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We consider how two networked large-scale service systems that normally operate separately, such as call

centers, can help each other when one encounters an unexpected overload and is unable to immediately

increase its own staffing. Our proposed control activates serving some customers from the other system when

a ratio of the two queue lengths (numbers of waiting customers) exceeds a threshold. Two thresholds, one

for each direction of sharing, automatically detect the overload condition and prevent undesired sharing

under normal loads. After a threshold has been exceeded, the control aims to keep the ratio of the two queue

lengths at a specified value. To gain insight, we introduce an idealized stochastic model with two customer

classes and two associated service pools containing large numbers of agents. To set the important queue-ratio

parameters, we consider an approximating deterministic fluid model. We determine queue-ratio parameters

that minimize convex costs for this fluid model. We perform simulation experiments to show that the control

is effective for the original stochastic model. Indeed, the simulations show that the proposed queue-ratio

control with thresholds outperforms the optimal fixed partition of the servers given known fixed arrival rates

during the overload, even though the proposed control does not use information about the arrival rates.

Key words : service systems; call centers; overload controls; queue-ratio routing, many-server queues;

deterministic fluid models
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1. Introduction

In a large-scale service system, such as a call center, under normal circumstances the arrival rates

vary by time of day in a predictable way, and the staffing responds to that anticipated pattern,

typically with fixed staffing levels over specified time intervals; see Aksin et al. (2007) and Gans et al.

(2003) for background. However, occasionally, for various reasons, there may be unforeseen surges

in demand, going significantly beyond the usual fluctuations, and lasting for a significant period

of time. A demand surge might occur because of a catastrophic event in emergency response, a
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system failure experienced by an alternative service provider, or an unanticipated intense television

advertising campaign in retail. Such unexpected demand surges typically cause congestion that

cannot be eliminated entirely. Since the demand surge is sudden and unexpected, it may not be

possible to immediately change the staffing level.

Fortunately, there may be an opportunity to alleviate the congestion caused by the overload by

getting help from another service system, which ordinarily operates independently. For example,

with the reduction of telecommunication costs, it is more and more common to have networked

call centers, often geographically dispersed, even on different continents. Such sharing is typically

possible among different hospitals in a metropolitan area. It is often desirable to operate these

service systems separately, but their connection provides opportunities, in particular, to provide

assistance under overloads. In this paper we consider how that might be done and how to assess

the costs and benefits.

An important consideration is that we typically do not want sharing under normal loads. One

reason is that it is easier to manage the different facilities separately, e.g., by maintaining clear

accountability. Another reason is that the agents in each service facility may be less effective and/or

less efficient serving the customers from the other system, because each requires specialized skills

not required for the other. We want to consider the case in which serving the other class is possible,

but that there are penalties for doing so. We will assume that the service rates are slower for

non-designated agents.

The proposed overload control applies directly to separate service systems run by a single organi-

zation, but could also be adopted by two different organizations by mutual agreement. our analysis

provides useful information about the likely consequences of any agreement, which should facilitate

making the agreement. Current practice for call centers (that we are aware of) is limited to sharing

within a single organization, and then only manually or on a regular basis under normal loading.

Load-balancing schemes used in practice are described in §5.3 of Gans et al. (2003).

Thus, our goal is to develop a control to automatically detect when an overload has occurred (in

either system, or in both) and, then, before the staffing levels can be changed, reduce the resulting
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congestion by activating appropriate sharing from agents in the other system. We also want to

prevent undesired sharing under normal loads. By focusing on this overload problem, we aim to

contribute new insight into the longstanding question about the costs and benefits of resource

pooling; see §4.2 of Aksin et al. (2007) and references cited therein. Here we focus on a situation

where we want to turn on and off the pooling.

Organization of the paper. We start in §2 with a literature review. Next in §3 we introduce

our proposed modelling approach. As an idealized model of two large-scale service systems, which

ordinarily operate separately, but have the capability of serving customers from the other system,

we consider the Markovian X call-center model having two homogeneous customer classes and

two homogeneous agent pools, where all the agents are cross-trained but serve the other class

inefficiently. For clarity, we provide a concrete example. We then introduce a cost framework in

order to evaluate alternative controls. We indicate how we specify an overload incident and how

we evaluate the performance consequence.

In §4 we introduce the proposed control, which is a variant of the queue-ratio controls introduced

by Gurvich and Whitt (2007a,b). After reviewing that control (without thresholds), we show that

it can perform very poorly for this unintended application, because it can induce inefficient sharing

simultaneously in both directions. We then introduce our proposed alternative, which includes two

thresholds, one for each direction of sharing.

In §5 we introduce a deterministic fluid model to approximate the overloaded system after the

overload incident has occurred. We then introduce a convex cost structure and show how to select

queue-ratio functions to minimize the long-run average cost in the overload incident for the fluid

model. We then develop a numerical algorithm to compute the optimal queue-ratio functions for

arbitrary convex cost functions. We exhibit explicit formulas for the optimal queue-ratio functions

for special structured separable cost functions in §EC.4 in the e-companion.

In §6 we discuss how to set the threshold parameters.In §7 we conduct simulation experiments

to show that the optimal control for the fluid model is effective for the stochastic X model. Finally,

we state our conclusions in §8. Supporting material appears in the e-companion.
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2. Literature Review

In this paper we contribute to the literature on overload (or congestion) control in queueing systems.

There is a substantial literature studying controls that route (or assign) customers (or jobs) to

servers, possibly exploiting thresholds, but many of these papers, like Bell and Williams (2005) and

references therein, focus on single-server systems without customer abandonment, whereas we focus

on many-server systems with customer abandonment; we only discuss the many-server literature.

(The distinction is between routing to one of several servers, as opposed to routing to one of several

pools of servers.) It is now understood that the presence of many servers changes the problem; e.g.,

see Gurvich and Whitt (2007b). One feature of many-server systems with customer abandonment

we will exploit is the rate at which the transient distribution approaches its steady-state limit: It

tends to be much faster for many-server queues. In particular, the systems we consider tend to

reach steady-state in a few mean service times; we elaborate in §EC.1. Hence, in our analysis of

performance during an overload incident, we approximate using the new steady state, determined

by the new arrival rates (assumed constant). Customer abandonments ensure that the system

remains stable.

Our paper can also be viewed as a contribution to the call-routing problem for multi-class

and multi-site call centers with skill-based routing; see §5 of Gans et al. (2003) and §§2.3.3, 4.1,

4.2 of Aksin et al. (2007). Others have proposed responding to stochastic fluctuations and unex-

pected overloads by modulating demand in different ways: (i) admission control, (ii) making delay

announcements that may induce customers to leave, use a different service channel (e.g., email

instead of voice), or call back later, and (iii) acting to reduce service times, e.g., by curtailing

cross-selling activities; see §3 of Aksin et al. (2007) and Armony and Gurvich (2006).

In contrast, our paper relates to the larger literature exploiting server flexibility (supply-side

management). One approach is to have extra temporary servers available on short notice; see

Bhandari et al. (2008) and references therein. Instead, we propose using servers that are already

working; i.e., we propose a form of resource pooling, which exploits cross training; see §4.2 of Aksin

et al. (2007) and §5.1 of Gans et al. (2003). As should be anticipated, though, our control tends
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to be more effective in alleviating congestion (rather than just balancing the service degradation)

when the less-loaded system actually has some slack. Our work draws on the queue-ratio control

proposed in Gurvich and Whitt (2007a,b), which applies to very general network topologies. Here

we consider the relatively difficult X model, allowing sharing in both directions (see Figure 1

below), but our approach makes the model behave more like the N model; see Tezcan and Dai

(2006).

However, we make significant departures from the previous literature. First, we want resource

sharing only in the presence of the unanticipated overload, and only in the proper direction, which

depends on the nature of the overload. Hence, we turn on and off the sharing. Second, we regard

the overload as a rare exceptional unanticipated event, rather than a stochastic fluctuation in

demand. Thus, we think that it is inappropriate to perform a long-run steady-state analysis of

system performance with alternating normal and overload periods (although that could be done).

Instead, we focus on a single overload in isolation.

Since the system tends to be overloaded, even after sharing has been activated, system perfor-

mance tends to be well approximated by deterministic fluid approximations, as in Whitt (2004).

From a heavy-traffic perspective, the system operates in the so-called efficiency driven (ED) many-

server heavy-traffic regime, instead of the quality-and-efficiency-driven (QED) regime; see Garnett

et al. (2002), Gurvich and Whitt (2007a,b). Our paper also relates to the literature on arrival-rate

uncertainty; see §4.4 of Gans et al. (2003) and §2.4 of Aksin et al. (2007). Arrival-rate uncertainty

also tends to make deterministic fluid approximations remarkably accurate; e.g., see Whitt (2006),

Bassamboo and Zeevi (2009) and their previous papers with Harrison.

In closing, we mention the large literature on detection outside queueing, such as control charts

in statistical quality control, sequential analysis and change point problems, but we make no direct

contact with it. However, detecting the new arrival rate is not the only issue: In simulations, our

proposed control outperforms the optimal fixed partition of the servers given known arrival rates

during the overload, even though our proposed control does not use direct information about the

arrival rates; see §7.2.
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3. The Modelling Approach

The X model. As an idealized model of two separate service systems with the capability of sharing,

we consider the X model, depicted in Figure 1. The X model has two homogeneous customer

classes and two homogeneous agent pools. We assume that each customer class has a service pool

primarily dedicated to it, but all agents are cross-trained, so that they can handle calls from the

other class, even though they may do so inefficiently or ineffectively. Under normal loading (at

or near forecasted arrival rates), we want each class to be served only by its designated agents,

without any help from cross-trained agents in the other service pool. We assume that staffing has

been performed in standard ways, so that the number of agents in each pool is adequate to meet

performance targets at forecasted arrival rates. However, we also want to automatically activate

The X Call-Center Model
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Figure 1 The X model

sharing when there are unexpected unbalanced overloads, either when only one class is overloaded

or when both classes are overloaded but one is much more overloaded than the other.

More specifically, in this paper, we consider a fully Markovian model. Customers from the two

classes arrive according to independent Poisson processes with arrival rates λ1 and λ2. There is a

queue for each customer class, with customers from each class entering service in order of arrival.



Perry and Whitt: Responding to Unexpected Overloads
Article submitted to Management Science; manuscript no. MS-00721-2008.R1 7

We assume that waiting customers have limited patience. A class-i customer will abandon if he

does not start service before a random time that is exponentially distributed with mean 1/θi. There

are two service pools, with pool j having mj homogeneous servers working in parallel. The service

times are mutually independent exponential random variables, but the mean may depend on both

the customer class and the service pool. The mean service time for a class-i customer served by a

type-j agent is 1/µi,j. Let the service times, abandonment times and arrival processes be mutually

independent. Let Qi(t) be the number of class-i customers in queue and let Zi,j(t) be the number of

type-j agents busy serving class-i customers, at time t. With the assumptions above, the stochastic

process (Qi(t),Zi,j(t); i = 1,2; j = 1,2) becomes a six-dimensional continuous-time Markov chain,

given any routing policy that depends on this six-dimensional state.

In this context, under normal loading we want each class served only by agents from its own

designated service pool; i.e., we want Z1,2(t)≈Z2,1(t)≈ 0 for all t. One possible reason is that the

value of service by agents from the other pool might be less, perhaps because they lack specialized

skills. Another possible reason is that service by the cross-trained agents is less efficient; we might

have the strong inefficient-sharing condition

µ1,1 > µ1,2 and µ2,2 > µ2,1. (1)

We examine the inefficient-sharing case. Throughout this paper, we assume the basic inefficient-

sharing condition

µ1,1µ2,2 ≥ µ1,2µ2,1. (2)

Clearly, condition (1) implies condition (2). These conditions play a role in §5.2.

In this X-model setting with inefficient sharing, we suppose that an unexpected overload occurs

at some unanticipated time that changes the arrival rates. We assume that we are unable to

immediately change the staffing levels in response to that unexpected overload. However, we do

have the option of allowing some of the cross-trained agents from the less-loaded service pool

serve customers from the more overloaded customer class. In addition, we do not know the new



Perry and Whitt: Responding to Unexpected Overloads
8 Article submitted to Management Science; manuscript no. MS-00721-2008.R1

arrival rates when the overload occurs. Thus we need to develop a control that depends on the

system history; in some way we must discover that the arrival rates have indeed changed. That

is challenging, because stochastic fluctuations under normal loading may make us think that the

arrival rates have changed when in fact they have not. We illustrate with the following example.

Example 1. To illustrate, consider a symmetric model with forecasted arrival rates λ1 = λ2 =

90 per unit of time, where the mean service time for customers served by designated agents is

µ−1
1,1 = µ−1

2,2 = 1.0, while the mean service time for customers served by agents from the other pool

is µ−1
1,2 = µ−1

2,1 = 1.25. We measure time in units of mean service times by designated agents, which

for discussion we take to be 5 minutes. Notice that condition (1) holds here: For all agents, the

mean time required to serve the other class is 25% greater than the mean time required to serve

an agent’s own class. Let customers abandon at rate θ1 = θ2 = 0.4.

Because serving the other class is less efficient, with these parameters it makes sense to operate

the system as two separate systems. Following standard staffing methods for a single-class single-

pool M/M/m + M model, we may assign m1 = m2 = 100 agents to the two service pools. That

makes the traffic intensities ρ1 ≡ λ1/m1µ1,1 = ρ2 = 0.90, which we regard as normal loading. With

this staffing, standard algorithms show that steady-state performance is quite good: 82% of the

arrivals enter service immediately upon arrival without joining the queue, only 0.5% of the arrivals

abandon, the average size of each queue is 1.1, and the expected conditional waiting time, given

that the customer is served, is only 0.012 (about 3.6 seconds with a mean service time of 5 minutes).

Now suppose that, at some unanticipated time, the arrival rate for class 1 jumps to λ1 = 130,

while the arrival rate for class 2 remains at λ2 = 90. If class 1 receives no help from pool 2, then class

1 experiences severe congestion. Assuming that the system reaches steady state after this shift in

arrival rate (which does not take very long, approximately a few mean service times, as confirmed

by simulations - see §EC.1), almost all class-1 customers must wait before starting service, 23%

of the class-1 customers abandon, the average size of the class-1 queue becomes 75, the expected

conditional waiting time given that a class-1 customer is served is 0.65 (3.25 minutes).
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If, as system managers, we were able to recognize that the class-1 arrival rate had shifted to

130, then we might elect to reassign some of the class-2 agents. For example, we might let 25 of

the pool-2 agents be devoted to serving class 1. That increases the total service rate responding to

the class-1 arrival rate of 130 from 100 to 100+(1/1.25)25 = 120, while leaving a total service rate

of 100− 25 = 75 to respond to the class-2 arrival rate of 90. Since sharing is inefficient, we must

sacrifice 25 units of service rate for class 2 in order to gain 20 units of service rate for class 1.

Assuming that the two classes can be modelled as M/M/m+M queues (which is only approxi-

mately correct for class 1 because its servers have become heterogenous), we can analyze the per-

formance, e.g., by Whitt (2005). The pair of abandonment probabilities for the two classes changes

from (0.23,0.005) to (0.08,0.17); the pair of mean queue lengths for the two classes changes from

(75,1.1) to (26,38); and the pair of conditional expected waiting times given that the customer is

served changes from (0.65,0.012) to (0.205,0.450) (1.03 minutes and 2.25 minutes, respectively). In

this paper we develop a control that responds in a similar way, but does so automatically without

having to know that the arrival rates made that specific shift, and without making a fixed partition

of the agents.

Analysis with a cost function. The advantage of such sharing, or any other control that

produces similar sharing by the inefficient cross-trained agents, depends upon the cost of the

congestion experienced. To assess that cost, we will assume that there is a cost function C, with

C(Q1(t),Q2(t)) representing the expected cost rate incurred at time t if the vector of queue lengths

at time t is (Q1(t),Q2(t)). If the overload incident takes place over the time interval [a, b], then the

expected total cost would be

CT ≡E

[∫ b

a

C(Q1(t),Q2(t))dt

]
=

∫ b

a

E[C(Q1(t),Q2(t))]dt. (3)

We assume that the cost function C is convex and strictly increasing. The convexity explains why

we might want to share when one class is much more overloaded than the other, no matter which

class is overloaded.
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In this context, our goal is to choose a routing policy, which may allow assignments to cross-

trained agents, in order to achieve low (near-minimum) expected total cost for all possible overload

incidents and resulting stochastic processes (Q1(t),Q2(t)), while producing only a negligible amount

of sharing under normal loading. To define what we mean by an “overload incident,” We can first

specify an interval [a, c] over which the arrival-rate vector (λ1(t), λ2(t)) differs from the nominal

vector. (We assume that the arrival process is a nonhomogeneous Poisson process with these new

arrival rates.) However, we should also include an additional interval [c, b] after time c to allow

the vector queue-length (Q1(t),Q2(t)) to return to its nominal steady-state value. (Engineering

judgement is required.) In our analysis, we simplify by restricting attention to scenarios, as in

the example above, in which the pair of arrival rates (λ1, λ2) makes a sudden unexpected shift at

some time, and remains at the new vector for a significant duration, so that the system reaches a

new steady-state at the new arrival-rate vector. (Customer abandonment ensures that the system

reaches steady state for any arrival-rate vector.) Our control applies more generally.

For such scenarios, we simplify by re-expressing our goal as minimizing the expected steady-state

cost; i.e., we aim to minimize CT ≡E[C(Q1,Q2)], where (Q1,Q2) is the vector of steady-state queue

lengths associated with the new arrival-rate vector associated with the overload. We will use this

steady-state overload framework to set the control parameters and demonstrate effectiveness, but

the control applies to other overload scenarios. For this steady-state analysis to be effective, it is

important that the system approaches the new steady state associated with the overload relatively

quickly. As illustrated in the concrete example above, this tends to happen in a few mean service

times. We discuss this important point further in §EC.1.

In the context of Example 1, we might have a shift in arrival rates lasting five hours. It might not

be possible to change the staffing in response, because it is in the middle of the same day. The initial

transient period might last 3 mean service times or 15 minutes, which is 5% of the total overload

incident. There might then be a recovery period lasting about 5 mean service times or 25 minutes,

after which the system returns to steady state. For such overloads, the steady-state is evidently

reasonable, and it is essential for tractability. Even with this simplifying approximation, the control
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problem for the stochastic system is very difficult. We will get an approximate solution only after

exploiting a fluid approximation in addition to this steady-state analysis; see §5.2. Even with that

approximation, the analysis with a general increasing convex cost function gets complicated; see

§5.2. However, as a byproduct, there is a very nice simple story (explicit formulas for everything),

provided that we assume a separable quadratic power cost function; see Proposition 5.

4. The Proposed Control

We start by briefly reviewing the fixed-queue-ratio (FQR) routing rule from Gurvich and Whitt

(2007a) and then we show that the FQR rule without thresholds can perform poorly with inefficient

sharing, where the conditions in the theorems of Gurvich and Whitt (2007a) are violated. Then

we introduce our proposed modification of FQR in order to treat unexpected overloads. It involves

general queue-ratio functions, as in Gurvich and Whitt (2007b), and thresholds, one of each for

each direction of sharing.

4.1. FQR and its Difficulties with Inefficient Sharing

With two queues, FQR can be implemented by considering a (weighted) queue-difference stochastic

process D(t)≡Q1(t)− rQ2(t), t≥ 0, where r is a single target-ratio parameter that management

can set. With FQR for the X model, a newly available agent in either service pool serves the

customer at the head of the class-1 (class-2) queue if D(t) > 0 (D(t) < 0), and serves the customer

at the head of its own queue if D(t) = 0. The goal of FQR is to maintain a nearly constant queue

ratio: Q1(t)/Q2(t)≈ r throughout time. When r = 1, FQR coincides with serving the longer queue.

Under regularity conditions, the FQR control has two very desirable features for large-scale

service systems, which makes it possible to reduce the multi-class multi-pool staffing-and-routing

problem to the well-understood single-class single-pool staffing problem. First, if the required con-

ditions are satisfied, then FQR tends to produce state-space collapse (SSC); i.e., for the X model,

the two-dimensional queue-length vector (Q1(t),Q2(t)) tends to evolve approximately as a one-

dimensional process determined by the total queue length QΣ(t) ≡ Q1(t) + Q2(t). In particular,

Qi(t)≈ piQΣ(t) for i = 1,2, where p1 = r/(1+r) = 1−p2; e.g., see Figure EC.8 in §EC.2. Moreover,
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it does so in a way such that all three stochastic processes - QΣ(t), Q1(t) and Q2(t) - remain

appropriately stable as t→∞. Indeed, Gurvich and Whitt (2007a) show that, under regularity

conditions, FQR achieves SSC asymptotically in the quality-and-efficiency-driven (QED) many-

server heavy-traffic limiting regime. Second, with FQR, it is possible to choose the ratio parameter

r (or, equivalently, the queue proportions pi) in order to determine the optimal level of staffing

to achieve desired service-level differentiation; i.e., staffing costs are minimized subject to meeting

class-dependent delay targets P (Wi > Ti) = α; see EC.2 and Gurvich and Whitt (2007a). Gurvich

and Whitt (2007b) also showed how to staff to minimize convex costs under normal loading. In that

case, the asymptotically optimal control in the QED regime is not FQR, but a state-dependent

generalization: the queue-and-idleness-ratio (QIR) control. Our optimal queue ratios for the fluid

model under overloading with convex costs are of the same state-dependent form.

However, in our setting, where service provided by non-designated agents is inefficient, neither

FQR nor QIR, without the extra thresholds, is appropriate in normal loading, because they induce

undesired sharing. Because of the inefficient sharing, the system is not work-conserving; sharing

causes the required workload to increase. Indeed, the conditions in the key theorems of Gurvich and

Whitt (2007a,b) are violated. In fact, those conditions are actually needed to maintain stability.

(However, for FQR without the thresholds, SSC is still achieved; the two queues explode together.)

Example 2. To illustrate, consider the X model with parameters m1 = m2 = 100, µ1,1 = µ2,2 =

1.0, µ1,2 = µ2,1 = 0.8, λ1 = λ2 = 0.99 and θ1 = θ2 = 0.0 (no abandonment). Since the traffic intensities

are ρi = λi/miµi,i = 0.99, the two separate systems without sharing are stable (with mean queue

length 85 and mean waiting time 0.85). However, if we use FQR with r = 1, then inefficient sharing

is generated, so that a significant proportion of each agent pool is busy serving the other class. As

a consequence, the arrival rate actually exceeds the service rate and the queue lengths diverge to

infinity. Here, there still is SSC, but the two queue lengths diverge together.

This difficulty when FQR is applied inappropriately is illustrated by Figures 2 and 3. They

show the sample paths of Q1(t) and Z2,1(t), starting empty, in one simulation run. After an initial

transient period, the number of agents serving the other class fluctuates around E[Z1,2] = E[Z2,1]≈
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39, while the queue grows in an approximately linear rate; the simulation estimate is E[Qi(t)]≈

6.8t, t≥ 0. (These numerical values are estimated from multiple simulation runs. The confidence

intervals are less than 1%. We develop analytical approximations to describe this behavior in a

subsequent paper.)
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Customer abandonment necessarily prevents the queues from exploding. Even in the worst case,

when all agents are dedicated to the wrong class, the system would be stable. However, there still

is performance degradation, e.g., with θ1 = θ2 = 0.2 and r = 1 about 39% of the agents in each pool

are busy serving customers from the other class which causes the queues to grow from 10, if there

is no sharing, to 34. More details appear in §EC.2.

4.2. The Proposed Control: FQR-T

Here is the lesson from the previous subsection: If we are going to use a queue-ratio control,

then we need to take extra measures to prevent sharing under normal loading. First, we want

to prevent simultaneous inefficient sharing in both directions. Hence, we restrict the routing to

one-way sharing at any time: We do not allow a newly available type-2 agent to serve a waiting

class-1 customer if there are any type-1 agents busy serving class-2 customers. And similarly in

the other direction. (However, over time, the direction of one-way sharing may change; we are not

considering the so-called N model, which only allows one-way sharing in one fixed direction.)
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From cost considerations, discussed in §5, we want to allow different ratio parameters r1,2 and r2,1

for the different ways we may share. (In general, we may need more complicated ratio functions or,

equivalently, sharing regions; see §5.2, especially Figure 4.) In order to permit sharing only in the

presence of unbalanced overloads, we suggest fixed-queue-ratio routing with thresholds (FQR-T).

In addition to the two ratio parameters r1,2 and r2,1, we introduce two positive thresholds κ1,2 and

κ2,1. We then define two queue-difference stochastic processes

D1,2(t)≡Q1(t)− r1,2Q2(t) and D2,1(t)≡ r2,1Q2(t)−Q1(t). (4)

As long as D1,2(t) < κ1,2 and D2,1(t) < κ2,1, we do not allow any sharing, i.e., we only let agents

serve customers from their designated class.

However, available pool-2 agents are assigned to class-1 customers when D1,2(t)≥ κ1,2, provided

that no pool-1 agents are still serving a class-2 customer. As soon as the first pool-2 agent is

assigned to serve a class-1 customer, we drop the threshold κ1,2, but keep the other threshold κ2,1.

(We could elect to add another threshold for the sharing; see §EC.4.) Once one-way sharing has

been activated with pool 2 helping class 1, we use ordinary FQR with ratio parameter r1,2. Upon

service completion, a newly available type-2 agent serves the customer at the head of the class-1

queue (the class-1 customer who has waited the longest) if D1,2(t) > 0; otherwise the agent serves

a customer from his own class. In this phase, pool-1 agents only serve class-1 customers. Only

one-way sharing in this direction will be allowed until either the class-1 queue becomes empty or

the other difference process crosses the other threshold, i.e., when D2,1(t)≥ κ2,1. As soon as either

of these events occurs, newly available pool-2 agents are only assigned to class 2 and the threshold

κ1,2 is reinstated.

We can initiate sharing in the opposite direction when first D2,1(t)≥ κ2,1 and there are no class-2

agents serving class-1 customers. At the first time both conditions are satisfied, we start sharing

with a pool-2 agent serving a class-1 customer. When that first assignment takes place, we remove

the threshold κ2,1 and again use FQR with one-way sharing, but now with the ratio parameter r2,1.
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Upon arrival, a class-i customer is routed to pool i if there are idle servers; otherwise the arrival

goes to the end of the class-i queue. An arrival might increase the queue to a point that sharing

is activated. Then the first customer in queue is served by the other class (presumably the agent

that has been idle the longest, but we do not focus on individual agents).

The queue-difference stochastic processes in (4) will never provide any instantaneous motivation

to have agents of both types simultaneously inefficiently serving the other class if r1,2 ≥ r2,1. That

property will be satisfied when we apply a cost function to specify the ratio parameters in §5.2.

To illustrate how FQR-T performs in normal loading (heavy load, but not overloaded), we again

consider Example 2 with abandonments at rate θi = 0.2. We let r1,2 = r2,1 = 1, so that there is no

change from FQR above, but now we add thresholds κ1,2 = κ2,1 = 10. The performance is greatly

improved with FQR-T compared to FQR without thresholds: E[Z1,2] = E[Z2,1]≈ 2.0 for FQR-T,

while E[Z1,2] = E[Z2,1] ≈ 39 for FQR. As a consequence, the performance for FQR-T is almost

the same as without sharing. In particular, with FQR-T, the abandonment rate is slightly higher

than without sharing (2.5% compared to 2.0%), but the average queue length is actually less (9.4

compared to 10.0). In fact, FQR-T can outperform no sharing with larger threshold values, because

of the resource-pooling effect. For more details, see §EC.2.

5. The Fluid Approximation for the Steady State of the X Model

In order to obtain a tractable characterization of performance for FQR-T and find good queue-ratio

parameters, we now introduce a deterministic fluid approximation. To describe the steady-state

behavior of our model when there is no sharing, we first discuss the case of a single customer class

served by a single service pool - the classical M/M/m + M model, with arrival rate λ, individual

service rate µ and abandonment rate θ. Afterwards we treat the more general X model.

5.1. One Class and One Pool

For the M/M/m + M model, the approximating deterministic fluid model has been studied in

Whitt (2004) via many-server heavy-traffic limits. Here we will derive the simple steady-state

formulas directly. We assume that input and output (which we call fluid) occurs deterministically
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at the specified rates. We think of the system as large and thus regard the number of customers

and servers as continuous quantities as well. Thus, fluid arrives deterministically and continuously

at constant rate λ. Fluid also is served and abandons deterministically and continuously at rates

that are directly proportional to the number of busy servers and the queue length, respectively. If

the “number” of busy servers is x, then fluid is served at rate xµ; if the queue length is q, then

fluid abandons at rate qθ.

We say that the system is overloaded if the input rate exceeds the maximum possible total

service rate. Given m servers, each working at rate µ, the maximum possible total service rate

is mµ. Thus the system is overloaded if λ > mµ, and not overloaded otherwise. If the system is

overloaded, then in steady state all servers will be busy and there will be a queue of waiting fluid,

with content q, which can be determined simply be equating the rate in to the rate out, including

customer abandonment: rate in ≡ λ = mµ + qθ ≡ rate out. As an immediate consequence, we get

q = (λ−mµ)/θ. If the system is not overloaded, i.e., if λ≤mµ, then there will be no queue. Then

we can describe the steady-state via the amount of spare service capacity (number of idle servers),

s, which again can be determined by equating the rate in to the rate out: rate in ≡ λ = (m− s)µ≡

rate out. As an immediate consequence, we get s = m− (λ/µ). Without directly specifying whether

or not the system is overloaded, we can write

q =
(λ−mµ)+

θ
and s =

(
m− λ

µ

)+

, (5)

where (x)+ ≡max{x,0}. We always have the complementarity relation qs = 0.

From the point of view of our analysis, we regard λ as an unknown parameter, but we consider

the remaining parameters m, µ and θ as fixed and known. For any given λ, we can compute q

and s as indicated above. With our overload control problem in mind, it is significant that we can

recover λ from the pair (q, s), because we want to learn about λ by observing (q, s). If q > 0 and

s = 0, then necessarily we are overloaded, and λ = θq + mµ; if q = 0 and s > 0, then necessarily

we are underloaded (which includes normally loaded), and λ = (m− s)µ; if q = 0 and s = 0, then

necessarily we are critically loaded, and λ = mµ; we cannot have q > 0 and s > 0. For an overloaded
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fluid queue, λ is an increasing linear function of q; for an underloaded queue, λ is a decreasing

linear function of s.

As discussed in Whitt (2004), we can also describe the transient behavior of the fluid model

and determine other performance measures. For example, if the fluid model is overloaded, then the

associated approximate potential steady-state waiting time (virtual waiting time for a customer

with infinite patience) is w = log (λ/mµ)/θ1 = log (ρ)/θ1, where ρ≡ λ/mµ is the traffic intensity,

satisfying ρ > 1; see (2.26) of Whitt (2004).

Note that an increasing convex function of w is an increasing convex function of λ for λ≥mµ.

Since λ is a positive linear function of q under overloads, we see that an increasing convex function

of w itself is a convex increasing function of q, as we have assumed in our optimization formulation.

Similarly, the abandonment rate in the overloaded fluid model is θq = λ−mµ, so the abandonment

rate is an increasing linear function of q under overloads.

5.2. The Optimal Solution for the X Fluid Model

The X fluid model is a natural generalization of the single-class single-pool fluid model above. Now

we have two deterministic arrival rates λ1 and λ2, one for each class, with the additional parameters

{mj, θi, µi,j; i = 1,2; j = 1,2}. Closely paralleling the discussion above, we will be characterizing the

steady-state performance in terms of the quantities (Q1,Q2, S1, S2), where Qi is the fluid content

at the class-i queue, while Sj is the amount of spare capacity at pool j.

The steady-state behavior of the X fluid model depends on the number of agents from each pool

assigned to (and actually busy serving customers from) each customer class, i.e., the deterministic

vector (Z1,1,Z1,2,Z2,1,Z2,2), where Zi,j is the number of pool-j agents assigned to serve class-i

customers, which is regarded as a continuous variable. To be legitimate assignments, we must have

Zi,j ≥ 0 for all i and j with Z1,1 + Z2,1 ≤m1 and Z1,2 + Z2,2 ≤m2. Since these agents are actually

busy serving customers, we must also have λ1 ≥ Z1,1µ1,1 + Z1,2µ1,2 and λ2 ≥ Z2,1µ2,1 + Z2,2µ2,2.

Once we assign values to these variables Zi,j, we reduce the X model to two single-class single-pool

models. The arrival rate for class i is λi, while the service rate for class i is Zi,1µi,1 +Zi,2µi,2. Class i
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is then overloaded if and only if λi > Zi,1µi,1 +Zi,2µi,2, in which case the steady-state fluid content

in the class-i is

Qi =
λi−Zi,1µi,1−Zi,2µi,2

θi

. (6)

If class i is not overloaded, then Qi = 0. The spare capacity in pool j in steady state is Sj =

mj −Z1,j −Z2,j ≥ 0, j = 1,2.

In this X fluid model setting, for known arrival rates, our initial goal is to determine the minimum

cost C∗(λ1, λ2), which is the minimum of C(Q1(Z1,1,Z1,2)),Q2(Z2,1,Z2,2)) for specified arrival-rate

vector (λ1, λ2), which we denote simply by C(Z1,1,Z1,2,Z2,1,Z2,2), over all feasible fixed assignment

vectors (Z1,1,Z1,2,Z2,1,Z2,2) in R4 with Qi ≡Qi(Zi,1,Zi,2) defined in (6). We let the asterisk denote

the optimal solution. (We do not consider more general controls.) We will apply the optimal solution

to find the optimal state-dependent queue-ratio functions.

Let qi be the queue length of class i and let si be the spare capacity in pool i when there is no

sharing. They can be expressed as in (5), with formulas depending on i. In the fluid model, we

regard the system as being in normal loading if neither queue is overloaded without sharing, i.e., if

q1 = q2 = 0, but the amount of spare capacity is not too large. Since the cost function is increasing

and convex, under normal loading we achieve the minimum cost by letting Z1,2 = Z2,1 = 0 (no

sharing) to obtain Qi = 0 for i = 1,2. The unexpected overload means that either q1 > 0 or q2 > 0,

or both. Henceforth we assume that to be the case.

The natural model state is (λ1, λ2), but an equivalent representation is (q1, s1, q2, s2), where we

always have the complementarity relation q1s1 = q2s2 = 0. If qi > 0, then λi = miµi,i + qiθi; if si > 0,

then λi = (mi− si)µi,i. This alternative representation implies that, for the X fluid model, we can

determine the arrival rates by observing the queue lengths and spare capacities.

Let Z∗
i,j be the optimal value of the variable Zi,j. We start by stating some basic propositions,

which serve to simplify our X-fluid-model optimization problem. We first reduce the number of

variables from four to two. The following is immediate.

Proposition 1. (no idle agents) If we do not have Q∗
1 = Q∗

2 = 0, then there should be no idle

agents, i.e., S∗j = 0 or, equivalently, Z∗
1,j +Z∗

2,j = mj for j = 1,2.
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As a consequence of Proposition 1, if q1 > 0, q2 = 0 and s2 > 0, then necessarily Z∗
1,2 > 0. Moreover,

either Z∗
1,2 ≥ s2 or Q∗

1 = Q∗
2 = 0.

We next show that inefficient sharing implies no two-way sharing.

Proposition 2. (one-way sharing) Since the service rates satisfy the inefficient-sharing condi-

tion µ1,1µ2,2 ≥ µ1,2µ2,1 in (2), it suffices to consider one-way sharing; i.e., Z∗
1,2Z

∗
2,1 = 0.

Proof. Suppose that Z1,2 > 0 and Z2,1 > 0, so that we have sharing in both directions. It suffices

to assume that Q1 > 0 and Q2 > 0. We will show that, for appropriate positive variables x1,2 and

x2,1, if we replace (Z1,2,Z2,1) by (Z1,2−x1,2,Z2,1−x2,1), then both queue lengths will decrease until

one of the variables Z1,2− x1,2 or Z2,1− x2,1 becomes 0 or both queues become empty. We define

x2,1 as an appropriate constant multiple of x1,2, so that we have a single real variable. To do so, let

γi ≡ λi−Zi,1µi,1−Zi,2µi,2 > 0 for i = 1,2. Then let x2,1 ≡ βx1,2, where β ≡ (γ2µ1,2 +γ1µ2,2)/(γ2µ1,1 +

γ1µ2,1). Then we consider what happens as we increase x1,2, assuming that β remains constant.

Let ∆i ≡ θi(Qi(0)−Qi(x1,2)), where Qi(x1,2) denotes Qi with the initial vector of sharing levels

(Z1,2,Z2,1) replaced by (Z1,2−x1,2,Z2,1−βx1,2). Then

∆1 = x1,2γ1

(
µ1,1µ2,2−µ1,2µ2,1

γ2µ1,1 + γ1µ2,1

)
and ∆2 = x1,2γ2

(
µ1,1µ2,2−µ1,2µ2,1

γ2µ1,1 + γ1µ2,1

)
(7)

Clearly, ∆i ≥ 0 for both i if and only if inequality (2) holds. Moreover, from (6) and (7), we see that

both queues become empty at the same level of x1,2. Hence, we can decrease both variables Z1,2 and

Z2,1 by increasing x1,2 until one of these variables becomes 0 or both queue lengths simultaneously

become 0.

As a consequence of Proposition 2, we can re-express the basic optimization problem, first, in

terms of two convex real-valued functions of a single real variable, C1,2 and C2,1, and second, in

terms of a single combined convex function of a single real variable, Cc. Let 1A be the indicator

function of the set A; i.e., 1A(x) = 1 if x ∈ A and 1A(x) = 0 otherwise. We put the short proof

required in §EC.3.1.
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Proposition 3. (single-variable functions) Since the inefficient-sharing condition (2) holds, the

optimal cost can be expressed as

C∗(λ1, λ2) = C∗(q1, s1, q2, s2)) = min{C1,2(Z1,2),C2,1(Z2,1)}= min{Cc(Z1,2−Z2,1)} (8)

over Z1,2 and Z2,1 such that 0≤Z1,2 ≤m2, 0≤Z2,1 ≤m1 and Z1,2Z2,1 = 0, where

C1,2(Z1,2) ≡ C1,2(Z1,2;λ1, λ2)≡C

(
(λ1−m1µ1,1−Z1,2µ1,2)+

θ1

,
(λ2− (m2−Z1,2)µ2,2)+

θ2

)

≡ C1,2(Z1,2; q1, s1 = 0, q2, s2)

≡ C

(
(q1−µ1,2Z1,2)

+

θ1

,
(q2− s2µ2,2 +µ2,2Z1,2)

+

θ2

)
, (9)

Cc(Z1,2−Z2,1) ≡ C1,2(Z1,2−Z2,1)1{Z1,2−Z2,1≥0}+C2,1(−(Z1,2−Z2,1))1{Z1,2−Z2,1<0}

= C1,2(Z1,2)1{Z1,2>0}+C2,1(Z2,1)1{Z2,1>0}+C(q1, q2)1{Z1,2=Z2,1=0}, (10)

with qi and si defined in (5), satisfying q1s2 = q2s2 = 0, and C2,1(Z2,1) defined analogously to

C1,2(Z1,2) in (9). The functions C1,2 and C2,1 are continuous strictly convex functions of the single

real variables Z1,2 and Z2,1 over their domain. If, in addition, the stronger inefficient-sharing

condition µ1,1 > µ1,2 and µ2,2 > µ2,1 in (1) holds, then Cc is also a continuous strictly convex

function of the single real variable Z1,2−Z2,1 over the domain specified in Proposition 3.

Corollary 1. (three intervals) If the stronger inefficient-sharing condition (1) holds, then for

each pair of arrival rates (λ1, λ2) or initial state (q1, s1, q2, s2) (without sharing), there are two

thresholds ζ1,2 ≥ ζ2,1 such that exactly one of the following occurs:

(i) Z∗
1,2 > 0 and Z∗

2,1 = 0 for Z1,2−Z2,1 > ζ1,2,

(ii) Z∗
2,1 > 0 and Z∗

1,2 = 0 for Z1,2−Z2,1 < ζ2,1

(iii) Z∗
1,2 = Z∗

2,1 = 0 for ζ2,1 ≤Z1,2−Z2,1 ≤ ζ1,2. (11)

The value of Corollary 1 will be clear when we turn our attention to the queue ratio r below. We

can apply Proposition 2 to get further simplification if there is initially spare capacity. Then, from
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the beginning, we know that we can only have sharing with help provided by the pool with spare

capacity; i.e., if q1 > 0 > s2, then Z∗
1,2 > 0 and Z∗

2,1 = 0, so that it suffices to minimize C1,2(Z1,2).

It is natural to have the cost function C be smooth, in which case the optimal solution can

be found by simple calculus. Proposition EC.1 concludes that, if the optimal solution found by

calculus falls outside the feasible set, then the actual optimum value is obtained at the nearest

boundary point.

It is easy to see that there is a one-to-one correspondence between the queue ratio r≡Q1/Q2 and

the real variable Z1,2−Z2,1 used to specify the optimization problem in Proposition 3. That implies

that there is a one-to-one correspondence between the fixed-agent-allocation optimization problem

(choosing Z1,2 and Z2,1) and the (fixed) queue-ratio control problem (choosing state-dependent

queue-ratio functions r1,2 and r2,1) in the fluid-model context. We establish it formally in §EC.3.3.

Finally, we provide a basis for an efficient algorithm to determine the equivalent optimal controls.

To do so, we effectively reduce the dimension from two to one by observing that special weighted

sums of the queue lengths (and corresponding weighted sums of the arrival rates) are independent

of the agent-assignment variables Z1,2 and Z2,1. We only state the result for Z1,2; the corresponding

result for Z2,1 is stated in §EC.3.4. The proof is verification by direct computation, so we omit it.

For understanding, it may be helpful to refer to Figure 4 in the next subsection.

Proposition 4. (constant weighted queue lengths) Let

a1,2 ≡ µ2,2θ1

µ1,2θ2

and ã1,2 ≡ µ1,2

µ2,2

. (12)

Consider any initial state (λ1, λ2), or equivalently (q1, s1, q2, s2), with s1 = 0. Then

w1,2 ≡ a1,2

(
λ1−m1µ1,1

θ1

)
+

(
λ2−m2µ2,2

θ2

)
= a1,2q1 + q2− s2µ2,2

θ2

= a1,2Q1(Z1,2)+Q2(Z1,2)− S2(Z1,2)µ2,2

θ2

(13)

for all Z1,2 with 0≤Z1,2 ≤m2.

Proposition 4 implies that the locus of all nonnegative queue-length vectors (Q1,Q2) ≡

(Q1(Z1,2),Q2(Z1,2)) associated with initial state (λ1, λ2), or equivalently (q1, s1, q2, s2), with s1 = 0,
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is on the line {(Q1,Q2) : a1,2Q1+Q2 = w1,2} in the nonnegative quadrant. Thus, for any nonnegative

constant w1,2, the optimal queue-length vector (Q∗
1,Q

∗
2) and the optimal queue-ratio r∗1,2 ≡Q∗

1/Q∗
2

restricted to one-way sharing (Z2,1 = 0) are the same for all initial states (q1, s1, q2, s2) with s1 = 0

satisfying (13) provided that q1 ≥Q∗
1. In that case, a1,2Q

∗
1 + Q∗

2 = w1,2. That same optimal queue-

length vector and optimal queue ratio holds for all arrival pairs (λ1, λ2) where s1 = 0, Z2,1 = 0

and

λ1 + ã1,2λ2 = w̃1,2 ≡ θ1θ2w1,2 + a1,2θ2m1µ1,1 + θ1m2µ2,2

a1,2θ2

. (14)

And similarly for sharing in the other direction; see §EC.3.4.

5.3. Computing the Optimal Queue-Ratio Functions

We now demonstrate how to numerically find the optimal state-dependent queue ratios r∗1,2 and r∗2,1

as functions of the fluid state (Q1, S1,Q2, S2). With the thresholds, this gives us a state-dependent

queue-ratio control with thresholds (QR-T). To illustrate, we consider a (nonseparable) quadratic

cost function of the form

C(Q1,Q2) = 3Q2
1 +2Q2

2 +Q1Q2 +10Q1 +5Q2. (15)

For any vector of arrival rates (λ1, λ2) we can assign one, and only one, point in the (Q1,Q2) plane,

which represents the queue lengths associated with these arrival rates, when there is no sharing.

To represent spare capacity, we allow negative values; i.e., −Qi is shorthand for −Siµi,i/θi. (We

actually plot (Q1−S1µ1,1/θ1,Q2−S2µ2,2/θ2) even though the axes are simply labelled Qi.)

We apply Proposition 4 to find the optimal queue ratios. We first consider when pool 2 helps

class 1. To treat that case, we let λ2 = m2µ2,2, so that class 2 has no queue before pool 2 helps

class 1. We then assume that λ1 > m1µ1,1 so that class 1 is overloaded. We then choose a large

set of positive weighted arrival sums {w̃1
1,2, . . . , w̃

n
1,2} and find the optimal queue ratio for each. In

the first step, we let λ1 ≡ w̃1,2 − ã1,2λ2, using (14). We then write (15) as a function of Z1,2, take

its derivative and find the optimal Z∗
1,2. Plugging Z∗

1,2 in the queue equations gives us the optimal

queue lengths (for the specific arrival rates), and the optimal queue ratio r∗1,2. We repeat this for



Perry and Whitt: Responding to Unexpected Overloads
Article submitted to Management Science; manuscript no. MS-00721-2008.R1 23

every w̃i
1,2 to get the curve 1/r∗1,2 depicted in Figure 4. To find the curve 1/r∗2,1 we go through

essentially the same procedure for Z∗
2,1.

Figure 4 simultaneously depicts the three optimal sharing regions in the two-dimensional state

space and the two curves of optimal queue ratios. It was generated using Matlab on a system with

the following parameters: m1 = m2 = 100, µ1,1 = µ2,2 = 1, µ1,2 = µ2,1 = 0.8 and θ1 = θ2 = 0.3. In
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Figure 4 Curves of the optimal queue ratios for an X model with parameters µi,i = 1, µ1,2 = µ2,1 = 0.8, θi = 0.3,

mi = 100 and the quadratic cost function C(Q1,Q2) from (15). Also shown are two possible initial states, depicted

by stars, and the lines of constant weighted queue lengths that relate the initial states to (reciprocals of) the

optimal queue ratios, depicted by circles. Negative queues stand for spare capacity.

addition, Figure 4 shows how to find the optimal queue ratio for two possible initial queue lengths

denoted by stars. When the initial queue-length vector is (Q1,Q2) = (150,0) (equivalently, λ1 = 145

and λ2 = 100), then the optimal queue-length vector is (Q∗
1,Q

∗
2) = (76.5,91.8) and the optimal

queue ratio is r∗1,2 ≡Q∗
1/Q∗

2 = 0.83. This optimal queue ratio is the intersection of the curve 1/r1,2

with the line with slope −a1,2 that passes through (150,0) (the circle on the 1/r1,2 curve). When
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the initial queue-length vector is (Q1,Q2) = (0,150) (equivalently, λ1 = 100 and λ2 = 145), we get

r∗2,1 = 0.41 and (Q∗
1,Q

∗
2) = (46.6,112.8). The optimal queue ratio is also the intersection of the curve

1/r2,1 with the line with slope −a2,1 that passes through (0,150) (the circle on the 1/r2,1 curve).

Both the 1/r∗1,2 and 1/r∗2,1 curves seem to be linear, although that is actually not quite the

case; the r∗i,j’s are not constants for this cost function. For example, we already noted that, for

(λ1, λ2) = (145,100) the optimal queue ratio is r∗1,2 = 0.83. If we change λ1 to 110 then the optimal

ratio becomes 0.80. For the other sharing direction, if (λ1, λ2) = (100,145), then r∗2,1 = 0.41, but if

we change λ2 to 110, then the optimal ratio changes to 0.38.

The fact the the two optimal-ratio curves are nearly linear in Figure 4 suggests that we can

approximate the optimal queue-ratio function by fixed queue ratios, depending only on the direction

of sharing; i.e., we can use FQR-T with only two values: one for r1,2 and the other for r2,1. In our

example we may choose to use r1,2 = 0.8 and r2,1 = 0.4. The cost for using a nearly optimal ratio

is very small in the fluid approximation, and even smaller in the stochastic system.

To understand when the optimal queue-ratio functions are nearly linear, as in the example above,

and what the structure should be more generally, we investigate structured cost functions in §EC.4.

We obtain explicit analytical expressions in special cases. We focus on separable cost functions:

C(Q1,Q2) = C1(Q1) + C2(Q2), where each component cost function Ci is strictly convex, strictly

increasing and twice differentiable. For example, we find that QR-T reduces to FQR-T exactly

when Ci(Qi) = ciQ
ni
i with n1 = n2; the case n1 = n2 = 2 is close to (15).

Proposition 5. (explicit solution) When C(Q1,Q2) = c1Q
2
1 + c2Q

2
2, FQR-T is optimal for the

X fluid model with

r∗1,2 ≡
a1,2c2

c1

=
c2µ2,2θ1

c1µ1,2θ2

, r∗2,1 ≡
a2,1c2

c1

=
c2µ2,1θ1

c1µ1,1θ2

,

Z∗
1,2 =

(c1µ1,2θ1)(q1− (s1µ1,1/θ1))− (c2µ2,2θ2)(q2− (s2µ2,2/θ2))
c1µ2

1,2/θ1 + c2µ2
2,2/θ2

,

Z∗
2,1 =

c2µ2,1θ2(q2− (s2µ2,2)/θ2)− c1µ1,1θ1(q1− (s1µ1,1)/θ1)
c1µ2

1,1 + c2µ2
2,1

. (16)
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In Proposition 5, the cost is specified by a single parameter: The ratio c1/c2 specifies the relative

importance of the two queues. (The remaining parameter is equivalent to choosing the monetary

units.) Finally, we caution that other cases (e.g., linear costs) can be quite different; see §EC.4.

5.4. Application to the Stochastic Model

We can directly apply the QR-T control derived above to the stochastic model. Figure 4 identifies

three sharing regions to apply to the stochastic process (Q1(t), S1(t),Q2(t), S2(t)) once sharing

has been activated. There are two regions for each direction of sharing; e.g., if sharing has been

activated with pool 2 helping class 1, available pool-2 agents serve class-1 customers when the

queue-length vector falls in the lower right region, whereas there is no sharing in the other two

regions. The way to share is described in §4.2.

6. Choosing the Thresholds

We now consider how to choose the thresholds κ1,2 and κ2,1. These thresholds have two important

roles: First, they automatically detect when the system becomes overloaded and, second, they

prevent unwanted sharing in normal loading. If the thresholds are too large, then the queues may

not reach them during the overload. (Abandonments necessarily keep the queues from increasing

without bound, even under overloads.) On the other hand, as discussed in §4.1, if the thresholds

are too small, then sharing may be activated too often, so that we may get inefficient sharing.

Unfortunately, the fluid analysis cannot reveal the “right” size of the thresholds, since the fluid

queues are empty under normal loading. We need to understand the extent of the stochastic

fluctuations, something which is not captured by the fluid approximation. At this point, it is

convenient to apply many-server heavy-traffic limits to gain additional insight. To understand the

general idea, it suffices to refer to established limits for the basic M/M/n+M model, as in Garnett

et al. (2002) and Whitt (2004). There, both fluid models and refined diffusion process models are

obtained as limits as the scale increases, where scale is measured by the number n of servers. What

is unusual here, though, is that we are simultaneously interested in the quality-and-efficiency-driven

(QED) regime and the efficiency-driven (ED) or overloaded regime.
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The QED regime is appropriate to describe normal loading, which is what prevails before the

overload occurs, while the ED regime is appropriate to describe the overloaded system. In both

cases, the arrival rate is allowed to grow as n→∞, while the service rate and abandonment rate

are held fixed. The important insight is that the queue lengths tend to be of order O(
√

n) in the

QED regime, as depicted by the diffusion limit in the QED regime, while the queue lengths tend

to be of order O(n) in the ED regime, as depicted by the fluid limit in the ED regime.

Thus, to prevent unwanted sharing when the system is normally loaded, we should choose the

thresholds to be of size bigger than O(
√

n). That ensures that the weighted-queue-difference pro-

cesses, D1,2 and D2,1, will not move above the thresholds by random fluctuations. On the other

hand, we should choose the thresholds to be o(n), so that the thresholds will be asymptotically

negligible compared to the O(n) fluid content. Then, asymptotically, they will be exceeded instan-

taneously when the overload occurs and they will not significantly alter the queue ratios. From this

simple reasoning, we see that it suffices to have κ
(n)
i,j = O(np) as n→∞ for 1/2 < p < 1. (Incidentally,

that scaling also makes the thresholds out of reach in normal loading in the law-of-the-iterated

logarithm scaling of (n log logn)1/2.)

This asymptotic analysis shows that the thresholds chosen in this way are asymptotically optimal,

both during normal loading and during overload incidents. Asymptotically, the thresholds will be

exceeded negligibly often during normal loading; asymptotically, the thresholds do not alter the

optimal average cost in the overload incidents. For the case of normal loading, we can apply the

QED results in Garnett et al. (2002); for the overload incidents, the ED results in Whitt (2004)

provide only heuristic support, because they apply only to the M/M/n+M model. We intend to

prove the ED fluid model for the X model with FQR-T in a subsequent paper.

Of course, we actually have a system with one fixed n. When we want to apply the theory to

a real system, with a finite number of agents, it becomes hard to distinguish between O(n) and

O(
√

n). For example, if n = 100, then both 10 = 0.1n and 10 =
√

n. Thus, as in any application of

asymptotic results, we should numerically verify that the values chosen are appropriate, and refine

them if necessary, for which we can use simulation. For example, for a system with 100 agents in
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each pool (and abandonment rates less than service rates), we found that κi,j = 10 is effective. We

found that the performance is not too sensitive to the choice of the thresholds, provided that they

are neither too small nor too large. We present simulation results for FQR-T under normal loading

in §EC.5.2, including a sensitivity analysis for the thresholds.

7. Simulation Experiments

Our analysis has been based on a fluid approximation of a stochastic system. It remains to show

that the fluid approximation is suitably accurate for the stochastic system and that the optimal

control for the fluid model works well in the stochastic system. For those purposes, we conduct

simulation experiments.

7.1. Accuracy Of The Fluid Approximation

In this subsection we investigate the accuracy of the approximation. To show how the accuracy

increases as the system becomes larger, we simulated three cases, each case represents an element in

a sequence of queueing systems indexed by n, scaled to satisfy a many-server heavy-traffic limit in

the ED regime as n→∞. We use the same fixed service and abandonment rates as before (µi,i = 1,

µ1,2 = µ2,1 = 0.8 and θi = 0.3). We consider a fixed queue ratio r = 1. We let the arrival rates be

λ1 = 1.3n and λ2 = n, when there are n agents in each service pool. The three cases we consider

are n = 25,100,400. We let the thresholds for these three values of n be κ1,2 = κ2,1 = 3,10,30,

respectively. (The thresholds were dropped when exceeded.)

Table 1 shows the results. Each result is the average of 5 independent simulation runs having

300,000 arrivals in each run. The half-width of 95% confidence intervals, calculated using the t

random variable with 4 degrees of freedom, are also given.

To show both the actual performance and the convergence to the fluid limit as n increases, we

display both the direct values and the scaled values, dividing by n. Since the scaled values tend to

be nearly independent of n, we witness the heavy-traffic fluid limit. We see that the approximations

get better as n increases, but they are already not too bad when n = 25.
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n=25 n=100 n=400
perf. meas. approx. sim. approx. sim. approx. sim.
Q1 13.9 13.5 55.6 52.8 222.2 216.7

±0.4 ±1.2 ±7.0
Q1/n 0.56 0.54 0.56 0.53 0.56 0.54

±0.02 ±0.01 ±0.02
Q2 13.9 15.7 55.6 58.4 222.2 223.1

±0.5 ±1.2 ±7.0
Q2/n 0.56 0.63 0.56 0.58 0.56 0.56

±0.02 ±0.01 ±0.02
ratio 1.0 0.98 1.0 0.90 1.0 0.96

±0.02 0.00 0.00
Z1,2 4.2 4.8 16.7 17.7 66.7 66.4

±0.2 ±0.3 ±2.2
Z1,2/n 0.17 0.19 0.17 0.18 0.17 0.17

±0.01 ±0.00 ±0.01
Cost 1.37 1.79 19.35 20.28 299.6 299.8
(thousands) ±0.01 ±0.81 ±19.2

Table 1 A comparison of steady-state performance measures in the fluid approximation with corresponding

simulation results for the Markovian X model. For each n, there are n agents in each pool, with λ1 = 1.3n, λ2 = n,

µi,i = 1, µ1,2 = µ2,1 = 0.8 and θi = 0.3. The thresholds κ1,2 = κ2,1 are 3,10,30 for n = 25,100,400, respectively.

7.2. Comparing The Two Controls

In the fluid analysis, choosing the number of agents in each pool that are helping customers from

the other class is equivalent to choosing the queue ratio, ri,j. However, that is not the case in the

actual stochastic system. With specified numbers of agents serving customers from the other class,

the queue ratio fluctuates randomly. With specified queue ratios, the numbers of agents helping

the other class fluctuates randomly. Moreover, with specified numbers of agents serving customers

from the other class, the two queue-length processes evolve independently. In sharp contrast, with

specified queue ratios, the queue-length processes are strongly dependent, as in Figure EC.8. This

suggests that there is a big difference between the two controls in a real, stochastic system. We

thus expect the average cost under FQR-T to be different than the average cost when fixing Zi,j.

We conducted simulation experiments to compare the two controls.

To compare the two controls - FQR-T, and fixed Zi,j - we simulated a system with mi = 100 agents

in each pool, arrival rates λ1 = 130 and λ2 = 100, service rates µ1,1 = µ2,2 = 1 and µ1,2 = µ2,1 = 0.8,

and abandonment rates θ1 = θ2 = 0.3. Since class 1 is overloaded, we took κ2,1 = κ1,2 = 10, but once
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we go over the threshold κ1,2, we drop it, so that it becomes κ1,2 = 0.

Figure 5 presents simulation results comparing the two average costs for five different cases:

(1) r1,2 = 1.2,Z1,2 = 15, (2) r1,2 = 1,Z1,2 = 17, (3) r1,2 = 0.83,Z1,2 = 19 (optimal point), (4) r1,2 =

0.6,Z1,2 = 22 and (5) r1,2 = 0.4,Z1,2 = 25. For each point, we fixed the queue-ratio r1,2, and used

FQR-T with this ratio. For each such r1,2, there is an equivalent Z1,2 in the fluid equations. Since

this Z1,2 is not necessarily an integer, we rounded it up to the smallest integer larger than Z1,2, i.e.,

we used dZ1,2e in each simulation of the fixed-Zi,j control. According to the fluid approximation,

the optimal queue ratio is r1,2 = 0.83, and the respective optimal Z1,2 is equal to 18.4, rounded up

to 19 in the simulation experiments.
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Figure 5 A Comparison of the cost of using FQR-T with different ratios and the cost of fixing the equivalent

Z1,2’s. In order, the five ratios considered are r = 1.2,1,0.83,0.6,0.4, where r = 0.83 is the optimal queue ratio

according to the fluid model. Based on the fluid model, the equivalent Z1,2’s are, respectively, 15,17,19,22,25,

where each Z1,2 has been rounded up to the smallest integer greater than its actual value. The average cost of 5

independent simulation runs is written beneath each point. The cost function is (15), and the system parameters

are mi = 100, λ1 = 130, λ2 = 100, µi,i = 1, µ1,2 = µ2,1 = 0.8 and θi = 0.3.

For each case, we conducted 5 independent simulation runs using FQR-T, and 5 independent

simulation runs with a fixed Z1,2, each run with 300,000 arrivals. The independent replications make
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it possible to reliably estimate confidence intervals using the t statistic with 4 degrees of freedom.

The large number of arrivals ensures that the transient behavior in the beginning of the simulation,

before reaching steady state, does not affect the final simulation estimates of the steady-state

averages. Additional simulation results are given in Table EC.1 in §EC.5, including the half-width

of 95% confidence intervals and a comparison of the simulation to the fluid approximation.

There are several interesting observations to be made: First, the r-cost curve lies significantly

below the Z-cost curve, which shows that FQR-T is a superior control. At the optimal point for

FQR-T, the average cost under FQR-T is about 5.4% smaller than the average cost under the

fixed-Z1,2 control.

Secondly, FQR-T tends to be a more robust control. Small changes in r do not produce large

changes in the cost. Note that the largest r value here (1.2) is 3 times as large as the smallest r

value (0.4), whereas the largest Z value here (25) is only 1.6 times as large as the smallest Z value

(15). Moreover, the average costs when using FQR-T with r1,2 = 1.2 and r1,2 = 1 are still smaller

than the cost of fixing Z1,2 at its optimal value. For further discussion, see §EC.5.

8. Conclusions

In this paper we studied ways to respond to unexpected overloads in large-scale service systems.

We considered the Markovian X model with two customer classes and two service pools, assuming

that agents are more effective serving customers from their own class than customers from the

other class, as specified by the inefficient-sharing conditions in (1) and (2). Thus we want negligible

sharing under normal loads, but we want to activate sharing when there is an unexpected overload

at an unanticipated time, without knowing what the new arrival rates will be.

The main ideas for analyzing the performance and determining appropriate queue-ratio functions

for the queue-ratio with thresholds (QT-R) and fixed-queue ratio with thresholds (FQR-T) controls

we propose are: (i) to use steady-state analysis and (ii) to apply an approximating deterministic

fluid model. The QR-T and FQR-T controls proposed for the actual stochastic system are direct

applications of the corresponding optimal controls derived for the fluid model in §5.2. We developed
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an algorithm to find the optimal queue-ratio curves for a general convex cost function in Proposition

4 and §5.3. The resulting QR-T control is easily understood as a partition of the state space into

three sharing regions, as depicted in Figure 4, with two regions for each direction of sharing.

In Proposition 5 we also provided strong justification for FQR-T when the cost function has the

form C(Q1,Q2) = c1Q
2
1 + Q2

2 for some constants c1 and c2. In that case, we proved that FQR-T is

optimal for the fluid model (i.e., the optimal QR-T control reduces to an instance of FQR-T) and

exhibited the explicit optimal queue-ratio parameters. Then the optimal queue-ratio parameters

depend on the cost function C only via the single parameter c1/c2, which succinctly captures the

relative importance of the two queues. For other sharing regions, see §EC.4.

The main ideas for gaining insight into appropriate threshold values were to apply (i) many-

server heavy-traffic asymptotics and (ii) simulation. Heuristically, we showed that the thresholds

should be asymptotically optimal simultaneously for periods of normal loading and for periods of

overload. Asymptotically, no tradeoff need be made. The requirement is that the thresholds should

be of order O(np) as n→∞, where 1/2 < p < 1 and n is the system scale factor. We used simulation

to verify that the thresholds work well for given finite n.

Our FQR-T (or QR-T) control is appealing for several reasons. First, it is automatic and simple;

we need not directly discover the arrival rates in order to find out when overloads occur, and then

decide what amount of sharing should be done. Instead, FQR-T automatically detects the time the

system becomes overloaded, and then automatically enforces the optimal ratio, by observing only

the size of the two queues. It is easier to use the information about the queues, which is readily

available, than to use information about the arrival rates, which is not readily available. Moreover,

simulation experiments indicate that FQR-T performs better (produces lower expected costs) than

fixing Zi,j at their optimal values, even with known arrival rates; see Figure 5.

It remains to mathematically prove that the fluid model with QR-T or FQR-T arises as the

many-server heavy-traffic limit of scaled overloaded queueing systems as the scale increases. It

also remains to show that FQR-T is asymptotically optimal among all possible controls in such a
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limit. It remains to develop similar controls for more complex multi-class multi-pool systems with

non-exponential service-time and abandonment-time distributions.
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ec2 e-companion to Perry and Whitt: Responding to Unexpected Overloads

e-Companion

In this online e-companion we present additional material supplementing the main paper. The

topics are ordered as they arise in the paper. In §EC.1 we discuss the way the transient distribution

approaches its steady-state limit, both at the beginning and the end of an overload incident. In

§EC.2 we provide additional discussion about the FQR and FQR-T controls, supplementing §4. In

§EC.3 we present additional details about the optimal solution for the deterministic fluid model

during the overload, supplementing §5. Finally, in §EC.5 we present additional simulation results

about the performance of the control. In §EC.5.1 we present a table of detailed simulation results

supporting Figure 5. In §EC.5.2 we present additional simulation results about the performance of

FQR-T under normal loading. We perform a sensitivity analysis for the thresholds there.

EC.1. Time To Reach Steady State

An important aspect of our QR-T and FQR-T controls is the transient behavior of the system.

When the overload incident occurs, the system must shift from steady state under normal loading

to steady state under the overload. Afterwards, at the end of the overload period, there is a

recovery period, during which the system shifts back to the original steady state. From analysis

and extensive simulations, we conclude that these two transient periods do not dominate, so that

it is possible to use steady-state analysis as a reasonable approximation. In this section, we provide

some supporting simulation results and discuss the supporting mathematical results.

EC.1.1. Simulation Experiments

We start by doing a simulation experiment of an overload incident, including all five regimes: (i)

steady state before the overload, (ii) transition to new steady state at the beginning of the overload,

(iii) new steady state under the overload, (iv) recovery period and (v) original steady state again

after the overload.

Our example is based on Example 1 in the main paper and the associated typical overload

incident described at the end of §3. We assume that there is an overload incident that lasts 5 hours

when the mean service times are 5 minutes. Given that we measure time in units of mean service
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times, the overload incident lasts 60 time units. Thus, we simulate the system over the time interval

[0,150], and have the overload begin at time 80 and end at time 140. Thus, the initial transient

begins at time 80, while the recovery period begins at time 140.

We consider a large system with n = 400 agents in each pool. For the normal loading, we let λ1 =

λ2 = 380; for the overload during [80,140], we let λ1 = 520, while λ1 = 380 as before. As in Example

1, we let the mean service time for customers served by designated agents be µ−1
1,1 = µ−1

2,2 = 1.0, while

the mean service time for customers served by agents from the other pool is µ−1
1,2 = µ−1

2,1 = 1.25. We

let customers abandon at rate θ1 = θ2 = 0.4.

Since class 1 experiences the overload, we will have pool 2 helping class 1 during the overload

incident. Typical sample paths of the processes Z1,2(t) and Q1(t) generated by simulation are

shown in Figures EC.1 and EC.2 below. A dotted horizontal line depicts the steady-state fluid

approximation during the overload. We do not show the other processes. From corresponding plots

of Q2(t) and Q1(t), it is evident that they move together during the overload, reflecting state-space

collapse, but they move independently during normal loading. From the displayed sample path, we
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Figure EC.1 Sample path of Z1,2(t)/400 for

FQR-T, with overload incident in [80,140] for

n = 400.
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Figure EC.2 Sample path of Q1(t) for FQR-T,

with overload incident in [80,140] for n = 400.

see that the system indeed reaches a new steady state after a few mean service times, as claimed

in §§2-3.

To elaborate, we also show corresponding sample paths in Figures EC.3 and EC.4 with n = 100
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agents in each pool. One important observation is that in both systems (n = 100 and n = 400) it

takes less than 3 time units for the queues to hit their fluid value, denoted by the dotted horizontal

lines. The recovery time, after the overload incident has ended, is also very short, and is about 2

time units for the queues in both systems.

The story is different for the Z1,2(t) process. To make the connection between the two cases

clear, we present the proportion of class-1 customers in pool 2 instead of the actual number, i.e.,

we show Z1,2(t)/n in Figures EC.1 and EC.3. First, when the overload begins at time 80, it takes

some time until the queues hit the threshold κ1,2. That is the reason why Z1,2(t) starts growing

a bit after time 80. It is interesting to see how our choice of the thresholds influences this delay.

Recall that we choose the thresholds to be of order of size less than O(n) but greater than O(
√

n);

see §6 for more details. In these simulations, we took κi,j = 20 for n = 400 and κi,j = 10 for n = 100.

This explains why in the n = 400 system it takes less time for Z1,2(t) to start increasing than in

the n = 100 system: The thresholds are relatively smaller for the bigger system.

We also observe a difference between the two systems after the arrival rates return to normal at

time 140. At this time, the Z1,2(t) processes start decreasing immediately and in a very fast rate.

But now, service-pool 2 stops serving class-1 customers faster in the small system. Let T1,2 be the

time it takes for pool 2 to stop serving all class-1 customers after the end of the overload incident

(after 140 in our example). As an approximation, we have

E[T1,2]≈
r∑

j=1

1
j ·µ1,2

,

where r ≡ Z1,2(140). Hence, the larger Z1,2(140) is, the longer it takes Z1,2(t) (or equivalently,

Z1,2(t)/n) to reach zero after the arrival rates shift back to normal. Yet, in both cases Z1,2(t)/n

drops below 0.1 in about 2 time units, so that the total service rate in service-pool 2 is greater

than λ2 in 2 time units after the shift. In summary, we see that the transient period is relatively

short, and a steady-state analysis is reasonable to apply.
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Figure EC.3 Sample path of Z1,2(t)/100 for

FQR-T, with overload incident in [80,140] for

n = 100.
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Figure EC.4 Sample path of Q1(t) for FQR-T,

with overload incident in [80,140] for n = 100.
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Figure EC.5 Sample path of Z1,2(t)/25 for

FQR-T, with overload incident in [80,140] for

n = 25.

50 100 150
0

5

10

15

20

25

30
Number of customers in class 1 queue

Time

N
u
m
b
e
r
 
i
n
 
q
u
e
u
e

Figure EC.6 Sample path of Q1(t) for FQR-T,

with overload incident in [80,140] for n = 25.

EC.1.2. Mathematical Analysis

We now provide further support. We first review mathematical analysis of the M/M/n+M model;

we next contrast with single-server models; afterwards we discuss implications for our X model

The M/M/n+M model. Consider the M/M/n + M model with arrival rate λ, service rate

µ and abandonment rate θ. First, it is useful to consider the special case in which θ = µ; then

the number in system is distributed the same as in an M/M/∞ system with service rate θ = µ.

Thus the number in system at time t has a Poisson distribution for each fixed initial state. An

explicit expression for the mean m(t) at time t, starting empty, is given in (20) of Eick et al. (1993).

More generally, the mean m(t) satisfies an ordinary differential equation (ODE); see Corollary 4
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of Eick et al. (1993). These results show that m(t) and the entire distribution reaches steady state

approximately at time c/µ, some constant c times the mean service time 1/µ. The constant c

depends on our criterion; the critical time constant is 1/µ, a mean service time.

For the more general overloaded M/M/n+M model (without assuming that θ = µ), it is helpful

to consider the deterministic fluid approximation in Whitt (2004). Formula (2.17) there shows

that the fluid approximation for the number in queue, q(t), starting with all the servers busy,

again evolves as the M/M/∞ ODE, but with arrival rate λ−nµ and service rate θ. That implies

that the fluid queue content (approximating the number in queue), starting from all servers busy

but no queue, reaches steady state approximately at time c/θ, some constant c times the mean

abandonment time 1/θ. That too will be approximately c/µ provided that θ is not too different

from µ. The critical time constant here is 1/θ, a mean time to abandon.

To illustrate this mathematical analysis, we do a simulation of the M/M/n+M model. We base

our example here on Example 1 in §1. In that example, the service rates in both pools are µi,i = 1,

the abandonment rates are θi = 0.4 and the number of agents in each pool is 100. In this example

the arrival rates changed at some instant from (λ1, λ2) = (90,90) to (λ1, λ2) = (130,90). We show

what happens if class 1 receives no help from service-pool 2. Then the class-1 queue behaves like

an M/M/100 + M queue. Figure EC.7 depicts a simulated sample path of an M/M/100 + M

queue, when the system is initialized empty at time 0. The average steady-state queue length in

the overload incident is about 75, and it can be seen that this steady-state value is reached within

about 4 time units when the system is initialized empty. (Time is measured in units of mean service

times). If we assume, as in our example above, that the system was operating before the arrival

rates changed, then most of the agents were probably busy, and the time to reach the new steady

state is about 2 time units (two mean service times).

Single-Server models. In §2 we stated that the number in system tends to approach steady

state more quickly in many-server queues with abandonment than in single-server queues without

abandonment. We should begin with a qualification: Slow approach to steady state occurs for

single-server systems without abandonment when the system is heavily loaded. For single-server
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Figure EC.7 Time to reach steady state when m1 = m2 = 100, λ1 = 130, λ2 = 90, µ1,1 = µ2,2 = 1,

µ1,2 = µ2,1 = 0.8 and θ1 = θ2 = 0.4.

queues, we refer to Section III.7.3 of Cohen (1982) on the relaxation time. Sections 4.6 and 5.1

of Whitt (1989) gives conventional heavy-traffic approximations (when ρ ↑ 1 with n fixed, where

ρ ≡ λ/nµ is the traffic intensity) for the time required for the mean number in system to reach

steady state in the general G/G/n model with fixed n and without customer abandonment. The

time required to reach steady state is approximately c/(1− ρ)2 mean service times, where c is a

constant depending on the number of servers, n, the variability of the arrival and service processes

(quantified explicitly) and again the criterion. Clearly the time to reach steady state can be quite

long when ρ is high.

The X model. For our X model, there are two implications of the M/M/n+M analysis above:

First, when the overload incident begins, the queue length should be negligible, so that the fluid

content in a newly overloaded queue will grow approximately linearly at rate λ−nµ, because the

opposite force θq(t) will be small, since q(t) is initially small. That means that the threshold will

be quickly passed if there is a significant unbalanced overload.

For our more complicated X model with the QR-T control, after the threshold has been exceeded,

the theoretical analysis for the M/M/n + M model above provides a rough heuristic analysis

indicating what should happen, but the actual evolution still depends on the state of the six-

dimensional Markov chain (Qi(t),Zi,j(t); i = 1,2; j = 1,2). Thus we rely on simulation to confirm
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that the actual behavior is indeed similar to what occurs in these simple many-server models. We

remark that the state-space collapse discussed in the next subsection indicates that (Q1(t),Q2(t))

should evolve approximately as a one-dimensional process, suggesting that the analysis above

should not be too far off when the service rates µi,j do not differ greatly.

EC.2. More on FQR

In this section we present additional background on FQR; for more, see Gurvich and Whitt

(2007a,b,c,d). We first illustrate the state-space collapse (SSC), which is the topic of Gurvich and

Whitt (2007c). The conditions for SSC are satisfied if either the service rates only depend upon

the customer class or the service rates only depend upon the agent pool. To illustrate, suppose

that the service rates are independent of both class and pool, with µ1,1 = µ1,2 = µ2,1 = µ2,2 = 1.0.

Figure EC.8 shows the plots of typical sample paths of the two queue-length processes when

λ1 = λ2 = m1 = m2 = 100 and θ1 = θ2 = 0.2. From Figure EC.8, we can clearly see the SSC.
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Figure EC.8 State-Space Collapse

We observed that, with FQR, it is possible to choose the ratio parameter r (or, equivalently, the

queue proportions pi) in order to determine the optimal level of staffing to achieve desired service-

level differentiation. For example, under normal loading, our goal may be to choose staffing levels

as small as possible subject to having 80% of class-1 customers wait less than 20 seconds, while 80%

of class-2 customers wait less than 60 seconds. To see how this can be done with FQR, let Ti be
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the class-i delay target (e.g., T1 = 0.033 and T2 = 0.100 for 20 seconds and 60 seconds if the mean

service times are 10 minutes); let Wi be the class-i waiting time before starting service; let pi be

the queue proportion determined by r. As explained in Gurvich and Whitt (2007a), the following

string of approximations show how the individual class-i performance targets P (Wi > Ti)≤ α, for

both i, can be reduced into a single-class single-pool performance target P (W > T ) ≤ α for an

appropriate choice of the queue proportions pi and the aggregate target T :

P (Wi > Ti) ≈ P (Qi > λiTi)≈ P (piQΣ > λiTi)≈ P

(
QΣ >

2∑
k=1

λkTk

)

≈ P

(
λW >

2∑
k=1

λkTk

)
≈ P (W > T )≤ α , (EC.1)

where we define pi ≡ λiTi/(λ1T1 + λ2T2), λ ≡ λ1 + λ2 and T ≡ (λ1T1 + λ2T2)/(λ1 + λ2). The first

approximation in (EC.1) follows by a heavy-traffic generalization of Little’s law, establishing that

the steady-state queue-length and waiting-time random variables are related approximately by

Qi ≈ λiWi. The second approximation in (EC.1) is due to SSC: Qi ≈ piQΣ. The third approximation

is obtained by choosing pi as specified above. The fourth approximation in (EC.1) follows from

the heavy-traffic generalization of Little’s law once again, for the entire system: QΣ ≈ λW for

λ as defined above, where W is the waiting time for an arbitrary customer. The fifth and final

approximation follows by the appropriate definition of the aggregate target T , as defined above.

With this reduction, we can determine the overall staffing by using elementary established methods

for the single-class single-pool model. That is, we choose the total number of agents, m, so that

P (W > T )≤ α in the M/M/m+ M model. We then let mi = pim. From (EC.1) and the fact that

r = p1/(1− p1), we see that the required ratio is

r =
p1

1− p1

=
λ1T1

λ2T2

. (EC.2)

For the X model (and more generally), Theorem 4.1 of Gurvich and Whitt Gurvich and Whitt

(2007d) shows that, if the service rates only depend on the service pool or the class (but not

both), then FQR is asymptotically optimal to minimize linear staffing costs subject to service-level

constraints, as above, in the QED many-server heavy-traffic regime.
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As was shown in §4.1, with inefficient sharing FQR without the thresholds we add in FQR-T can

cause the queues in the general X-model system to explode when there is no abandonment, because

of the inefficient sharing. We now show that there is also serious performance degradation when we

include customer abandonment. We use the same example as in §4.1, only adding abandonments

with rates θ1 = θ2 = 0.2. As before, there are 100 agents in each pool. The arrival rates are λ1 =

λ2 = 99 and the service rates are µ1,1 = µ2,2 = 1 and µ1,2 = µ2,1 = 0.8. To describe the performance

degradation, we compare the performance to the no-sharing case. When there is no sharing, 2% of

the customers abandon, the mean queue length is 10 and the mean conditional waiting time given

that the customer is served is 0.10. On the other hand, for FQR with r = 1, again about 39% of

the agents are busy serving customers from the other class. That reduces the effective service rate

for each class from 100 to 92.2. As a consequence, about 7% of the customers abandon, the mean

queue length is 34 and the average conditional waiting time given that the customer is served is

0.35.

Figures EC.9 and EC.10 show the sample paths of the number of agents in pool 1 helping class-2

customers, and the class-1 queue, respectively. Due to the symmetry of the system in our example,

the Z2,1 and Q2 figures are very similar, and the fluid approximations for both queues and Zi,j’s

are equal.
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Figure EC.9 Sample path of Z2,1(t)/100 for FQR

with r = 1 and abandonments at rate θ1 = θ2 = 0.2.
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Figure EC.10 Sample path of Q1(t) for FQR

with r = 1 and abandonments at rate θ1 = θ2 = 0.2.



e-companion to Perry and Whitt: Responding to Unexpected Overloads ec11

In contrast, to illustrate how FQR-T performs, we consider the same example: Example 2 with

abandonments at rate θi = 0.2. We let r1,2 = r2,1 = 1, so that there is no change from FQR above,

and we let the thresholds be κ1,2 = κ2,1 = 10. The results of a simulation experiment are shown

in Figures EC.11 and EC.12. Numerical values were given in §4.2. The performance is greatly

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Proportion of type 1 servers serving class 2 customers

Time

P
r
o
p
o
r
t
i
o
n

Figure EC.11 Sample path of Z2,1(t)/100 with

FQR-T, r = 1.
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Figure EC.12 Sample path of Q1(t) with

FQR-T, r = 1.

improved with FQR-T.

EC.3. Optimal Solution for the Fluid Model

In this section we provide additional material supplementing §5.

EC.3.1. Proof of Proposition 3.

The representation is an immediate consequence of Proposition 2. Since C1,2(Z1,2) is the composi-

tion of a strictly convex function and a linear function, it is a strictly convex function of Z1,2; e.g.,

p. 38 of Rockafellar (1970); similarly for C2,1(Z2,1). To establish the convexity of Cc, first assume

that C is differentiable. It suffices to show that the derivative of Cc with respect to Z1,2 − Z2,1,

denoted by C ′
c, is nondecreasing. Existence and monotonicity of the derivative C ′

c away from the

boundary point Z1,2 − Z2,1 = 0 follows from the differentiability and convexity of C1,2 and C2,1,

assuming that C is differentiable and convex. However, even if C is differentiable, the derivative

of Cc need not exist at Z1,2 − Z2,1 = 0. It suffices to show that the left derivative is less than

the right derivative at this point. The right derivative of Cc at 0, denoted by C
′+
c (0), coincides



ec12 e-companion to Perry and Whitt: Responding to Unexpected Overloads

with the derivative C ′
1,2(0), while the left derivative of Cc at 0, denoted by C

′−
c (0), coincides with

−C ′
2,1(0). Let C ′

i denote the partial derivative of C with respect to its ith coordinate at the argu-

ment (q1− (s1µ1,1/θ1), q2− (s2µ2,2/θ2)), which is positive because C is increasing. Then observe

that

C ′
1,2(0) = −C ′

1

(
µ1,2

θ1

)
+C ′

2

(
µ2,2

θ2

)
and −C ′

2,1(0) =−C ′
1

(
µ1,1

θ1

)
+C ′

2

(
µ2,1

θ2

)

Hence, C ′
1,2(0)≥−C ′

2,1(0), so that C
′+
c (0) > C

′−
c (0) if the two inequalities in (1) hold. These rela-

tions can be extended to non-differentiable functions C by working with left and right derivatives.

EC.3.2. Optimal Values Beyond the Boundaries

It is natural to have the cost function C be smooth, in which case the optimal solution can be found

by simple calculus. The following result concludes that, if the optimal solution found by calculus

falls outside the feasible set, then the actual optimum value is obtained at the nearest boundary

point. Let a∧b≡min{a, b} and a∨b≡max{a, b}. We omit the proof, which is a standard convexity

result.

Proposition EC.1. (optimal values beyond the boundaries) Let Z̄1,2 and Z̄2,1 be the values

of Z1,2 and Z2,1 yielding minimum values of C1,2 and C2,1 in (9), and let Ẑ1,2 and Ẑ2,1 be the

corresponding values yielding the minima ignoring the constraints in Proposition 3. Then Z̄1,2 =

Ẑ1,2 ∨ 0∧m2, Z̄2,1 = Ẑ2,1 ∨ 0∧m1 and (Z∗
1,2,Z

∗
2,1) can assume only two possible values: (Z̄1,2,0) or

(0, Z̄2,1).

EC.3.3. The Relation between r and Z

In §5.2 we observed that there is a one-to-one correspondence between the queue ratio r≡Q1/Q2

and the real variable Z1,2−Z2,1 used to specify the optimization problem in Proposition 3. That

implies that there is a one-to-one correspondence between the fixed-agent-allocation optimization

problem (choosing Z1,2 and Z2,1) and the queue-ratio control problem (choosing a state-dependent

queue-ratio r) in the fluid-model context.
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Proposition EC.2. (relating r and Z1,2 − Z2,1) For any given arrival-rate vector (λ1, λ2) or

initial state (q1, s1, q2, s2) (without sharing), the queue ratio r ≡ Q1/Q2 is a strictly decreasing

differentiable function of Z1,2 − Z2,1, denoted by φ, as Z1,2 − Z2,1 varies over its allowed domain

in Proposition 3. Thus, the function φ has a unique inverse φ−1 and there exists a unique optimal

r∗ ≡ r∗(q1, s1, q2, s2), which is characterized by

r∗ = φ−1(Z∗
1,2−Z∗

2,1), (EC.3)

where both r∗ and Z∗
1,2 − Z∗

2,1 are understood to be functions of the initial state (q1, s1, q2, s2).

Moreover, there are two thresholds η1,2 > η2,1 such that we want one-way sharing with pool 2 helping

class 1 if r > η1,2, in which case we let r1,2 = r∗; we want one-way sharing with pool 1 helping

class 2 if r < η2,1, in which case we let r2,1 = r∗; and we want no sharing at all if η2,1 ≤ r ≤ η1,2.

The thresholds are obtained from the thresholds ζ1,2 and ζ2,1 in Corollary 1 by η1,2 = φ−1(ζ1,2) and

η2,1 = φ−1(ζ2,1).

Proof. By (9), when pool 2 helps class 1, Q1 is a strictly decreasing differentiable function of Z1,2

and while Q2 is a strictly increasing differentiable function of Z1,2. On the other hand, when pool

1 helps class 2, Q1 is a strictly increasing differentiable function of Z2,1 and while Q2 is a strictly

decreasing differentiable function of Z2,1. Thus r ≡ Q1/Q2 is a strictly decreasing differentiable

function of Z1,2−Z2,1 over its domain, as claimed.

EC.3.4. Constant Weighted Queue Length

We now complete Proposition 4 by exhibiting the result for pool 1 helping class 2.

Proposition EC.3. (constant weighted queue lengths with pool 1 helping class 2) Let

a2,1 ≡ µ2,1θ1

µ1,1θ2

and ã2,1 ≡ µ2,1

µ1,1

. (EC.4)

Consider any initial state (λ1, λ2), or equivalently (q1, s1, q2, s2), with s2 = 0. Let

w2,1 ≡ a2,1

(
λ1−m1µ1,1

θ1

)
+

(
λ2−m2µ2,2

θ2

)
= a2,1

(
q1− s1µ1,1

θ1

)
+ q2. (EC.5)
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Then

a2,1

(
Q1(Z1,2)− S1(Z2,1)µ1,1

θ1

)
+Q2(Z2,1) = w2,1 (EC.6)

for all Z2,1 with 0≤Z2,1 ≤m1.

Just as with Proposition 4, Proposition EC.3 implies that the locus of all nonnegative queue-

length vectors (Q1,Q2)≡ (Q1(Z2,1),Q2(Z2,1)) associated with initial state (λ1, λ2), or equivalently

(q1, s1, q2, s2), with s2 = 0, is on the line {(Q1,Q2) : a2,1Q1 +Q2 = w2,1} in the nonnegative quadrant.

Thus, for any nonnegative constant w2,1, the optimal queue-length vector (Q∗
1,Q

∗
2) and the optimal

queue-ratio r∗2,1 ≡Q∗
1/Q∗

2 restricted to one-way sharing (Z1,2 = 0) are the same for all initial states

(q1, s1, q2, s2) with s2 = 0 satisfying (13) and q2 ≥ Q∗
2. Moreover, a2,1Q

∗
1 + Q∗

2 = w2,1. That same

optimal queue-length vector and optimal queue ratio holds for all arrival pairs (λ1, λ2) where s2 = 0,

Z1,2 = 0 and

λ1 + ã2,1λ2 = w̃2,1 ≡ θ1θ2w2,1 + a2,1θ2m1µ1,1 + θ1m2µ2,2

a2,1θ2

. (EC.7)

EC.4. Structured Separable Cost Functions

At the end of §5.3, we observed that we can obtain explicit analytical expressions for the optimal

ratio control if we impose additional structure on our cost function. We give the main results in

this section and provide supporting details in the next section.

EC.4.1. Main Results

We first assume that C is separable, i.e., C(Q1,Q2) = C1(Q1)+C2(Q2), where each component cost

function Ci is strictly convex, strictly increasing and twice differentiable. We start by assuming

that the derivatives C ′
i are strictly increasing, so that their inverses exist. Let Ψ(Q1)≡C ′

1(Q1) and

let Ψ−1 be its inverse. Then one of the following relations between the queue lengths should hold,

when we choose the one that minimizes the cost:

Q1 = Ψ−1(a1,2C
′
2(Q2)) or Q1 = Ψ−1(a2,1C

′
2(Q2)), (EC.8)

for a1,2 defined in (12) and a2,1 defined in §EC.3.4. If C ′
1 is not strictly increasing, then we work

with the left-continuous inverse of Ψ defined by Ψ← ≡ {x : Ψ(x)≥ y}.
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Power functions. If the cost functions Ci are simple power functions, i.e., Ci(Qi)≡ ciQ
ni
i for

i = 1,2, then we have that either Q∗
1 = r∗1,2Q

∗(n2−1)/(n1−1)
2 or Q∗

1 = r∗2,1Q
∗(n1−1)/(n2−1)
2 , where

r∗1,2 ≡ n1−1

√
a1,2c2n2/c1n1 and r∗2,1 ≡ n1−1

√
a2,1c2n2/c1n1. (EC.9)

When n1 = n2, Q∗
1/Q∗

2 is a fixed queue ratio, either r∗1,2 or r∗2,1 for r∗i,j as in (EC.9). Thus, we need

only to decide which way we should share, and then use FQR-T with the appropriate r∗i,j; i.e., we

are in the setting of Figure 4 with constant ratios for which we have explicit expressions.

Quadratic functions. In practice it may be difficult to actually specify an appropriate cost

function. Thus, for practical application we suggest quadratic functions: Ci(Qi)≡ ciQ
2
i + biQi + ai

for i = 1,2. These functions might be obtained by performing an approximation (e.g., via Taylor

series approximation to an analytical expression or least squares fit to data). In this case, we have

either

Q∗
1− r∗1,2Q

∗
2 = k∗1,2, or Q∗

1− r∗2,1Q
∗
2 = k∗2,1, (EC.10)

for

r∗1,2 ≡
a1,2c2

c1

=
c2µ2,2θ1

c1µ1,2θ2

, r∗2,1 ≡
a2,1c2

c1

=
c2µ2,1θ1

c1µ1,1θ2

. (EC.11)

and

k∗1,2 ≡
a1,2b2− b1

2c1

, k∗2,1 ≡
a2,1b2− b1

2c1

. (EC.12)

In other words, we keep a fixed-queue ratio centered about a constant k∗i,j instead of zero. That

is, we employ new thresholds after sharing has been activated. (The current thresholds k∗i,j are

not to be confused with the thresholds ki,j used with the queue-difference processes in (4) to test

for the occurrence of overloads. We use k∗1,2 only after sharing with pool 2 helping class 1.) From

the two formulas in (EC.11), we directly see how these ratio parameters and thresholds should

depend on the model parameters. In particular, each ratio is either directly proportional or inversely

proportional to each of six model parameters.

Quadratic and linear power functions. A natural simple cost function is the quadratic power

function, which is is special case of the general power function with n1 = n2 = 2 and a special case
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of the general quadratic function with b1 = b2 = a1 = a2 = 0. The optimal control then is precisely

FQR-T (k∗1 = k∗2 = 0), as indicated in Proposition 5. In §EC.4.2 we also discuss the special cases

n1 = 2, n2 = 1 and n1 = 1, n2 = 1.

FQR-T without cost functions. Clearly, FQR-T could be employed directly without spec-

ifying any cost function, using engineering judgment to set the parameters. Even if that is the

case, the queue-ratio formulas in (EC.11) and possibly the centering formulas in (EC.12) provide

important insight into how the control parameters should depend on the model parameters.

EC.4.2. Supporting Details About Structured Separable Cost Functions

We now supplement §EC.4 by providing more details about the fluid model with a separable cost

function. As before, we assume that C is separable, and that each component cost-function Ci is

strictly convex, strictly increasing and twice differentiable. We then relax the strictly-increasing

assumption, and consider linear functions.

Let C(Q1,Q2) be a separable function. We can write C as a function of one variable Z1,2 or Z2,1,

depending on which way the sharing is done.

C(Q1,Q2) = C1(Q1)+C2(Q2)≡C1,(i,j)(Zi,j)+C2,(i,j)(Zi,j)≡C(Zi,j), (EC.13)

where

C1,(1,2)(Z1,2)≡C1

(
q1− s1µ1,1

θ1

− Z1,2µ1,2

θ1

)
, C2,(1,2)(Z1,2)≡C2

(
q2− s2µ2,2

θ2

+
Z1,2µ2,2

θ2

)
.

and

C1,(2,1)(Z2,1)≡C1

(
q1− s1µ1,1

θ1

+
Z2,1µ1,1

θ1

)
, C2,(2,1)(Z2,1)≡C2

(
q2− s2µ2,2

θ2

− Z2,1µ2,1

θ2

)
.

Hence, the optimal Z1,2 is achieved when

C ′(Z1,2) =−C ′
1,(1,2)(Z1,2)

(
µ1,2

θ1

)
+C ′

2,(1,2)(Z1,2)
(

µ2,2

θ2

)
= 0,

or equivalently,

C ′
1(Q1) =

µ2,2θ1

µ1,2θ2

C ′
2(Q2)≡ a1,2C

′
2(Q2). (EC.14)
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Similarly, the optimal Z2,1 is achieved when

C ′
1(Q1) =

µ2,1θ1

µ1,1θ2

C ′
2(Q2)≡ a2,1C

′
2(Q2). (EC.15)

The fact that Ci is strictly convex implies that C ′′
i ≥ 0. If C ′′

i > 0 then C ′
i is strictly increasing,

and its inverse function exists. Let Ψ(Q1) ≡ C ′
1(Q1) and let Ψ−1 be its inverse. Then one of the

following relations between the queues should hold:

either Q1 = Ψ−1(a1,2C
′
2(Q2)) or Q1 = Ψ−1(a2,1C

′
2(Q2)), (EC.16)

where we choose the relation that minimizes the cost-function C(Q1,Q2).

If the inverse of Ψ does not exist, then we can work with the left-continuous inverse of Ψ defined

by Ψ←(y)≡ {x : Ψ(x)≥ y}.

We now consider separable cost functions of the form:

C(Q1,Q2) = c1Q
n1
1 + c2Q

n2
2 , n1, n2 ∈N, (EC.17)

where each component is a power function. The optimal solution is given in the main paper. We

observe that the compatible-ratio condition r1,2 ≥ r2,1 in S 4.2 holds, because

r∗1,2

r∗2,1

= n1−1

√
a1,2

a2,1

= n1−1

√
µ1,1µ2,2

µ1,2µ2,1

≥ 1,

under the inefficient-sharing condition (2). When n1 = n2 we get

Q∗
1

Q∗
2

= r∗1,2 or
Q∗

1

Q∗
2

= r∗2,1;

i.e., it is optimal to keep a fixed-queue ratio. Thus, we need only to decide on which way we should

share, and then use FQR-T with the appropriate fixed queue ratio r∗i,j.

These results explain why the optimal ratios in our numerical example with the cost function in

(15) in §5.3 are almost constant. In the numerical example there are other terms, but the dominating

ones are the quadratic terms. As the queues get larger, the influence of the smaller-power terms

decreases, and the optimal ratios converge to fixed numbers. If the function is separable (as would
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be the case if our example had not had the Q1Q2 term), then the convergence is to the same ratios

as if the only terms are c1Q
n
1 + c2Q

n
2 . The mixed terms of power n change these numbers. For the

cost function in (15), the Q1Q2 terms is also of power 2, and hence the optimal ratios converge to

different numbers than (EC.9). But for that example, clearly the optimal ratios are nearly constant.

In §EC.4 we introduced the general separable quadratic cost function to provide a tractable

approximation for a broad range of possible cost functions. We observed that the optimal queue-

ratio function becomes a shifted version of FQR-T, which is just FQR-T centered at points k∗1,2 and

k∗2,1 instead of centered at 0. We now illustrate the resulting control for a candidate cost function. In

order to make the linear components have approximately equal weight to the quadratic components

when the queue lengths are about 50, we divide the coefficients ci for the quadratic terms by 10.

We also omit the mixed term Q1Q2, which violated the separability property. Instead of the cost

function in (15), we now consider the cost function

C(Q1,Q2)≡ 0.3Q2
1 +10Q1 +0.2Q2

2 +5Q2. (EC.18)

The centering is depicted by the y-intercepts on the two lines in Figure EC.13.
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Figure EC.13 The optimal queue ratios (shifted FQR) for an X model with parameters µi,i = 1,

µ1,2 = µ2,1 = 0.8, θi = 0.3, mi = 100 and the separable quadratic cost function

C(Q1,Q2)≡ 0.3Q2
1 + 10Q1 + 0.2Q2

2 +5Q2 in (EC.18).

We now consider the two linear cases. When one or more of the component cost functions Ci is
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linear, we are led to modify our control. We indicate how our fluid-model analysis can be applied

to generate alternative controls in these cases, but we do not examine their performance here.

n1 = 2,n2 = 1. The cost-function C(Q1,Q2) = c1Q
2
1 +c2Q2 has one quadratic term and one linear

term. The special structure of this function (C2 not strictly convex) changes the control. Now,

there is no longer dependence on the two queues, since Q2 no longer comes into play. By (EC.16),

Q∗
1 =

a1,2c2

2c1

≡ k∗1,2 or Q∗
1 =

a2,1c2

2c1

≡ k∗2,1.

Thus, we are no longer trying to keep a relation between the two queues, but instead we keep Q1

not bigger than k∗1,2 or k∗2,1, depending which is optimal to use. To keep Q1 at its optimal target, we

modify our control: If class 1 is overloaded such that q1 > k∗1,2, then whenever D1,2 ≥max{κ1,2, k
∗
1,2}

every newly available agent takes his next customer from the head of queue 1. Otherwise, every

agent takes his next customer from the head of its own class queue.

If class 2 is overloaded, then we can have Z2,1 > 0 as long as we keep Q1 < k2,1. Hence, if

D2,1 < κ2,1 and Q1 < k2,1, then every newly available agent takes his next customer from the head

of Q2. Otherwise, he will take his next customer from the head of his own class queue.

n1 = 1,n2 = 1. The purely-linear cost function C(Q1,Q2) = c1Q1 + c2Q2 is even more different

than the functions we considered so far. However, it is well known that a linear function attains

its minima on the boundaries of its domain. In our setting, this means that we either try to keep

the queue that needs help at zero, or that we do not help it at all. When Z1,2 > 0, we have

C(Q1,Q2) = C(Z1,2) = c1

(
q1− s1µ1,1

θ1

− µ1,2

θ1

Z1,2

)
+ c2

(
q2− s2µ2,2

θ2

+
µ2,2

θ2

Z1,2

)

= c1

(
q1− s1µ1,1

θ1

)
+ c2

(
q2− s2µ2,2

θ2

)
+

(
c2µ2,2

θ2

− c1µ1,2

θ1

)
Z1,2.

Thus, if

c1µ1,2

θ1

≤ c2µ2,2

θ2

(EC.19)

the function C(Z1,2) is increasing, and its minima is attained when Z1,2 = 0. Otherwise, the function

is decreasing, and it is optimal to take Z1,2 as large as needed to ensure Q1 = 0 (the simple calculus
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gives us that Z∗
1,2 = m2, but of course class 1 may not have enough arrivals to fill both service

pools). This means that we either share completely, or not share at all.

Similarly, for

C(Q1,Q2) = C(Z2,1) = c1

(
q1− s1µ1,1

θ1

− µ1,1

θ1

Z2,1

)
+ c2

(
q2− s2µ2,2

θ2

+
µ2,1

θ2

Z2,1

)

= c1

(
q1− s1µ1,1

θ1

)
+ c2

(
q2− s2µ2,2

θ2

)
+

(
c1µ1,1

θ1

− c2µ2,1

θ2

)
Z2,1,

if

c2µ2,1

θ2

≤ c1µ1,1

θ1

(EC.20)

then C(Z2,1) is increasing, and its minima is attained at Z2,1 = 0. Otherwise, C(Z2,1) is decreasing,

and it is optimal to take Z2,1 as large as needed (and possible) to make sure that Q2 = 0.

Rewriting the inefficient-sharing condition (2), we get

µ1,1

µ2,1

≥ µ1,2

µ2,2

.

If the two inequalities (EC.19) and (EC.20) hold together, then

θ1c2

θ2c1

≤ µ1,2

µ2,2

and
µ1,1

µ2,1

≤ θ1c2

θ2c1

, (EC.21)

but this contradicts the inefficient-sharing condition above, unless all the inequalities hold as equal-

ities. Thus, we can have at most one of the inequalities, (EC.19) or (EC.20), hold under (2).

At first glance, it may seem from the discussion above that, when the holding cost is linear, we

should not consider the system as an X model, but rather as an N model (sharing can be done in

only one direction), if either (EC.19) or (EC.20) hold, or two independent I systems (no sharing

at all), if none of these two inequalities hold. But that is not so. If there is spare capacity in one

class, while the other class is overloaded, then it is always optimal to use the extra agents to help

the overloaded class. Since we do not know what the overload incident will produce, we cannot

restrict the model to an N model in advance.

Let us summarize what we have found: The cost analysis leads us to give priority to either

queue 1 or queue 2. Suppose that it is optimal to give priority to queue 1. That leads us to set
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the threshold for pool 2 helping class 1 at κ1,2 = 0. In the fluid model that will either produce the

desired result Q1 = 0 or Q1 > 0 and Z1,2 = m2, with pool 2 devoting all its effort to class 1. There

remains another case: when pool 1 has spare spare capacity. In that case, within the fluid model,

if pool 2 is overloaded, then pool 1 should devote all the required spare capacity to serving class

2. We should have Z2,1 = s1 ∧ q2. If s1 > q2, then the help pool 1 provides to class 2 makes both

queues empty, and there is remaining spare capacity for pool 1. On the other hand, if s1 ≤ q2, then

we have exactly Z2,1 = s1. Overall, there are three possible end results in the fluid model: (i) Q1 > 0

and Z1,2 = m2, (ii) Q1 = Q2 = 0, (iii) Q2 > 0, Q1 = 0 and Z2,1 = s1.

We now must consider how to implement that control in the actual system. As indicated above,

to give priority to queue 1 at all times, we can set κ1,2 = 0, and we always allow pool 2 to help

class 1, even if Z2,1 > 0. The only difficulty is detecting whether or not pool 1 has spare capacity,

so that we can have pool 1 helping class 2. For this purpose, we propose using a positive queue

threshold for queue 2: We let an available agent in pool 1 help class 2 if, and only if, Q2 > κ2,1,

Q1 = 0 and Z1,2 = 0.

Since we allow pool 2 to serve class 1 all the time, we could possibly have simultaneous two-

way sharing (both Z1,2 > 0 and Z2,1 > 0), but there should be only minimal simultaneous two-way

sharing. It remains to further investigate this case.

EC.5. Additional Simulation Results

In this section we present additional simulation results.

EC.5.1. Comparing the Two Controls

We now supplement the comparison of the two controls (the fixed staffing levels versus QR-T) in

§7.2 by presenting detailed simulation results. These are given in Table EC.1, including the half-

width of 95% confidence intervals and a comparison of the simulation to the fluid approximation.

As stated before, for each case, we conducted 5 independent simulation runs using QR-T, and

5 independent simulation runs with a fixed Z1,2, each run with 300,000 arrivals. The independent

replications make it possible to reliably estimate confidence intervals using the t statistic with
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4 degrees of freedom. The large number of arrivals ensures that the transient behavior in the

beginning of the simulation, before reaching steady state, does not affect the final simulation

estimates.

Cost (in thousands) actual ratio actual Z1,2

policy Approx. Sim. Approx. Sim. std. Approx. Sim.
r = 1.20 19.65 20.51 1.20 1.07 0.16 15.0 15.9

±0.64 ±0.00 ±0.01 ±0.4
r = 1 19.35 20.28 1.00 0.90 0.13 16.7 17.7

±0.81 ±0.00 ±0.01 ±0.3
FQR-T r = 0.83 19.25 19.73 0.83 0.76 0.11 18.4 18.9

±0.64 ±0.00 ±0.00 0.5
r = 0.60 19.56 21.16 0.60 0.56 0.08 21.4 22.1

±0.77 ±0.00 ±0.00 ±0.3
r = 0.40 20.75 22.31 0.40 0.37 0.06 25.0 25.3

±0.92 ±0.00 ±0.00 ±0.3
Z1,2 = 15 19.65 21.47 1.20 1.52 1.93 15.0 15.0

±0.57 ±0.08 ±0.29 ±0.0
Z1,2 = 17 19.32 21.35 0.96 1.13 1.17 17.0 17.0

±0.46 ±0.11 ±0.45 ±0.0
fixed Z1,2 Z1,2 = 19 19.26 20.86 0.78 0.87 0.75 19.0 19.0

±0.37 ±0.07 ±0.57 ±0.0
Z1,2 = 22 19.69 21.42 0.56 0.61 0.38 22.0 22.0

±0.60 ±0.05 ±0.04 ±0.0
Z1,2 = 25 20.75 22.63 0.40 0.42 0.33 25.0 25.0

±0.86 ±0.01 ±0.14 ±0.0
Table EC.1 Full simulation results of Figure (5). The ‘approx’ columns show the anticipated results according to

the fluid model, and the ‘sim.’ columns show the simulation results, together with half-width confidence interval.

We now provide additional observations about our simulation results for this example. Another

important observation is that FQR-T is doing a better job in keeping the ratio between the two

queues close to the desired ratio. The accuracy becomes even better when the system is larger

(see the “ratio” row in Table 1 in the n = 400 columns). We have also included a column showing

the simulated standard deviations of the ratios. Note how small the standard deviations are when

using FQR-T, in comparison to the standard deviations when using the fixed-Z1,2 control. Since

FQR-T is working towards keeping the ratio between the two queues fixed throughout, the ratio

between the two queues at any time point is approximately r1,2. It also makes the two queues
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strongly positively correlated, which reduces the overall variance. In contrast, under the fixed-Z1,2

control, the two queues are independent with zero correlation.

The simulated ratio was calculated as a long-run average of the ratio between the two queues

throughout the simulation time. We can compare it to Q1/Q2 from Table 1 which appears in §7.1

(in the n = 100 columns) which is also approximately 0.9. These agree closely because of state-space

collapse, as in Figure EC.8 discussed in §EC.2.

Finally, Table EC.1 shows that the fluid approximation tends to underestimate the actual average

cost in the stochastic model. That is understandable, because the fluid model ignores stochastic

fluctuations, which will tend to increase the average costs with a convex cost function. However,

note that the fluid approximation does do an excellent job in describing the relative costs. In

particular, the fluid model succeeds in locating the correct minima for both controls.

EC.5.2. Performance of FQR-T Under Normal Loading

In §4.1 we saw that FQR-T performs well when κ1,2 = κ2,1 = 10 for Example 2 with n = 100 servers

and λi = 99, showing that FQR without thresholds and one-way sharing can perform poorly. To

supplement those simulation results and the simulation results in §7, in this section we present

additional simulation results. As in Table 1, we consider three values of n: n = 25, n = 100 and

n = 400. We let the arrival rates in both queues be λ
(n)
i = 0.98n. The service-rate and abandonment-

rate parameters are fixed at µi,i = 1.0, µ1,2 = µ2,1 = 0.8, θi = 0.2. We let the thresholds be κ
(n)
1,2 =

κ
(n)
2,1 = 0.1n, rounded up to 3.0 for n = 25. We compare the results of FQR-T to the M/M/n + M

model, which would prevail if there were absolutely no sharing at all. As before, we see that the

mean queue lengths are actually slightly smaller with FQR-T. That shows that the little sharing

that takes place with FQR-T is not so bad.

Due to the symmetry of the system under the parameters we chose, there is no difference between

the steady-state values of both queues and service pools. Thus, we display only Q1 and Z1,2. We

can see that as the system becomes larger, the sharing decreases, and the queue size gets closer to

the queue length in an M/M/n+M model.
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n=25 n=100 n=400
perf. meas. I model sim. I model. sim. I model sim.
E[Q1] 5.1 4.8 8.4 7.3 11.3 10.5

±0.3 ±1.0 ±2.6
E[Q1/n] 0.20 0.19 0.08 0.07 0.03 0.03

±0.01 ±0.01 ±0.01
E[Z1,2] − 1.3 − 1.9 − 1.3

±0.1 ±0.2 ±0.4
E[Z1,2/n] − 0.05 − 0.02 − 0.00

±0.01 ±0.00 0.00
Table EC.2 A comparison of the exact I-model queues with simulation results for the steady-state

performance measures of the X model in normal loading under FQR-T. The arrival rates are λ
(n)
1 = λ

(n)
2 = 0.98n

and the thresholds are κ
(n)
1,2 = κ

(n)
2,1 = 0.1n. Service rates are µ1,1 = µ2,2 = 1, µ1,2 = µ2,1 = 0.8 and the abandonment

rates are θ1 = θ2 = 0.2

EC.5.3. Sensitivity Analysis For the Thresholds

We now consider different values for the thresholds with and without one-way sharing. Our objective

is to perform a sensitivity analysis for the thresholds for a finite system (in this case having 100

agents in each service pool), as a complimentary to the asymptotic line of reasoning in §6. The

simulation results, displayed in Table EC.3, are for systems having λi = 98, µ1,1 = µ2,2 = 1, µ1,2 =

µ2,1 = 0.8 and θi = 0.2, i = 1,2. We vary the thresholds between κi,j = 1 and κi,j = 30, i, j = 1,2.

(Note that with κi,j = 1 FQR-T reduces to FQR.) For ease of exposition we take r1,2 = r2,1 = 1.

The symmetry allows us to present the results for E[Q1] and E[Z1,2] only, and consider κ1,2 = κ2,1.

(If r1,2 6= r2,1 then the sensitivity analysis should be performed for each of the two thresholds

separately.)

Table EC.3 clearly shows the benefits of using one-way sharing, since even with κi,j = 1 the

performance is almost as good as when we add thresholds of size 15. However, recall that the

thresholds play a vital role in our control: In addition to helping prevent unwanted sharing, they

act as “overload detectors”: When Di,j(t) first crosses the threshold κi,j, we consider class-i queue

to be overloaded, and sharing is activated with pool j helping queue i.

As discussed in §6, we do not want to have the thresholds too large, as they will fail to detect

small overloads. Moreover, we see that it can actually be beneficial to share a little, even when the
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system is not overloaded; Observe that the average queue length in the case κi,j = 30 is larger than

when κi,j is 10,15 or 20. (See also the last paragraph in §4.)

Thus, in choosing the thresholds we need to make sure that under normal loadings they will

not be crossed too often, but even small overloads will be detected. Here we see that any value

in {10, . . . ,20} is reasonable, both with one-way sharing and without. To ensure that even small

overloads will be detected by the thresholds, it is probably best to take 10≤ κi,j ≤ 15.

Insight From the Asymptotic Analysis of the Thresholds. The asymptotic analysis in

§6 helps to find good candidates for the thresholds for larger systems. In our example, we can

heuristically think of 30 as being of order O(n), while 10 and 15 are of a smaller order, say O(n0.6).

Then 30 = 0.3n, 15≈ n0.6 and 10≈ 2/3n0.6.

This line of reasoning hints at what the thresholds should be (approximately) for a larger system

having the same service and abandonment parameters. For example, if n = 1000 then κi,j = 0.3n =

300 is too large, but 64 ≈ n0.6 ≤ κi,j ≤ 2/3n0.6 ≈ 42 are good candidates for the thresholds. The

threshold values can be determined using simulations, just as in Table EC.3.

With One-Way Sharing Without One-Way Sharing
perf. meas. E[Q1] E[Z1,2] E[Q1] E[Z1,2]
κi,j = 1 8.4 2.8 29.9 38.2

±0.4 ±0.3 ±1.7 ±0.6
κi,j = 5 8.3 2.4 8.6 8.1

±0.9 ±0.3 ±0.6 ±0.1
κi,j = 10 7.5 1.9 7.4 3.6

±0.4 ±0.2 ±0.6 ±0.2
κi,j = 15 7.2 1.5 7.1 2.1

±0.6 ±0.2 ±0.6 ±0.1
κi,j = 20 7.5 1.1 7.3 1.3

±0.7 ±0.2 ±0.7 ±0.2
κi,j = 30 8.2 0.5 8.2 0.5

±0.9 ±0.1 ±0.7 ±0.1
Table EC.3 Sensitivity analysis of the effect of the thresholds in a system with 100 agents in each pool. The

arrival rates are λ1 = λ2 = 98. Service rates are µ1,1 = µ2,2 = 1, µ1,2 = µ2,1 = 0.8 and the abandonment rates are

θ1 = θ2 = 0.2. All the results are derived from five independent simulation runs.
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