
Abstract - Delays on Internet paths, especially including wireless
links, can be highly variable. On the other hand, a current trend for
modern TCPs is to deploy a fine-grain retransmission timer with a
lower minimum timeout value than 1 s suggested by RFC2988. Spu-
rious TCP timeouts cause unnecessary retransmissions and conges-
tion control back-off. The Eifel algorithm detects spurious TCP
timeouts and recovers by restoring the connection state saved be-
fore the timeout. This paper presents an enhanced version of the
Eifel response to spurious timeouts and illustrates its performance
benefits on paths with a high delay-bandwidth product. The refine-
ments concern the following issues (1) an efficient operation in pres-
ence of packet losses (2) appropriate restoration of congestion
control, and (3) adapting the retransmit timer to avoid further spu-
rious timeouts. In our simulations the Eifel algorithm on paths with
a high delay-bandwidth product can increase throughput by up to
250% and at the same decrease the load on the network by 3%. The
proposed response also shows adequate performance on heavily
congested paths.

I. INTRODUCTION

Recent measurement studies [11] show that TCP [41] main-
tains its position as the dominant transport protocol in the Inter-
net. TCP is a stable, mature, and probably the most thoroughly
tested protocol of its kind. Nevertheless, there are some corner
cases where TCP could still be improved. The problem of spuri-
ous timeouts, i.e., timeouts that would not have occurred had the
sender waited “long enough”, is an example of the above men-
tioned corner cases. 

Internet measurements show highly variable delays on some
paths resulting for example from route flipping [2][3][9]. A
measurement study of dial-up connections reports occasional
delay jitter of several seconds due to link-layer error recovery by
a modem [32]. Especially on wireless links mechanisms provid-
ing error recovery, mobility, on-demand resource allocation and
priority scheduling can cause high delay variation [20]. For ex-
ample, we measured delay spikes of several seconds occurring
frequently in a wireless cellular network due to cell changes
[31][21]. An independent study reports abrupt changes in link
RTT resulting from on-demand allocation of a high-speed radio
channel [49]. 

Mobile users start utilizing heterogeneous overlay networks
for Internet access. Currently inter-network handovers are ex-
tremely challenging in terms of delay jitter and data loss, and it
seems unlikely that such disruptions can be completely avoided
in the near future [47].

A sudden delay increase can cause a spurious TCP timeout
which presents two problems [33]. First, outstanding segments
are retransmitted unnecessarily. Second, the congestion control
[26][1] is falsely triggered. The Eifel algorithm suggested in [33]
uses the TCP timestamp option [27] to reliably detect spurious
timeouts and eliminates these two problems. The algorithm can
be also used to detect spurious fast retransmits due to packet re-
ordering. However, in this paper we only address response to
spurious timeouts.

The importance of recovering from spurious timeouts is in-
creasing as modern TCPs, for instance Linux 2.4, start using a
finer-grain timer (10 ms) and a low minimum retransmit timeout
value (200 ms) [43]. The recent stable Linux kernel release 2.4
includes the Eifel algorithm. Eifel is advancing through the
standardization process in the IETF [35] [36]. Therefore, it is im-
portant to assure that the algorithm is efficient and safe for wide
deployment in the Internet. The goal of this paper is to refine the
response part of the algorithm and to demonstrate its utility in the
environment with a high delay-bandwidth product. We show
that Eifel can potentially have significant performance benefits
for TCP that justifies efforts and additional complexity in its de-
velopment in order to produce an efficient and robust solution to
the problem of spurious timeouts. All required modifications are
located at the TCP sender.

The rest of the paper is organized as follows. In Section II we
review the problem of spurious timeouts, the Eifel detection al-
gorithm and related work. In Section III we motivate and explain
modifications to the Eifel response algorithm. Section IV de-
scribes our modelling approach and evaluates the new response
for paths with a high bandwidth-delay product. Finally,
Section V presents conclusions and plans for the future work.

II. SPURIOUS TIMEOUTS IN TCP

In this section, we provide a description of how spurious time-
outs affect TCP’s protocol operation. We assume that the reader
is familiar with the basics of TCP [44]. 

A. Definition of a Spurious Timeout

A retransmission timer is a prediction of the upper limit of the
RTT. In common TCP implementations, an adaptive retransmis-
sion timer accounts for RTT variations [26]. A spurious timeout
occurs when the RTT suddenly increases, to the extent that it ex-
ceeds the retransmission timer that had been determined a priori.
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RTT can quickly return back to normal for example in case of a
handover-triggered delay spike. RTT stays high when available
bandwidth of the bottleneck link has suddenly decreased.

On a spurious timeout TCP assumes that all outstanding seg-
ments are lost and retransmits them unnecessarily as shown in
Figure 1 (a)1. It was shown that the go-back-N retransmission
behaviour triggered by spurious timeouts has a root: the retrans-
mission ambiguity [29], i.e., a TCP sender’s inability to distin-
guish an ACK for the original transmission of a segment from
the ACK for its retransmission. Shortly after the timeout ACKs
for the original transmissions return to the TCP sender. On re-
ceipt of the first ACK after the timeout, the sender must interpret
this ACK as acknowledging the retransmission, and must as-
sume that all other outstanding segments have also been lost.
Thus, the sender enters the slow start phase, and retransmits all
outstanding segments in this fashion. The go-back-N retransmis-
sion triggers the next problem: the receiver generates a
DUPACK for every segment received more than once. The re-
ceiver has to do that because it must assume that its original
ACKs had been lost. This may trigger a spurious fast retransmit
at the sender. 

Another major problem is distortion of congestion control. On
one hand, the congestion window and slow start threshold are re-
duced after a spurious timeout. The reduction is unnecessary as
no data loss has yet been detected that would indicate congestion
in the network. On the other hand, TCP makes an assumption
that all outstanding segments were lost and left the network. In
fact, they are likely still located in the bottleneck queue. There-
fore, go-back-N retransmissions performed in slow start lead to
aggressive sender behaviour. That is, while the original trans-
missions are draining from the queue, the retransmissions get
sent at twice the link rate (assuming the receiver generates an
ACK for each segment). This behaviour violates the ‘packet
conservation’ principle [26] and can cause real packet losses due
to congestion [33]. After a spurious timeout TCP should not

cause short-term congestion and should underutilize the link in
the long run.

Figure 1 (b) shows a spurious timeout resulting from a band-
width change. The available bandwidth of a bottleneck link is re-
duced from 300 kbps down to 10 kbps. Such rapid bandwidth
changes can occur due to on-demand allocation and release of a
high speed radio channel [30]. The link RTT is increased by sev-
eral times which causes a spurious TCP timeout. The sender’s
response is largely the same as in the case of a delay spike. 

B. The Eifel Detection Algorithm

Eliminating the retransmission ambiguity requires extra infor-
mation in ACKs that the sender can use to unambiguously dis-
tinguish an ACK for the original transmission of a segment from
that of a retransmission. The TCP timestamp option provides ex-
actly what we need. When using the timestamp option the TCP
sender writes the current value of a “timestamp clock” into the
header of each outgoing segment. The receiver then echos those
timestamps in the corresponding ACKs according to the rules
defined in [27]. Eliminating the retransmission ambiguity is then
implemented as follows. The sender always stores the timestamp
of the first retransmission triggered by an expiration of the re-
transmission timer. Then, when the first ACK that acknowledges
the retransmission arrives, the sender compares the timestamp of
that ACK with the stored value. If it is smaller than the stored
value, this indicates that the retransmission was spurious. 

A case when a timeout occurs due to lost ACKs has been a
subject of some discussion. When receiving a duplicate segment
below the cumulative ACK some TCPs update a cached times-
tamp [10], and some do not [27]. If a TCP sender receives the
timestamp from the original segment after a timeout, it deduces
that the timeout was spurious. Therefore, if the receiver echoes
the original timestamp in response to duplicate segments as the
current standard defines [27], then a timeout due to lost ACKs is
considered spurious. Restoring the congestion control state in
this situation is partly justified; there is no loss and therefore no
congestion in the forward path. Ideally, TCP should implement1. The trace is recorded in NS2 over a 30 kbps link.

Figure 1. Spurious retransmission timeouts in TCP (Reno-SACK using the timestamp option).

(a) Triggered by a delay spike. (b) Triggered by a bandwidth change.
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some mechanism to reduce the amount of generated ACKs to al-
leviate congestion in the reverse path [5].

Including the 12 bytes TCP timestamp option field in every
segment and ACK might seems heavy weight. The advantage of
using the timestamp option is that this scheme is already a pro-
posed standard and that it is widely deployed [3]. Existing TCP/
IP header compression schemes [12] [28] do not support com-
pression of TCP options, but there is ongoing work to enable it
[25]. Furthermore, there is some evidence that timestamps are
useful in general on bandwidth-limited paths [19]. 

C. Related Work

In [18] we evaluated performance of the original Eifel re-
sponse [33] for a mobile user in a General Packet Radio Service
(GPRS) wide-area cellular network [46]. We used simulation to
obtain a controllable environment and reference TCP implemen-
tations. We also confirmed the results with smaller scale tests in
a live GPRS network [20]. In the lossless scenario, the Eifel al-
gorithm improved the performance for all TCP flavours under
varying frequency of delay spikes. It reduced download times by
up to 12 percent, and increased goodput by up to 20 percent.
Even such moderate gains are valuable on a slow GPRS link. In
the GPRS case improvement comes from eliminating duplicate
data delivery. Unnecessary reduction of the congestion window
is not important because of a small bandwidth-delay product of
GPRS links. In this paper, we evaluate Eifel on high capacity
links where unnecessary reduction of the congestion window has
greater impact. Another result of [18] was that in a scenario with
congestion losses Eifel can suffer from genuine timeouts, but us-
ing advanced loss recovery algorithms such as Reno-SACK
[38][8] and Limited Transmit [4] improves the situation. 

A study of cdma-2000 reports a possibility of “bandwidth os-
cillation” with certain configuration options from the standard
IS-2000 Rel.A [30]. Due to switching of a high-speed radio
channel between several users link RTT increases above the es-
timate of the TCP retransmission timer triggering spurious TCP
timeouts. A further study reports that increasing the TCP win-

dow helps to decrease the number of spurious timeouts [49]. It is
achieved with larger network buffers and a larger TCP receiver
window.

Using the timestamp option is not the only possible way to de-
tect spurious timeouts. For instance, a following heuristic was
suggested in [2]. Whenever a TCP retransmits due to a timeout,
it measures T, the time from the retransmission until the next
ACK arrives. If T is less than the minimum RTT measured so
far, then arguably the ACK was already in transit when the re-
transmission occurred, and the timeout was spurious. If the ACK
only comes later than the minimum RTT, then likely the timeout
was genuine. The response algorithm described in this paper can
be applied also with other detection algorithms.

Waiting for the receiver to signal in DUPACKs that is has cor-
rectly received duplicate segments, as proposed in [15], would
be too late to prevent the unnecessary retransmissions during the
go-back-N behaviour. However, this information can be used for
restoring congestion control state afterwards and for adapting
the retransmit timer.

A “Forward RTO Recovery” (F-RTO) algorithm [42] for re-
covering from TCP timeouts is a TCP sender only algorithm that
does not require any TCP options to operate. After retransmit-
ting the first unacknowledged segment triggered by a timeout,
the F-RTO algorithm at a TCP sender monitors the incoming ac-
knowledgements to determine whether the timeout was spurious
and to decide whether to send new segments or retransmit unac-
knowledged segments. The algorithm starts by transmitting new
segments after a timeout and reverts to standard go-back-N be-
haviour only if a DUPACK is received. Otherwise, the timeout
is considered spurious and the sender continues transmitting new
data. F-RTO cannot properly classify timeout under packet re-
ordering [6] or when no new data is available for transmission.
In such cases it uses the standard TCP behaviour. 

The Eifel algorithm does not concern with spurious timeouts
that occur during loss recovery following a fast retransmit. In
[19][22] we discuss restarting the timer on DUPACKs and using
a method for recovering lost retransmissions as protection
against spurious timeouts during a DUPACK series. 

Figure 2. TCP sender response to a spurious timeout with the Eifel algorithm.

(a) Triggered by a delay spike. (b) Triggered by a bandwidth change.
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III. THE SENDER’S RESPONSE

When a timeout occurs, the Eifel algorithm at the sender
stores the current values of the slow start threshold and the con-
gestion window. Upon detecting a spurious timeout, the sender
can restore them and resume transmission with the next unsent
segment as shown in Figure 2. This section outlines enhance-
ments to this basic response algorithm proposed in [33].

A. Efficient Recovery from Packet Losses

The original Eifel proposal simply specified that the transmis-
sion after detecting a spurious timeout always resumes with the
next unsent segment [33]. This works fine when none of the de-
layed segments are lost. In reality, delay spikes are often coupled
with data losses, for instance during a handover [21]. In the ex-
treme case, all but the oldest outstanding segment are lost. Sim-
ply transmitting new data in this case leads to a second genuine
timeout. In such a case recovery using standard go-back-N re-
transmissions would be faster2. However, it is difficult to select
a transmit policy on a first ACK after a timeout since there is no
information available on the amount of lost data. Therefore, we
still believe in resuming transmission with the next unsent seg-
ment while relying on efficient loss recovery algorithms to cope
with data losses.

It is well recognized that TCP Reno usually experiences a
timeout when multiple segments are lost from the same window
[13]. Reno with Eifel is not an exception; when several of de-
layed packets are lost, the timeout is inevitable. In [18] we show
that allowing fast retransmits below the recovery point [14], us-
ing Limited Transmit [4] and Reno-SACK [38][8] largely solves
the problem of poor performance with packet losses. In this sec-
tion we suggest even more robust recovery methods. 

A single lost segment. We begin with this simple case illus-
trating the response when one of delayed segments is lost. Un-

derstanding of it is important also for more advanced recovery
schemes discussed in the rest of this section; these schemes still
need three DUPACKs to enter the loss recovery phase. 

Figure 3 (a) illustrates TCP Reno that blocks fast retransmit
until the recovery point3 is acknowledged. The TCP sender has
to wait for a second genuine timeout to recover this lost segment.
The RTO value is large as it is calculated from delayed segments
(and even may still be backed-off). The reason to block fast re-
transmits in conventional TCP is a possibility of a DUPACK se-
ries from unnecessarily retransmitted segments during go-back-
N [14]. However, the transmission is resumed by the Eifel algo-
rithm with the next unsent segment. There are no unnecessary re-
transmissions and thus a DUPACK series can only indicate a lost
segment. There is no reason to block fast retransmit in such a
case. As Figure 3 (b) shows, Reno successfully recovers from a
lost segment with fast retransmit when allowed to do so.

Loss of all but one segment. A worst-case spurious timeout
occurs when all outstanding segments are lost except for the old-
est segment that is delayed. It is an example of a case when
Reno-SACK often cannot recover without a genuine timeout.
Figure 4 (a) illustrates the case when segments 9 to 15 are delib-
erately dropped. In summary, Reno-SACK cannot often avoid
the genuine timeout when there are large ‘holes’ in the receiver
window or a few ACKs were lost. The Reno-SACK scheme is
conservative because it considers segments reported missing by
the receiver to be still outstanding in the network. The cost is that
the sender cannot retransmit segments as it is limited by the con-
gestion window. 

The Forward Acknowledgment algorithm [37], on the other
hand, assumes that missing packets left the network. This often
allows for a faster recovery than with Reno-SACK. In
Figure 4 (c) TCP with the FACK algorithm recovers efficiently
from packet losses. FACK is not standardized by IETF due to
concerns with operation in presence of packet re-ordering. Linux

2. It is also more aggressive and breaks the principle of packet con-
servation.

3. snd_max, the highest sequence number transmitted before the 
timeout

Figure 3. Response of TCP Reno with Eifel to a spurious timeout. A single delayed segment is lost.

(a) Fast retransmit is blocked [14]. (b) Fast retransmit is allowed.
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TCP uses FACK by default but disables it when packet reorder-
ing is detected [43]. 

A question is whether genuine timeouts for Reno-SACK
could be avoided with a simple modification retaining the prin-
ciples of conservative recovery. We found that a major part of
genuine timeouts of Reno-SACK is due to lack of retransmis-
sions on partial ACKs. NewReno [24] retransmits a packet on
every partial ACK and is widely used in the Internet [39]. We
combined the NewReno and SACK so that the sender always re-
transmits at least one segment on a partial ACK4. These retrans-
missions are accounted into the pipe estimate and therefore in
the long run NewReno-SACK should be fair to other TCP flows.
Although we believe it is a safe modification for general use, as
an extra precaution it is possible to enable it only after a spurious
timeout and disable it when the recovery point is acknowledged. 

In Figure 4 (b) NewReno-SACK recovers lost packets with-
out experiencing a genuine timeout. On a first partial ACK
which arrives at 11 s NewReno-SACK retransmits a segment.

Reno-SACK in Figure 4 (a) has to remain silent on this partial
ACK because the estimated number of segments in flight is larg-
er than the congestion window. As a result, the go-back-N recov-
ery has to be used at 18 s.

B. Restoring the Congestion Control State

In Section II.A we described problems with congestion con-
trol experienced by conventional TCP after a spurious timeout.
We explain how these problems can be resolved. 

The original paper [33] proposed the following options for re-
storing the congestion control state:

1. ssthresh=ssthresh_old, cwnd=cwnd_old
2. ssthresh=cwnd_old/2, cwnd=ssthresh
3. ssthresh=cwnd_old/2, cwnd=1

The first option, complete restoration, is to set the slow start
threshold and the congestion window to values stored before the
timeout. The second option, partial restoration, is to set the slow
start threshold to the half of the old congestion window (as done
normally by TCP). However, instead of leaving the congestion4. A TCP combining NewReno and SACK is also mentioned in [5]. 

Figure 4. Response of TCPs with Eifel to a spurious timeout. All delayed segment but one are lost.

(c) FACK.(b) NewReno-SACK.(a) Reno-SACK.
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(b) ssthresh=cwnd_old/2, cwnd=1.(a) ssthresh=cwnd_old/2, cwnd=ssthresh.

Figure 5. Different options of restoring the congestion control state. 

(c) ssthresh=cwnd_old, cwnd=ssthresh.
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window at one segment after the timeout, it is set to the new val-
ue of the slow start threshold. The third option is not to restore
the congestion control state, i.e. set the slow start threshold to the
half of the old congestion window and the congestion window to
one segment.

The first option was used only after a single spurious timeout.
The second option was used after two subsequent timeouts, and
the third option was used after three or more timeouts. So far we
have not found any practical evidence that the length of a delay
reflects the amount of change in network characteristics. There-
fore, we do not make our response algorithm depend on the
number of subsequent timeouts.

Figure 2 (a) shows using option 1 after a spurious timeout. A
question was raised whether restoring the congestion control
state after a spurious timeout can cause undesirable bursty TCP
behaviour. This is not the case5 because the Eifel algorithm
resumes transmission with the next unsent segment
(snd_nxt=snd_max) which also restores the estimate of the flight
size [1][48]. As TCP only transmits data when the congestion
window is greater than the flight size, no burst is produced when
both parameters are restored from the equilibrium state. Howev-
er, we emphasize that TCPs such as Linux 2.4 [43] which deter-
mine the flight size in a different way than BSD TCP must
explicitly restore it after a spurious timeout.

In practice, options 2 and 3 do not perform well. If the conges-
tion window is not restored fully, the sender cannot transmit on
original ACKs after a spurious timeout as shown in Figure 5 (a)
and (b) because the flight size estimate is larger than the conges-
tion window. Additionally, lack of restoring of the slow start
threshold can cause significant unnecessary underutilization of a
link if a spurious timeout occurs in an early phase of slow start.
Experiments in Section IV indicate that with options 2 and 3 the
TCP sender is prone to genuine timeouts which decreases
throughput. Furthermore, the load on the network is actually in-
creased due to a greater number of unnecessary retransmissions.
Given this fact and that full restoring of the congestion control
state does not cause bursts, applying the option 1 seems to be an
attractive choice.

We did not find much difference between the option 2 and 3
for links with a moderate delay-bandwidth product. With the op-
tion 2 the sender continues in congestion avoidance increment-
ing the congestion window only by a single segment per
window. With the option 3, the sender is in slow start and incre-
ments the congestion window by one segment per ACK. There-
fore, it reaches the same size as used by the option 2 quickly.

We suggest a forth option to restore the congestion control
state

4. ssthresh=cwnd_old, cwnd=ssthresh,
where the slow start threshold is set to the old value of the con-

gestion window, and the congestion window is fully restored.
This allows the sender to immediately resume transmission on
ACKs as shown in Figure 5 (c). However, the sender is forced to

continue in congestion avoidance which may lead to underutili-
zation on high-delay bandwidth paths. A variation of this ap-
proach would restore the slow start threshold but only when no
loss has yet been detected during the connection.

Different other options for restoring the congestion control
state are possible. For example, the slow start threshold could be
set to the old value of the congestion window. We have not
found any of such options to be particularly good and therefore
do not include them in this paper. 

So far we have discussed the situation when a spurious time-
out occurs during a slow start. The response when a spurious
timeout occurs in congestion avoidance is similar. 

C. Adapting the Retransmit Timer

With traditional TCP, a sender that uses a too aggressive re-
transmit timer has to pay the price (i.e. slow down) after a spuri-
ous timeout. Presumably this discourages developing too
aggressive retransmission timers and preserves the network
from duplicate retransmissions that do no useful work. There-
fore, some modification to the retransmit timer that makes it
more conservative after a spurious timeout is needed. This sec-
tion discusses various approaches to adapting the retransmit tim-
er after a spurious timeout. Note that in order to increase
conservativeness of the retransmit timer, the TCP sender must be
robust to packet losses. Otherwise, the sender will suffer exces-
sively from waiting for genuine timeouts. TCP FACK and Ne-
wReno-SACK suggested in Section III.A seem to be sufficiently
robust to packet losses.

Figure 6 shows RTO parameters of TCP Reno, Reno with
timestamps, and Reno with timestamps and with the Eifel algo-
rithm after a spurious timeout. In Figure 6 (a) the RTO parame-
ters of Reno without timestamps remain nearly at the same level
as before the timeout. In other words, TCP does not learn much
from a delay spike. This situation is explained by the Karn's al-
gorithm as collecting of RTT samples from retransmitted seg-
ments is denied due to the retransmission ambiguity problem
[29]. Therefore, during the go-back-N behaviour no RTT sam-
ples can be collected, but the RTO is kept backed off. A spurious
fast retransmit present in some TCPs after go-back-N can even
further delay obtaining a valid RTT sample. Once a new RTT
sample is collected, SRTT and RTTVAR are recalculated from
the new sample and the back off counter is reset. The RTO value
basically returns at the level before the delay spike. 

Figure 6 (b) shows behaviour of RTO parameters for Reno
with timestamps. It is less aggressive than RTO computed with-
out timestamps due to using the delayed segments for RTT sam-
pling. Immediately after a timeout when original ACKs are
arriving, the RTO becomes very high. Lack of updates in the
graph between 10-13 s is due to arriving DUPACKs which can-
not be used for RTT sampling [27]. The RTO stabilizes at the
new level approximately 10 s after the spurious timeout. This is
likely a too quick decrease to protect the sender from spurious
timeouts in the future. Making SRTT and RTTVAR weights

5. With exception of bursts due to ACK losses and compression 
which are intrinsic to TCP.
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adaptive to the frequency of RTT sampling as suggested in [34]
can solve this problem. 

Figure 6 (c) shows the RTO dynamics of Reno with Eifel. The
retransmit timer naturally uses timestamps since they are re-
quired for the Eifel detection algorithm. Already this fact makes
TCP with Eifel more conservative than widely used Reno with-
out timestamps. Furthermore, the idle period in RTO updates
due to DUPACKs such as in Figure 6 (b) is not present here. The
RTO with Eifel does not decrease as quickly after the timeout.
This is because Eifel restores the congestion control state and
gets more data outstanding in the network. Higher RTT in such
a case makes the timer less prone to spurious timeouts [30].

In summary, using a conservative RTO such as suggested in
[40]6 with timestamps provides a sufficient protection against
excessive spurious timeouts in many cases. 

Further adapting the timer may include the following options:
1. Re-seed the RTO after a spurious timeout
2. Reset the back-off counter only on a genuine timeout
3. Increase the minimum RTO

The first option is to use an RTT sample obtained with times-
tamps from delayed segments to re-initialize SRTT and RT-
TVAR variables and restart the timer. The second option is to
keep the back-off counter at the level set during a spurious time-
out and reset it only on a genuine timeout. The third option is to
perform additive increase of the minimum RTO value on each
spurious timeout and reset it to the default value on a genuine
timeout.

Further possible option could be to increase the minimum
RTO value based on a length of a delay or its experientially
smoothed average. We have not evaluated such options; a study
on adapting of the DUPACK threshold shows that they do not
work particularly well [7]. It is also possible to exploit different
options for reducing the minimum RTO value, such as halve it
on every genuine timeout instead of simply resetting it to the de-
fault value.

IV. PERFORMANCE EVALUATION

A. Methodology

We choose simulation to have a reproducible and controllable
environment with reference TCP implementations. A simple
‘dumb bell’ topology has a bottleneck link with 2 Mbps and with
high latency of 150 ms. Such characteristics are typical for sat-
ellite links and the third generation wireless wide area networks
[46]. In all measurements the TCP timestamp option [27] was
enabled and the MSS was 1000 bytes. The receiver advertised a
window of 150000 bytes and the bottleneck queue was Drop-
Tail with the maximum queue length of 75 packets. We used
one-way models of Reno-SACK, NewReno-SACK, and FACK
TCP with delayed acknowledgments. Our modified Eifel re-
sponse algorithm is implemented for NS2.1b9a and is publicly
available [23]. 

We also implemented a tool to trigger delay spikes over a sim-
ulated link. It suspends transmission in both directions simulate-
nously. The length of delay spikes is uniformly distributed
between 3 and 15 s; they occur at the interval of 20-40 s. Shorter
delay spikes would suffice to trigger spurious timeouts in our
tests, but we decided to use the typical values experienced by a
cellular network user driving in an urban area [21]. In all tests a
conservative timer [40] is applied. 

Tests summarized in Table 1 use a single TCP connection
transferring 5 MB of data. In Table 2, Table 3, and Table 4 a
competing constant bit rate flow is added running at 1 Mbps. It

6. This timer is restarted on ACKs and uses the minimum RTO value 
of 1 s.

Figure 6. RTO dynamics after a spurious timeout.

(c) Reno with timestamps and Eifel.(b) Reno with timestamps.(a) Reno.
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Figure 7. Measurement setup in NS2.
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congests the link especially during delay spikes. Adaptation of
the retransmit timer is only performed in Table 4. In Table 1,
Table 2 and Table 4 the congestion control state is completely
restored (option 1). All values are averaged over 100 repetitions.

B. Results

For mobile users and operators the battery power consump-
tion and radio resource preservation are often as important as the
throughput across the wireless link. We therefore used the down-
load time and the total number of transmitted segments as equal-
ly important performance metrics. We also give the average
number of spurious and genuine timeouts for each connection to
indicate how susceptible a TCP modification is to timeouts.

In the first test, we use Reno-SACK over a link without other
traffic. Table 1 shows results with and without Eifel. Applying
the Eifel algorithm gives 254% increase in throughput and at the
same time requires 3% less segments to complete the connec-
tion. Most of the improvement in throughput comes in this case
from restoring of the congestion control state after spurious
timeouts. Figure 8 (a) shows that Reno-SACK reduces the con-
gestion window and performs go-back-N retransmissions on
every spurious timeout. Enabling the Eifel algorithm in
Figure 8 (b) allows the connection to increase the congestion
window until a segment loss is detected at 20 s. The number of
spurious timeouts is decreased due to shorter connection life-
time.

Table 2 shows results for Reno-SACK over a congested link
with the same delay jitter model. It is a challenging scenario for
Eifel, as often many segments are lost during a delay spike.
Reno-SACK with Eifel has 73% longer download time in this
case due to a large number of genuine timeouts. Timeouts typi-

cally occur when the TCP sender enters the fast recovery phase
but cannot retransmit lost segments due to large ‘holes’ in the re-
ceiver window. Figure 9 (a) shows three such timeouts at 100 s,
200 s, and 250 s. NewReno-SACK corrects this problem by re-
covering at least one segment per RTT and allows Eifel to
achieve higher throughput and goodput. In Figure 9 (b) no gen-
uine timeouts are present. FACK with Eifel achieves 43% reduc-
tion in download time over Reno-SACK even in such harsh
conditions. Figure 9 (c) shows that FACK avoids genuine time-
outs and recovers from packet losses faster than NewReno-
SACK  

Table 3 shows performance of FACK with Eifel with different
options (described in Section III.B) of restoring the congestion
control state. Options 2 and 3 perform poorly in terms of
throughput and goodput. Not only the download time is several
times higher than for the option 1, but also more unnecessary re-
transmissions are sent wasting the network capacity. The
option 4 achieves close to the same throughput as the option 1.
Thus, the option 4 can be used by a careful sender which does
not want the more aggressive option 1.  

TABLE 1. EFFECT OF EIFEL ON RENO-SACK ON A UNCONGESTED LINK. 

TCP Eifel Time, s Segments
sent

Spurious 
RTOs

Genuine
RTOs

Reno-SACK Off 138 5234 4.68 0.00
Reno-SACK On 39 5088 1.37 0.03

TABLE 2. EFFECT OF EIFEL ON TCPS OVER A CONGESTED LINK.

TCP Eifel Time, s Segments 
sent

Spurious 
RTOs

Genuine
RTOs

Reno-SACK Off 191 5251 5.79 0.68
On 331 5237 6.02 4.98

NR-SACK Off 191 5251 5.78 0.69
On 146 5192 4.35 0.57

FACK Off 191 5251 5.74 0.70
On 108 5225 3.24 0.38

TABLE 3. FACK WITH EIFEL ON A CONGESTED PATH WITH VARYING 
RESTORATION OF THE CONGESTION CONTROL STATE.

CC
restore Time, s Segments 

sent
Spurious 

RTOs
Genuine

RTOs
option 1 108 5225 3.24 0.38
option 2 540 5325 8.48 8.43
option 3 912 5558 11.19 14.68
option 4 109 5226 3.26 0.38

Figure 8. Effect of Eifel on Reno-SACK on a uncongested link. 

(b) Reno-SACK with Eifel.(a) Reno-SACK.
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Table 4 shows results of experiments with adapting the re-
transmission timer. Re-seeding the timer with a new sample af-
ter a spurious timeout does not have any effect in this scenario.
The RTO is already high after a timeout but re-reseeding it does
not help to prevent its fast descent. Using the back-off approach
reduces the number of spurious timeouts by 40% with only a
small decrease in throughput. This might be an attractive option
to use. Increasing the minimum RTO is slightly less effective in
this scenario than using the back-off counter.

The effect of proposed RTO adaptation methods could be dif-
ferent for other delay scenarios. For example, when the link
bandwidth oscillates the delay jitter typically only slightly ex-
ceeds the RTO. In the scenario we have studied, RTO is exceed-
ed significantly. Finally, adaptation techniques could be more
effective if learnt characteristics of the path would be shared be-
tween TCP connections to the same destination [45].

C. Discussion

We believe that TCP with the Eifel algorithm is friendly to
other TCPs as the basic congestion control mechanisms trig-
gered on a packet loss are not modified. Even if the congestion
window and the slow start threshold are fully restored after a
spurious timeout, they are reduced again after detecting a packet
loss. TCP with the Eifel algorithm gains the capacity underuti-
lized by other TCPs. 

The experiments were also executed with setting Adaptive
RED [17] with automatic configuration of parameters as the bot-
tleneck queue instead of Drop-Tail. The conclusions made based
on the Drop-Tail measurements still hold and Eifel showed equal
or better performance. However, in general TCP throughput was
from slightly to many times lower than in case of a Drop-Tail
queue. We interpret this as an artifact of our test setup with a low
degree of statistical multiplexing and presence of a competing
constant bit rate flow unresponsive to congestion. 

We made typical modelling assumptions that TCP connec-
tions are long-lived and there is no congestion in the opposite di-
rection. Determining the extend to which these assumptions hold
in the Internet is a hard problem [16]. Wide-scale Internet meas-
urements of TCP with the Eifel algorithm would be useful, but
they are difficult to obtain, share and reproduce.

Formally assessing performance gains of applying the Eifel
algorithm is difficult as the result depends on many factors [33].
It could be from nothing to several hundred percent depending
on the frequency of delay spikes, path characteristics, the re-
transmission timer and type of workload. The best case for Eifel
occurs when one of the segments in the initial window experi-
ences a spurious timeout on a high-delay bandwidth path. In
such a case, the TCP connection stays in congestion avoidance
and is likely to use only a small fraction of the available band-
width. A TCP connection with the Eifel algorithm will continue
the slow start until a segment loss indicating a real need to slow
down.

The Eifel algorithm is robust to packet losses caused by data
corruption, but does not perform more aggressively than tradi-
tional TCP as it still relies on a segment loss as an indication of
congestion.

V. CONCLUSION AND FUTURE WORK

This paper shows that in a broadband environment applying
the Eifel algorithm can give up to 250% increase in throughput
and at the same time decrease the load on the network by 3%. In

TABLE 4. FACK WITH EIFEL ON A CONGESTED PATH WITH DIFFERENT RTO 
ADAPTATION TECHNIQUES.

RTO
adapt.

CC
restore Time, s Segments 

sent
Spurious 

RTOs
Genuine

RTOs
std option 1 109 5225 3.24 0.38

reseed 109 5225 3.24 0.38
back-off 113 5166 1.92 0.40
min++a

a. the minimum RTO value is incremented by 1 s after each spu-
rious timeout and reset to 1 s on a genuine timeout.

114 5168 2.41 0.43

Figure 9. Effect of Eifel on TCPs over a congested link.

(c) FACK with Eifel.(b) NewReno-SACK with Eifel.(a) Reno-SACK with Eifel.
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a scenario with heavy congestion, TCP with Eifel suffers from
genuine timeouts even with Reno-SACK and Limited Transmit. 

The original response [33] could be further improved as fol-
lows. Eifel performs well in combination with FACK, but it may
not be always used due to concerns in presence of packet reor-
dering. Therefore, we suggested combining the NewReno and
SACK algorithms in a single TCP. NewReno-SACK avoids re-
transmission timeouts present for Reno-SACK due to large
‘holes’ in the receiver window. Eifel with NewReno-SACK
works well even under heavy packet losses and is presumably
safe to use in the Internet.

We showed that full restoration of the congestion control state
does not cause bursty behaviour. Furthermore, partial or lack of
restoring of the congestion window reduces the throughput and
loads the network with a greater number of unnecessary retrans-
missions. This is because if only the flight size is restored the
sender cannot transmit segments on arriving ACKs. It makes the
sender prone to genuine timeouts. We suggested a new option
for partially restoring of the congestion control state which
seems to perform as well as full restoration but is more conserv-
ative. 

We studied a number of techniques for adapting the RTO to
avoid further spurious timeouts. TCP with the Eifel algorithm
uses samples from delayed segments to update RTO. This alone
provides a more conservative timer than TCP Reno without
timestamps. However, additional methods for learning from a
spurious timeout may be desirable. Re-seeding the timer with a
new sample is ineffective in the scenario we used. Increasing the
exponential back-off counter decreases the number of spurious
timeouts by 40% with only a small decrease in throughput. In-
creasing the minimum RTO works slightly worse than the back-
off method. Therefore, it is reasonable to implement one of the
latter techniques with the Eifel algorithm. However, either
FACK or NewReno-SACK are required at the same time to
avoid low throughput due to a large number of genuine timeouts.

In future work we plan to evaluate behaviour of other retrans-
mit timers, such as the Eifel timer [34] in presence of highly var-
iable delays. 
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