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Abstract

Background: Predicting treatment benefit and/or outcome before any therapeutic intervention has taken place
would be clinically very useful. Herein, we evaluate the ability of the intrinsic subtypes and the risk of relapse score
at diagnosis to predict survival and response following neoadjuvant chemotherapy. In addition, we evaluated the
ability of the Claudin-low and 7-TNBCtype classifications to predict response within triple-negative breast
cancer (TNBC).

Methods: Gene expression and clinical-pathological data were evaluated in a combined dataset of 957 breast
cancer patients, including 350 with TNBC, treated with sequential anthracycline and anti-microtubule-based
neoadjuvant regimens. Intrinsic subtype, risk of relapse score based on subtype and proliferation (ROR-P), the
Claudin-low subtype and the 7-TNBCtype subtype classification were evaluated. Logistic regression models for
pathological complete response (pCR) and Cox models for distant relapse-free survival (DRFS) were used.

Results: Basal-like, Luminal A, Luminal B, and HER2-enriched subtypes represented 32.7 %, 30.6 %, 18.2 %, and 10.3 % of
cases, respectively. Intrinsic subtype was independently associated with pCR in all patients, in hormone receptor-positive/
HER2-negative disease, in HER2-positive disease, and in TNBC. The pCR rate of Basal-like disease was >35 % across all
clinical cohorts. Neither the Claudin-low nor the 7-TNBCtype subtype classifications predicted pCR within TNBCs
after accounting for intrinsic subtype. Finally, intrinsic subtype and ROR-P provided independent prognostic
information beyond clinicopathological variables and type of pathological response. A 5-year DRFS of 97.5 %
(92.8–100.0 %) was observed in these neoadjuvant-treated and clinically node-negative patients predicted to be
low risk by ROR-P (i.e. 57.4 % of Luminal A tumors with clinically node-negative disease).

Conclusions: Intrinsic subtyping at diagnosis provides prognostic and predictive information for patients receiving
neoadjuvant chemotherapy. Although we could not exclude a survival benefit of neoadjuvant chemotherapy in patients
with early breast cancer with clinically node-negative and ROR-low disease at diagnosis, the absolute benefit of cytotoxic
therapy in this group might be rather small (if any).
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Background
During the last decade, it has become apparent that

gene expression-based data in breast cancer can pro-

vide useful biological, prognostic, and predictive informa-

tion [1, 2]. For example, the main intrinsic molecular

subtypes of breast cancer (Luminal A, Luminal B, HER2-

enriched, and Basal-like) are biologically and prognos-

tically relevant [3–6] and have been associated with

anthracycline and tamoxifen benefit in the adjuvant set-

ting [7–9]. Importantly, the intrinsic subtypes are not

fully recapitulated by the combined determination of

pathology-based biomarkers such as estrogen receptor

(ER), progesterone receptor (PR), Ki67, and HER2 [1, 3,

4, 9–12], all of which are currently being used in the

clinical setting. Thus, from a clinical perspective, there is

a need to understand the value of identifying the intrinsic

subtypes, as well as other gene expression-based classifica-

tions, beyond clinicopathological variables.

We have previously shown that all the intrinsic sub-

types can be identified within various clinically-defined

groups, albeit with different proportions [9, 11, 13, 14].

For example, although the Basal-like subtype predomi-

nates within triple-negative breast cancer (TNBC), all

the intrinsic subtypes can be identified in TNBC, and

identification of the ‘Basal-like versus not’ classification

within TNBC might be clinically relevant [15, 16]. Beyond

the main subtypes of breast cancer, we have also reported

the Claudin-low subtype characterized by the low to ab-

sent expression of luminal differentiation markers, and by

the high enrichment for epithelial-to-mesenchymal transi-

tion markers, immune response genes, and cancer stem

cell-like features [4]. In a previous report, Claudin-low

tumors showed an intermediate pathological complete

response (pCR) rate compared to Basal-like tumors in a

cohort of 133 patients with TNBC and non-TNBC tumors

treated with anthracycline/taxane-based chemotherapy [4].

Recently, Lehmann et al. [17] reported the identifica-

tion of seven different potential molecular subtypes of

TNBC (Basal 1 (BL1), Basal 2 (BL2), Immunomodula-

tory, Luminal androgen receptor (LAR), Mesenchymal,

Mesenchymal stem cell (MSL), and unstable UNS). This

seven-subtype classification of TNBC was found to be

associated with pCR in an independent cohort of 130

TNBC patients treated with anthracycline/taxane-based

chemotherapy [18]. Among the different subtypes, BL2

and LAR subtypes showed the lowest pCR rates, and

BL1 showed the highest pCR rates, compared to the

other subtypes [18].

In this study, we evaluated the ability of the common

PAM50 intrinsic subtypes, and the risk of relapse score

based on subtype and proliferation (ROR-P), to predict

response and survival outcomes beyond standard clinical-

pathological variables following neoadjuvant multi-agent

chemotherapy. In addition, we evaluated the ability of the

Claudin-low [4] and the seven TNBC subtype classifica-

tions [17] to predict pCR within TNBC. Finally, we trained

and tested gene expression-based models predictive of

pCR in all patients, in patients with Basal-like disease, and

in patients with Luminal disease, to identify some of

the driving biological features behind response within

these groups.

Methods
Patients, samples and clinical data

Four clinically annotated microarray-based breast can-

cer datasets were evaluated from the public domain

(GSE25066 [19], GSE32646 [20], GSE41998 [21], and

GSE22226 [22]). All patients received sequential anthracy-

cline and taxane/exabepilone-based neoadjuvant regimens.

Patients that received trastuzumab were excluded. All gene

expression microarray-based analyses were performed in

pre-treatment tumor samples. The total number of pa-

tients included in this analysis was 957 (Additional file 1:

Figure S1). Ethical approval and informed consent were

not required for this study.

The Hatzis et al. [19] dataset includes 508 patients

treated with sequential anthracycline and taxane-based

chemotherapy in various research protocols: LAB99-402,

USO-02-103, 2003-0321, and I-SPY-1. A total of 508 pa-

tients from the Hatzis et al. [19] dataset have follow-up

data. Patients with any nuclear immunostaining of ER in

the tumor cells were considered eligible for adjuvant

endocrine therapy. In Horak et al. [21], 279 patients

were randomized to four cycles of doxorubicin/cyclo-

phosphamide followed by 1:1 randomization to either

ixabepilone 40 mg/m2 every 3 weeks for four cycles or

weekly paclitaxel 80 mg/m2 for 12 weeks, followed by

either weekly paclitaxel or exabepilone for 3 months. In

Miyake et al. [20], 115 patients received paclitaxel

(80 mg/m2) weekly for 12 cycles followed by 5-FU

(500 mg/m2), epirubicin (75 mg/m2) and cyclophospha-

mide (500 mg/m2) every 3 weeks for four cycles.

Finally, Essermann et al. [22] included 149 patients

treated in the ISPY-1 clinical trial with doxorubicin/

cyclophosphamide followed by paclitaxel. In this data-

set, we excluded 80 patients that were already included

in Hatzis et al. [19], one patient that received doxorubicin/

cyclophosphamide-only, and 13 patients that received

trastuzumab.

Pathology-based subtype definitions

We used the pathological ER, PR, and HER2 statuses of

each tumor sample as provided in each dataset [19–22].

The following pathology-based subtype definitions were

evaluated: hormone receptor (HR)+/HER2–, HER2+,

and TNBC.
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Pathological complete response (pCR) definition

pCR across all cohorts was defined as the percentage of

patients with no histologic evidence of residual invasive

carcinoma in the breast and axillary lymph nodes, re-

gardless of the presence or absence of ductal carcinoma

in situ.

Identification of the intrinsic subtypes

In each dataset, all tumors were assigned to an intrin-

sic molecular subtypes of breast cancer (Luminal A,

Luminal B, HER2-enriched, Basal-like) and the Normal

breast-like group using the PAM50 subtype predictor

as previously described [4, 22–24]. For the ISPY-1 [22]

and Miyake [20] cohorts, we used the previously re-

ported subtype calls [22, 25]. In addition, we evaluated

the previously reported ROR-P score [23]. To identify

the Claudin-low subtype [4] in TNBC, we applied the nine

cell-line Claudin-low predictor in each microarray dataset

using all patients as previously described [4]. TNBCs that

were identified as Claudin-low were considered Claudin-

low regardless of the intrinsic subtype call.

Identification of subtypes within TNBC

To identify the seven TNBC subtypes described by

Lehmann et al. [17], we first selected the TNBCs from

each dataset. Secondly, we submitted the raw data of

each individual dataset to the TNBCtype online pre-

dictor (http://cbc.mc.vanderbilt.edu/tnbc/) [26]. The

TNBCtype tool first checks the levels of the ER gene

(ESR1) across all TNBCs, and identifies those samples

with a relative high ESR1 expression level. These ESR-

high TNBCs need to be removed from each dataset in

order for the TNBCtype predictor algorithm to continue.

Training and testing gene expression-based models

We explored the ability of newly derived gene expression-

based models to predict pCR in three different cohorts: all

patients, patients with Basal-like disease, and patients with

Luminal disease (Luminal A and B combined). To build

each model, we explored the expression of 378 different

gene signatures (Additional file 2: Supplemental Data) and

used Elastic Net building model by 10 cross-validations.

To accomplish this, we used the MDACC-based cohort

(GSE25066 [19]) as a training set where each model

was derived in each cohort, and then tested this exact

model in the same clinical cohorts on the other data-

sets (testing sets). To estimate the performance of each

model, we used the area under the receiver operating

characteristic (auROC) curves.

Statistical analysis

Biologic analysis of the gene list was performed with

DAVID annotation tool (http://david.abcc.ncifcrf.gov/)

[27]. Association between subtype and pCR was assessed

by univariate and multivariable logistic regression ana-

lysis. Likelihood ratio tests were used to assess if a vari-

able added predictive information to each model. To

estimate the predictive performance of each variable,

auROC curves were evaluated. Survival functions to dis-

tant relapse-free survival (DRFS) were from the Kaplan-

Meier product-limit estimator with tests of differences

by the log-rank test. Cox proportional hazard models ad-

justed for standard clinical-pathological variables were

used to test the independent associations with survival

of each variable. Reported P values are two-sided.

Results
Clinical-pathological characteristics of the combined

cohort

A total of 957 patients with breast cancer treated with

sequential anthracycline and taxane/ixabepilone-based

neoadjuvant regimens were included in the analysis

(Table 1). All datasets included all clinicopathological

variables, except for histological grade and nodal status

in Horak et al. [19] and nodal status in ISPY-1 et al. [22]

since these were not provided. The mean age was

50.0 years and most patients had tumors of less than

5 cm (61.3 % T0-T2) and positive axillary nodal status

by clinical assessment (69.7 %). Pathology-based subtype

distribution was as follows: 494 (52.7 %) HR+/HER2–, 93

(9.9 %) HER2+, and 350 (37.4 %) TNBCs.

Intrinsic subtype and ROR-P associations with survival

outcome

A total of 508 patients from Hatzis et al. [19] had

follow-up data (mean 2.98 years). In this dataset, both

intrinsic subtype and ROR-P were found to be signifi-

cantly associated with DRFS in univariate and multivari-

able analyses after adjustment for age, tumor size, nodal

status, ER and PR status, HER2 status, histological

grade, and tumor response (pCR vs. residual disease)

(Additional file 1: Table S1 and S2). Of note, a 5-year

DRFS rate of 90.2 % (95 % confidence interval (CI),

82.5–98.6 %) was observed in patients whose tumors

were predicted to be low risk by ROR-P (Additional file 1:

Figure S2A). This 5-year DRFS rate increased to 97.5 %

(95 % CI, 92.78–100.0 %) in patients with ROR-P low

disease that presented with clinically node-negative

disease (Additional file 1: Figure S2B).

Next, we evaluated the survival outcomes based on

the type of pathological response. Within patients that

achieved a pCR, no variable was found to be signifi-

cantly associated with DRFS in univariate analyses

(Fig. 1a and b; Additional file 1: Tables S3 and S4).

Within patients that did not achieve a pCR, both intrin-

sic subtype and ROR-P were found to be significantly

associated with DRFS in univariate and multivariable ana-

lyses after adjustment for the other clinicopathological
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variables (Fig. 1c and d and Table 2; Additional file 1:

Table S5). Among them, tumor size and nodal status

before treatment were significantly associated with DRFS.

Finally, high 5-year DRFS rates were observed as in the

global population in patients with ROR-P low disease that

did not achieve a pCR (5-year DRFS of 92.0 % (95 % CI,

85.5–99.1 %) in all patients and of 97.4 % (95 % CI, 92.6–

100.0 %) in node-negative disease). No statistically signifi-

cant interaction (P = 0.430) was observed between ROR-P

(as a continuous variable) and pCR in DRFS analysis.

Intrinsic subtype association with chemotherapy response

in all patients

The pCR rates across the intrinsic molecular subtypes

were 6 %, 16 %, 37 %, and 38 % for the Luminal A,

Luminal B, HER2-enriched, and Basal-like subtypes,

respectively. In a multivariable model, the intrinsic sub-

types were independently associated with pCR after

adjustment for age, tumor size, ER and PR statuses,

histological grade, HER2 status, and study (Table 3 and

Additional file 1: Table S6). Of note, ER and PR status

Table 1 Clinicopathological characteristics and subtype distribution of the combined cohort evaluated in this study

GSE41998 [21] % GSE25066 [19] % GSE32646 [20] % GSE22226 [22] % TOTAL %

N 279 – 508 – 115 – 55 – 957 –

Age, years (mean) 49 – 50 – 51 – 49 – 50 –

Tumor size

T0-T2 177 64.1 % 288 56.7 % 92 80 % 27 50.0 % 584 61.3 %

T3-T4 99 35.9 % 220 43.3 % 23 20 % 27 50.0 % 369 38.7 %

ER IHC status

Positive 108 38.7 % 297 59.2 % 71 62 % 31 58.5 % 507 53.4 %

Negative 171 61.3 % 205 40.8 % 44 38 % 22 41.5 % 442 46.6 %

PR IHC status

Positive 99 35.6 % 243 48.5 % 45 39 % 21 39.6 % 408 43.1 %

Negative 179 64.4 % 258 51.5 % 70 61 % 32 60.4 % 539 56.9 %

Triple-negative status

No 139 49.8 % 330 65.0 % 89 77 % 47 88.7 % 605 63.4 %

Yes 140 50.2 % 178 35.0 % 26 23 % 6 11.3 % 350 36.6 %

HER2 IHC/FISH status

Negative 251 90.0 % 485 98.8 % 81 70 % 24 49.0 % 841 90.0 %

Positive 28 10.0 % 6 1.2 % 34 30 % 25 51.0 % 93 10.0 %

Histological grade

1 – – 32 6.8 % 16 13.9 % 2 3.6 % 50 14.9 %

2 – – 180 38.2 % 78 67.8 % 27 49.1 % 285 48.2 %

3 – – 259 55.0 % 21 18.3 % 26 47.3 % 306 51.8 %

Nodal status

N0 – – 157 31 % 32 28 % – – 189 30.3 %

N1-3 – – 351 69 % 83 72 % – – 434 69.7 %

pCR rate

No 184 72.7 % 389 79.7 % 88 77 % 37 68.5 % 698 76.7 %

Yes 69 27.3 % 99 20.3 % 27 23 % 17 31.5 % 212 23.3 %

PAM50

Luminal A 91 32.6 % 155 30.5 % 30 26 % 17 30.9 % 293 30.6 %

Luminal B 33 11.8 % 109 21.5 % 23 20 % 9 16.4 % 174 18.2 %

HER2-E 23 8.2 % 40 7.9 % 24 21 % 12 21.8 % 99 10.3 %

Basal-like 110 39.4 % 171 33.7 % 21 18 % 11 20.0 % 313 32.7 %

Normal-like 22 7.9 % 33 6.5 % 17 15 % 6 10.9 % 78 8.2 %

HER2-E, HER2-enriched; pCR, Pathological complete response; ER, Estrogen receptor; PR, Progesterone receptor; IHC, Immunohistochemistry
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by immunohistochemistry (IHC) did not provide inde-

pendent predictive information once intrinsic subtype

was introduced into the model.

pCR rates of the intrinsic subtypes across

pathology-defined subgroups

The intrinsic subtype classification was independently

associated with pCR within HR+/HER2–, HER2+, and

TNBC clinical subgroups (Table 4). Non-luminal (Basal-

like and HER2-enriched) tumors, as a group, showed

higher pCR rates than luminal (Luminal A and B) tumors

in HR+/HER2– (30.0 % vs. 8.9 %, adjusted OR = 4.20,

2.220–7.942), HER2+ (45.8 % vs. 14.3 %, adjusted OR =

5.22, 1.478–18.460), and TNBC (38.5 % vs. 18.5 %,

adjusted OR = 2.89, 1.043–8.003) diseases. Among the dif-

ferent subtypes, the Basal-like subtype showed consistent

pCR rates above 35 % across the three clinically-defined

subgroups (36 %, 58 %, and 37 % in HR+/HER2–, HER2+,

and TN subgroups, respectively). Finally, addition of

the Claudin-low subtype to the PAM50 classification

did not improve the ability to predict pCR in TNBC

(Additional file 1: Table S7).

D
is

ta
n

t 
R

e
la

p
s
e

.f
re

e
 S

u
rv

iv
a

l 
P

ro
p

o
rt

io
n

||||||| ||
||||| |||||||||||||| ||||| | | ||||||| || ||| | || || ||| |

| || | | | | ||| | | || || | | | | | |||| ||| |

D
is

ta
n

t 
R

e
la

p
s
e

.f
re

e
 S

u
rv

iv
a

l 
P

ro
p

o
rt

io
n

| |
|
|

|| |||||| |||||||| ||| | ||||||||| | || | | | |

|| | | | || | || | ||||| ||
||| ||||||| ||| | ||| | || || ||||| || || | |

D
is

ta
n

t 
R

e
la

p
s
e

.f
re

e
 S

u
rv

iv
a

l 
P

ro
p

o
rt

io
n

||
|||

||||||||| ||| ||||||||
||||||| ||||

|| ||| |||||| || || |

| | |

|
|
|
|
|
||

| || |

|| | | |

||||| ||| ||||||||||||||||||||||||||||||||||||||||||||||||||||
||||||||||||||||||||||||||||||||||

||||||||| | | ||||||||||| ||||||| | ||

| |||||||
|||||||||||||| |||||||

||| ||||||||||
| |

|||||||||||| ||| ||||| ||| ||| | ||

D
is

ta
n

t 
R

e
la

p
s
e

.f
re

e
 S

u
rv

iv
a

l 
P

ro
p

o
rt

io
n |

| ||||| | |||| ||
|||

|
|||||||||||| ||||| || ||

||| ||||||| ||| || || | | |

|| | | |||||||||||||||||||| |||| ||||||||||| | |||||||| ||||||||||| | | ||||||| ||||| ||||||||||||
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| ||||||||||||||||||||||||||||||||||||||| |||||

||| || | || | | |||

Fig. 1 Kaplan-Meier distant relapse-free survival analysis in the MDACC-based (GSE25066 [19]) dataset based on the pathological treatment
response. (a) Survival outcomes of the intrinsic subtypes in patients that achieved a pathological complete response (pCR); (b) Survival outcomes
of the risk of relapse score based on subtype and proliferation (ROR-P) groups in patients that achieved a pCR; (c) Survival outcomes of the intrinsic
subtypes in patients that did not achieve a pCR; (d) Survival outcomes of the ROR-P groups in patients that did not achieve a pCR
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TNBCtype association with chemotherapy response

in TNBC

Of the 350 TNBCs, 60 (17.1 %) were identified by the

TNBCtype online tool [26] as having high ESR1 levels

(Fig. 2) and thus were removed from many of the subse-

quent analyses because they are not considered a “class”

by the TNBCtype tool. The intrinsic subtype distribution

within this ESR1-high TNBCtype group was: Basal-like

(n = 20, 33.3 %), Normal-like (n = 17, 28.3 %), Luminal A

(n = 14, 23.3 %), Luminal B (n = 5, 8.3 %), and HER2-

enriched (n = 4, 6.7 %). As predicted, the levels of ESR1

mRNA in the TNBCtype ESR1-high group were signifi-

cantly higher than in the ESR1-low group; however, the

levels of ESR1 mRNA in the ESR1-high group were sig-

nificantly lower than in the group with clinically ER+

disease by IHC (Additional file 1: Figure S3).

The distribution of the PAM50 intrinsic subtypes

within the TNBCtype subgroups was similar to previous

reports where virtually all TNBCtype LAR tumors were

non-Basal-like (i.e. HER2-enriched or luminal), and 42 %

of MSL tumors were Normal-like (Additional file 1:

Table S8 and Figure S4-5). Of note, 12.1 % of TNBCs

subtyped by the TNBCtype (or 10.0 % of all TNBCs)

were identified as UNS, and 86.0 % of these were of the

Basal-like subtype by PAM50; thus, 27 % of the 350 clin-

ically defined TNBCs were not assigned a biological

group (i.e. either ESR1-high or UNS) by the TNBCtype

tool (Fig. 2).

Of the remaining 290 TNBC sample set (350 TNBC –

60 removed for high ESR1), 271 patients with TNBC

had response data (Additional file 1: Table S9). In this

subset, the TNBCtype classification was not found to be

Table 2 Cox model distant relapse-free survival (DRFS) analyses in patients with residual disease from the MDACC-based cohort
(GSE25066 [19])

Univariate analysis Multivariable analysis

Variables n % 5-yr DRFS HR Lower 95 % Upper 95 % P value HR Lower 95 % Upper 95 % P value

Age, years (cont. variable) – – – 1.0 0.98 1.01 0.590 0.98 0.97 1.01 0.129

Tumor size

T0-T2 216 56 % 74 % 1.0 – – – 1.0 – – –

T3-T4 173 44 % 61 % 2.1 1.38 3.07 <0.001 1.5 1.16 1.92 0.002

Node status

N0 126 32 % 85 % 1.0 – – – 1.0 – – –

N1-3 263 68 % 66 % 3.3 1.90 5.71 <0.001 2.9 1.62 5.37 <0.001

ER IHC

Positive 129 34 % 78 % 1.0 – – – 1.0 – – –

Negative 255 66 % 47 % 4.0 2.69 6.02 <0.001 1.8 0.87 3.56 0.114

PR IHC

Positive 175 46 % 79 % 1.0 – – – 1.0 – – –

Negative 208 54 % 54 % 3.3 2.15 5.05 <0.001 1.2 0.62 2.13 0.654

HER2 STATUS

Negative 373 99 % 68 % 1.0 – – – 1.0 – – –

Positive 3 1 % NA 1.1 0.16 8.16 0.900 0.5 0.07 3.65 0.485

Histological grade

1 28 8 % 96 % 1.0 – – – 1.0 – – –

2 160 44 % 73 % 6.1 0.83 44.43 0.076 2.75 0.36 20.94 0.33

3 175 48 % 60 % 10.9 1.51 78.73 0.018 2.54 0.33 19.66 0.37

PAM50

Luminal A 144 37 % 83 % 1.0 – – – 1.0 – – –

Luminal B 90 23 % 74 % 1.8 0.90 3.46 0.097 1.4 0.69 2.82 0.360

HER2-E 30 8 % 41 % 5.9 3.38 10.30 <0.001 2.7 1.15 6.41 0.023

Basal-like 102 26 % 48 % 5.3 2.63 10.84 <0.001 2.8 1.19 6.42 0.018

Normal-like 23 6 % 82 % 1.6 0.55 4.85 0.380 – – – –

HER2-E, HER2-enriched; pCR, Pathological complete response; ER, Estrogen receptor; PR, Progesterone receptor; IHC, Immunohistochemistry
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significantly associated with pCR in univariate (P =

0.762) or multivariable analyses (P = 0.836). Of note, only

eight patients had luminal A/B disease and their pCR

rate was 25 % versus 41 % in non-luminal (Basal-like

and HER2-enriched combined) tumors (OR = 0.477,

0.094–2.410).

Finally, we explored the ability of the TNBCtype classifi-

cation to predict pCR within TNBC if the ESR1-high sam-

ples were included as an eighth subtype (i.e. ESR1-high).

Interestingly, the pCR rate of the TNBCtype subtypes, as a

single group, was significantly higher than the pCR rate of

the ‘excluded’ TNBC ESR1-high group (39.9 % vs. 23.2 %,

OR = 2.970, 1.221–7.222). In the entire TNBC population

(n = 350), the TNBCtype classification that included the

ESR1-high group was found significantly associated with

pCR in multivariable analysis (P = 0.020) but not in uni-

variate analysis (P = 0.239). When the TNBCtype + ESR1-

high classification was included first in a multivariable

Table 3 Logistic regression model analyses of chemotherapy response in the combined cohorta

Univariate analysis Multivariable analysis

Signatures n pCR rate OR Lower 95 % Upper 95 % P value auROC OR Lower 95 % Upper 95 % P value auROC

Age, years (cont. variable) – – 1.0 0.97 1.00 0.027 0.547 0.99 0.97 1.01 0.178 0.744

Tumor size

T0-T2 556 24 % 1.0 – – – 0.519 1.0 – – –

T3-T4 353 12 % 0.8 0.55 1.02 0.071 0.6 0.50 0.84 0.001

ER IHC

Positive 487 11 % 1.0 – – – 0.679 1.0 – – –

Negative 415 37 % 4.7 3.39 6.61 <0.001 1.8 0.99 3.34 0.052

PR IHC

Positive 393 12 % 1.0 – – – 0.643 1.0 – – –

Negative 507 33 % 3.8 2.64 5.36 <0.001 1.1 0.65 1.89 0.716

HER2 STATUS

Negative 799 22 % 1.0 – – – 0.533 1.0 – – –

Positive 88 35 % 2.1 1.30 3.30 0.002 1.3 0.64 2.51 0.492

PAM50

Luminal A 281 6 % 1.0 – – – 0.719 1.0 – – –

Luminal B 168 16 % 3.0 1.57 5.64 0.001 3.3 1.72 6.45 <0.001

HER2-E 93 37 % 8.9 4.69 17.09 <0.001 6.1 2.75 13.38 <0.001

Basal-like 296 38 % 9.6 5.49 15.40 <0.001 6.1 2.94 12.66 <0.001

Normal-like 72 29 % 6.4 3.16 12.96 <0.001 – – – –

STUDY

HORAK 253 27 % 1.0 – – – 0.553 1.0 – – –

ISPY 54 31 % 1.2 0.65 2.32 0.532 1.3 0.55 3.16 0.540

MDACC508 488 20 % 0.7 0.48 0.97 0.032 0.9 0.58 1.33 0.526

MIYAKE 115 23 % 0.8 0.49 1.37 0.443 1.0 0.55 1.95 0.910
aOR, Odds ratio; auROC, Area under the receiver operating curve; HER2-E, HER2-enriched; pCR, Pathological complete response; ER, Estrogen receptor; PR, Progesterone

receptor; IHC, Immunohistochemistry

Table 4 Association of the intrinsic subtypes with chemotherapy response across the various pathology-based groups

All patients Luminal A Luminal B HER2-enriched Basal-like P value*

n pCR n pCR n pCR n pCR n pCR

All subgroups 838 23 % 281 6 % 168 16 % 93 37 % 296 38 % <0.001

HR+/HER2– 451 12 % 239 5 % 143 15 % 25 16 % 44 36 % <0.001

HER2+ 76 34 % 16 0 % 12 33 % 36 42 % 12 58 % 0.011

HR–/HER2– (TN) 292 37 % 19 26 % 8 0 % 30 47 % 235 37 % 0.011

*Likelihood ratio tests: adjusting clinical features: age, clinical stage, clinical nodal status and study cohort. Hormone receptors status and HER2 status were also

included in “all subgroups”

pCR, Pathological complete response; ER, Estrogen receptor; PR, Progesterone receptor
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model, addition of the PAM50 classification did not add

independent predictive information, but was trending

toward significance (P = 0.096). Similar results were ob-

tained if the PAM50 classification was included first into

the multivariable model and the TNBCtype + ESR1-high

classification was added second (P = 0.088).

Training and testing gene expression-based models

predictive of pCR

We explored the ability of newly derived gene expression-

based models to predict pCR in three different subgroups:

all patients, patients with Basal-like disease, and patients

with Luminal disease (Luminal A and B combined). To

accomplish this, we built a model in the MDACC-based

cohort (training dataset) and then tested the same model

on the other cohorts (testing datasets) (Additional file 1:

Figure S6-8).

In all patients, a gene expression-based model was iden-

tified in the MDACC-based cohort with an auROC of 0.80

(P <0.0001). This model predicted pCR in each testing

datasets with auROC between 0.67-0.75 (P <0.001), and in

the combined testing dataset (auROC 0.69, P <0.0001).

The gene signatures that composed the model and whose

high scores were associated with residual disease were

correlation to the Luminal A centroid, correlation to

PTEN present, and the Luminal A subtype (Additional

file 1: Figure S6). Conversely, the gene signatures that

composed the model and whose high scores were associ-

ated with pCR were correlation to the Basal-like centroid,

correlation to PTEN absent [28], a beta-catenin signature,

and a fetal mammary stem cell signature [29, 30].

In patients with Basal-like disease, a gene expression-

based model was identified in the MDACC-based cohort

(n = 166; auROC = 0.82, P <0.0001). This model pre-

dicted pCR in Horak et al. [19] (auROC 0.63, P = 0.018)

and in the combined cohort of testing sets (n = 130;

auROC 0.62, P = 0.011). Gene signatures that composed

the model and whose high score were associated with

residual disease were related to stromal/fibroblast-re-

lated biological processes (Additional file 1: Figure S7).

Conversely, gene signatures that composed the model

and whose high scores were associated with pCR were

associated with histone/chromatin remodeling.

Finally, in patients with Luminal disease, a gene

expression-based model was identified in the MDACC-

based cohort (n = 254; auROC = 0.82, P <0.0001). This

model predicted pCR in Miyake et al. [20] (auROC

0.76, P = 0.03) and in the combined cohort of testing

sets (n = 195; auROC 0.64, P = 0.014). The only gene

signature that composed the model and whose high

score was associated with residual disease was correl-

ation to TP53 wild-type status, whereas the only gene

signature that composed the model and whose high

score was associated with pCR was correlation to TP53

mutation (Additional file 1: Figure S8). Of note, both

TP53 signatures composed our previously reported

TP53 loss/mutation predictor [31].

Discussion
Herein, we evaluated the association of the intrinsic sub-

types of breast cancer with response and survival outcomes

in a large combined dataset of newly diagnosed patients

treated with multi-agent neoadjuvant chemotherapy and

we made the following observations. First, the intrinsic

subtypes of breast cancer provided independent prognostic

information beyond standard clinical-pathological vari-

ables. Second, within patients that do not achieve a

pCR, the ROR-P predictor can identify a group of pa-

tients with clinically node-negative disease with an

excellent survival outcome at 5-years. Third, the intrin-

sic subtypes predict pCR and their predictive value is

independent of standard clinicopathological variables.

Fourth, the Basal-like subtype identifies a group of

patients with a pCR rate >35 % across all pathology-

based cohorts evaluated, including TNBC. Fifth, neither

the identification of the Claudin-low subtype nor the

recently reported seven-TNBC subtype classification

predicted pCR within the large TNBC data set tested

here, whereas the Luminal versus non-Luminal separation

did predict pCR. Sixth, robust gene expression-based

models predictive of pCR can be identified within all

Fig. 2 Distribution of the TNBCtype, PAM50, and PAM50 + Claudin-low subtypes within 350 clinically-defined TNBCs
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patients, Basal-like disease, and Luminal disease; however,

additional validation of these new predictors is needed.

The intrinsic subtypes have previously been associated

with outcome in patients that have not received adjuvant

systemic therapy [32] and in patients that have received

adjuvant endocrine therapy-only [33–38]. More recently,

similar data has been observed in patients that have

received adjuvant multi-agent chemotherapy, including

CMF, anthracycline-based, and anthracycline/taxane-

based chemotherapy regimens [5, 8, 33]. Concordant

with the results of these studies, we observed an inde-

pendent association of the intrinsic subtypes with DRFS

in a population treated with cytotoxic and endocrine

therapy (if HR+). Interestingly, this association with out-

come was observed despite the fact that 20.3 % of the

patients in the Hatzis et al. [19] dataset had an outstand-

ing survival outcome at 5-years after achieving a pCR.

This data reaffirms the strong prognostic ability of intrin-

sic subtyping in the context of standard adjuvant therapy.

The prognostic abilities of the PAM50 ROR-P have

been clinically validated in two large retrospective co-

horts from the ABCSG08 and transATAC phase III

trials, where patients with surgically removed tumors re-

ceived adjuvant endocrine therapy only [36, 37]. In this

context, patients with a low ROR-P score have an out-

come of distant metastasis-free survival at 10-years of

97.5 % [32], and these patients might be safely spared

adjuvant (or neoadjuvant) chemotherapy. In our cohort

of patients treated with neoadjuvant cytotoxic and adju-

vant endocrine therapy (if HR+), ROR-P at diagnosis

independently predicted DRFS and identified a low risk

group of patients, especially within clinically node-negative

disease, with an outstanding outcome (DRFS >95 % at 5-

years). Similar results have been obtained with other prog-

nostic signatures tested in patients with early breast cancer

treated with and without multi-agent chemotherapy [39].

These nearly identical DRFS survival times with or without

chemotherapy suggest that the potential survival benefit

from neoadjuvant chemotherapy in patients with newly

diagnosed breast cancer that is clinically node-negative

and ROR-P low might be rather small, if any. In Hatzis

et al. [19], the proportion of patients with ROR-P low

within clinically node-negative disease was 26.8 %. If

the main objective of neoadjuvant chemotherapy is to

increase survival, then these patients with an outstanding

baseline prognosis should be spared the toxic side-effects

of chemotherapy and undergo surgical removal of their

tumors.

Molecular classification of TNBC into subgroups that

might be therapeutically relevant is an area of active and

ongoing research. For example, the PAM50 assay identi-

fies all the intrinsic molecular subtypes within TNBC, al-

though Basal-like disease predominates [40]. In addition,

we have identified and characterized a rare but relevant

intrinsic subtype known as Claudin-low [4]. Interestingly,

the intrinsic subtypes within TNBC share the same mo-

lecular features as the same subtypes within non-TNBC

with the exception of the TNBC HER2-enriched tumors

that do not show amplification of the ERBB2 17q ampli-

con [5, 41]. In our combined cohort of 350 TNBC cases,

intrinsic subtyping, and especially the luminal versus

non-luminal distinction, was found to be associated

with pCR following neoadjuvant chemotherapy. How-

ever, the addition of the Claudin-low classification to

the PAM50 classification did not improve these pCR

versus no pCR predictions.

In addition, Lehmann et al. [17] have classified TNBC

into seven subtypes (BL1, BL2, Immunomodulatory,

LAR, Mesenchymal, MSL and UNS). This seven-subtype

classification of TNBC has been found to be associated

with pCR in an independent cohort of 143 patients with

TNBC treated with anthracycline/taxane-based chemo-

therapy [18]. In our combined cohort of 290 TNBC

cases with seven-subtype information, the Lehmann

et al. [17] classification was not found to be significantly

associated with pCR. However, concordant with a previ-

ous report, BL1 showed the highest pCR rate (i.e. 47 %)

and BL2 the lowest pCR rate (i.e. 28 %). Surprisingly, the

LAR group, which was found to have a 10 % (2/20) pCR

rate in a previous report [18], showed a 37 % pCR rate

in this larger combined cohort. This difference might be

due to the fact that 71.4 % (20/28) of LAR tumors in our

combined cohort were of the HER2-enriched subtype, a

group of tumors highly responsive to chemotherapy, and

only 17.9 % (5/28) were of the Luminal A/B subtype.

Two important issues of the Lehmann et al. [17] classifi-

cation need to be taken into account. First, this classifica-

tion ignores the Normal-like/normal tissue distinction. In

other words, triple-negative tumors that are highly con-

taminated with normal breast tissue, which represent

11–16 % of the samples found in publicly available

microarray datasets [17], are now classified into “tumor”

subtypes. Whereas PAM50 identifies these tumors as being

more similar to true normal breast samples (i.e. Normal-

like) than to any tumor subtype, the Lehmann et al. [17]

classification calls them as if they were a tumor (mostly

MSL), although the Normal-like samples can also be ob-

served in other subtype categories [40, 42]. Second, a sub-

stantial proportion of TNBC samples (~13–16 %) coming

from the Lehmann et al. [17] classification were either not

considered to be TNBC by gene expression and are re-

moved (i.e. ESR1-high), or they fall into the unclassified or

unstable (UNS) group, which is composed of a mix of

tumors that only share the feature that they cannot be clas-

sified into one of the other six tumor subtypes.

This study also has other limitations that need to be

highlighted. First, this was a retrospective and explora-

tory analysis of four datasets of patients treated with
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multi-agent chemotherapy; thus, we did not test a pre-

specified hypothesis. Second, we used the research-based

version of the PAM50 assay and not the standardized

version that is currently commercially available. Third,

we could not evaluate the predictive ability of the intrin-

sic subtypes to specific regimens or schedules. Fourth,

we used the pathological data as provided in each publi-

cation and different definitions and cutoffs might have

been used to determine the positivity of each biomarker.

Thus, the results might have differed if ER, PR, and

HER2 status had been centrally confirmed. Nonetheless,

we and others have reported that, even within centrally

confirmed TNBC, all the intrinsic molecular subtypes

can be identified [15]. Fifth, Ki-67 by IHC was not available

in any of the four datasets and thus we could not explore

the ability of this biomarker to predict pCR following

chemotherapy or survival outcome in the presence of the

intrinsic subtypes or histological grade [43], especially

within HR+/HER2– disease. Sixth, the survival outcomes

were only available in one of the datasets evaluated. Finally,

the cutoffs to define the three risk groups of ROR-P were

based on a large node-negative cohort that did not receive

adjuvant systemic therapy [24]. These cutoffs might differ

from the current standardized PAM50 version that takes

into account tumor size and that defines the low risk group

as those patients with a risk of distant relapse at 10-years

below 3 % [36, 37].

Conclusion
To conclude, intrinsic subtyping at diagnosis provides use-

ful prognostic and predictive information for neoadjuvant

chemotherapy-treated patients. The absolute benefit of

chemotherapy in early breast cancer with clinically node-

negative disease might be low if predicted to be ROR-P

low risk at diagnosis. Further studies are needed to deter-

mine the role of intrinsic subtyping in treatment decision-

making at diagnosis of breast cancer.

Availability of data and materials
Four clinically annotated microarray-based breast can-

cer datasets were evaluated from the public domain

(GSE25066 [19], GSE32646 [20], GSE41998 [21] and

GSE22226 [22]). The sample names and subtype calls

can be found in Additional file 2: Supplemental Data.
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