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Response delays and the timing of discrete motor responses*

ALAN M. WING and A. B. KRISTOFFERSON
McMaster University, Hamilton, Ontario, Canada

A model for the timing of repetitive discrete motor responses is proposed, and a prediction of negative dependency
between successive interresponse intervals is coniumed by data from a Morse key tapping task. A method that makes
use of the first-order serial correlation between interresponse intervals is used to distinguish between variance due to a
timekeeping process and variance in motor response delays subsequent to the timekeeper. These two quantities are
examined as a function of mean interresponse interval.

since, for independent random variables, C and D, all the
other expectations are zero. The lag zero covariance is
defined:
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where the lag one covariance, 1'1(1), is defined as the
expectation over all intervals of the product of the
deviation of one interresponse interval about the mean
and the deviation of the immediately preceding interval
~bout the mean:

For simple skills such as the periodic tapping of a
Morse telegraph key where the response of key closure is
easily produced and is repeatable, successive responses
may be used to define a chain of interresponse intervals.
Wing and Kristofferson (1973) have examined the
relation between interresponse interval mean and
variance for experiments in which highly trained Ss
produced many such sequences of interresponse intervals
in the range from 170 through 350 msec. To account for
the observed function, they proposed a mechanism for
the timing of discrete responses with two distinct
processes (see Fig. 1). At intervals, Cj , a timekeeping
process is assumed to generate trigger pulses, each of
which initiates a motor response. In addition, to allow
for the effects of, for example, neuromuscular
transmission lags, movement time, etc., a delay process is
assumed. Thus, subsequent to the jth trigger pulse, there
is a delay, Db before the response is observed. In this
paper, we assume that C and D are independent random
variables with means, Ilc and Iln, and variances, a~ and
at, respectively. The jth interresponse interval (assumed
greater than zero) is given by:

(1)

Equation 4, which is formally equivalent to a result

=ai

Thus, for the two-process timing mechanism, the lag one
serial correlation is given by:

with mean, III = Ilc, and variance, ai .
McGill (1962) has suggested the special case of this

model, for which a~ =: 0, as an account of rate
fluctuations in, for example, the action potentials of the
horseshoe crab optic nerve. If it is assumed that D is
exponentially distributed, it can be shown that I should
have the Laplace distribution, and he presented data
with I distributions of this form as support for the
model.

The lag one serial correlation, PI(1), may be used as a
measure of the statistical dependence between successive
interresponse intervals. It is defined:
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Fig. I. Schematic of a two-process mechanism for the timing of repetitive discrete motor responses.

derived by Ten Hoopen and Reuver (I 967), is important
for the reason that it demonstrates tha{ negative
dependence between successive intervals in a response
timing task need not be a result of the feedback of
temporal information from the previous interresponse
interval in the production of the current interval. While
we could not reject a feedback interpretation if negative
lag one serial correlation is found in interval production
tasks, the important point is that a simpler alternative
would be that such correlation is just an artifact of the
delays in the system subsequent to the controlled timing
of a particular interval. For example, the special case
for which the timekeeper has no variability
(a~ = 0) would lead to PI(l) of negative one half. On the
other hand, a prediction of zero PI(I) obtains if the
timekeeper variance is very large (a~ ~ a~).
Furthermore, if a~ is intermediate with respect to these
two extremes, a value would be expected for PI(I) in the
range 0> PI(!) > -1/2, depending on the ratio of the
timekeeper variance to the variance of response delays.

Suppose interest is centered on possible mechanisms
for the timekeeper itself. An important clue to the
nature of the timekeeper could be provided by its
variability as a function of interresponse interval. Wing
and Kristofferson (I973) have used estimates of ai as
approximations to a~, assuming that the contribution of
ai:, to the overall variance is not a function of
interresponse interval. Rather than making such an
assumption, it would be preferable to make a direct
determination of a~. This may be done by using the
following relation derived from Eqs. 2 and 3:

(5)

In this paper, the data of Wing and Kristofferson (I973)
are subjected to the analysis suggested by Eq. 5 in order
to examine the relation between interresponse interval

and the variance of the timekeeper. Data from a
previously unpublished experiment using different Ss
and intervals in the range of 250-400 msec are also
reported.

METHOD

The procedure is fully described in Wing and Kristofferson
(1973). In each session. 5s were exposed to five blocks of 11
sequences of combined paced and unpaced Morse key tapping
using the right hand. After a warning signal, each sequence began
with 24 auditory pulses of 10 msec duration separated by fixed
intervals of (T - 10) msec with which 5 attempted to
synchronize his key tap responses. Following the last of the train
of pulses in this synchronization phase, 5 was required to
continue tapping at the established, fixed rate for a further 31
responses. A warning signal sounded on the last response in this
continuation phase to indicate to S that he should stop. In any
session, only one value of the standard, T, was used.

In Experiment I (hereafter referred to as Experiment AI) of
Wing and Kristofferson, six values of T were used which ranged
from 180 through 350 msec; at each T, prior to the four sessions
from which data was taken for analysis, 5s were given six
practice sessions. In their Experiment 11 (A 2 ), using the same
four Ss, the three values of T were 170, 220, and 270 msec, but
only four practice sessions were given. Since the 5s appeared to
be physically limited in responding at the fastest rate (T =
170 msec), those data are not treated here. In the experiment
not previously reported (B), four different Ss were run, using the
same procedure with four practice sessions preceding data
collection at six T values from 250 to 400 msec. .

RESULTS

Analyses are based on the last 30 intervals recorded in
the continuation phase of each of the sequences run in
the last four sessions at each T value. Sequences in which
"missed" or "bounced" key responses occurred were not
included in the analysis. (Less than 5% of sequences for
Ss in Experiments Al and A2 had to be rejected; a
slightly higher percentage of sequences in Experiment B
could not be used on this basis.)



Estimates of Pr(l) were based on the value of Pr(l)
averaged over all sequences at a given value of T where:

with

N

:E (Ij - 1)(Ij-l - T)
j=2

Gr(l) =------­
N-l

and

where

N

:E Ij
- j=l
I =r;.r ,and N =30.

The estimators for a~ and at were based on the values
of S~ and st, respectively, averaged over all sequences
at a given value of T:

s~ = Gr(O) + 2Gr(l)

st= -Gr(l)

Experiment A

Changes in Tand Pr(1) within sequences were small, as
determined by averaging over sequences the differences
between the statistics calculated for the first 15 and the
second 15 interresponse intervals of each sequence.
These are shown for M.F. in Table 1. There was no
obvious effect of T on these differences for the four Ss
and their results, pooled over T values, are given i~
Table 2. Since the assumption of stationarity in the
underlying data generating process appears to be a
reasonable approximation, we do not remove long-term
trends in the data before ca1cul~ingGr(l) and Gr(O).

Figure 2 shows, for each S, Pr(l) as a function of the
overall mean interresponse interval for Experiments Al
and A2 • On the basis of the variance of the Pr(1), two
standard errors of the statistic about zero correlation are
shown for M.F. These were typical of the errors for the
other three Ss. The estimates of the lag one serial
correlation are all in the range of 0 > Pr(1) > -1/2.

The estimates of a~ and at are shown for each S in
Figs. 3-6 as a function of interresponse interval. Best fit
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Table I
Change in Mean and Lag One Serial Correlation Coefficient

for S M.F. in Experiment A (+ Sign Indicates
Increase in Absolute Magnitude)

Standard (msec)

180 220 270 350

Change in r (msec) +1.23 +2.10 +0.17 +0.54
SD (msec) 2.12 2.11 2.50 3.44

Change in PI (1) -0.031 -0.039 -0.042 +0.012
SD 0.317 0.338 0.316 0.292

N 212 209 203 209

Table 2
Change in Mean and Lag One Serial Correlation CoefilCient
Averaged Over Eight Values of T from 180 through 350 msec

in Experiment A (+ Sign Indicates Increase
in Absolute Magnitude)

Subject

A.W. l.W. LT. M.F.

Change in f (msec) +0.74 +1.36 +0.29 +0.89
Pooled SD (msec) 2.22 2.16 3.20 2.48

Change in PI (1) 0.000 -0.011 O.QIl -0.030
Pooled SD 0.316 0.318 0.319 0.324

straight lines to the estimates of the form ~ =a{T -13)
were determined by least squares, and in all cases the
intercepts, al3, are negative, such that the values of the
intervals corresponding to zero variance, 13, are in the
range of 69-122 msec. The estimates, S1, exhibit, in
general, a minimum in the region of intervals
corresponding to intermediate values of the standard, T.

Experiment B

Tables 3 and 4 summarize changes in T and Pr(l) from
first to second halves of each sequence. Again, we retain,
as a first approximation, the assumption of stationarity.

Pr(l) is plotted as a function of mean interresponse
interval for Experiment B in Fig. 7. Two standard errors
about a serial correlation of zero are shown for C.Y. All
estimates fall in the range 0 > Pr(l) > -1/2.

Estimates, S1 (see Figs 8-11), were about twice the
size of those obtained for the Ss of Experiment A. (Note
that Fig. 11 is plotted on a variance scale which is twice
that of the other plots). One S (8.8.) yielded 51, which
increased monotonically with T, while for the other Ss
the estimates were an irregular function of T. Least
squares best fit straight lines to ~ are shown and have
intercepts 13 in the range of 107-236 msec.

DISCUSSION

By analogy with accounts of performance in duration
discrimination tasks, Wing and Kristofferson (1973)
suggested two contrasting models for the relation
between the variance in the timing of discrete motor
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Fig. 2. Average lag one serial correlation. 1'1(1), as a function of mean interresponse interval, I, for each S in Experiment A. Two
standard errors about zero shown for M.F. Average function over Ss for Experiment AI indicated by the continuous line and for
Experiment Ao shown by the broken line.

responses and the interval being produced between
responses. On the one hand, they proposed (I) a
timekeeper having variance so large with respect to the
variance of the efferent delays that the latter could be

considered negligible. For the alternative (II), it was
assumed that the timekeeper was essentially
deterministic and that the interresponse interval variance
was attributable entirely to the response delay variance.
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Fig. 3. Estimates of timekeeper interval variance, sb and
response delay variance, Sb, as a function of Tfor A.W.
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Table 3
Change in Mean and Lag One Serial Correlation Coefficient

for S C.Y. in Experiment B (+ Sign Indicates
Increase in Absolute Magnitude)

Standard (msec)

250 300 400

Change in I (msec) +0.06 +0.89 -3.92
SD (msec) 2.79 2.62 3.49

Change in PI (1) +0.033 -0.046 +0.017
SD 0.267 0.309 0.289

N 204 193 181

Table 4
Change in Mean and Lag One Serial Correlation Coefficient
Averaged Over Six Values of T from 250 through 400 msec

in Experimellt B (+ Sign Indicates Increase
in Absolute Magnitude)

Subject

-'. -II ~~ C.Y. B.B. R.S. M.U.

Change in I (msec) -1.21 -0.65 -0.29 0.24
, I limo> Pooled SD (msec) 2.82 3.49 3.62 5.51

»0

Change in PI (1) -0.015 -0.011 +0.022 -0.010
Pooled SD 0.275 0.298 0.324 0.328
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Fig. 6. S~ and si> vs I for M.F.

The additional assumptions were made that, for Model I,
the variance of the timekeeper was a linear increasing
function of interresponse interval but that, in II, the

response delay variance was not a function of
experimental condition (that is, response delay variance
does not depend on the interresponse interval). Using
the interresponse interval data analyzed as Experiment A
in this paper, they showed that neither (I) nor (II) alone
was adequate to account for the observed relation
between interresponse interval mean and variance.
Instead, they argued for a "combined" model, with both
timekeeper and response delay processes contributing
variance to the interresponse intervals. In the
introduction of the present paper, a generalized
development of this model was given and (I) and (II) will
be seen as the special cases for which a~ ~ ai> and
o~ ~ ai" respectively. From Eq.4, we could have
predicted the lag one serial correlation for (I) as 0 and
for (II) as -1/2. Since the estimates of the lag one serial
correlation, fl(l), are all intermediate in this range, we
can thus reject both (I) and (II) without havinrto make
the supplementary assumptions about how 0c and oi,
depend on IJ.I'

Within the framework of the general two-process
model, we fmd the estimates, Si>, are not constant over
different values of T. However, if ai, includes variance
attributable to skeletomuscular factors,
since it may be supposed that the group of muscles
involved in the keytapping response will operate more
efficiently, and so with less variability, at certain rates of
responding, irregularity in ai> could be expected. If an
account of the timekeeper is formulated in terms of a
stochastic wait process for the production of the
intervals, C. between trigger pulses. the expected relation
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Fig. 7. PIO) vs f for each S in Experiment B. Two standard errors about zero shown for C.Y.

120

s'
em.'l

100
100

•

.
...----~---~ ..-.

o

o

o

o 10

.-•

~
......• s:

I _ "

./._.-:~"::./
.-

, ..'
•

o .....-----r---.....,----.,----.jr-------.o IlmsJ
250 210 lOO 330 360 400 o r.--I--~I--~--~,---~, Ilm,l

2'50 270 300 330 JllO ~oo

. -2.-2-
Fig. 8. Sc and Sn vs I for C.Y.

between a~ and III is a linear increasing function with
zero intercept. However, for all Ss, it was found that the
best fitting linear relation between ~ and T has
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Fig. 9. Sc and Sn vs I for B.B.

intercept, {3, on the I-axis greater than zero. Assuming
the validity of the two-process response timing model,
one possible account of nonzero {3 is that the interval
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between trigger pulses is the sum of two quantities:

(6)
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where R is a random variable with fixed mean, }J.R, and
ftxed variance, a~, and W is the random variable
(independent of R) defined on the waiting time such that
a~ is directly proportional to JJ.w (and thus to }J.l)' In
this case, the form of the a~ vs }J.I function, determined
by W, is stH! linear:2 but the intercept, (3, will depend on
the parameters, OR and }J.R' It should be noted, in
passing, that the quantity Rj is not defined in such a way
that it could be the output of a deterministic timekeeper
such as in (II) above. Rather, it might be conceptualized
as a "reset" time for the process, which subsequently
determines the duration of the wait, W.

Whatever the true form of the a~ VS}J.I relation, it
would be a reasonable guess that, if Ss are required to
produce longer interresponse intervals, a~ will become
more important relative to ab in the determination of
PI(1)· If the value of ob remains constant as a~
increases, a point would be reached for which PI(1) is
effectively zero. Michon (1967) has reported interval
production data from a Morse keytapping task similar to
the one used in this study with 200 intervals per
sequence but with standards ranging from 333 to
3,333 msec. For a sample of eight sequences chosen at
random from all standards and Ss, he reports that the lag
one serial correlation estimate was not significantly

100

....
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Fig. 10. Sc and So vs I for R.S.

different from zero. While we should have been
interested to know more precisely the effect of using
longer standards, within the framework of the
two-process response timing model, this result does at
least suggest that the influence of variability in the
response delays plays a less significant role at longer
interresponse intervals.

The method derived from the two-process model for
decomposing an overall interval variance, 0;, into the
two variances, a~ and ab, may be contrasted with the
approach sometimes taken in reaction time which treats
the latency of response to a stimulus as the passage time
through a series of processing stages, each with a
characteristic distribution of delays. If it is assumed that
the configuration is stable, that from trial to trial the
same stages are involved, the overall latency distribution
is given by the convolution of the component stage
distributions. When specific assumptions are made about
the latency distributions of a subset of stages (for
example, those involved in making the sensory decision),
the latency distribution of the remaining stages (which
would include stages relating to response selection and
initiation) can be determined by the use of Fourier
transforms in performing the deconvolution (Green,
1971). In this paper. we have postulated interresponse
intervals to be the convolution of three latencies arising
from two major ('omponent processes or subsets of
stages. However. the nature of the model adopted in this
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case permits the determination of a characteristic of the
latency distributions of both the processes (Le., the
variances) without having to arbitrarily specify a value
for the variance of one or the other. What justification is
there for the analysis? Clearly, the general two-process
mechanism as presented in the introduction provides a
sufficient characterization of the formal requirements of
a fixed-rate repetitive response task, and the
experimental procedures chosen would be expected to
maximize the chances that it provide an appropriate
interpretation. (This does not exclude the need for more
elaborate process models, including the feedback and use
of temporal information in dynamic tasks such as
temporal tracking or the synchronization of responses
with a stimulus train; cf. Michon, 1967; VoilIaume,
1971.) On the empirical side, the prediction that
PI(I) lies within the range 0> PIC!) > -1/2 was
confirmed for all Ss. As support for the proposal of
distinct timekeeping and response delay processes, an
important result would be to show experimental factors
which selectively influence a~ and ai>. An alternative
strategy for research into the two-process model would
be to establish a general model with relaxed

independence assumptions that holds under limiting
conditions, for example, of very rapid responding, and
then to show that, under the conditions of the
experiments described here, the dependence parameters
are zero so that the assumption of independence is
adequate.
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