assigned

to the correct zone by the software almost 100% of the time, provided that the node and

access point modules are facing each other. This simplified test did not involve intermediate

zones where multiple signals overlap, given the small footprint of each antenna. It did prove the

efficacy of using XBee for low resolution tracking on a large room to room scale.

49

 Testing of Room to Room Monitoring

 The final test using XBee modules addressed the limitations of using signal

strength to predict location, instead serving a check in/check out function similar to RFID and

infrared portals placed at strategic entry points throughout a house or hospital. XBee modules

were placed near high traffic areas at the entrance to a room or within portals to determine

patient room location. When a patient enters a room, the tag sends a signal to the computer,

storing the location of the patient, and when they passed by another node, that location data

would be modified and/or overwritten.

 Experimental Setup and Results

 To test the XBee portal configuration, four XBee access points were used within

a small house environment, each placed within a room at waist height at a total of four discrete

locations. The user passes between the living room, kitchen, bathroom and bedroom and back

again at several speeds, and the responsiveness of the access points to user movement is

observed. Whenever a user passes through the center of the kitchen where the access point is

situated, a signal should be sent from the blind node to the software program indicating the

blind node’s position. False positives and false negatives were recorded and used to determine

the locating accuracy of the algorithm.

50

< � =>?@@A � �BC � B=!
=>?@@A

 D 100%

where FP represents false positives, FN represents false negatives, and Nfalls represents total

number of registered falls and S is the sensitivity of the device to false positive and false

negatives.

 Using this setup, the system was capable of tracking the movement of a user through a

house within a few meters. The user tag was moved among each room several times, and

changes in location were determined without conflicts between individual nodes which could

have resulted in position ambiguity. However, the tag must be moved past each node at a

reasonably slow speed (ie: typical walking speed) to allow a position change to be

acknowledged. Location changes could be missed if the user is hurrying past the sensor. Given

the impeded mobility of the target user group for this product, and the fact that activities are

usually conducted at a leisurely pace within the target environments, errors in tracking should

be kept to a minimum. At this time and given the current hardware and environmental

considerations, coordinate position estimation is not achievable using XBee modules.

Fall Detection and Pedometer Testing

 Experimental Setup

 Two experiments were undertaken using the accelerometer. In one, the goal of

the experiment is to determine if falls could be distinguished from ADLs at 90% accuracy. In the

second, the goal was to determine if steps could be monitored accurately using the

51

accelerometer. Acceleration data from the user tag was acquired via the XStick and logged to a

PC using the on-board SPI. The enclosed tag was secured to the subject’s hip by means of a

velcro strap.

 Experimental Procedure

 To set an appropriate acceleration threshold, the subject was asked to perform

various ADLs including sitting, lying down supine, prone, and to one side, and walking at a slow

and rapid pace. Each ADL was repeated twice and maximum and average acceleration values

for each ADL were determined. Next the subject engaged in a series of unimpeded frontal falls,

side falls and backwards falls onto a mattress from a stationary position. Accelerations due to

impact shock and immediately following each fall were used to set a minimum acceleration

threshold for fall detection. Results for calibration are provided below.

B. Accelerometer Readings for ADLs and Falls

Event Average Acceleration Max Acceleration

Falling Backwards 1.09 8.07

Falling Forwards 0.95 9.44

Side Fall 1.08 5.28

Lying Down Prone 0.97 3.07

Lying Down Side 1.02 2.75

Lying Down Supine 1.06 2.66

Sitting 0.98 2.03

Walking 0.99 2.19
Table 3: Accelerometer Readings

The same procedure was repeated for the calibrated tag and false-positive and false-negative

values were recorded. Fall detection sensitivity was calculated according to the following

formula:

52

< � =>?@@A � �BC � B=!
=>?@@A

 D 100%

 Results

 Following calibration, there was no difficulty distinguishing falls from ADLs. Falls occur

at accelerations greater than 5 g’s as measured by the accelerometer, while the highest

acceleration associated with ADLs was 3 g’s during the act of lying down in a prone position.

 Analysis / Discussion

 A clear distinction can be drawn between falls where all bodily restraint is lost

and fully controlled acts such as sitting and standing. The acceleration threshold between these

events is great enough that fall detection sensitivity is virtually 100%. The result of the

pedometer test was equally promising, with data identifying a near constant low acceleration

value associated with each step.

System Validation

 Once location tracking, step counting and fall detection schemes met specifications,

they were integrated with software to detect and display the location of fall events and to

monitor steps and calories burned. Tests were performed in the Cal Poly Engineering Building

192, Room 330 with four location nodes, a user tag, and a laptop running the Fall Alert

software.

53

 Experimental Setup

Nodes were situated within the room at 25 ft spacing. Although all tags respond

to the user tag request for data, only one experiences a strong near field signal, allowing the

user tag to associate with a unique zone when in close proximity of a node. The user tag was

placed within a plastic enclosure and attached to the subject’s hip using a Velcro strap.

 Experimental Procedure

 The first test verified that the user tag was associated with the correct location

as the user walked casually through the room, with step counts properly logged by the

software. A grid was laid out within the room, with 5 vertices. The user followed a predefined

path, stopping at each vertex to determine the location detected by the Fall Alert software at

each positions. An estimate of accuracy was calculated by taking the difference of the total

number of readings and erroneous readings divided by the total number of readings.

 The second test verified that falls could be distinguished from ADLs. The user

performed the following ADLs: sitting down, walking, running, and lying down. Following this,

the user tag was removed from the subject’s waist and falls were simulated by dropping the tag

from head height onto a soft surface. Several simulated falls were recorded from various

heights to determine if the software accurately detected exceptionally large downward

acceleration as distinguished from smaller magnitudes characteristic of ADLs.

 Results and Analysis

 The user tag location was accurately defined for all vertices; the software

displayed the tag icon properly on the map, as shown in the figures below. Steps were tracked

54

correctly, and related distances and calorie consumption were logged to a data file. Given

battery life effects the signal strength of each node and the Fresnel zone of each antenna

differs slightly, not all zones were shaped identically; however, an algorithm differentiates the

strongest node from the group, and consistently identifies the correct zone.

 The second test proved that falls could be distinguished from ADLs given

appropriate threshold acceleration for fall detection (5g). A fall alarm was displayed within the

software program immediately after a fall occurred, verifying alarms could be detected quickly

by the software. Falls were logged within a file, and falls were not mistaken for extra steps by

the Arduino software.

Figure 21: Software Zone Layout

55

Figure 22: FallDetect Initial Screen

Figure 23: User Input Menu

56

Figure 24: User Tag in Zone 1

Figure 25: User Tag in Zone 2

57

Figure 26: User Tag in Zone 3

Figure 27: User Tag in Zone 4

58

Figure 28: Fall Detected

59

Future Recommendations

 The current system works effectively for approximate position estimation, however, an

access point is needed for each location, and the software must be modified to account for new

access points. As per the original aim of the project, it would be ideal if 3 locator beacons could

be used to triangulate/trilaterate a 2D position within a large square area (several 1000 ft2).

Many studies have shown this to be possible given adequate hardware. In order to implement

this scheme, XBee modules with high-quality antennas should be employed, since the cause of

inaccurate signal strength readings was claimed to be partly due to anisotropic antenna

patterns. Additionally, received signal strength has proven to be a parameter ill-suited to

approximating distance. A custom application specific integrated circuit should be built to

detect signal strength and convert this into a PWM signal that could be read by the Arduino.

 The size of the tag is another concern that can be quickly addressed by a smaller

microcontroller, such as the MSP430 from Texas Instruments. Such a change would make the

user tag more inconspicuous and comfortable for the user, and avoid obstructing movement.

 High power requirements hamper the current implementation, limiting access point

battery life to a few hours. If the user tag possesses an infrared motion sensor to indicate when

a user is in transit, the access points could be configured in low-power mode to prevent high

levels of static power dissipation and awakened only when necessary.

 PC software must periodically send log data and fall alerts to a remote client computer

or cell phone, where the data can be interpreted and emergency personnel dispatched to the

site of the accident. Software could be configured in Java to run on a mobile phone with mobile

60

computing capabilities and send a signal when prompted by the accelerometer. The

accelerometer could even be integrated into the “smart” phone.

 Although this module is primarily a fall detection device, fall prevention is the ultimate

aim. With this goal in mind, it would be useful to expand the system’s breadth (assuming

substantial funds) to include other types of monitors (heart rate, oxygen saturation, blood

pressure) as part of a wireless body-area network similar to the European CAALYX system in

order to determine the onset of pathological conditions which may lead to increased fall

vulnerability. Angular sensors (ie: accelerometers) could be employed to monitor range of

motion, and force sensors placed within the shoe sole could monitor muscle strength. The

microcontroller would serve as the central processing hub. The challenge with integrating

multiple sensors is to develop a system which does not obstruct movement, has low power

requirements, and is simple to assemble and disassemble.

 Though not related to a wireless body area network implementation, a smart medicine

cabinet using RFID technology could be designed to correlate falls with drug intake. Such a

system would record each time that a drug was taken via a reader in the cabinet and advise a

physician if a patient misses a dose or overdoses on a particular medication. Each bottle of

medication would be affixed with an RFID label, when the bottle is removed for medications

administration, the reader would acknowledge the removal and update a registry in the PC

software indicating uptake. A vibrational buzzer or audible signal on the user tag could be used

to remind the user when medication should be taken. The goal of such a system would be to

limit occurrences of drug-induced falls, especially where neuroleptics or bronchodilators are

prescribed.

61

References

[1] L Jacobson, et al. “America’s Aging Population.” Population Bulletin 66, no. 1 (2011).

[2] “US Healthcare Costs: Background Briefs.” http://www.kaiseredu.org/Issue-

Modules/US-Health-Care-Costs/Background-Brief.aspx. n.d. Web. 20 October, 2011.

[3] CR Baker, et al. “Wireless Sensor Networks for Home Health Care.” AINAW, Ontario,

Canada, 2007.

[4] U Varshney, “Pervasive Healthcare and Wireless Health Monitoring.” Mobile Networks

and Applications, Vol. 12, No. 2-3, pp. 113-127, 2007.

[5] J Dai, X Bai, Z Yang, Z Shen, D Xuan. “Mobile Phone-based Pervasive Fall Detection.”

Journal of Personal and Ubiquitous Computing, 14(7):633-643, Oct. 2010.

[6] PA Stalenhoef, HFJ Crebolder, JA Knottnerus, FGE van der Horst. “Incidence, Risk Factors

and Consequences of Falls Among Elderly Subjects Living in the Community: A Criteria-Based

Analysis.” Eur J Public Health. 7:328-334. 1997.

[7] OP Ryynanen, SL Kivela, R Honkanen, P Laippala. “Falls and Lying Helpless in the Elderly”.

Z Gerontol.; 25(4):278-82, 1992.

[8] N Noury, A Fleury, P Rumeau, AK Bourke, G ‘O Laighin, V Rialle, JE Lundy. “Fall Detection

- Principles and Methods.” pg. 1663–1666. Proceedings of the 29th Annual International

Conference of the IEEE EMBS, August 2007.

[9] CC Yang; YL Hsu. “A Review of Accelerometry-Based Wearable Motion Detector for

Physical Activity Monitoring.” Sensors 2010, 10, 7772-7788.

[10] M Kangas, A Konttila, P Lindgren, P Winblad, T Jamsa. “Comparison of Low-Complexity

Fall Detection Algorithms for Body Attached Accelerometers.” Gait & Posture, vol. 28, issue 2,

pp. 285–291, 2008.

[11] A Sixsmith, N Johnson. “A Smart Sensor to Detect the Falls of the Elderly.” IEEE Pervasive

Computing Magazine, pp 42–47, April–June 2004.

[12] M Alwan, PJ Rajendran, S Kell, et al. “A Smart and Passive Floor-Vibration Based Fall

Detector for Elderly.” Proceedings of the 2nd IEEE International Conference on Information and

Communication Technologies, held in Damascus, Syria; IEEE Press Online. pp. 1003–1007. April

24–28, 2006.

62

[13] J Spehr, M Gvercin, S Winkelbach, E Steinhagen-Thiessen, F Wahl. “Visual Fall Detection

in Home Environments.” International Conference of the International Society for

Gerontechnology, Pisa, Italy, 2008.

[14] DM Bravata, C Smith-Spangler, V Sundaram, AL Gienger, N Lin, R Lewis, CD Stave, I

Olkin, JR Sirard. “Using Pedometers to Increase Physical Activity and Improve Health: a

Systematic Review.” JAMA 298:2296–2304, 2007.

[15] D Malan, TRF Fulford-Jones, M Welsh, S Moulton. “CodeBlue: An Ad Hoc Sensor

Network Infrastructure for Emergency Medical Care.” Proc of the MobiSys 2004 Workshop on

Applications of Mobile Embedded Systems (WAMES 2004) 12-14, 2004.

[16] P Fuhrer, D Guinard. “Building a Smart Hospital using RFID Technologies: Use Cases

and Implementation.” Proc of the 1
st
 European Conference on eHealth (ECEH06), 2006.

[17] A Cangialosi, JE Monaly, SC Yang Jr. “Leveraging RFID In Hospitals: Patient Life

Cycle and Mobility Perspectives.” IEEE Communications Magazine, Volume 45, Issue 9, Sep.

2007.

[18] “Zigbee and Bluetooth: Strengths and Weaknesses for Industrial Applications.”

than.kaist.ac.kr/courses/2005/cs492/mailing_archive/pptO9wPB7V7CA.ppt. n.d. 12 December

2011.

[19] N Chevrollier, N Golmie. “On the Use of Wireless Technologies in Healthcare

Environments.” Proc. ASWN ’05, Paris, France, June 2005.

[20] TR Hansen, JE Bardram, M Soegaard. “Moving Out of the Lab: Deploying Pervasive

Technologies in a Hospital.” IEEE Pervasive Computing, 5(3):24-31. 2006.

[21] “How Zigbee Works”

http://homepage.uab.edu/cdiamond/How%20Zigbee%20Works.htm. n.d. 15 July 2011.

[22] J Jung, K Ha, J Lee, Y Kim, D Kim."Wireless Body Area Network in a Ubiquitous

Healthcare System for Physiological Signal Monitoring and Health Consulting." International

Journal of Signal Processing and Pattern Recognition, Vol.1, pp. 47-54, 2008.

[23] MC O’Connor. “Testing Ultrasound to Track, Monitor Patients.” RFID J 1(31):2. 2006.

[24] N Priyantha, A Chakraborty, H Balakrishnan. “The Cricket location support system.”

Proceedings of the Sixth Annual ACM/IEEE International Conference on Mobile Computing

and Networking (Mobicom), Boston, MA, Aug. 2000.

[25] K Lorincz, M Welsh. “MoteTrack: A Robust, Decentralized Approach to RF-Based

Location Tracking.” Proceedings of the International Workshop on Location- and Context-

Awareness (LoCA) at Pervasive, Oberpfaffenhofen, Germany, May 2005.

63

[26] R Want, A Hopper, V Falcao, J Gibbons. “The Active Badge Location System.” ACM

Transactions on Information Systems, Vol. 40, No. 1, pp. 91-102, January 1992.

[27] MN Kamel Boulos, A Rocha, A Martins, ME Vicente, A Bolz, R Feld, I Tchoudovski, M

Braecklein, JO Nelson, G Laighin, C Sdogati, F Cesaroni, M Antomarini, A Jobes, M Kinirons.

“CAALYX: a new generation of location-based services in healthcare.”

International Journal of Health Geographics 2007, 6:9.

[28] E Elnahrawy, X Li, RP Martin. “The Limits of Localization Using Signal Strength: A

Comparative Study.” IEEE Sensor and Ad hoc Communications and Networks Conference

(SECON), Santa Clara, CA, October 2004.

[29] V Seshadri, GV Zaruba, M Huber. “A Bayesian Sampling Approach to In-Door

Localization of Wireless Devices Using Received Signal Strength Indication.” PERCOM

Proceedings of the Third IEEE International Conference on Pervasive Computing and

Communications, 2005.

[30] “Awarepoint: How it Works.” http://www.awarepoint.com/our-solutions/how-it-works/.

n.d Web. 16 September 2011.

[31] “Aeroscout: Technology Overview.” http://www.aeroscout.com/content/technology n.d.

Web. 17 September 2011.

[32] “Ekahau Product Categories.” http://www.ekahau.com/products/products-overview.html

n.d. Web. 17 September 2011.

[33] “Lifeline with Autoalert Option.” http://philips.lifelinesystems.com/content/lifeline-

products/auto-alert n.d. Web. 11 October 2011.

[34] “Visonic Fall Detector Product Description.” http://www.visonic.com/Products/Wireless-

Emergency-Response-Systems/Fall-detector-mct-241md-pers-wer n.d. Web. 11 October 2011.

[35] A Bueno-Cavanillas, F Padilla-Ruiz, JJ Jimenez-Moleon, CA Peinado-Alonso, R Galvez-

Vargas. “Risk Factors in Falls Among the Elderly According to Extrinsic and Intrinsic

Precipitating Causes.” Eur J Epidemiol;16: 849–859. 2000/

[36] AB Schultz “Mobility Impairment in the Elderly: Challenges for Biomechanics

Research.” J. Biomech. 25:519–528. 1992.

64

Image References

[1] “UK RFID.” http://ukrfid.com/what-is-rfid/ Web. 13 September 2012.

[2] “Healthcare IT News and Opinion 2/2/11.” http://histalk2.com/wp-

content/uploads/2011/02/awarepoint1.jpg. 2 February 2011. Web. 13 September 2012.

[3] “Jennic Product – MITS World.”

http://www.mitscomponent.com/product_50_Jennic%20Product.html 2008. Web. 14 September

2012.

[4] “Mobile Body Area Networks.” http://thenerdinsurance.us/?tag=mobile-body-area-

network

January 2011. Web. 14 September 2012.

[5] “Definition of Terms: Smart Lab.” http://www.pocketvnc.com/blog/?page_id=526 Web.

14 September 2012.

[6] “Protolab ADXL3xx Accelerometers.”

http://protolab.pbworks.com/w/page/19403600/ADXL3xx%20Accelerometers 2007. Web. 14

September 2012.

[7] “Monitoring Your Parents’ Falls – NYTimes.”

http://gadgetwise.blogs.nytimes.com/2010/03/18/monitoring-your-parents-falls/ March 2010.

Web. 14 September 2012.

[8] “People Counting and Flow Rate Information.” http://www.airport-int.com/article/flow-

rate-information.html May 2010. Web. 14 September 2012.

65

Appendices

A. Location Tracking Tests

 The first two of the following spreadsheets were used in order to determine the accuracy

of the sensor network’s ability to accurately track position based off of reference signal strength

measurements. Two mathematical approaches were employed, one involving simple point

matching and the second using a more complicated probabilistic method known as K-Nearest-

Neighbors. The last two tables explore using zones associated with each node to determine

relative position. While less accurate than the other approaches, they do not rely on the same

correlation between distance and signal strength to deduce location.

i. SPM Calcs

SPM On-

Center

Actual P1 P2 P3 P4 P5 P6 P7 P8 P9

X 0 7.5 15 0 7.5 15 0 7.5 15

Y 0 0 0 7.5 7.5 7.5 15 15 15

Calculated 6 6 9 5 8 7 6 2 4

X 7 15 15 7.5 7.5 0 15 7.5 0

Y 15 7.5 15 7.5 15 15 7.5 0 7.5

Error

Distance

16.55 10.61 15.00 7.50 7.50 16.77 16.77 15.00 16.77

Avg Error

Distance

13.61

Table 4: Single Point Matching Calculations

66

ii. KNN Calcs

KNN Errors

Off Center

Actual

Values

P1 P2 P3 P4 P5 P6 P7 P8 P9

X 2.8 7.8 15 11.67 1 0.42 12.67 14.83 15

Y 2.8 0 15.3 7.5 6.92 15 6.75 14.83 10.83

Calculated

Values

X 7.5 15 15 0 7.5 0 9.13402

649

15 0

Y 0 0 0 7.5 15 15 13.3659

735

15 7.5

Error in

Distance

5.47 7.20 15.30 11.67 10.37 0.42 7.50 0.24 15.37

Error Values

in X (%)

31.33 48.00 0.00 77.80 43.33 2.80 23.57 1.13 100.0

0

Error Values

in Y (%)

18.67 0.00 102.0

0

0.00 53.87 0.00 44.11 1.13 22.20

Mean Error 8.17

Mean Error

in X (%)

36.44

Mean Error

in Y (%)

26.89

Table 5: K-Nearest Neighbors Calculations (Off Center)

67

KNN Errors On

Center

Actual Values P1 P2 P3 P4 P5 P6 P7 P8 P9

X 0 7.5 15 0 7.5 15 0 7.5 15

Y 0 0 0 7.5 7.5 7.5 15 15 15

Calculated

Values

X 0 0.6452

18

0 7.5 7.5 7.5 0 7.5 15

Y 0 14.677

39

0 7.5 7.5 0 0 7.5 7.5

Error in

Distance

0 16.199

19

15 7.5 0 10.606

6

15 7.5 7.5

Error Values

in X (%)

0.00 45.70 100.0

0

50.00 0.00 50.00 0.00 0.00 0.00

Error Values

in Y (%)

0.00 97.85 0.00 0.00 0.00 50.00 100.0 50.00 50.00

Mean Error 8.81

Mean Error in

X (%)

27.30

Mean Error in

Y (%)

38.65

Table 6: K-Nearest Neighbors Calculations (On Center)

68

iii. Zone tracking 15’X15’

Orientation:

West

Threshold:

38

Grid Dimensions:

15X15'

Averages

 Node Zone

1

Zone

2

Zone

3

Zone

4

Zone

5

Zone

6

Zone

7

Zone

8

Zone

9

 0 50.09 28.9

7

27.3

0

35.2

9

35.2

9

38.0

2

28.8

0

28.1

3

29.4

6

 1 31.28 34.8

8

32.9

7

40.0

0

40.0

0

33.2

9

38.3

1

29.0

3

36.6

9

 2 20.94 30.8

1

29.3

0

25.9

5

25.9

5

36.8

8

35.9

2

28.3

5

32.2

1

 3 35.25 38.7

3

34.9

2

38.5

1

38.5

1

38.3

9

41.7

0

39.8

2

44.5

5

Std Dev 0 1.74 2.57 3.15 3.68 3.68 2.95 5.54 1.30 1.21

 1 1.77 2.69 0.00 1.19 1.19 6.57 0.56 0.00 0.29

 2 0.00 3.89 0.00 6.65 6.65 0.00 0.00 0.00 0.68

 3 3.99 5.33 3.05 2.16 2.16 1.05 6.24 1.02 1.17

 Zone Read 1 6 0 3,6 3,6 1,9 6,9 9 9
Table 7: Zone Tracking Accuracy 15'X15'

69

iv. Zone Tracking 30’X15’

Orientation

: West

Threshold:

38

Grid Dimensions:

30’X15'

Averages

 Node Zone

1

Zone

2

Zone

3

Zone

4

Zone

5

Zone

6

Zone

7

Zone

8

Zone

9

 0 42.21 36.35 32.61 29.78 30.88 30.03 27.14 30.93 36.11

 1 29.99 38.14 50.63 0.00 0.00 36.98 32.29 32.35 35.64

 2 22.12 25.19 25.57 26.88 22.26 22.26 34.31 35.53 31.00

 3 23.88 23.88 23.88 35.78 41.59 41.80 35.70 29.71 36.53

Std Dev 0 0.71 2.43 0.33 3.12 9.15 1.91 2.78 6.91 1.47

 1 2.26 1.32 2.43 0.00 0.00 0.07 2.97 0.00 3.41

 2 1.95 0.72 2.28 3.34 0.00 0.00 5.25 1.61 0.00

 3 0.00 0.00 0.00 1.97 0.39 0.41 2.94 2.33 0.54

 Zone

Read

1 2,3 3 0,9 1,9 6 0,8 0,4,7 5,9

Table 8: Zone Tracking Accuracy 30'X15'

B. Sample Log File

 The software generates a log file each time a new connection is established between the

user tag and the PC via the zigbee network. In addition to detecting position and falls, it also

keeps a running tally of steps taken in each zone and associated distance and calorie

consumption.

3/16/2012 12:25

Time Location Steps Distance

(miles)

 KCal

3/16/2012 12:25 Zone1 3 0.0006877 0.068774

3/16/2012 12:25 Zone2 6 0.0013755 0.137547

3/16/2012 12:25 Zone3 7 0.0016047 0.160472

3/16/2012 12:25 Zone4 6 0.0013755 0.137547

3/16/2012 12:26 Fall

Occurred

7 0.0016047 0.160472

3/16/2012 12:26 Zone1 1 0.0002292 0.022925

3/16/2012 12:26 Fall

Occurred

8 0.001834 0.183396

3/16/2012 12:26 Zone3 5 0.0011462 0.114623

3/16/2012 12:26 Zone4 6 0.0013755 0.137547
Table 9: Sample Log File 3/6/2012 12:25p

70

C. Arduino Software Code

//

// FILE: UserTag.pde

// AUTHOR: Mike Putnam

// PURPOSE: The code performs several functions:

// 1) Localization of user tag with reference to access points

// 2) Communicating localization data to PC software

// 3) Counting number of steps taken

// 4) Sending an indicator to PC software whenever a fall occurs

// Libraries to include

#include <ctype.h>

#include <math.h>

#include "stdlib.h"

//Add the MMA7361 Library

#include <MMA7361.h>

// Define macroprocessor directives

#define NUM_ELEM 10 //number of elements to include in accelerometer moving average

//Create the variables to be used by MMA7361 library

MMA7361 acc;

// Variable definitions for UserTag.pde

int xAccPin = A0; //Define the pin to acquire x-acceleration data from

int yAccPin = A1; //Define the pin to acquire y-acceleration data from

int zAccPin = A2; //Define the pin to acquire z-acceleration data from

int zeroGDetectPin = 6; //Define the zero g detect pin

float xOffset = 1680; //Voltage in mV output by accelerometer along x axis at 0-g

float yOffset = 1700; //Voltage in mV output by accelerometer along y axis at 0-g

float zOffset = 1620; //Voltage in mV output by accelerometer along z axis at 0-g

float accVect = 0; //Sum acceleration (combination of x, y, and z values)

float sum[NUM_ELEM]; //Acceleration array used to compute moving averages

int threshold[4] = { 30, 30, 30, 25}; //Threshold for minimum acceptable received signal

//strength

float fallAcc = 4.0; //Minimum acceleration necessary to indicate a fall

volatile unsigned int Ticks; //Holds the pulse count as .5 us ticks

int icrPin = 8; //This interrupt handler must use pin 8

int steps = 0; //Number of steps taken as measured by accelerometer

71

char flag = 0; //Flag used to indicate when a step has occurred

unsigned char step_bytes[2]; //PC Software requires step count in bytes

char curr_state = 0; //Stores current location

char prev_state = 0; //Stores previous location

float rssi_value; //Stores received signal strenght from locator nodes

int maxRSSIVal = 0; //Used to determine the closest locator node

char nodeMax = 0; //Defines locator node with largest RSSI (closest to user tag)

/**

Function Name: Interrupt Service Routine

Arguments: Timer1 Capture Vector

Return: None

Description: Interrupt service routine used to measure the pulse width associated

with received signal strength as sampled by the XBee S1 ASIC. The interrupt flag is

triggered when a voltage change is sensed on pin 8

**/

ISR(TIMER1_CAPT_vect){

 if(bit_is_set(TCCR1B ,ICES1)){ // was rising edge detected ?

 TCNT1 = 0; // reset the counter

 }

 else { // falling edge was detected

 Ticks = ICR1;

 }

 TCCR1B ^= _BV(ICES1); // toggle bit value to trigger on the other edge

}

/**

Function Name: Interrupt Service Routine

Arguments: Timer2 Compare Vector

Return: None

Description: Interrupt service routine used to acquire data from the

accelerometer. Triggered whenever the value in timer 2 matches the

value in compare register A

**/

ISR(TIMER2_COMPA_vect)

{

 accVect = movingAvg(acc.getAcc()); //get the moving average of the magnitude of

acceleration

 //Serial.println(accVect);

 if(accVect > 1.25 && accVect < 2) //if the moving average is within range raise flag

 flag = 1;

72

 if(accVect < 1.05 && flag) //when moving average moves out of range again,

indicate that a step has occurred

 {

 steps++;

 flag = 0;

 }

 //Serial.println(steps);

 if (accVect > fallAcc) //has a fall occurred?

 {

 TIMSK2 &= (0<<OCIE2A); //if so, stop compare interrupts on timer 2

momentarily

 }

}

/**

Function Name: intToBytes

Arguments: integer to be converted to byte format

Return: None

Description: Takes a 16 bit integer and converts it into two 8 bit bytes

**/

void intToBytes(int steps)

{

 step_bytes[0] = steps & 0x00FF;

 step_bytes[1] = (steps & 0xFF00) >> 8;

}

/**

Function Name: movingAvg

Arguments: Acceleration vector

Return: Averaged acceleration vector

Description: Averages the acceleration value over 10 acquisitions

**/

float movingAvg(float accVect)

{

 float avg = 0;

 sum[0] = accVect;

 for(int i = NUM_ELEM-2; i >= 0; i--)

 {

 sum[i+1] = sum[i];

 avg += sum[i+1];

 }

 avg += sum[0];

 return avg /= NUM_ELEM;

}

73

/**

Function Name: sendToPC

Arguments: Character indicating location or fall occurence, byte array indicating number of steps

Return: None

Description: Follows established protocol for sending data to the PC software

**/

void sendToPC(char data, unsigned char* steps)

{

 int timeout = 0;

 Serial.flush(); //get rid of outgoing data stream

 do

 {

 Serial.print('A'); //initiate comm

 delay(100);

 timeout++;

 if(timeout > 30)

 {

 curr_state = 0; //assume comm has been reset

 return;

 }

 }

 while(Serial.read() != 'D'); //repeat sending of A until PC responds with a D

 timeout = 0; //reset the timeout

 delay(50);

 Serial.flush(); //get rid of outgoing data stream

 Serial.print(data); //send location or fall instance

 Serial.print(steps[0]); //send LSB of no. of steps

 Serial.print(steps[1]); //send MSB of no. of steps

}

void setup()

{

 Serial.begin(9600); //initialize serial communication

 pinMode(zeroGDetectPin, INPUT);

 pinMode(icrPin,INPUT); //set Input capture pin 8 to an input

 TCCR1A = 0x00; // COM1A1=0, COM1A0=0 => Disconnect Pin

//OC1 from Timer/Counter 1 -- PWM11=0,PWM10=0 => PWM Operation disabled

 TCCR1B = 0x02; // 16MHz clock with prescaler means TCNT1

increments every .5 uS (cs11 bit set

 TCCR2A |= (1<<WGM1); // Clear timer 2 on compare match

74

 TCCR2B |= (1<<CS12); // 16MHz clock with 64 means TCNT1 increments

//every 4 uS

 OCR1B = 0xFFFF; // Trigger a compare interrupt every 0.25 seconds

 Ticks = 0; // Default value indicating no pulse detected

 TIMSK1 = _BV(ICIE1); // Enable input capture interrupt for timer 1

 TIMSK2 |= (1<<OCIE2A); // Enable compare interrupt for timer 2

 sei(); // Enable global interrupts

 //initialize accelerometer

 acc.init(xAccPin, yAccPin, zAccPin, zeroGDetectPin, xOffset, yOffset, zOffset);

 //initialize array elements to zero

 memset(sum, 0, sizeof(sum));

 memset(step_bytes, 0, sizeof(step_bytes));

}

void loop()

{

 maxRSSIVal = 0;

 //do

 {

 Serial.flush(); //Get rid of outgoing data stream

 for(char i = 'E'; i <= 'H'; i++) //Cycle through the four location nodes

 {

 Serial.print(i); //Send character to a location node

 delay(50);

 rssi_value = Ticks/2; //Get the response's signal strength in uS

 Serial.print("RSSI value is:");

 Serial.println(rssi_value);

 rssi_value = 0;

//Determine closest node

//If the value is greater than previous values, store as the maximum

 if (rssi_value > maxRSSIVal && rssi_value > threshold[i - 'E'])

 {

 maxRSSIVal = rssi_value;

 nodeMax = i; //Get the letter associated with maximum node

 }

 }

 Serial.print(nodeMax); //Send character for max node

 delay(50);

 //if(rssi_value >= THRESHOLD && Serial.read() == 'C')

75

 if(Serial.read() == 'C') //If you receive a C from the locator node, read data

 {

 curr_state = Serial.read(); //Store location data for closest locator node

 }

 else

 {

 curr_state = prev_state; //If no node is nearby, maintain previous location

//data

 }

 }

 //while((curr_state < 49 || curr_state > 52) && curr_state != 0);

 Serial.flush(); //Get rid of outgoing data stream

 intToBytes(steps); //Convert steps to byte format

 if (accVect > fallAcc) //Has a fall has occurred?

 {

 curr_state = '5'; //If so, set location data to 5

 accVect = 0; //Reset acceleration vector

 TIMSK2 |= (1<<OCIE2A); //Reenable compare interrupts for timer 2

 }

 if(curr_state != prev_state) //Is this a new location or a fall event?

 {

 steps = 0; //If so reset steps

 sendToPC(curr_state, step_bytes); //Send location data plus steps in byte format to PC

software

 }

 //If current state is not a fall, set previous state. Otherwise current location does not

change

 if(curr_state != '5') prev_state = curr_state;

 else curr_state = prev_state;

}

//

// FILE: MMA7361.cpp

// AUTHOR: Mike Putnam

// PURPOSE: initiatilize accelerometer and convert analog voltages into number of g's

#include "MMA7361.h"

#include "WConstants.h"

#include "WProgram.h"

#include "math.h"

#include "HardwareSerial.h"

#include "inttypes.h"

#include "math.h"

#include "ctype.h"

76

 MMA7361::MMA7361()

 {}

/**

Function Name: getAcc

Arguments: None

Return: Magnitude of x, y and z accelerations in g's (m/s^2)

Description: Takes raw analog voltages and computes acceleration sum vector in g's

**/

 float MMA7361::getAcc()

 {

 int rxAcc, ryAcc, rzAcc;

 float xAcc = 0;

 float yAcc = 0;

 float zAcc = 0;

 float sumAcc = 0;

 rxAcc = getRawXAcc(); //get digital value for x acceleration

 ryAcc = getRawYAcc(); //get digital value for y acceleration

 rzAcc = getRawZAcc(); //get digital value for z acceleration

 //Convert digital values to g's using equation given in MMA7361 datasheet

 xAcc = (float(mapMMA7361G(getRawXAcc()) - _xOffset)) / 206;

 yAcc = (float(mapMMA7361G(getRawYAcc()) - _yOffset)) / 206;

 zAcc = (float(mapMMA7361G(getRawZAcc()) - _zOffset)) / 206;

 //return the magnitude of individual accelerations in x, y and z

 return sumAcc = sqrt(square(xAcc) + square(yAcc) + square(zAcc));

 }

/**

Function Name: getRawXAcc

Arguments: None

Return: 10-bit digital representation of acceleration along x axis

Description: converts analog voltage to digital value using on-board ADC

**/

 int MMA7361::getRawXAcc()

 {

 return analogRead(_xAccPin);

 }

/**

Function Name: getRawYAcc

Arguments: None

Return: 10-bit digital representation of acceleration along y axis

77

Description: converts analog voltage to digital value using on-board ADC

**/

 int MMA7361::getRawYAcc()

 {

 return analogRead(_yAccPin);

 }

/**

Function Name: getRawZAcc

Arguments: None

Return: 10-bit digital representation of acceleration along z axis

Description: converts analog voltage to digital value using on-board ADC

**/

 int MMA7361::getRawZAcc()

 {

 return analogRead(_zAccPin);

 }

/**

Function Name: init

Arguments: xAccPin, yAccPin, zAccPin, zeroGDetectPin, xOffset, yOffset, zOffset

Return: None

Description: specifies analog input pins where voltages are converted into 10-bit digital values

**/

 void MMA7361::init(int xAccPin, int yAccPin, int zAccPin, int zeroGDetectPin, int

xOffset, int yOffset, int zOffset)

 {

 pinMode(xAccPin, INPUT);

 pinMode(yAccPin, INPUT);

 pinMode(zAccPin, INPUT);

 pinMode(zeroGDetectPin, INPUT);

 _xAccPin = xAccPin;

 _yAccPin = yAccPin;

 _zAccPin = zAccPin;

 _xOffset = xOffset;

 _yOffset = yOffset;

 _zOffset = zOffset;

 }

/**

Function Name: mapMMA7361G

Arguments: 10 bit value to map

Return: integer representing mapped value

Description: Maps 10 bit value to a voltage in mV

**/

 int MMA7361::mapMMA7361G(int value)

78

 {

 return map(value, 0, 1024, 0, 3300); //map 10-bit value to a voltage in mV

 }

/**

Function Name: getAccOffset

Arguments: none

Return: none

Description: Determines voltage offset values for (0,0,1) g values at rest

**/

 void MMA7361::getAccOffset()

 {

 Serial.println(float(mapMMA7361G(getRawXAcc())));

 Serial.println(float(mapMMA7361G(getRawYAcc())));

 Serial.println(float(mapMMA7361G(getRawZAcc()) - 206));

 }

//

// FILE: MMA7361.h

// AUTHOR: Mike Putnam

// PURPOSE: Define variables and functions for calculating acceleration using MMA7361

#ifndef MMA7361_h

#define MMA7361_h

class MMA7361

{

 public:

 MMA7361();

 void init(int xAccPin, int yAccPin, int zAccPin, int zeroGDetectPin, int xOffset,

 int yOffset, int zOffset);

 void getAccOffset();

 int getRawXAcc();

 int getRawYAcc();

 int getRawZAcc();

 float getAcc();

 private:

 int mapMMA7361G(int value);

 int _xAccPin;

 int _yAccPin;

 int _zAccPin;

79

 int _xOffset;

 int _yOffset;

 int _zOffset;

};

#endif

D. GUI Code

// FallDetect.cpp : main project file.

#include "stdafx.h"
#include "Mainform.h"
#include "UserInput.h"

using namespace FallDetect;

[STAThreadAttribute]
int main(array<System::String ^> ^args)
{
 // Enabling Windows XP visual effects before any controls are created
 Application::EnableVisualStyles();
 Application::SetCompatibleTextRenderingDefault(false);

 // Create the main window and run it
 Application::Run(gcnew Mainform());
 return 0;
}

//
// FILE: Mainform.h
// AUTHOR: Mike Putnam
// PURPOSE: Defines main form for Fall Alert and periodic actions to be performed,
// including serial communication with user tag, display of location on a map, and
//logging of data to a csv file

#pragma once
#include <Windows.h>
#include "UserInput.h"
#include "msgBox.h"

//define macroprocessor directives which designate specific location on map
#define KITCHEN '1'
#define LIVING_ROOM '2'
#define BATHROOM '3'
#define BEDROOM '4'
#define FALL '5'

namespace FallDetect {

 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;

80

 using namespace System::Data;
 using namespace System::Drawing;
 using namespace System::IO;
 using namespace System::IO::Ports;
 /// <summary>
 /// Summary for Mainform
 /// </summary>
 public ref class Mainform : public System::Windows::Forms::Form
 {
 public:
 UserInput^ UI; //Declare instance
of form for inputting biometric data
 SerialPort^ _serialPort; //Declare instance of serialport,
for communication with xStick
 SaveFileDialog^ sfd; //Declare instance of
saveFileDialog, for logging data to PC
 DateTime^ dt; //Declare instance of
DateTime, for logging time to log files
 String^ file_name;
 StreamWriter^ file_stream; //Streamwriter writes data to the
log file
 int state; //stores current
location
 char go; //determines whether
comm has been established with user tag
 int prev_state; //stores previous
location
 int steps; //stores number of
steps determined by accelerometer
 double mileage; //stores mileage
calculated from number of steps

 //Mainform constructor
 Mainform(void)
 {

 InitializeComponent();
 state = 0;
 go = 0;
 prev_state = 0;
 UI = gcnew UserInput();
 mBox = gcnew msgBox();
 _serialPort = gcnew SerialPort();
 //
 //TODO: Add the constructor code here
 //
 }

 protected:
 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 ~Mainform()
 {
 if (components)
 {
 delete components;
 }

81

 }
 private: System::Windows::Forms::Button^ buttonUserProfile;
 private: System::Windows::Forms::Panel^ panelMain;
 private: System::Windows::Forms::GroupBox^ groupBoxLocation;

 private: System::Windows::Forms::GroupBox^ groupBoxControl;
 private: System::Windows::Forms::ComboBox^ comboBoxConnect;

 private: System::Windows::Forms::Button^ buttonConnect;
 private: System::Windows::Forms::TextBox^ textBoxCommStatus;

 private: System::ComponentModel::IContainer^ components;
 private: System::Windows::Forms::PictureBox^ pictureBoxUserIcon;

 private: System::Windows::Forms::PictureBox^ pictureBoxMap;
 private: System::Windows::Forms::Timer^ timerFallDetect;

 private:
 /// <summary>
 /// Required designer variable.
 /// </summary>

#pragma region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 void InitializeComponent(void)
 {
 this->components = (gcnew System::ComponentModel::Container());
 System::ComponentModel::ComponentResourceManager^ resources =
(gcnew System::ComponentModel::ComponentResourceManager(Mainform::typeid));
 this->panelMain = (gcnew System::Windows::Forms::Panel());
 this->groupBoxLocation = (gcnew System::Windows::Forms::GroupBox());
 this->pictureBoxUserIcon = (gcnew
System::Windows::Forms::PictureBox());
 this->pictureBoxMap = (gcnew System::Windows::Forms::PictureBox());
 this->groupBoxControl = (gcnew System::Windows::Forms::GroupBox());
 this->buttonUserProfile = (gcnew System::Windows::Forms::Button());
 this->textBoxCommStatus = (gcnew System::Windows::Forms::TextBox());
 this->comboBoxConnect = (gcnew System::Windows::Forms::ComboBox());
 this->buttonConnect = (gcnew System::Windows::Forms::Button());
 this->timerFallDetect = (gcnew System::Windows::Forms::Timer(this-
>components));
 this->panelMain->SuspendLayout();
 this->groupBoxLocation->SuspendLayout();
 (cli::safe_cast<System::ComponentModel::ISupportInitialize^ >(this-
>pictureBoxUserIcon))->BeginInit();
 (cli::safe_cast<System::ComponentModel::ISupportInitialize^ >(this-
>pictureBoxMap))->BeginInit();
 this->groupBoxControl->SuspendLayout();
 this->SuspendLayout();
 //
 // panelMain
 //
 this->panelMain->Controls->Add(this->groupBoxLocation);

82

 this->panelMain->Controls->Add(this->groupBoxControl);
 this->panelMain->Location = System::Drawing::Point(2, 3);
 this->panelMain->Name = L"panelMain";
 this->panelMain->Size = System::Drawing::Size(457, 508);
 this->panelMain->TabIndex = 0;
 //
 // groupBoxLocation
 //
 this->groupBoxLocation->Controls->Add(this->pictureBoxUserIcon);
 this->groupBoxLocation->Controls->Add(this->pictureBoxMap);
 this->groupBoxLocation->Location = System::Drawing::Point(5, 93);
 this->groupBoxLocation->Name = L"groupBoxLocation";
 this->groupBoxLocation->Size = System::Drawing::Size(450, 410);
 this->groupBoxLocation->TabIndex = 1;
 this->groupBoxLocation->TabStop = false;
 this->groupBoxLocation->Text = L"Location";
 //
 // pictureBoxUserIcon
 //
 this->pictureBoxUserIcon->BackColor = System::Drawing::Color::White;
 this->pictureBoxUserIcon->BackgroundImageLayout =
System::Windows::Forms::ImageLayout::Center;
 this->pictureBoxUserIcon->Image =
(cli::safe_cast<System::Drawing::Image^ >(resources-
>GetObject(L"pictureBoxUserIcon.Image")));
 this->pictureBoxUserIcon->Location = System::Drawing::Point(105,
304);
 this->pictureBoxUserIcon->Name = L"pictureBoxUserIcon";
 this->pictureBoxUserIcon->Size = System::Drawing::Size(75, 73);
 this->pictureBoxUserIcon->TabIndex = 1;
 this->pictureBoxUserIcon->TabStop = false;
 //
 // pictureBoxMap
 //
 this->pictureBoxMap->Enabled = false;
 this->pictureBoxMap->Image = (cli::safe_cast<System::Drawing::Image^
>(resources->GetObject(L"pictureBoxMap.Image")));
 this->pictureBoxMap->Location = System::Drawing::Point(51, 24);
 this->pictureBoxMap->Name = L"pictureBoxMap";
 this->pictureBoxMap->Size = System::Drawing::Size(350, 388);
 this->pictureBoxMap->TabIndex = 0;
 this->pictureBoxMap->TabStop = false;
 //
 // groupBoxControl
 //
 this->groupBoxControl->Controls->Add(this->buttonUserProfile);
 this->groupBoxControl->Controls->Add(this->textBoxCommStatus);
 this->groupBoxControl->Controls->Add(this->comboBoxConnect);
 this->groupBoxControl->Controls->Add(this->buttonConnect);
 this->groupBoxControl->Location = System::Drawing::Point(5, 8);
 this->groupBoxControl->Name = L"groupBoxControl";
 this->groupBoxControl->Size = System::Drawing::Size(401, 79);
 this->groupBoxControl->TabIndex = 0;
 this->groupBoxControl->TabStop = false;
 this->groupBoxControl->Text = L"Serial Communication";
 //
 // buttonUserProfile
 //

83

 this->buttonUserProfile->Location = System::Drawing::Point(262, 24);
 this->buttonUserProfile->Name = L"buttonUserProfile";
 this->buttonUserProfile->Size = System::Drawing::Size(97, 36);
 this->buttonUserProfile->TabIndex = 3;
 this->buttonUserProfile->Text = L"User Profile";
 this->buttonUserProfile->UseVisualStyleBackColor = true;
 this->buttonUserProfile->Click += gcnew System::EventHandler(this,
&Mainform::buttonUserProfile_Click);
 //
 // textBoxCommStatus
 //
 this->textBoxCommStatus->BackColor =
System::Drawing::SystemColors::InactiveCaption;
 this->textBoxCommStatus->Location = System::Drawing::Point(105, 52);
 this->textBoxCommStatus->Name = L"textBoxCommStatus";
 this->textBoxCommStatus->ReadOnly = true;
 this->textBoxCommStatus->Size = System::Drawing::Size(114, 20);
 this->textBoxCommStatus->TabIndex = 2;
 //
 // comboBoxConnect
 //
 this->comboBoxConnect->FormattingEnabled = true;
 this->comboBoxConnect->Location = System::Drawing::Point(104, 23);
 this->comboBoxConnect->Name = L"comboBoxConnect";
 this->comboBoxConnect->Size = System::Drawing::Size(76, 21);
 this->comboBoxConnect->TabIndex = 1;
 //
 // buttonConnect
 //
 this->buttonConnect->Location = System::Drawing::Point(10, 23);
 this->buttonConnect->Name = L"buttonConnect";
 this->buttonConnect->Size = System::Drawing::Size(76, 38);
 this->buttonConnect->TabIndex = 0;
 this->buttonConnect->Text = L"Connect";
 this->buttonConnect->UseVisualStyleBackColor = true;
 this->buttonConnect->Click += gcnew System::EventHandler(this,
&Mainform::buttonConnect_Click);
 //
 // timerFallDetect
 //
 this->timerFallDetect->Interval = 500;
 this->timerFallDetect->Tick += gcnew System::EventHandler(this,
&Mainform::timerFallDetect_Tick);
 //
 // Mainform
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(459, 509);
 this->Controls->Add(this->panelMain);
 this->Name = L"Mainform";
 this->Text = L"FallDetect";
 this->Load += gcnew System::EventHandler(this,
&Mainform::Mainform_Load);
 this->panelMain->ResumeLayout(false);
 this->groupBoxLocation->ResumeLayout(false);
 (cli::safe_cast<System::ComponentModel::ISupportInitialize^ >(this-
>pictureBoxUserIcon))->EndInit();

84

 (cli::safe_cast<System::ComponentModel::ISupportInitialize^ >(this-
>pictureBoxMap))->EndInit();
 this->groupBoxControl->ResumeLayout(false);
 this->groupBoxControl->PerformLayout();
 this->ResumeLayout(false);

 }
#pragma endregion

 /**
 Function Name: Mainform_Load
 Arguments: Object, EventArgs^ e
 Return: none
 Description: When program loads, determine which ports are available and
display them
 **/

 private: System::Void Mainform_Load(System::Object^ sender,
System::EventArgs^ e)
 {
 pictureBoxUserIcon->Visible = false;
 array<String^>^ serialPorts = SerialPort::GetPortNames();
 for each(String^ port in serialPorts)
 {
 comboBoxConnect->Items->Add(port);
 }
 }

 /**
 Function Name: buttonConnect_Click
 Arguments: Object, EventArgs^ e
 Return: none
 Description: When connecting, determine if userprofile has been filled out,
 and open savefiledialog box to specify where to save log data
 **/

 private: System::Void buttonConnect_Click(System::Object^ sender,
System::EventArgs^ e)
 {
 //if user profile has been filled out, make sure data is entered
before connection
 if(!lookUpUserProfileValues())
 {
 MessageBox::Show("Please enter user profile information before
connecting", "Fall Alert");
 }
 else
 {
 if(buttonConnect->Text == "Connect")
 {
 sfd = gcnew SaveFileDialog(); //create
savefiledialog
 dt = gcnew DateTime();
 //timestamp to represent filename
 sfd->Filter = L"CSV Files (*.csv)|*.csv|"
 L"TXT Files (*.txt)|*.txt|"
 L"All Files|";
 sfd->FilterIndex = 1;

85

 while (sfd->FileName == "")
 {
 file_name = dt->Now + ".csv"; //define
filename as timestamp
 file_name = file_name->Replace(':','_');
 file_name = file_name->Replace('/','_');
 sfd->FileName = file_name;
 sfd->ShowDialog(); //open
savefiledialog
 }

 file_name = sfd->FileName;
 file_stream = gcnew StreamWriter(file_name);
 //write headers to log file
 file_stream->Write(dt->Now + "\n" + "Time, Location,
Steps, Distance, KCal\n");
 file_stream->Close();

 try
 {
 //set properties for serial port and open it
 if(comboBoxConnect->SelectedItem == nullptr)
throw 1;
 buttonConnect->Text = "Disconnect";
 pictureBoxUserIcon->Visible = true;
 //show the user icon
 timerFallDetect->Enabled = true;
 //enable the main timer
 _serialPort->PortName = comboBoxConnect-
>SelectedItem->ToString();
 _serialPort->BaudRate = 9600;
 _serialPort->ReadTimeout = 2000;
 _serialPort->WriteTimeout = 2000;
 _serialPort->Open();

 }
 catch(int i)
 {
 switch(i)
 {
 case 1:
 {
 textBoxCommStatus->Text = "No port
selected";
 break;
 }
 default:
 {
 textBoxCommStatus->Text = "Comm
error";
 break;
 }
 }
 }
 }
 else
 {

86

 //clean up instantiated objects and close the serial
port
 buttonConnect->Text = "Connect";
 timerFallDetect->Enabled = false;
 _serialPort->Close();
 delete dt;
 delete sfd;
 }
 }
 }

 /**
 Function Name: timerFallDetect_Tick
 Arguments: Object, EventArgs^ e
 Return: none
 Description: Main loop of the program occuring every 0.5sec; establishes
 serial communication with user tag, from which the current location of
 the tag is determined and displayed on the map, and current steps and
 related data are logged to a log file everytime that location changes
 **/
 private: System::Void timerFallDetect_Tick(System::Object^ sender,
System::EventArgs^ e)
 {
 array<unsigned char>^ buffer = {'D'};
 array<byte>^ steps_bytes = {0,0};
 //array<Char^> ^input = {0xAD, 0x01};
 try
 {
 go = _serialPort->ReadChar(); //read
incoming data from the user tag
 _serialPort->DiscardInBuffer();

 if(go == 'A') //if
incoming character is an A begin send procedure
 {
 _serialPort->Write(buffer, 0, 1); //let blind node
know that an A has been received
 Sleep(50);
 _serialPort->DiscardInBuffer();
 Sleep(50);
 state = _serialPort->ReadChar(); //read the current
position of the blind node

 textBoxCommStatus->Text = "Comm Established";
 //if for some reason a character other than 1-5 is
sent, keep the previous character
 if(!((state >= 49 && state <= 53) || state == 0))
 state = prev_state;

 if(state != prev_state)
 {
 //write the current date to the text file
 file_stream = File::AppendText(file_name);
 file_stream->Write(dt->Now + ",");
 //specify what location to display the user tag
at, or if a fall has occurred
 //engage appropriate routine
 switch(state)

87

 {
 case KITCHEN:
 {
 pictureBoxUserIcon->Location =
Point(50,50);
 file_stream->Write("Kitchen,");
 break;
 }
 case LIVING_ROOM:
 {
 pictureBoxUserIcon->Location =
Point(50,300);
 file_stream->Write("Living
Room,");
 break;
 }
 case BATHROOM:
 {
 pictureBoxUserIcon->Location =
Point(250,300);
 file_stream->Write("Bathroom,");
 break;
 }
 case BEDROOM:
 {
 pictureBoxUserIcon->Location =
Point(250,50);
 file_stream->Write("Bedroom,");
 break;
 }
 case FALL:
 {
 //fall routine, currently displays
a message box, in future iterations
 //should send fall alert to a
remote client PC or smart phone
 file_stream->Write("Fall
Occurred,");
 pictureBoxUserIcon->Image =
Image::FromFile(L"C:\\Users\\Mike\\Pictures\\Fall.png");
 timerFallDetect->Enabled = false;

 MessageBox::Show("Potentially
injurious fall has occurred! \nContacting emergency personnel.", "Fall Alert",
MessageBoxButtons::OK, MessageBoxIcon::Stop);
 pictureBoxUserIcon->Image =
Image::FromFile(L"C:\\Users\\Mike\\Pictures\\UserIcon.png");
 timerFallDetect->Enabled = true;

 break;

 }

 default:
 {
 pictureBoxUserIcon->Location =
Point(0,0);
 break;

88

 }

 }

 //send other log data, including steps, mileage,
and calories
 _serialPort->Read(steps_bytes, 0, 2);
 steps = bytesToInt(steps_bytes);
 mileage = getMiles();
 file_stream->Write(Convert::ToString(steps) +
",");
 file_stream->Write(Convert::ToString(mileage) +
",");
 file_stream-
>WriteLine(Convert::ToString(getKCal()));
 prev_state = state;
 file_stream->Close();
 _serialPort->Write(buffer, 0, 1);
 }

 }
 }

 catch(TimeoutException^ ex)
 {
 textBoxCommStatus->Text = "Waiting for data.";
 }
 }
 /**
 Function Name: buttonUserProfile_Click
 Arguments: Object, EventArgs^ e
 Return: none
 Description: Activate the UserProfile form
 **/
 private: System::Void buttonUserProfile_Click(System::Object^ sender,
System::EventArgs^ e)
 {

 UI->ShowDialog();
 }
 /**
 Function Name: lookUpUserProfileValues
 Arguments: none
 Return: char
 Description: search the registry, if any biometric data is undefined,
 return a 0, else take that data and use it to calculate calories, mileage,
etc.
 **/
 private: char lookUpUserProfileValues()
 {
 RegistryKey^ currentUser;
 RegistryKey^ softwareKey;
 currentUser = Registry::CurrentUser;
 softwareKey = currentUser->
 OpenSubKey("Software\\Fall Alert");

89

 if (softwareKey->GetValue("age") == nullptr || softwareKey-
>GetValue("height") == nullptr
 || softwareKey->GetValue("weight") == nullptr || softwareKey-
>GetValue("gender") == nullptr)
 {
 return 0;
 }
 else
 {
 UI->age = Convert::ToInt32(softwareKey->GetValue("age"));
 UI->height = Convert::ToDouble(softwareKey-
>GetValue("height"));
 UI->weight = Convert::ToDouble(softwareKey-
>GetValue("weight"));
 UI->gender = Convert::ToBoolean(softwareKey-
>GetValue("gender"));
 return 1;
 }
 }
 /**
 Function Name: bytesToInt
 Arguments: none
 Return: int
 Description: Converts two 8 bit bytes into a 16 bit integer
 **/
 private: int bytesToInt(array<unsigned char>^ input)
 {
 int output = 0;
 for(int i = 1; i>=0; i--)
 {
 output = (output << 8) + input[i];
 }
 return output;
 }
 /**
 Function Name: getMiles
 Arguments: none
 Return: double
 Description: determine mileage based on steps taken
 **/
 private: double getMiles()
 {
 double miles;
 if(UI->gender)
 miles = steps*(0.415*UI->height/2)/160934.4;
 else
 miles = steps*(0.413*UI->height/2)/160934.4;

 return miles;
 }
 /**
 Function Name: getKCal
 Arguments: none
 Return: double
 Description: determine KCal based on mileage, assuming 1 mile walking = 100
 Calories
 **/
 private: double getKCal()

90

 {
 return 100*mileage;
 }
};

}

//
// FILE: UserInput.h
// AUTHOR: Mike Putnam
// PURPOSE: Defines user input sub form for Fall Alert, which takes biological data
//(age, gender, height, and weight) and stores it in the registry for use in calculating
//calories and mileage in the main form

#pragma once

namespace FallDetect {

 using namespace System;
 using namespace System::ComponentModel;
 using namespace System::Collections;
 using namespace System::Windows::Forms;
 using namespace System::Data;
 using namespace System::Drawing;
 using namespace Microsoft::Win32;
 /// <summary>
 /// Summary for UserInput
 /// </summary>
 public ref class UserInput : public System::Windows::Forms::Form
 {

 public:

 double height;
 double weight;
 int age;
 bool gender;
 //registry key instantiations for accessing the PC registry
 RegistryKey^ currentUser;
 RegistryKey^ softwareKey;

 UserInput(void)
 {
 InitializeComponent();
 //
 //TODO: Add the constructor code here
 //
 }

 protected:
 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 ~UserInput()
 {
 if (components)
 {

91

 delete components;
 }
 }
 private: System::Windows::Forms::Panel^ panelUserInput;
 private: System::Windows::Forms::Label^ labelHeight;
 private: System::Windows::Forms::Label^ labelLbs;
 private: System::Windows::Forms::TextBox^ textBoxLbs;
 private: System::Windows::Forms::Label^ labelWeight;
 private: System::Windows::Forms::Label^ labelInches;
 private: System::Windows::Forms::Label^ labelFeet;
 private: System::Windows::Forms::TextBox^ textBoxInches;
 private: System::Windows::Forms::TextBox^ textBoxFeet;
 private: System::Windows::Forms::TextBox^ textBoxAge;
 private: System::Windows::Forms::Label^ labelAge;
 private: System::Windows::Forms::Button^ buttonUICancel;
 private: System::Windows::Forms::Button^ buttonUIOK;
 private: System::Windows::Forms::GroupBox^ groupBoxGender;
 private: System::Windows::Forms::RadioButton^ radioButtonFemale;
 private: System::Windows::Forms::RadioButton^ radioButtonMale;

 private:
 /// <summary>
 /// Required designer variable.
 /// </summary>
 System::ComponentModel::Container ^components;

#pragma region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 void InitializeComponent(void)
 {
 this->panelUserInput = (gcnew System::Windows::Forms::Panel());
 this->groupBoxGender = (gcnew System::Windows::Forms::GroupBox());
 this->radioButtonFemale = (gcnew
System::Windows::Forms::RadioButton());
 this->radioButtonMale = (gcnew
System::Windows::Forms::RadioButton());
 this->textBoxAge = (gcnew System::Windows::Forms::TextBox());
 this->labelAge = (gcnew System::Windows::Forms::Label());
 this->buttonUICancel = (gcnew System::Windows::Forms::Button());
 this->buttonUIOK = (gcnew System::Windows::Forms::Button());
 this->labelLbs = (gcnew System::Windows::Forms::Label());
 this->textBoxLbs = (gcnew System::Windows::Forms::TextBox());
 this->labelWeight = (gcnew System::Windows::Forms::Label());
 this->labelInches = (gcnew System::Windows::Forms::Label());
 this->labelFeet = (gcnew System::Windows::Forms::Label());
 this->textBoxInches = (gcnew System::Windows::Forms::TextBox());
 this->textBoxFeet = (gcnew System::Windows::Forms::TextBox());
 this->labelHeight = (gcnew System::Windows::Forms::Label());
 this->panelUserInput->SuspendLayout();
 this->groupBoxGender->SuspendLayout();
 this->SuspendLayout();
 //
 // panelUserInput
 //
 this->panelUserInput->Controls->Add(this->groupBoxGender);

92

 this->panelUserInput->Controls->Add(this->textBoxAge);
 this->panelUserInput->Controls->Add(this->labelAge);
 this->panelUserInput->Controls->Add(this->buttonUICancel);
 this->panelUserInput->Controls->Add(this->buttonUIOK);
 this->panelUserInput->Controls->Add(this->labelLbs);
 this->panelUserInput->Controls->Add(this->textBoxLbs);
 this->panelUserInput->Controls->Add(this->labelWeight);
 this->panelUserInput->Controls->Add(this->labelInches);
 this->panelUserInput->Controls->Add(this->labelFeet);
 this->panelUserInput->Controls->Add(this->textBoxInches);
 this->panelUserInput->Controls->Add(this->textBoxFeet);
 this->panelUserInput->Controls->Add(this->labelHeight);
 this->panelUserInput->Location = System::Drawing::Point(6, 10);
 this->panelUserInput->Name = L"panelUserInput";
 this->panelUserInput->Size = System::Drawing::Size(270, 251);
 this->panelUserInput->TabIndex = 0;
 //
 // groupBoxGender
 //
 this->groupBoxGender->Controls->Add(this->radioButtonFemale);
 this->groupBoxGender->Controls->Add(this->radioButtonMale);
 this->groupBoxGender->Location = System::Drawing::Point(10, 149);
 this->groupBoxGender->Name = L"groupBoxGender";
 this->groupBoxGender->Size = System::Drawing::Size(230, 39);
 this->groupBoxGender->TabIndex = 12;
 this->groupBoxGender->TabStop = false;
 this->groupBoxGender->Text = L"Select Gender";
 //
 // radioButtonFemale
 //
 this->radioButtonFemale->AutoSize = true;
 this->radioButtonFemale->Location = System::Drawing::Point(129, 16);
 this->radioButtonFemale->Name = L"radioButtonFemale";
 this->radioButtonFemale->Size = System::Drawing::Size(59, 17);
 this->radioButtonFemale->TabIndex = 1;
 this->radioButtonFemale->TabStop = true;
 this->radioButtonFemale->Text = L"Female";
 this->radioButtonFemale->UseVisualStyleBackColor = true;
 this->radioButtonFemale->CheckedChanged += gcnew
System::EventHandler(this, &UserInput::radioButtonFemale_CheckedChanged);
 //
 // radioButtonMale
 //
 this->radioButtonMale->AutoSize = true;
 this->radioButtonMale->Location = System::Drawing::Point(9, 16);
 this->radioButtonMale->Name = L"radioButtonMale";
 this->radioButtonMale->Size = System::Drawing::Size(48, 17);
 this->radioButtonMale->TabIndex = 0;
 this->radioButtonMale->TabStop = true;
 this->radioButtonMale->Text = L"Male";
 this->radioButtonMale->UseVisualStyleBackColor = true;
 this->radioButtonMale->CheckedChanged += gcnew
System::EventHandler(this, &UserInput::radioButtonMale_CheckedChanged);
 //
 // textBoxAge
 //
 this->textBoxAge->Location = System::Drawing::Point(100, 112);
 this->textBoxAge->Name = L"textBoxAge";

93

 this->textBoxAge->Size = System::Drawing::Size(50, 20);
 this->textBoxAge->TabIndex = 11;
 //
 // labelAge
 //
 this->labelAge->AutoSize = true;
 this->labelAge->Location = System::Drawing::Point(10, 112);
 this->labelAge->Name = L"labelAge";
 this->labelAge->Size = System::Drawing::Size(79, 13);
 this->labelAge->TabIndex = 10;
 this->labelAge->Text = L"Enter your age:";
 //
 // buttonUICancel
 //
 this->buttonUICancel->Location = System::Drawing::Point(167, 208);
 this->buttonUICancel->Name = L"buttonUICancel";
 this->buttonUICancel->Size = System::Drawing::Size(59, 27);
 this->buttonUICancel->TabIndex = 9;
 this->buttonUICancel->Text = L"Cancel";
 this->buttonUICancel->UseVisualStyleBackColor = true;
 this->buttonUICancel->Click += gcnew System::EventHandler(this,
&UserInput::buttonUICancel_Click);
 //
 // buttonUIOK
 //
 this->buttonUIOK->Location = System::Drawing::Point(22, 209);
 this->buttonUIOK->Name = L"buttonUIOK";
 this->buttonUIOK->Size = System::Drawing::Size(63, 27);
 this->buttonUIOK->TabIndex = 8;
 this->buttonUIOK->Text = L"OK";
 this->buttonUIOK->UseVisualStyleBackColor = true;
 this->buttonUIOK->Click += gcnew System::EventHandler(this,
&UserInput::buttonUIOK_Click);
 //
 // labelLbs
 //
 this->labelLbs->AutoSize = true;
 this->labelLbs->Location = System::Drawing::Point(158, 64);
 this->labelLbs->Name = L"labelLbs";
 this->labelLbs->Size = System::Drawing::Size(24, 13);
 this->labelLbs->TabIndex = 7;
 this->labelLbs->Text = L"Lbs";
 //
 // textBoxLbs
 //
 this->textBoxLbs->Location = System::Drawing::Point(100, 63);
 this->textBoxLbs->Name = L"textBoxLbs";
 this->textBoxLbs->Size = System::Drawing::Size(50, 20);
 this->textBoxLbs->TabIndex = 6;
 //
 // labelWeight
 //
 this->labelWeight->AutoSize = true;
 this->labelWeight->Location = System::Drawing::Point(10, 63);
 this->labelWeight->Name = L"labelWeight";
 this->labelWeight->Size = System::Drawing::Size(92, 13);
 this->labelWeight->TabIndex = 5;
 this->labelWeight->Text = L"Enter your weight:";

94

 //
 // labelInches
 //
 this->labelInches->AutoSize = true;
 this->labelInches->Location = System::Drawing::Point(223, 13);
 this->labelInches->Name = L"labelInches";
 this->labelInches->Size = System::Drawing::Size(39, 13);
 this->labelInches->TabIndex = 4;
 this->labelInches->Text = L"Inches";
 //
 // labelFeet
 //
 this->labelFeet->AutoSize = true;
 this->labelFeet->Location = System::Drawing::Point(139, 13);
 this->labelFeet->Name = L"labelFeet";
 this->labelFeet->Size = System::Drawing::Size(28, 13);
 this->labelFeet->TabIndex = 3;
 this->labelFeet->Text = L"Feet";
 //
 // textBoxInches
 //
 this->textBoxInches->Location = System::Drawing::Point(173, 12);
 this->textBoxInches->Name = L"textBoxInches";
 this->textBoxInches->Size = System::Drawing::Size(44, 20);
 this->textBoxInches->TabIndex = 2;
 //
 // textBoxFeet
 //
 this->textBoxFeet->Location = System::Drawing::Point(100, 13);
 this->textBoxFeet->Name = L"textBoxFeet";
 this->textBoxFeet->Size = System::Drawing::Size(33, 20);
 this->textBoxFeet->TabIndex = 1;
 //
 // labelHeight
 //
 this->labelHeight->AutoSize = true;
 this->labelHeight->Location = System::Drawing::Point(10, 13);
 this->labelHeight->Name = L"labelHeight";
 this->labelHeight->Size = System::Drawing::Size(90, 13);
 this->labelHeight->TabIndex = 0;
 this->labelHeight->Text = L"Enter your height:";
 //
 // UserInput
 //
 this->AutoScaleDimensions = System::Drawing::SizeF(6, 13);
 this->AutoScaleMode = System::Windows::Forms::AutoScaleMode::Font;
 this->ClientSize = System::Drawing::Size(284, 264);
 this->Controls->Add(this->panelUserInput);
 this->Name = L"UserInput";
 this->Text = L"UserInput";
 this->Load += gcnew System::EventHandler(this,
&UserInput::UserInput_Load);
 this->panelUserInput->ResumeLayout(false);
 this->panelUserInput->PerformLayout();
 this->groupBoxGender->ResumeLayout(false);
 this->groupBoxGender->PerformLayout();
 this->ResumeLayout(false);

95

 }
#pragma endregion
 /**
 Function Name: buttonUIOK_Click
 Arguments: Object^, EventArgs^ e
 Return: none
 Description: Ensure that all data has been saved to the registry
 before returning to the main form
 **/
 private: System::Void buttonUIOK_Click(System::Object^ sender,
System::EventArgs^ e)
 {

 if (textBoxAge->Text != "" && textBoxFeet->Text != "" &&
textBoxInches->Text != ""
 && textBoxInches->Text != "")
 {
 height = getHeightCM(); //convert height in feet,
inches to cm
 weight = getWeightKG(); //convert height in lbs to
kg
 age = Convert::ToInt32(textBoxAge->Text);
 try
 {
 //write data to the registry
 softwareKey->SetValue("height", height);
 softwareKey->SetValue("weight", weight);
 softwareKey->SetValue("age", age);
 softwareKey->SetValue("gender", gender);
 }
 catch(Exception^ ex)
 {
 MessageBox::Show(ex->Message);
 }
 __finally
 {
 if (softwareKey) softwareKey->Close();
 if (currentUser) currentUser->Close();
 }
 this->Close();
 }
 else MessageBox::Show("Please fill in all fields before
continuing.", "Fall Alert");

 }
 /**
 Function Name: buttonUICancel_Click
 Arguments: Object^, EventArgs^ e
 Return: none
 Description: Clear data before closing and returning to main form
 **/
 private: System::Void buttonUICancel_Click(System::Object^ sender,
System::EventArgs^ e)
 {
 textBoxFeet->Text = "";
 textBoxInches->Text = "";
 textBoxLbs->Text = "";
 textBoxAge->Text = "";

96

 this->Close();
 }
 /**
 Function Name: getHeightCM
 Arguments: none
 Return: float
 Description: Convert height from text field into centimeters
 **/
 private: float getHeightCM()
 {
 double feet;
 double inches;

 feet = Convert::ToDouble(textBoxFeet->Text);
 inches = Convert::ToDouble(textBoxInches->Text);

 inches = (feet*12) + inches;
 return inches*2.54;
 }
 /**
 Function Name: setHeightFtIn
 Arguments: height in cm
 Return: none
 Description: Convert height to ft, inches to display in text fields
 **/
 private: void setHeightFtIn(double hgtCM)
 {
 int feet;
 int inches;

 inches = hgtCM/2.54;
 feet = inches/12;
 inches = inches - (feet*12);

 textBoxFeet->Text = Convert::ToString(feet);
 textBoxInches->Text = Convert::ToString(inches);
 }
 /**
 Function Name: setWeightLbs
 Arguments: weight in kg
 Return: none
 Description: Convert weight in kg to lbs to display in text field
 **/
 private: void setWeightLbs(double wgtKG)
 {
 textBoxLbs->Text =
Convert::ToString(int(Math::Round(wgtKG/0.454,1)));
 }
 /**
 Function Name: getWeightKG
 Arguments: none
 Return: float
 Description: Take weight in lbs from text field and convert to kg
 **/
 private: float getWeightKG()
 {
 return Convert::ToDouble(textBoxLbs->Text)*0.454;
 }

97

 /**
 Function Name: radioButtonMale_CheckedChanged
 Arguments: Object^, EventArgs^ e
 Return: none
 Description: set gender to male when radio button is selected
 **/

 private: System::Void radioButtonMale_CheckedChanged(System::Object^
sender, System::EventArgs^ e)
 {
 if(radioButtonMale->Checked)
 gender = 1;
 }
 /**
 Function Name: radioButtonFemale_CheckedChanged
 Arguments: Object^, EventArgs^ e
 Return: none
 Description: set gender to female when radio button is selected
 **/
 private: System::Void radioButtonFemale_CheckedChanged(System::Object^
sender, System::EventArgs^ e)
 {
 if(radioButtonFemale->Checked)
 gender = 0;
 }
 /**
 Function Name: UserInput_Load
 Arguments: Object^, EventArgs^ e
 Return: none
 Description: grab data from registry and display it in the form, unless it
 it is undefined
 **/
 private: System::Void UserInput_Load(System::Object^ sender,
System::EventArgs^ e)
 {
 currentUser = Registry::CurrentUser;
 softwareKey = currentUser->
 CreateSubKey("Software\\Fall Alert");
 if (softwareKey->GetValue("age") != nullptr && softwareKey-
>GetValue("height") != nullptr
 && softwareKey->GetValue("weight") != nullptr && softwareKey-
>GetValue("gender") != nullptr)
 {
 textBoxAge->Text = Convert::ToString(softwareKey-
>GetValue("age"));
 gender = Convert::ToBoolean(softwareKey->GetValue("gender"));
 if(gender) radioButtonMale->Checked = 1;
 else radioButtonFemale->Checked = 1;
 setHeightFtIn(Convert::ToDouble(softwareKey-
>GetValue("height")));
 setWeightLbs(Convert::ToDouble(softwareKey-
>GetValue("weight")));

 }
 }
};
}

