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Abstract: A series of nonlinear, explicit finite differ-

ence analyses were performed to determine the dynamic

response of a cantilever retaining wall subjected to earth-

quake motions. This article outlines the calibration and

validation of the numerical model used in the analyses

and comparisons are presented between the results from

the finite difference analyses and results from simplified

techniques for computing dynamic earth pressures and

permanent wall displacement (i.e., Mononobe-Okabe and

Newmark sliding block methods). It was found that at very

low levels of acceleration, the induced pressures were in

general agreement with those predicted by the Mononobe-

Okabe method. However, as the accelerations increased

to those expected in regions of moderate seismicity, the

induced pressures are larger than those predicted by the

Mononobe-Okabe method. This deviation is attributed

to the flexibility of the retaining wall system and to the

observation that the driving soil wedge does not respond

monolithically, but rather responds as several wedges. Ad-

∗To whom correspondence should be addressed. E-mail: rugreen@

umich.edu.

ditionally, it was found that the critical load case for the

structural design of the wall differed from that for the

global stability of the wall, contrary to the common as-

sumption made in practice that the two load cases are the

same.

1 INTRODUCTION

Presented herein is an overview of a numerical model
and analyses performed to determine the trends in the
dynamic response of cantilever retaining walls subjected
to earthquake motions, where the walls are allowed to
flex, rotate, and slide. Significant emphasis is placed on
identifying trends in the wall response and on calibrat-
ing and validating the soil-wall system model used in this
study, as opposed to the development and implementa-
tion of advanced component level models (e.g., soil and
wall constitutive models). In this vein, the component-
level models used in this study are available as options
in many commercial finite element and finite difference
software packages. However, the validation procedure
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used is readily extendable system models that incorpo-
rate advanced, user-developed component-level models.

True validation of any system model/analysis ap-
proach requires good agreement between predicted and
actual field performance data, not only at the end of
shaking but throughout the entire duration of shaking.
Unfortunately, such detailed and well-documented field
performance data requisite for proper validation of seis-
mic analyses of cantilever retaining walls (and for almost
any type of structure) do not exist. Consequently, the val-
idation approach adopted by the authors was to perform
the analyses using system models that have increasing
complexity and to evaluate the trends in the response by
comparing them to results from simple analytical models
(e.g., Okabe, 1924; Mononobe and Matsuo, 1929; New-
mark, 1965). When the response results differed either
in trend or significantly in amplitude, efforts were spent
to determine whether the differences were due to inher-
ent limitations of the simple models or whether the more
complex system model was flawed. This assessment was
facilitated by performing limited parametric studies us-
ing both the complex and simple models and also by ex-
amining trends identified in published results from the
physical model tests (i.e., shaking table and centrifuge
tests). The computer code, Fast Lagrangian Analysis of
Continua (FLAC) (Itasca, 2000) was used to perform the
numerical analyses (i.e., nonlinear, explicit finite differ-
ence analyses). The analyses consisted of the incremen-
tal construction of the wall and placement of the backfill,
followed by dynamic response analyses, wherein the soil
was modeled as elasto-plastic with a Mohr-Coulomb fail-
ure criterion.

Brief mention needs to be made of the significant stud-
ies that have been previously published for estimating
the seismically induced forces on retaining walls and/or
to estimate the seismically induced displacements of re-
taining walls (e.g., Wood, 1973; Richards and Elms, 1979;
Nadim and Whitman, 1983; Veletsos and Younan, 1994;
Wu and Finn, 1999; Ostadan, 2005) and how the study
presented herein differs from them. Most previous stud-
ies have focused on gravity retaining wall systems or
nonyielding walls. Cantilever walls, which are the focus
of this study, differ from gravity walls and nonyielding
walls, in that structural stability as well as global stability
need to be considered, with the critical load case for the
two being different as concluded from this study. Also,
the more complex numerical analyses are used to high-
light the limitations of the simple analytical approaches.

Regarding the organization of the remaining parts of
this article, first a description of the wall-soil system is
presented, followed by an overview of the finite differ-
ence model used in the study. Next, a discussion of how
the ground motions were specified, how the wall and
soil model parameters were determined, and how the

wall-soil interface was modeled are presented. Compar-
isons of the finite difference results are made with results
from simplified analysis techniques for determining dy-
namic earth pressures (i.e., Mononobe-Okabe approach
(Okabe, 1924; Mononobe and Matsuo, 1929) and per-
manent displacement of the wall (i.e., Newmark sliding
block approach (Newmark, 1965)). Subsequent to these
comparisons, additional observations made from the fi-
nite difference analyses are discussed.

2 NUMERICAL MODEL

2.1 Description of wall-soil system

The retaining wall analyzed was approximately 6.1 m
in height, retaining medium-dense, cohesionless, com-
pacted fill (total unit weight: γ t = 19.6 kN/m3; effec-
tive angle of internal friction: φ′ = 35◦). Underlying the
wall/backfill was approximately 62.5 m of naturally de-
posited dense cohesionless soil (γ t = 19.6 kN/m3; φ′ =

40◦). The small strain shear wave velocity profile of the
soil deposit is shown in Figure 1. The groundwater table
was well below the base of the wall and was not consid-
ered in the analyses. The geometry and the properties
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Fig. 1. Small strain shear wave velocity profile analyzed.
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Fig. 2. Dimensions of the structural block of the wall-soil
system analyzed, wherein the term “structural block” refers

to all that is shown above.

of the wall-soil system were specified by the U.S. Army
Corps of Engineers (Ebeling and Filz, 2001) and are con-
sidered to be “representative” of many medium-height
walls in the United States.

The geometry and structural detailing of the wall were
determined following the U.S. Army Corps of Engi-
neers static design procedures (Headquarters, U.S. Army
Corps of Headquarters, US Army Corps of Engineers,
1989, 1992), with the dimensions of the structural block
(i.e., wall and contained backfill) depicted in Figure 2.
The properties of the concrete and reinforcing steel used
in the wall design are as follows: unit weight of concrete:
γ c = 23.6 kN/m3; compressive strength of concrete: f ′

c =

27.6 MPa; and yield strength of reinforcement: f y = 413.4
MPa. Additional details about the wall design and soil
profile are given in Green and Ebeling (2002).

2.2 Overview of finite difference model

The finite difference model consisted of the upper 9.1
m of the wall-soil system, comprising the wall/backfill
and approximately 3 m of the underlying natural de-
posit (foundation soil). Laterally, the model was approx-
imately 22.9 m wide, to include approximately 7.6 m of
the foundation soil in front of the wall and approximately
15.3 m of the backfill/foundation soil behind the wall
(Figure 3).

An elasto-plastic constitutive model, in conjunction
with Mohr-Coulomb yield condition, was used to model
the soil. The dilatancy angle for the soil was assumed
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Fig. 3. Annotated finite difference mesh of the wall-soil
system.

equal to zero (i.e., nonassociative flow rule). Elastic
beam elements were used to model the concrete retain-
ing wall, with the wall/backfill being “numerically con-
structed” similar to the way an actual wall would be con-
structed. The backfill was placed in 0.61 m lifts, for a
total of 10 lifts, with the model being brought to static
equilibrium after the placement of each lift. Such place-
ment allowed realistic earth pressures to develop as the
wall deformed and moved in response to the placement
of each lift. The constructed retaining wall-soil model is
shown in Figure 3.

The model consists of four subgrids, labeled one
through four in Figure 3. The separation of the foun-
dation soil and backfill into subgrids one and two was
required because a portion of the base of the retaining
wall was inserted into the soil/backfill. Subgrid three was
included so that free-field boundary conditions could be
specified along the lateral edges of the model (free-field
boundary conditions cannot be specified across the in-
terface of two subgrids). Subgrid four was included for
symmetry, but its inclusion was not necessary. The sub-
grids were “attached” at the soil-to-soil interfaces, as de-
picted by white lines in Figure 3, and interface elements
were used at the wall-soil interfaces.

The following subsections outline how the ground mo-
tions were specified and the procedures used to deter-
mine the various soil and wall model parameters.

2.3 Specification of input motions

In FLAC, the dynamic motions can be specified as ac-
celeration, velocity, stress, or force time histories at the
exterior boundaries or as interior excitations. A para-
metric study was performed to determine the best way
to specify the ground motions for earthquake analyses.
The parametric study involved performing a series of
one-dimensional (1-D) site response analyses using con-
sistently generated acceleration, velocity, and stress time
histories. Generally, earthquake ground motions are not
defined in terms of force time histories and, therefore,
were not considered in the parametric study. The use of
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stress time histories has the benefit of allowing the time
history to be specified at energy absorbing (or “quiet
boundaries”), thus simulating radiation damping.

Using free-field acceleration time histories recorded
at the surface of USGS site class B profiles, 1-D site re-
sponse analyses were performed using a modified ver-
sion of SHAKE91 (Idriss and Sun, 1992). The analyses
were performed on a 68.6 m, 5% damped, nondegrad-
ing profile, wherein the acceleration time histories were
specified as outcrop motions. Interlayer acceleration and
stress time histories were computed at the profile surface
and at depths of 7.6, 10.7, 15.2, and 68.6 m (i.e., bedrock).
Interlayer velocity time histories were computed by in-
tegrating the interlayer acceleration time histories using
the trapezoidal rule.

The interlayer acceleration, velocity, and stress time
histories computed using SHAKE were used as base mo-
tions in a series of finite difference site response analyses,
in which the acceleration time histories at the surface of
the finite difference profiles were computed. The profiles
used in the finite difference analyses were comparable to
the SHAKE profiles down to the depths corresponding
to the interlayer motions. An elastic constitutive rela-
tion, with 5% Rayleigh damping, was used to model the
soil layers in the finite difference profiles. The central
frequency of the damping relationship was set to the fun-
damental frequencies of the respective finite difference
profiles.

Fourier amplitude spectra (FAS) and 5% damped,
pseudo-acceleration response spectra (PSA) were com-
puted from the acceleration time histories of the surface
motions of the SHAKE and finite difference profiles. Er-
ror analyses were performed on the spectra correspond-
ing to the different profiles and different types of speci-
fied input motions. In the error analyses, the spectra for
the SHAKE motions were used as the “correct” mo-
tions. The word “correct” does not imply that SHAKE
precisely models the behavior of an actual soil profile
subjected to earthquake motions. Rather, SHAKE gives
the analytically correct motion for a visco-elastic pro-
file with constant damping applied to all frequencies of
motion. On the other hand, the finite difference models
used in this study give numerical approximations of the
correct analytical solution. The errors in the finite differ-
ence spectral values were computed for a spectrum of
frequencies using the following expressions:

ErrorPSA =
PSAFLAC − PSASHAKE

PSASHAKE
(1a)

ErrorFAS =
FASFLAC − FASSHAKE

FASSHAKE
(1b)

From the results of the parametric study, it was deter-
mined that the specification of the input motion in FLAC

in terms of stress time histories gives the least accurate
results, wherein the stress time histories were applied at
a “quiet boundary” along the base of the FLAC model.
The errors corresponding to specifying the motions in
terms of acceleration and velocity time histories were
essentially identical and considerably less than those as-
sociated with the stress time histories.

2.4 Development of input motions for wall analyses

As stated previously, the finite difference model of the
soil-wall system consisted of only the upper 9.1 m of a
68.6 m profile. To account for the influence of the soil
profile below 9.1 m on the ground motions, the entire
68.6 m profile, without the retaining wall, was modeled
using a modified version of SHAKE91. The interlayer
motions at the depth corresponding to the base of the
finite difference model (i.e., 9.1 m) were computed. The
input ground motions used in the SHAKE analyses were
the same motions used in the parametric study discussed
above. The motions were specified as rock outcrop mo-
tions at the base of the 68.6 m soil column.

The small strain fundamental frequency of the retain-
ing wall-soil system in the finite difference model was es-
timated to be approximately 6 Hz. At larger strains, the
fundamental frequency of the system will be less than
the small strain value. To ensure proper excitation of the
wall, the cutoff frequency in the SHAKE analyses were
set at 15 Hz. This value was selected considering both the
fundamental frequency of the wall-soil system and the
fact that the input motions had little energy at higher fre-
quencies. The interlayer motions (at 9.1 m depth) com-
puted using SHAKE were specified as acceleration time
histories along the base of the finite difference model.

2.5 Model parameters for soil

The soil was modeled using an elastic-perfectly plastic
constitutive relation, with the Mohr-Coulomb envelope
defining the yield criterion. The plastic flow rule was as-
sumed to be nonassociative, as is appropriate for cohe-
sionless soils. Five parameters are required for this model
to be fully described: effective internal friction angle (φ′);
dilatancy angle (ζ ); mass density (ρ); small strain shear
modulus (Gmax); and bulk modulus (K). Both φ′ and ρ

are familiar to geotechnical engineers, where ρ is the to-
tal unit weight of the soil (γ t) divided by the coefficient
of acceleration due to gravity (g), that is, ρ = γ t/g. As
stated previously, φ′ for the backfill and foundation soil
were 35◦ and 40◦, respectively. These values are consis-
tent with medium-dense compacted fill and dense natu-
ral deposits.

ζ is the angle of dilation that can vary from 0 to φ′

depending on the form of the plastic potential function
used in the flow rule:
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ε̇ij = λ̇
∂g(σij)

∂σij

(2)

where ε̇ij and σ ij are the strain rate and stress tensors,
respectively; g(σ ij) is the plastic potential function; and
λ̇ is a nonnegative multiplier for an elastic-perfectly plas-
tic material (not a material property). When ζ = φ′, the
plastic potential takes a form identical to the yield crite-
rion (i.e., g(σ ij) = f (σ ij), where f (σ ij) = the yield crite-
rion); hence, the flow rule becomes associative. For gran-
ular soils falling on the dense side of the critical state line
and sheared drained, as is the case for the backfill and
foundation soil, ζ < φ′. For the type and state of the
backfill and foundation soil being analyzed, dilation an-
gles of 5◦ to 10◦ would be representative. However, it is
the authors’ experience that when soil is not significantly
restrained, such as for slopes and retaining walls that can
slide, the assumed dilatancy angle has little influence on
the resulting system response. Consequently, the soil was
assumed to be incompressible (i.e., ζ = 0).

Several correlations exist that relate Gmax to other
soil parameters. However, the most direct relation is be-
tween Gmax and small strain shear wave velocity (vs):

Gmax = ρ · v2
s (3)

where vs may be determined by various types of site char-
acterization techniques, such as cross hole or spectral
analysis of surface waves (SASW) studies (e.g., Stokoe
et al., 1994; Woods, 1994).

Values for K can be determined from Gmax and Pois-
son’s ratio (ν) using the following relation:

K =
2 · Gmax · (1 + ν)

3 · (1 − 2 · ν)
(4)

in which ν may be estimated using the following
expression:

ν =
1 − sin(φ′)

2 − sin(φ′)
(5)

which was derived from the theory of elasticity (e.g.,
Terzaghi, 1943), in conjunction with the correlation relat-
ing Ko and φ′ proposed by Jaky (1944), that is, Ko = 1 −

sin(φ′). Using the above expression, ν was determined
to be 0.26 and 0.3 for the foundation soil and backfill,
respectively.

2.6 Model parameters for wall

The concrete wall was divided into five segments hav-
ing constant parameters, as illustrated in Figure 4, with
each segment consisting of several 0.3 m elastic beam
elements. Four parameters were required to define the
mechanical properties of the elastic beam elements:
cross-sectional area (Ag); mass density (ρ); elastic mod-
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Fig. 4. Numerical model of retaining wall using elastic beam
elements.

ulus (Ec); and second moment of area (I), commonly
referred to as moment of inertia.

The basis for subdividing the wall into five segments
was the variation of the mechanical properties along the
height of the wall. A wall having a greater taper or largely
varying steel reinforcement along the length of the stem
or base would likely require more segments. For each of
the segments, Ag and ρ were readily determined from
the wall geometry and the unit weight of the concrete
(i.e., 23.6 kN/m3). Ec was computed using the following
expression (e.g., MacGregor, 1992):

Ec = 57,000 ·
√

f ′
c (6)

In this expression, f ′
c is the compressive strength of the

concrete (e.g., 4,000 psi for the wall being modeled),
and both Ec and f ′

c are in psi. Because the structure is
continuous in the direction perpendicular to the analysis
plane, Ec that was computed using Equation (6) needed
to be modified to account for plane-strain conditions.
This modification was done using the following expres-
sion (Itasca, 2000):

Ec plane strain =
Ec

(1 − ν2)
(7)

where 0.2 was assumed for Poisson’s ratio for concrete.
I is a function of the geometry of the segments, the

amount and location of the reinforcing steel, and the
amount of cracking in the concrete, where the latter in
turn depends on the static and dynamic load imposed
on the member. In dynamic analyses, it is difficult to
state a priori whether the use of sectional properties
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Fig. 5. Location of interface elements in the finite difference
model.

corresponding to uncracked, fully cracked, or some in-
termediate level of cracking will result in the largest de-
mand on the structure. However, I = 0.4 × Iuncracked was
used as a reasonable estimate for the sectional properties
(Paulay and Priestley, 1992).

2.7 Model parameters for wall-soil interface

Interface elements were used to model the interaction
between the concrete retaining wall and the soil. How-
ever, the finite difference code does not allow interface
elements to be used at the intersection of branching
structures (e.g., the intersection of the stem and base of
the cantilever wall). Several approaches were attempted
by the authors to circumvent this limitation in finite dif-
ference code, with the simplest and best approach, as
found by the authors, illustrated in Figure 5. As shown
in this figure, three very short beam elements, oriented
in the direction of the stem, toe side of the base, and
heel side of the base, were used to model the base-stem
intersection. No interface elements were used on these
three short beam elements. However, interface elements
were used along the other contact surfaces between
the soil and wall, as depicted by the hatched areas in
Figure 5.

A schematic of the interface element is presented in
Figure 6. As may be observed from this figure, the inter-
face element has four parameters: S= slider representing
shear strength; T = tensile strength; kn = normal stiff-
ness; and ks = shear stiffness. The element allows per-
manent separation and slip of the soil and the structure,

Fig. 6. Schematic of the finite difference interface element
(adapted from Itasca, 2000).

as controlled by the parameters T and S, respectively.
For the cohesionless soil being modeled, T = 0 (i.e., co-
hesionless soil), whereas S was specified as a function of
the interface friction angle (δ). For medium-dense sand
against concrete, δ = 31◦ (Gomez et al., 2000a).

As a rule-of-thumb, kn should be set to 10 times
the equivalent stiffness of the stiffest neighboring zone
(Itasca, 2000):

kn ≈ 10 · max







K +
4

3
· Gmax

�zmin






(8)

In Equation (8), K and Gmax are the bulk and small
strain shear moduli, respectively, and �zmin is the small-
est width of a zone in the normal direction of the interfac-
ing surface. The max[ ] notation indicates that the max-
imum value over all zones adjacent to the interface be
used. Arbitrarily large values for kn, as commonly used
in implicit finite element analyses, should not be used, as
this results in unnecessarily small time steps, and there-
fore unnecessarily long computational times (Itasca,
2000).

The determination of the ks required considerably
more effort than the determination of the other inter-
face element parameters. In shear, the interface element
essentially is an elasto-plastic model, with an elastic stiff-
ness of ks and yield strength S. The ks values were
selected such that the resulting elasto-plastic model
gave an approximate fit of the hyperbolic-type interface
model proposed by Gomez et al. (2000a, b). A compar-
ison of the two models for initial loading (i.e., construc-
tion of the wall) is shown in Figure 7.

The procedure used to determine ks values for ini-
tial loading is outlined below. The reader is referred to
Gomez et al. (2000a, b) for more details concerning their
proposed hyperbolic-type model.
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Fig. 7. Calibration of the FLAC interface model to the
hyperbolic-type model proposed by Gomez et al. (2000a,b).

1. Compute �r using the following expression.

�r =
τ f

Rf j · Ksi

(9a)

where,

τ f = σn · tan(δ) (9b)

Ksi = KI · γw ·

(

σn

Pa

)n j

(9c)

where Ksi is the dimensionless initial shear stiffness
of the interface; σ n is normal stress acting on the
interface (determined iteratively by first assuming
a small value for ks and then constructing the wall);
δ is interface friction angle = 31◦; Rfj is the failure
ratio = 0.84; KI is dimensionless interface stiffness
number for initial loading = 21,000; nj is dimension-
less stiffness exponent = 0.8; γw is unit weight of
water in consistent units as �r; and Pa is the atmo-
spheric pressure in the same units as σ n. The values
for Rfj, KI , nj, and δ were obtained from Gomez
et al. (2000b).

2. ks was computed using the following expression:

ks =
1

1

KI · γw ·
(

σn

Pa

)n j
+

Rf j · �r

σn · tan(δ)

(10)

The above computed ks values were used only for
the initial construction of the wall. The ks values
were changed after the construction of the wall and
prior to the application of the earthquake loading
to values consistent with the Gomez-Filz-Ebeling
Version I load/unload/reload extended hyperbolic
interface model (Gomez et al., 2000a). The proce-
dure used to compute ks for the cyclic loading is

outlined below. Again, the reader is referred to the
cited report for more details concerning this model.

ks = Kur j · γw ·

(

σn

Pa

)n j

(11a)

where,

Kur j = Ck · KI (11b)

Ck = 0.5 · (1 + Rf j )
2 (11c)

where Kurj is the unload-reload stiffness number for
interfaces and Ck is interface stiffness ratio.

Using the above expressions, the interface stiff-
nesses were computed for the interface elements
identified in Figure 5. Although the ks for unload-
reload were higher than the corresponding values
for initial loading (i.e., Equation (11a) vs. Equa-
tion (10)), the values for kn were the same for both
initial loading and unload-reload.

2.8 Dimensions of finite difference zones

Proper dimensioning of the finite difference zones is
required to avoid numerical distortion of propagating
ground motions, in addition to accurate computation
of model response. Itasca (2000) recommends that the
length of the element (�l) be smaller than one-tenth
to one-eighth of the wavelength (λ) associated with the
highest frequency (f max) component of the input motion.
The basis for this recommendation is a study by Kuhle-
meyer and Lysmer (1973). Interestingly, Lysmer et al.
(1975) recommend �l to be smaller than one-fifth the λ

associated with f max, and also refer to Kuhlemeyer and
Lysmer (1973) as the basis for the recommendation, that
is:

Itasca (2000): �l ≤
λ

10
(12a)

Lysmer et al. (1975): �l ≤
λ

5
(12b)

where λ is related to the shear wave velocity of the soil
(vs) and the frequency (f ) of the propagating wave by
the following relation:

λ =
vs

f
(13)

Assuming that the response of the retaining wall will be
dominated by shear waves, substituting Equation (12)
into Equation (11a) gives:

�l ≤
vs

10 · fmax
(14a)

or

fmax ≤
vs

10 · �l
(14b)
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As may be observed from these expressions, the fi-
nite difference zone with the lowest vs , for a given �l,
will limit the highest frequency that can pass through the
zone without numerical distortion. For the finite differ-
ence analyses performed in this investigation, 0.3 m by
0.3 m zones were used in subgrids one and two (refer
to Figure 3). The top layer of the backfill has the low-
est vs (i.e., 160 m/second). Using Equation (14b) and
�l = 0.3 m, the finite difference grid used in the analy-
ses should adequately propagate shear waves having fre-
quencies up to approximately 53 Hz. This value is well
above the 15 Hz cutoff frequency used in the SHAKE
analysis to compute the input motion for the finite differ-
ence analyses and well above the estimated fundamental
frequency of the retaining wall-soil system being mod-
eled (i.e., ∼6 Hz).

2.9 Damping

An elasto-plastic constitutive model, in conjunction with
the Mohr-Coulomb yield criterion, was used to model the
soil, which inherently introduces the following hysteretic
damping:

D =
2

π
·

[

1 −
G

Gmax

]

(15)

where D is the hysteretic damping; G is secant shear
modulus; and Gmax is small strain, or preyield, G. As
may be observed from this expression, once the induced
dynamic shear stresses exceed the shear strength of the
soil, the plastic deformation of the soil introduces hys-
teretic damping, up to D = 2/π at large strains. However,
for dynamic shear stresses less than the shear strength of
the soil (i.e., G = Gmax), the soil behaves elastically (i.e.,
D = 0).

As discussed in detail by Ni (2007), the sudden change
in G at yielding and at the stress reversals cause a numer-
ical distortion that results in a “migrating” stress-strain
response. To minimize this distortion, it is common to
apply additional damping to the model, typically 2% to
3% (e.g., Finn, 1988; Wang and Makdisi 1999). For the
analyses performed, 3% additional Rayleigh damping
was applied, where Rayleigh damping provides a rela-
tively constant level of damping over a restricted range
of frequencies. The central frequency corresponding to
the specified damping ratio is typically set to either the
fundamental period (small strain) of the system being
modeled (an inherent property of the wall-soil system)
or predominant period of the system response (an in-
herent property of the wall-soil system and the ground
motion). For the finite difference analyses performed,
the central frequency was set equal to the small strain
fundamental frequency of the retaining wall-soil system
(i.e., ∼6 Hz).

3 COMPARISON OF FINITE DIFFERENCE

AND SIMPLIFIED ANALYSES

A series of analyses were performed using the model of
the wall-soil system described above, scaling the input
motions to different peak ground acceleration values.
Each run required between 25 and 35 days to complete
(long-run times is one of the shortcomings of explicit
analyses). To assess the applicability of simplified tech-
niques that were developed for estimating dynamic earth
pressures and permanent wall displacement of gravity
retaining walls to cantilever walls, comparisons of the
results from the finite difference and simplified analyses
are presented below. The reader is referred to Ebeling
and Morrison (1992), Green et al. (2003), and Green and
Michalowski (2006) for more detailed discussions about
the simplified techniques used.

3.1 Dynamic earth pressures

3.1.1 Simplified procedure for computing earth pres-

sures. The Mononobe-Okabe method for determining
seismically induced active and passive lateral earth pres-
sures is based on limit equilibrium and is an exten-
sion of the Coulomb theory for static stress conditions.
The method entails three fundamental assumptions (e.g.,
Seed and Whitman, 1970):

1. Wall movement is sufficient to ensure either active
or passive conditions, as the case may be.

2. The driving soil wedge inducing the lateral earth
pressures is formed by a planar failure surface start-
ing at the heel of the wall and extending to the free
surface of the backfill. Along this failure plane the
maximum shear strength of the backfill is mobilized.

3. The driving soil wedge and the retaining struc-
ture act as rigid bodies and, therefore, experience
uniform accelerations throughout the respective
bodies.

As demonstrated by Dr. Ignacio Arango (Seed and
Whitman, 1970), the dynamic earth pressures may be de-
termined from analogous static conditions. Accordingly,
the Mononobe-Okabe expressions for dynamic earth
pressures can be derived from Coulomb’s expressions
for static earth pressures. The analogous static condi-
tions are achieved by rotating the wall-backfill system
by an angle ψ , such that the vector sum of the horizontal
and vertical inertial coefficients (kh and kv , respectively)
is oriented vertically, where tan(ψ) = kh/(1 − kv). In
regards to the mathematical expressions, the Mononobe-
Okabe expressions can be derived from Coulomb’s ex-
pressions by replacing the static values for the total unit
weight of the soil (γ t), height of the wall (H), inclination
of the backfill (β), and inclination of the wall face from
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the vertical (θ), with the corresponding dynamic values
(i.e., γ td, Hd, βd, and θd). This substitution results in the
following set of equations for active conditions (i.e., kh

acting away from the backfill):

PAE =
1

2
· γtd · H2

d · KA(βd, θd)

=
1

2
· γt · H2 · (1 − kv) · KAE

(15a)

KAE =
cos2(φ − θ − ψ)

cos(ψ) · cos2(θ) · cos(δ + θ + ψ)

·
1



1 +

√

sin(φ + δ) · sin(φ − β − ψ)

cos(δ + θ + ψ) · cos(β − θ)





2

(15b)

where, PAE is the resultant force acting on the wall.
A plot of the Mononobe-Okabe active earth pressure

coefficients (i.e., KAE) as a function of the horizontal in-
ertial coefficient (kh) is shown in Figure 8a for β = δ =

θ = 0◦ and φ′ = 35◦. As shown in this figure, when kh =

0 (i.e., static conditions), the value of KAE is equivalent

kh
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Fig. 8. Lateral earth pressure coefficients: (a)
Mononobe-Okabe (M-O) and finite difference (FD) lateral
earth pressure coefficients for β = θ = δ = 0◦ and φ′ = 35◦;

and (b) Illustration of the process by which lateral stresses are
“locked-in.”

to Coulomb’s active coefficients (KA). However, as kh

increases in value, KAE becomes greater than KA. As
kh increases, the analogous static condition is achieved
by tilting the wall forward, thus increasing the inclina-
tion of the backfill and increasing the pressure induced
on the wall. The limiting pressure occurs when for the
analogous static condition, the inclination of the backfill
equals the angle of internal friction (i.e., βd = φ′). At
this point, the failure wedge becomes infinite in size, or
synonymously, the angle of the failure plane (αAE) from
the horizontal equals the static inclination of the backfill
(i.e., αAE = β, where αAE decreases as kh increases). For
such a case, no sized wall could restrain the backfill from
movement.

3.1.2 Finite difference computed earth pressures on the

cantilever wall. The dynamically induced lateral earth
pressures acting on the stem of the wall were computed
using finite difference. The corresponding lateral earth
pressure coefficients (KFD) were computed from these
stresses using the following expression (Green et al.,
2003):

KF D =
2 · PF D

γt · H2 · (1 − kv)
(16)

where PFD is the resultant of the finite difference com-
puted stresses acting on the stem of the wall; γ t is the
total unit weight of the backfill; H is the height of the
wall; and kv is the vertical inertial coefficient (assumed
to be zero). Equation (16) inherently assumes that the
lateral stress distribution is triangular, with the base of
the triangle at the depth of the base of the wall. This as-
sumption is consistent with that used in the derivation of
the Mononobe-Okabe expressions (i.e., Equation (15a)).
Equation (16) was used to compute KFD values at times
corresponding to the peaks in the time history of the
horizontal inertial coefficient (kh) acting away from the
backfill (i.e., active-type conditions), wherein spurious
high-frequency spikes were filtered from the kh time
history (Ni, 2007).

A plot of the computed KFD values versus kh is also
shown in Figure 8a, labeled FD active earth pressures,
for an analysis in which a motion recorded during the
1989 Mw6.9 Loma Prieta earthquake in California was
used. The Mononobe-Okabe lateral dynamic earth pres-
sure coefficient (KAE) for the wall-soil system discussed
above is also shown in this figure. The reason for the devi-
ation of the finite difference-computed stresses and those
computed by the Mononobe-Okabe expressions can be
understood from examining Figure 9. Shown in this fig-
ure is the deformed mesh from one of the finite differ-
ence analyses, wherein the deformations are magnified
by a factor of 3. At large values of kh directed away from
the backfill, the induced inertial forces on the structural
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Fig. 9. Annotated deformed mesh from one of the finite
difference analyses; deformations magnified by a factor of 3.

Note: Toe of wall not initially embedded. The deformed mesh shown

in this figure is only for illustration purposes. It is from an analysis

wherein the acceleration time history was scaled to a very large peak

acceleration. For this analysis, the right lateral boundary should have

been farther from the wall.

block cause it to simultaneously bend, rotate, and poten-
tially slide away from the backfill, at which time a small
wedge of soil or graben moves vertically downward. (The
structural block consists of the cantilever wall and the
backfill contained within; see Figure 2.) As the direc-
tion of kh reverses (i.e., changes direction from away to
toward the backfill), the graben prevents the structural
block from returning to its undeformed shape, in effect
locking in the elastic stresses resulting from the bending
and rotation of the structural block.

This process is illustrated by the dashed arrows and
corresponding earth pressure coefficients in Figure 8b,
wherein the initial stresses imposed on the stem of the
wall correspond to active conditions. As kh increases
in the direction away from the backfill, the stresses on
the stem increase according to the Mononobe-Okabe
expression for active conditions (arrow 1). However,
upon reversal of the direction of kh, the stresses im-
posed on the stem do not decrease as predicted by the
Mononobe-Okabe expression, but rather remain rela-
tively constant (arrow 2). As the direction of kh reverses
again in the direction away from the backfill, the stresses
acting on the stem remain relatively constant until kh

reaches the Mononobe-Okabe “envelope” (arrow 3), at
which point the stresses increase again according to the
Mononobe-Okabe expression for active conditions (ar-
row 4). This stepwise increase in the “locked-in” stresses
continues until the residual stresses imposed on the stem
correspond to at-rest (or Ko) conditions, while the dy-
namically induced inertial stresses are superimposed on
the locked-in residual stresses. The increase in residual
stresses is clearly shown in Figure 10, wherein plots are
shown of both the time history of kh and of PFD.

The locked-in residual stresses on the wall are not re-
leased by the slippage of the wall away from the backfill.
This is because the “driving soil wedge” is not mono-
lithic, but rather, in this case, consists of a graben and five
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Fig. 10. Time history of the horizontal inertial coefficient (kh)
at approximately the center of the structural block, and the

time history of the resultant of the imposed stresses (PFD) on
the stem of the cantilever retaining wall.

driving soil wedges (Figure 9), with the latter tending to
move downward and away from the backfill as the wall
slides outward. As a result, the graben “rides along” with
the driving soil wedges maintaining its role of locking in
the residual stresses. The progressive increase in residual
stresses was also observed in centrifuge model tests per-
formed by Andersen et al. (1991), as shown in Figure 11.
Further validating the multidriving soil wedge response
are the shaking table test results on a model retaining
(Aitken, 1982). A post-test photo is shown in Figure 12a;
for scale, the height of the retaining wall shown in this
photo is 0.32 m. The model was subjected to horizon-
tal base excitations that were generated by a lever arm-
spring release mechanism. The excitations were decaying
sine waves (Figure 12b), in which the first two to three cy-
cles exceeded acceleration required to cause sliding. As
may be observed from Figure 12a, two driving wedges
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Fig. 11. Lateral force induced on retaining wall by backfill in
centrifuge model tests (adapted from Andersen et al., 1991).
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Fig. 12. Shaking table test results on a model retaining wall:
(a) A posttest photograph showing two predominant driving

failure wedges; and (b) Excitation time history. (Adapted
from Aitken, 1982).

fully developed in the backfill, with the slip planes in-
clined at ∼39.5◦ and ∼46◦ resulting from the first and
second active pulses in the excitation, respectively.

3.2 Permanent wall displacement

Comparisons of the permanent relative displacements
(dr) of the wall computed by finite difference and New-
mark sliding block analyses (Newmark, 1965) of the
structural block (Figure 2) are shown in Figure 13. From
the finite difference analyses, dr was computed by sub-
tracting the total displacement of the structural node at
the intersection of the stem and base of the wall from
the total displacement of the grid point at the free-field
boundary at the same depth. As may be observed from
Figure 13, dr computed from the finite difference analy-
ses is about 0.33 m.

Newmark sliding block analyses of the structural block
were performed using the acceleration time history
shown in Figure 14. This time history was computed in
the finite difference analyses at the free-field boundary
at a depth corresponding to approximately mid-height of
the structural block. To perform a Newmark sliding block
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Fig. 13. Comparison of the permanent relative displacements
computed by finite difference and Newmark sliding block

analyses (Newmark, 1965): (a) Permanent relative
displacements computed via the Newmark sliding block
procedure assuming N∗ · g = 0.22 g; and (b) Permanent

relative displacements computed via the Newmark sliding
block procedure assuming N∗ · g = 0.27 g.

analysis, a maximum transmissible acceleration (N∗ · g)
has to be specified, which is the value of acceleration im-
parted to the block resulting in a factor of safety against
sliding equal to 1.0. Using the interface friction angle be-
tween the concrete wall and foundation soil (i.e., δ = 31◦)
in conjunction with the weight of the structural block,
N∗ · g was determined to be approximately 0.22 g. The
sliding block analysis resulted in dr = 0.55 m, as shown in
Figure 13a, which is considerably larger than that from
the finite difference analysis.
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Fig. 14. Acceleration time history used in the Newmark
sliding block analysis of the structural block.
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A possible explanation for the difference in the dr val-
ues is that the sliding block analysis did not account for
additional sliding resistance resulting from the “plowing
action” that occurs at the toe of the wall. Although the
wall was not embedded in the foundation soil in its ini-
tial, undeformed shape, the wall tended to rotate around
the toe as it translated away from the backfill. As a re-
sult, the toe of the wall penetrated and plowed through
the foundation soil. Such a mechanism was observed in
the deformed finite difference mesh (Figure 9). To ac-
count for this additional resistance to sliding, N∗ · g was
recomputed assuming a friction angle of 35◦, which is
between the interface friction angle (i.e., δ = 31◦) and
the φ′ of the foundation soil (i.e., 40◦), with the revised
value of N∗ · g = 0.27 g (Figure 14). A comparison of the
permanent relative displacements computed from the fi-
nite difference and the sliding block analyses using the
revised value of N∗ · g is shown in Figure 13b. As may be
observed from this figure, the predicted displacements
are in very close agreement.

4 ADDITIONAL OBSERVATIONS

From an engineering perspective, the main concern for a
gravity retaining wall system is the global stability of the
wall (i.e., sliding, overturning, and bearing capacity fail-
ure). The structural design of such walls is a secondary
issue because the walls are so massive and have a rela-
tively small aspect ratio in cross section. However, this is
not the case for cantilever walls, for which proper struc-
tural design is just as important as global stability. Con-
sequently, the critical load cases for structural design and
global stability need to be determined in designing a can-
tilever retaining wall system. A common assumption in
practice is that the critical load case for global stability,
which is often determined using the Mononobe-Okabe
procedure, is also the critical load case for structural de-
sign. However, the finite difference analyses showed that
this assumption is not valid.

Figure 15 illustrates the critical load cases for both
structural design and global stability from one of the fi-
nite difference analyses. As shown in Figures 15a and 15c,
the critical load case for global stability occurs when the
horizontal ground acceleration is directed into the back-
fill (or correspondingly, when kh is directed away from
the backfill). For this case, in essence, the structural block
is treated as if it were a gravity retaining wall. Accord-
ingly, the stresses and resultant force acting on the inter-
face of the structural block and driving soil wedge (i.e.,
the vertical section through the heel of the wall) are of in-
terest. As may be observed from Figure 15a, the stresses
acting on the structural block are relatively triangularly
distributed, similar to the stress distribution assumed for
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acceleration time history computed at the elevation of the
wall base. Denoted in this time history are the accelerations

and times corresponding to the critical load cases for both the
structural design and global stability.

static analyses of walls (Note: In Figure 15a, the reduc-
tion in stress toward the base of the wall is due to the
arching of the soil in the failure wedge from soil below
the failure plane to the structural block.). As a result, the
point of action of the resultant force is around one-third
the height of the wall from the base.

In contrast to the critical load case for global stability,
the critical case for structural design is shown in Fig-
ures 15b and 15c. For this case, the stresses and resultant
force acting directly on the stem of the wall are of inter-
est. As may be observed from Figure 15c, this case occurs
when the ground acceleration is directed away from the
backfill (or correspondingly, when kh is directed into the
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backfill). As a result, the stresses imposed on the wall
by the soil are relatively uniformly distributed, and the
point of action of the resultant force is about mid-height
of the wall.

Although the magnitudes of the respective resultant
forces are approximately the same for the finite differ-
ence results shown in Figures 15a and 15b (Note: This
may not be the case for all earthquake motions.), it is
the difference in the point of action of the resultant
forces that distinguishes the critical load cases. Critical
for structural design is the moment induced at the bot-
tom of the stem. Hence, for a given resultant force, the
higher the point of action above the base of the wall,
the larger the induced moment around the bottom of
the stem. Consequently, in all the analyses performed by
the authors, the critical load cases for structural design
occurred when kh was directed toward the backfill (and
hence, the soil imposed a fairly uniform stress along the
height of the stem) and the point of action of the resul-
tant force was approximately mid-height of the wall.

5 SUMMARY AND CONCLUSIONS

The authors outline the details of a system model and
its calibration and validation for use in computing the
dynamic response of a cantilever retaining wall. The soil
was modeled using an elastic-perfectly plastic constitu-
tive relation, with the Mohr-Coulomb envelope defining
the yield criterion. The plastic flow rule was assumed
to be nonassociative. The wall was modeled with elastic
beam elements using a cracked second moment of area
(Icracked) equal to 0.4 × Iuncracked. Interface elements are
used to model the wall-soil interface, wherein the inter-
face element parameters are those that give a best fit of
the Gomez et al. (2000a, b) hyperbolic interface model.
The lateral stresses induced on the wall computed in the
finite difference analyses did not correspond with those
predicted by the Mononobe-Okabe method. The reason
for this deviation is attributed to the relative flexibility of
the structural block and to the nonmonolithic motion of
the driving soil wedge, both of which violate assumptions
inherent in the Mononobe-Okabe method. The perma-
nent relative displacement of the wall computed in the
finite difference analyses were in general accord with
those predicted using the Newmark sliding block proce-
dure, once the plowing action at the toe was taken into
account. Finally, it was found that the critical load case of
structural design of the wall differed from that for global
stability, which is contrary to the common assumption
made in practice that the two load cases are the same.
Specifically, the critical load case for global stability oc-
curs when kh is directed away from the backfill and the
critical case for structural design occurs when kh is di-
rected toward the backfill.
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