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(ABSTRACT) 

The response of a parametrically-excited system to a deterministic 

nonstationary excitation is studied. The system, which has a cubic 

nonlinearity, has one focus and two saddle points and can be used as a simple 

model of a ship in head or follower seas. The method of multiple scales is 

applied to the governing equation to derive equations for the amplitude and 

phase of the response. These equations are used to find the stationary 

response of the system to stationary excitation. The stability of the stationary 

response is examined. The stability of stationary periodic solutions to the 

original governing equation is examined through a Floquet analysis. The 

response to a nonstationary excitation having (a) a frequency that varies linearly 

with time, or (b) an amplitude that varies linearly with time, is studied. The 

response is computed from digital computer integration of the equations found 

from the method of multiple scales and of the original governing equation. The 

response to nonstationary excitation has several unique characteristics, 

including penetration, jump-up, oscillation, and convergence to the stationary 

solution. The agreement between solutions found from the original governing 



equation and the method-of-multiple-scales equations is good. For some 

sweeps of the excitation frequency or amplitude, the response to nonstationary 

excitation found from the original governing equation exhibits behavior which 

is analogous to symmetry-breaking bifurcations, period-doubling bifurcations, 

chaos, and unboundedness in the stationary solution. The maximum response 

amplitude and the excitation frequency or amplitude at which the response 

goes unbounded is found as a function of sweep rate. The effect of initial 

conditions and noise on the response to nonstationary excitation is considered. 

The results of the digital-computer simulations are verified with an analog 

computer. 
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CHAPTER 1 

Introduction 

Many physical systems are nonstationary, which means they have 

components that vary with time (Evan-Iwanowski, 1969). For instance, such 

systems could have masses or damping forces that are time-dependent. Other 

types of nonstationary systems have time-dependent excitation amplitude or 

frequency. This type of excitation might occur, for example, when a motor is 

started up or shut down (Nayfeh and Asfar, 1988). One specific class of such 

systems has an excitation frequency or amplitude that varies linearly with time. 

In this thesis, we study this type of system. 

Lewis (1932) performed one of the first investigations of nonstationary 

phenomena. He studied the case of an unbalanced linear rotor that was 

uniformly accelerated through its critical speed. Baker (1939) considered a 

sirnilar nonstationary rotor problem, but also considered constant deceleration. 

Howitt (1961) produced simplified conciusions to the problem through 
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approximation. Extending the problem, Qazi and McFarlane (1967) controlled 

the passage through resonance using a feedback control system. Ishida, eta al. 

(1987, 1989) examined the maximum response amplitude and unboundedness 

of a nonlinear rotor passing through a critical speed. 

Several researchers have considered the nonstationary behavior of other 

systems. Collinge and Ockendon (1979) considered the Duffing oscillator with 

slowly varying forcing frequency. Moslehy and Evan-Iwanowski (1991) 

considered linear variations of the frequency and amplitude as well as sinusoidal 

variations of the frequency for the Duffing oscillator. Hok (1948) used Laplace 

transforms to consider a linear system with linearly varying amplitude. McCann 

and Bennett (1949) used analog computers to examine a two-dimensional linear 

system with linearly varying frequency. Kevorkian (1971) used the method of 

matched asymptotic expansions to analyze passage through resonance for a 

system that had constant forcing frequency but slowly varying natural 

frequency. Arya, Bojadziev, and Farooqui (1975) used the method of averaging 

to study the van der Pol oscillator. Davies and Nandall (1990) also studied the 

van der Pol oscillator, but they used the method of multiple scales. Agrawal 

and Evan-Iwanowski (1973) used the method of averaging to study a 

gyroscopic system with varying frequency. Evan-Iwanowski (1969) provided 

an overview of the literature (especially the Russian literature) for many more 

nonstationary problems. Nayfeh and Mook (1979) also provided references to 

the literature of nonstationary problems. 
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We consider nonstationary excitation of a parametrically excited system. 

In a parametrically excited system, the excitation appears as a coefficient in the 

governing equations and boundary conditions (Nayfeh and Mook, 1979). For 

instance, ship motion is often parametrically excited (Sanchez and Nayfeh, 

1990). A common model of a parametrically excited system is a slender beam 

excited parallel to its long axis and carrying a concentrated mass (Zavodney and 

Nayfeh, 1989). Parametrically excited systems pose special problems because 

they can have large responses to small excitations. The trivial solution always 

exists for these systems, although it is not always stable. Linear analysis of a 

parametrically excited system predicts that the stationary (steady-state) 

response is trivial below a critical value of the excitation amplitude, and that the 

response grows exponentially above this critical value. Exponential growth is 

unrealistic because all physical systems have inherent nonlinearities that will 

limit the response. Nonlinearities may result from (a) a system's geometry, 

such as large curvatures or rotations of structural elements; (b) a system's 

inertia, because of concentrated and distributed masses; and (c) material 

behavior, including nonlinear stress-strain relations, and friction effects, such 

as dry friction. Although nonlinearities are sometimes ignored in small

amplitude analysis, nonlinearities must be included to predict such behaviors as 

multiple solutions, chaotic motions, and subharmonic and superharmonic 

resonances (Nayfeh and Mook, 1979). 

Specifically, we consider a simple one-degree-of-freedom parametrically 

Introduction 3 



excited system governed by 

u+2jtu+ ( 1-leos cPt) U-QU
3=O (1.1) 

Here, P: is the coefficient of damping, 1 is the excitation amplitude, and a is the 

coefficient of cubic nonlinearity. When a is negative, the nonlinearity is called 

a hardening nonlinearity, and when it is positive, the nonlinearity is called a 

softening nonlinearity. The variables have been non-dimensionalized so that the 

natural frequency of this system is one. This system is indeed parametrically 

-
excited because the time-varying excitation term 1 cos cPt appears as a 

coefficient of u. The frequency of excitation is cPo 

Nonstationary excitation is introduced into the problem in two ways. 

First, we consider a nonstationary excitation in which the excitation frequency 

is a linear function of time. This condition is expressed by 

(1.2) 

Here, r is called the sweep rate and cPo is the initial frequency. 

We will also consider a nonstationary excitation in which the excitation 

amplitude is a linear function of time. This condition is expressed by 

(1.3) 

Here, s is the sweep rate and 10 is the initial excitation amplitude. 

Sweeps of the excitation frequency with this system have been 

considered previously by Neal and Nayfeh (1990) for the case of hardening 

nonlinearity (a < 0). The present work is unique in that we will consider 
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softening nonlinearity (fi > 0). The case of softening nonlinearity is more 

interesting because the system is more robust-we encounter response 

behaviors such as symmetry-breaking bifurcations, period-doubling bifurcations, 

chaotic solutions, and unboundedness, which were not encountered in the 

previous work. 

In this thesis, we seek to identify the characteristics of the nonstationary 

response to both frequency sweeps and amplitude sweeps. These 

characteristics will allow us to identify the differences between the response 

to stationary excitation and the response to nonstationary excitation. We will 

examine how the sweep rate and the initial conditions affect (a) the 

nonstationary response characteristics, (b) the maximum response of the 

system, and (c) the onset of unboundedness in the response. To examine the 

response to nonstationary excitation, we will use both digital and analog 

computers. 

In order to understand the response to nonstationary excitation, we first 

need to understand the response to stationary excitation. Thus, in Chapter 2, 

we perform a method-of-multiple-scales analysis to find perturbation equations 

for the amplitude and phase of the response. We use the perturbation 

equations to find the stationary response of the system to stationary excitation. 

We perform a stability analysis on the solutions found from the perturbation 

equations, and we perform a Floquet analysis to determine the stability of 

stationary solutions of the original governing equation. 
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In Chapter 3, we consider sweeps of the excitation frequency. We use 

digital computer simulations of both the perturbation equations and the original 

governing equation. 

In Chapter 4, we consider sweeps of the excitation amplitude. Again, 

we use digital computer simulations of both the perturbation equations and the 

original governing equation. 

In Chapter 5, we use analog computer simulations to verify the results 

of the digital computer simulations for both frequency and amplitude sweeps. 

We also will consider the effect of the nonstationary response after a sweep 

has ended and the excitation becomes stationary. 

In Chapter 6, we present our conclusions. 
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CHAPTER 2 

Stationary Solutions 

In order to understand the responseto nonstationary excitation, we must 

first find the stationary response to stationary excitation. To find the stationary 

, response, we will apply the method of multiple scales to the governing equation 

(1.1). 

2.1 Method of Multiple Scales 

We use the method of multiple scales (Nayfeh, 1973, 1981) to analyze 

our system. To motivate the use of this technique, we note that, in many 

physical systems, changes in the response of the system can be characterized 

in terms of many time scales. For instance, consider a simple linear oscillator 

with small damping p. governed by 

(2.1) 
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A general solution to (2.1) can be expressed as 

(2.2) 

where a and (3 are constants. Using the binomial theorem to approximate the 

radical for small p., we have 

~ 2 1 2 1-1-' ~1--Jl 
2 

(2.3) 

Then, the solution (2.2) could be approximated by 

x=ii(/Lt) cos [t+ P(1-'2t) ] (2.4) 

where 

ii(Jtt) = ae -p.t (2.5) 

(3(I-'2t) = j3 - ! 1-'2t 
2 

(2.6) 

Note that this solution contains three time scales. The oscillation itself varies 

on the time scale t. Changes in the amplitude a occur on the slow time scale 

-
p.t. And the phase of the solution {3 (relative to an undamped oscillator) 

changes on an even slower time scale, p.Zt. 

Since we also expect the solution of (1.1) to involve many time scales, 

we formulate them into the solution of the problem. To use the method of 

multiple time scales, we introduce a small dimensionless parameter E, which is 

much less than one and is used as a bookkeeping device. In our problem, we 

consider systems that are weakly damped (jL < < 1) and weakly nonlinear 

(a < < 1). Also, we know that large responses occur for small excitation levels 
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-
if < < 1). To represent the smallness of these parameters, we replace each 

of them with a new parameter that is multiplied by the parameter E which 

embodies the smallness. So, we rewrite (1.1) as 

(2.7) 

where 

(2.8) 

At this point in our analysis, we introduce the detuning (J. The detuning 

relates the nearness of the excitation frequency to twice the natural frequency. 

The detuning can be introduced into the problem in many ways, so it must be 

chosen with care and with a knowledge of how the method of multiple scales 

works. In this analysis, we chose the detuning 0' such that 

1 2 
1= -4> +fU 

4 
(2.9) 

Note that since the detuning is multiplied by E, we have already incorporated 

the nearness of the excitation frequency to two in the analysis. Multiplying 

(2.9) by u, we get 

1 2 
u= -4> u+£uu 

4 
(2.10) 

We use (2.10) to replace u on the left-hand side of (2.7), and obtain 

(2.11) 
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Next, we use E to set up multiple time scales. We define the time scales Tn by 

(2.12) 

Now u will be a function of multiple time scales. Also u will depend on the 

parameter E. SO we expand u in a series of powers of E, as 

(2.13) 

Next, we express the time derivatives in (1. 1) in terms of the multiple time 

scales. Using (2.12), we get 

d a aTo a aT! a a 
-=--+- -+ ... =-+E-+ ... =Do+EDt +... (2.14) 
dt aTo at aTl at aTo aT! 

d
n 

Here, we use the operator Dn= - for convenience. In this analysis, we will 
dt

n 

keep terms only up to order E. 

Substituting (2.13) - (2.15) into (2.11) and keeping only terms up to the 

first power of E yields 

2 ~2 1212 
DOUO+flJ(iU1 +2fDoD 1uO+"4¢ Uo+ 44> £tt1 = 

-2€JLDouo+£au~+€fucos 4>To-f.Quo (2.16) 

Note that this is a partial-differential equation rather than an ordinary-differential 

equation. The coefficients of each power of E must be the same on both sides 

of (2.16). So from the coefficients of EO, we get 

(2.17) 
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and from the coefficients of f/, we get 

The solution of (2. 17) can be expressed as 

(2.19) 

In (2. 19) and in what follows, the notation cc refers to the complex conjugate 

of the preceding terms. We write the solution (which is sinusoidal) in polar 

form so that we can manipulate it more easily in what follows. Note also that 

A(T1), which contains the amplitude and phase of the sinusoid, depends on the 

time scale 1j since equation (2.17) is a partial-differential equation. 

Substituting (2.19) into (2. 18) and converting the cosine term to polar form, 

we get 

(2.20) 

Here, the overbar denotes the complex conjugate. 

±!i</>To 
Consider those terms in (2.20) that contain e 2 • Such terms produce 

so-called secular terms. The particular solution Uz corresponding to such terms 

±!i</>To 
will be proportional to Toe 2 , which grows with time. This would invalidate 

our analysis, since we implicitly assumed that the term €Uz is a small correction 

to the term uo. (If €U1 becomes the same order as U01 we cannot separate the 
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terms with different powers of E in (2.16) to form (2.17) and (2.18).) So the 

±!i<f,To 
coefficients of e 2 must be zero. Therefore, we must have 

(2.21) 

Then, the particular solution to (2.20) is 

2aA3 +/A ~i4>To 
u1=- e +cc 

44>2 
(2.22) 

Now, we find the equations governing the amplitude and phase of the 

response from (2.21). First, we express A(T1) in the polar form 

(2.23) 

Substituting (2.23) into (2.21) and collecting the real and imaginary parts, we 

get 

Solving (2.24) and (2.25) for the derivatives, we get 

a'=-p,a-l!!sin 2P 
24> 

apt = ~ _l!!:.. cos 2/3- 3a: a 3 
.p 24> 44> 

(2.24) 

(2.25) 

(2.26) 

(2.27) 

Note that (2.26) and (2.27) are ordinary differential equations in the slow 

time scale 1j for the amplitude and phase of the response to either stationary 
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or nonstationary excitations. 

We now find the solution for the amplitude and phase by substituting 

(2.19)' (2.22) and (2.23) into (2. 13) and using the Euler formula to get 

U=QCOS [!t/Jt+ fJ) -£ [A cos [!t/Jt+f3] + aa
3 

cos [!t/Jt+3f3]] +... (2.28) 
2 44,2 2 84>2 2 

where the amplitude a and phase {3 are governed by the ordinary-differential 

equations (2.26) and (2.27). 

2.2 Fixed-Point Solutions 

Before considering responses to nonstationary excitation, we first need 

to consider the stationary responses to stationary excitations. By definition, 

the amplitude and phase are constant for the stationary solutions, so we set 

a'= (3'= 0 in (2.26) and (2.27) and obtain 

asin 2fJ=- 21-L<pa 
f 

f.l 20'a 3aa3 
acos 2,..,= - ---

/ 2/ 

(2.29) 

(2.30) 

These equations are algebraic. Solutions to these equations are called fixed-

points of the system (2.26) and (2.27). Therefore, a fixed-point solution 

corresponds to an oscillatory solution of (2.11) that has constant amplitude and 
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phase. One solution to these equations is the trivial solution a = O. Through 

manipulation of (2.29) and (2.30), we also find the following two nontrivial 

solutions for the amplitude: 

(2.31a) 

(2.31b) 

Depending"on the values of the parameters, there are either zero, one, 

or two possible nontrivial solutions. If we fix the values of all the parameters 

but one (for instance 0"), then each of (2.31 a) and (2.31 b) yields a solution 

curve in the (1 - a space. Every point on these curves is a fixed-point solution 

of (2.26) and (2.27) and corresponds to an oscillatory solution of (2.11) with 

constant amplitude and phase. Note that given a set of parameters for which 

real solutions to (2.31 a) and (2.31 b) exist, the solution corresponding to 

(2.31 a) is always larger than that corresponding to (2.31 b) when ex > 0 (the 

reverse is true when ex < 0); so we refer to the solution curves as the larger 

and smaller solution curves, respectively. In Figure 2. 1, we plot the frequency-

response curves. For these curves, p., a, and/are constants and the ordinate 

axis is 4>. For each value of 4>, we plot all of the possible solutions for the 

response amplitude. For all values of 4>, the trivial solution is possible. For 

4> > 2.21, there are no nontrivial solutions for a. For 1.75 < 4> < 2.21, one 
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1.0~--------------------------------~ 

a 0.5 

o.o~-----~--------------------~--~ 

1.6 1.7 1.8 1.9 2.0 2.1 2.2 2.3 

Figure 2.1 Frequency-response curves. Two, one, or zero nontrivial solutions 
exist depending on the varue of <p. The trivial solution exists for 
all <p. 
a = 1.0, p. = O.OS, E = 1.0, and! = O.S. 
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nontrivial solution exists. And for cP < 1.75, two nontrivial solutions exist. 

Note that if a were negative, these solution curves would be bent in the 

opposite direction, with no nontrivial solutions for cP < 1.75 and two nontrivial 

solution for cP > 2.21. 

Because we will be considering sweeps of the excitation amplitudef, we 

need to consider force-response curves also. For these curves, a, p., and cP are 

constants, and the ordinate axis is the excitation amplitude f Again, each 

value on this curve represents a fixed-point solution to (2.26) and (2.27) and 

an oscillatory solution of (2.11) with constant amplitude and phase. The force

response curve can take one of two shapes, depending on the constant value 

of cP at which it occurs. 

Figure 2.2 is an example of the force-response curve when cP ;;::: 2. 

Moving from left to right as f increases, we see that only the trivial solution 

exists up to the critical value f = 0.474. Above this critical value, a single 

nontrivial solution coexists with the trivial solution. The nontrivial solution 

curve intersects the faxis at the critical value. 

When cP < 2, the force-response curve has a shape similar to that in 

Figure 2.3. Again, the trivial solution exists for all values of f For f < 0.190, 

the trivial solution is the only solution. But unlike the previous case, in the 

range 0.190 < f < 0.272 there are two nontrivial solutions along with the 

trivial solution. These two solutions intersect at f = 0.190. The smaller 
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.1.2+----------------+ 

1.0 

0.8 

a 0.6 

0.4 

0.2 

0.0 0.5 1.0 1.5 2.0 

f 
Figure 2.2 Force-response curves. One nontrivial solution exists depending 

on the value of f. The trivial solution exists for all f. 
a = 1.0, p. = 0.05, E = 1.0, and 4> = 2.2. 
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1.0~-------------------------------; 

a 0.5 

0.0 0.5 1.0 

f 
Figure 2.3 Force-response curves. One or two nontrivial solutions exist 

depending on the value of f The trivial solution exi~ts for 

allf 
ex = 1.0, p. = 0.05, e = 1.0, and cf> = 1.9. 
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solution tends to zero as ftends to 0.272. The larger solution increases as f 

increases, and for f > 0.272, the larger solution is the only nontrivial solution. 

In preparation to study nonstationary responses to nonstationary 

excitation, we have first sought to understand stationary responses. Although 

each point on the response curves of Figure 2.1 - 2.3 is a fixed-point solution 

to (2.26) and (2.27) and represents an oscillatory solution to (2.11) with 

constant amplitude and phase, some of these solutions are not stable. Such 

unstable solutions are not realized physically because all systems are subject 

to disturbances. So, to find stationary responses, we must understand 

stability, which we consider next. 

2.3 Stability of a Fixed-Point 

A solution is asymptotically stable if the system's response returns to it 

after the system is perturbed by a small disturbance. If the system diverges 

from the solution after a small disturbance, the solution is unstable (Nayfeh and 

Mook, 1979). 

To begin our examination of the stability, we will use the variational 

equations (2.26) and (2.27) obtained from the method of mUltiple scales to find 

the stability of a fixed-point solution. 

In order to find the stability of a fixed point, we first consider a general 
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system governed by n equations of the form 

x'=f(x) (2.32) 

where x and rare n dimensional vectors. A fixed point Xo of the system is 

defined by 

(2.33) 

We perturb the system from the fixed point with a small time-varying 

disturbance v(Tl) and obtain 

(2.34) 

Note that the disturbance varies on the time scale Tl because the variational 

equations (2.26) and (2.27) depend on this time scale. After we substitute 

(2.34) into (2.32), expand f in a Taylor series, and linearize the result, we get 

(2.35) 

where Vf is the Jacobian of f at xo' But since (2.35) is a system of ordinary-

differential equations with constant coefficients, it possesses solutions of the 

form 

(2.36) 

Substituting (2.36) into (2.35)' we find there are nontrivial solutions if and only 

if 

I Vf(Xo)-AI I =0 (2.37) 

If the real part of any of the roots A of (2.37) is positive, v will grow 
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exponentially, thus the fixed point is unstable. If the real part of each of the 

roots is negative, the fixed point is stable. If the real parts of some of the roots 

are zero and the real parts of the rest of the roots are negative, the stability 

cannot be determined from this analysis alone. 

As noted, the disturbance in this analysis is slowly varying; it varies on 

the same time scale T1 as the equations we are analyzing. Since this analysis 

excludes fast varying disturbances, a periodic solution of (2. 11) may be stable 

to slowly varying disturbances but may be unstable if perturbed by a general 

disturbance. A periodic solution that is unstable to a slowly varying 

disturbance will, of course, be unstable when perturbed by a general 

disturbance. This analysis is useful, though, because it is easy to get closed-

form solutions without computer integration, and its results are valid for a large 

range of parameters. Later, we will consider a more general stability analysis. 

To apply this method we substitute our system, (2.26) and (2.27), into 

(2.37) to get 

3o:a 

2</> 

_fa cos 2/3 
¢ 

[sin 2f3-A 
¢ 

=0 

Expanding this determinant and using (2.29) and (2.30), we get 

(2.38) 

(2.39) 

as the general equation for l\. Substituting the solution (2.31a) into (2.39), we 
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get 

(2.40) 

where 

(2.41) 

When a is positive, 71 is also positive as long as a and f are nontrivial. Solving 

for A, we get 

(2.42) 

Since 71 is positive, the real parts of both roots are negative. Therefore, the 

solution (2.31a) is stable when a > O. When a < 0, 71 < 0 and (2.31a) is 

unstable. 

Substituting the solution (2.31 b) into (2.39), we get 

(2.43) 

The roots A of (2.43) are given by 

(2.44) 

When a > 0, 11 is positive, and one root is always positive. So the solution 

(2.31 b) is unstable. When a < 0, the solution (2.31 b) is stable. 

To study the stability of the trivial solution, we find it convenient to use 

(2.21) and express A in the Cartesian form 

(2.45) 

Substituting (2.45) into (2.21) and separating the real and imaginary parts, we 
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get 

1 J.' 1 J. 3 (3 2) 1 I: 1 -",q + -Y"JJq- -0: P +pq - -Jp+ -up=O 
2 2 8 4 2 

(2.46) 

1 1 3 (2 3) 1 1 - q,p' + - q,JJP+ - 0: P q+q - - Jq- - uq=O 
2 2 8 4 2 

(2.47) 

Solving for p' and q', we get 

(2.48) 

(2.49) 

So, upon substituting the right-hand sides of (2.48) and (2.49) into 

(2.37) and setting p = q = 0 for the trivial solution, we get 

The roots A of (2.50) are given by 

A=-p± J /.2_417
2 

4q,2 

(2.50) 

(2.51) 

The trivial solution is unstable when the real part of either of the roots is 

positive, which occurs when 

(2.52) 

In Figure 2.4, we repeat the frequency-response curves of Figure 2.1, 

but now we plot stable solutions with solid lines and unstable solutions with 

dashed lines. As noted, the solutions on the larger branch are stable, while 
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1.0~~----------------------------~ 

a 0.5 

" , , , 

1.6 

, 
, , , , 

\ 

1.7 

\ 

\ 

1.8 1.9 2.0 2.1 2.2 2.3 

Figure 2.4 Stability of the frequency-response curves of Figure 1.1. Solid 

lines represent stable solutions. Dashed lines represent unstable 
solutions. 

ex = 1.0, JL = 0.05, e = 1.0, and! = 0.5. 
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those on the smaHer branch are unstable. Note that the trivial solution is stable 

for all t/> except in the interval 1.75 < t/> < 2.21. This region is bounded by the 

intersections of the nontrivial frequency-response curves with the t/> axis. 

In Figure 2.5, we show the stability characteristics of the force-response 

curve of Figure 2.2. Again, we plot stable solutions as solid lines and unstable 

solutions as dashed lines. Although the trivial solution exists for all values of 

f, it is stable only up to the critical value!c and unstable for all larger values. 

For this case with the constant value of cp ;::: 2, a single nontrivial solution that 

is stable exists above the critical value of f. 

In Figure 2.6, we show the stability characteristics of the force-response 

curve corresponding to Figure 2.3 for a system with a value of t/> fess than two. 

Like the previous case, the trivial solution is stable up to the critical value.fc and 

unstable above it. For the range of fwhere two nontrivial solutions exist, the 

large solution is stable and the small solution is unstable. In this range off, the 

response may be trivial or nontrivial, depending on the initial conditions. 

Because the response may be nontrivial in this range of fthat is less than.fc, the 

system is said to have a sub critical instability. Above.fc, the response is given 

by the only nontrivial solution, which is stable. 

We note that the stability analysis based on the variational equations 

(2.26) and (2.27) is limited to slowly varying disturbances and that a solution 

may be stable to a slowly varying disturbance but not to a general disturbance. 

Next, we consider a more general stability analysis based on Floquet theory. 
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1.2~----------------------~------~ 

1.0 

0.8 

a 0.6 

0.4 

0.2 

0.0 .. ---..... 

0.0 0.5 1.0 1.5 2.0 

f 
Figure 2.5 Stability of the force-response curves of Figure 1.2. Solid lines 

represent stable solutions. Dashed lines represent unstable 
solutions. 

a = 1.0, p. = 0.05, f = 1.0, and 4> = 2.2. 
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1.0~--------------------------~~--~ 
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0.0 .. -----

0.0 0.5 1.0 

f 
Figure 2.6 Stability of the force-response curves of Figure 1 .3. Solid lines 

represent stable solutions. Dashed lines represent unstable 
solutions. 
ex = 1.0, p. = 0.05, e = 1.0, and t/> = 1.9. 
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This analysis, which we apply to the governing equation (2. 11) rather than the 

variational equations, is not limited to slowly varying disturbances. 

2.4 Floquet Theory Stability Analysis 

To describe this analysis, we consider the general system 

u(t)=f(u(t)) (2.53) 

In this analysis, we are not considering the stability of a fixed point solution 

(f(xo) = 0) of the variational equations (2.26) and (2.27). Instead, we are 

considering the stability of the corresponding solution of (2. 11) in the original 

time scale, which is a periodic oscillation. To the periodic solution U, where 

U(t+T) = U(t), we add a small disturbance x and obtain 

u(t) = U(t)+x(t) (2.54) 

Substituting (2.54) into (2.53), expanding f in a Taylor series, and keeping 

linear terms in x, we get 

x(t)= Vf(t)x(t) (2.55) 

We note that (2.55) is a set of n linear equations with periodic coefficients 

having a period commensurate with T. There are n linearly independent 

solutions to these equations, with each solution being a column vector. These 

n solutions can be combined to form an n x n matrix known as the fundamental 

solution matrix X(t). This matrix satisfies 
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X(t) = Vf(t)X(t) (2.56) 

If X(t) is a solution matrix of (2.56), then X(t+T) is also a solution 

matrix, because vr is periodic with period T. Since there are only n linearly 

independent solutions to (2.55), the n solutions represented by X(t+T) must be 

linear combinations of the n linearly independent solutions represented by X(t); 

that is, 

X(t+T)=X(t)A (2.57) 

where A is an n x n constant matrix. Next, we introduce the linear 

transformation 

X(t)=v(t)P (2.58) 

where P is nonsingular. Substituting (2.58) into (2.57), we get 

v(t+r)=v(t)J (2.59) 

where 

(2.60) 

We can choose P such that J assumes the Jordan canonical form 

;\1 0 ... 0 

J= 
0 ;\2 0 

(2.61) . . . 
0 0 An 

if all of the eigenvalues '\ are distinct, or a more complicated form when they 

are not distinct. Substituting (2.61) into (2.59), we get 

(2.62) 
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Therefore, we have 

(2.63) 

Clearly I for the disturbance to decay, the magnitude of each eigenvalue '\ must 

be less than one. If the magnitude of any of the Ai is greater than one, the 

solution is unstable. 

In order to find the eigenvalues, we note from (2.60) that J and A have 

the same eigenvalues. Setting t = 0 in (2.57), we get 

X(r)=X(O)A (2.64) 

If we choose the initial condition X(O) = I, where I is the identity matrix, we 

can find the matrix A simply by integrating (2.56) for one period T. This 

integration can be done on a digital computer, if necessary. Once we find A, 

we can compute the eigenvalues (with a digital computer if we choose). 

To apply this analysis to our system, we first convert (2.7) from a 

second-order equation to a system of two first-order equations using 

• 
(2.65) 

Using (2.65), we rewrite the governing equation as 

ul =u2 (2.66a) 

u2= -Ut -2EI"U2+ElXUf+ EUl!cOS t/>t (2.66b) 

The right-hand side of (2.66) now corresponds to f in (2.53). Substituting 

(2.66) into (2.55), we get the following equations for the disturbance x: 

(2.67) 
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The computational method to find A involves six equations. We 

integrate the two equations (2.66) to find U. (Since we wish to find the 

stability of periodic solutions, we must have a method to guarantee that the 

initial conditions we choose are on a solution trajectory that closes. We 

discuss a method for this in the Appendix.) We also integrate equations (2.67) 

twice; once with the initial conditions x, (0) = 1 and x 2(0) = 0 and once with 

the initial conditions x, (0) = 0 and x 2 (0) = 1. These initial conditions 

correspond to setting X(O) = I in (2.64). Therefore, after integrating for one 

period T, we have the matrix A for our system, and we can determine the 

stability of U(t) by examining the magnitudes of the eigenvalues of A. 

To use this analysis, we choose a value of cP (or j) and perform the 

calculations. If the magnitudes of both A are less than one, the solution is 

stable, so we increment cP (or j) and repeat the calculations. We continue this 

until we find the value of cP (or j) at which the magnitude of one of the A's 

passes through one. This gives us the value of cP (or j) at which the solution 

becomes unstable. If we wish, we can search for a new stable solution at this 

value of cP (or j) and repeat the analysis for this new solution. 

Sanchez and Nayfeh (1990) applied the Floquet analysis to a system 

similar to the one considered here. The results are similar to the analysis 

performed here. 

We consider the stability of solutions along the frequency-response 

curves. The larger solution, which the variational stability analysis predicts to 
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be always stable, is also stable according to the Floquet analysis for a large 

range of </>. However, as </> decreases or f increases, one floquet multiplier A 

passes through one. The value of </> or f at which the solution becomes 

unstable is marked in Figures 2.4 - 2.6 with a vertical line. To predict the 

subsequent response, we recall that the period of the response U is T = 47(1</>. 

Therefore, U1
2

, as well as if cos </>t, the time-varying terms in (2.67), has a 

period % T because U is symmetric. Since A passes through positive one, the 

disturbance x will also have the period Y2 T. Because U has the period T, the 

disturbance will cause u to be asymmetric. This is called a symmetry-breaking 

bifurcation. According to the Floquet analysis, this new asymmetric solution 

is stable, but only for a small range of t/>. As we decrease </> further, one 

Floquet multiplier for the asymmetric solution passes though negative one. 

Again, U has period T. But since U is now asymmetric, the u/ term in (2.67) 

has the period T. Since A passes through negative one, it takes two cycles for 

the disturbance x to repeat, so x has the period 2T. Therefore, the new 

solution u has a period of 2f. This is called a period-doubling bifurcation. The 

Floquet analysis predicts that this new solution is stable. However, the range 

of t/> for which the period-doubled solution is stable is smaller than the range of 

t/> for which the asymmetric solution is stable. If we decrease </> further, the 

solution undergoes successive period doublings; each is stable over an even 

smaller range of t/>. Then, a chaotic solution appears for a small range of cb, and 
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finally the solution becomes unbounded. Because the successive period 

doublings, chaos, and unboundedness occur in such small ranges of ,p, we will 

later use the values of ,p at which the asymmetric solution becomes unstable 

as an estimate of the value of ,p at which unboundedness occurs in the 

stationary solution. This value of,p or fis also marked in Figures 2.4 - 2.6 with 

a vertical line. We would find a similar sequence of bifurcations (i.e., symmetry 

breaking, period doublings, chaos, and unboundedness) if we repeat the 

anarysis using the excitation amplitude f as the control parameter. 
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CHAPTER 3 

Frequency Sweeps 

Now that we understand the stationary response of our system, we can 

examine the nonstationary behavior. In this chapter we explore the response 

to an excitation whose frequency varies linearly with time. 

We find the response by numerically integrating the equations derived by 

using the method of multiple scales in Chapter 2. For chosen constants f, Jl, 

Ci, and r, we use a digital computer to integrate the Cartesian form (2.48) and 

(2.49). (We do not use the polar form (2.26) and (2.27) because we would 

have to divide (2.27) by a factor a to get it in a digitally integrable form. This 

division would not be valid when a is trivial. Furthermore, Nayfeh and Asfar 

(1988) found that the integration of (2.26) and the integrable form of (2.27) 

yields incorrect results when the response was trivial or nearly triviaL) We also 

will integrate the governing equations (2.66) of the system. We integrate both 

sets of equations on an IBM 3090 digital computer. The integrations are 
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carried out in a Fortran program using the IMSL routine DVERK, which is a 

differential equation solver that uses fifth- and sixth-order RLinge-Kutta-Verner 

solution schemes. 

The linear variation with time of the excitation frequency is given by 

(1.2), or by 

(3.1) 

Here, we call r the sweep rate since its magnitude and sign determine how fast 

we "sweep" through a range of excitation frequencies. Since we implicitly 

assume that the detuning CT is a slowly varying function of time (that is, it varies 

on the time scale el), we note from (2.9) that we need to use the ordering e2 in 

(3.1). The parameter e can be set to equal one at this point since its purpose 

was to serve as a representation of the smallness in the multiple-scales 

analysis. 

In order to determine the effect of sweep rates on the response, we need 

to limit the effect of other factors. For instance, we need to use the same 

initial conditions for all sweeps so that we can examine the effect of sweep 

rate independent of the initial conditions. Trivial initial conditions would be a 

convenient choice. However, if we use trivial initial conditions, we encounter 

a problem inherent in the use of a digital computer to model a physical system. 

With trivial initial conditions, the solution would balance exactly on the trivial 

solution -even when it is unstable. The systern must be perturbed before the 
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response will diverge from an unstable solution. In a physical system, there are 

always slight disturbances from wind, geometrical imperfections, etc. that will 

perturb a system and prevent it from balancing on an unstable solution. For our 

analysis, we perturb the system with initial conditions which are small but non

zero. Because of this initial disturbance, the response does not become exactly 

trivial during the sweep; therefore, it cannot balance on the trivial solution 

when it is unstable. 

A fter we have completed an analysis of the effect of sweep rate on the 

response with one set of initial conditions, we will repeat the analysis with a 

different set of small but nontrivial initial conditions. In this way, we can 

determine the effect of initial conditions on the response. This is also a 

preliminary step in determining the effect of the noise level on the response 

because the nontrivial initial conditions are a simple representation of the noise 

affecting the system. 

To examine the nonstationary behavior, we plot the response amplitude 

against the frequency. However, since q, varies linearly with time, the q, axis 

is also a time axis. For reference, we also plot the stationary response curves 

so that the nonstationary response can be compared to the stationary response 

at the same values of q,. We plot the stationary response curves as dashed 

lines. Recall that only solutions on the upper curve are stable. Also recall that 

the trivial solution is stable except in the region around q, = 2 bounded by the 

intersections of the stationary solution curves with the q, axis. For the 
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integration of equations (2.48) and (2.49) obtained by the method of multiple 

scales, we plot the response amplitude a that is given by 

a=~ p2+q2 (3.2) 

For the integration of the governing equations (2.66), we plot the envelope of 

the response; that is, the absolute values of the positive and negative peaks for 

each cycle of the response. Due to the variation with time of the phase and 

amplitude of the response, these two measures would look slightly different 

even if the actual response given by both sets of equations were exactly the 

same. We should keep this in mind when comparing results from the two 

methods, but since the difference in the measures is small, we will not attempt 

to convert both results to one measure. 

3.1 Forward Frequency Sweep 

First, we consider a forward sweep-the excitation frequency increases 

linearly so that r is positive. In Figure 3.1, we plot the response envelope 

found by integrating the perturbation equations. We see several unique 

characteristics of the nonstationary response. First, we note that the response 

remains trivial even after the excitation frequency has reached values of cP at 

which the stationary trivial response is unstable. This phenomenon is called 

penetration. Next, the response amplitude jumps up from the trivial solution 
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Figure 3.1 Forward frequency sweep. Solid line-nonstationary response 
found from perturbation equations. Dashed lines-stationary 
freq uency-response curves. 

a = 1.0, p. = 0.05, E = 1.0, f = 0.5, r = 0.0004, 
p(O) = 0.001, q(O) = 0, and tPo = 1.7. 
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and overshoots the stationary frequency-response curve. The response 

amplitude then oscillates about the frequency-response curve. Note that since 

this oscillation occurs in the envelope of the response, the actual time trace of 

the response is undergoing a beating phenomenon. As the excitation frequency 

increases further, the size of the oscillations about the frequency-response 

curve decreases. This continues until the nonstationary amplitude converges 

to the frequency-response curve. When the response amplitudes become 

small, the nonstationary response separates from the stationary curve and 

remains nontrivial where the only stationary response is trivial. This is called 

lingering or drag-out. Finally, the nonstationary solution converges to the trivial 

solution. Sometimes, the nonstationary amplitude oscillates about the trivial 

solution before converging to it. 

In Figure 3.2, we again plot the response from the perturbation equations 

(2.48) and (2.49) as a solid line so that we may compare it to the response 

found from integration of the original governing equations (2.66), which we 

plot as a dashed line. Both integrations qualitatively show the same 

nonstationary phenomena discussed above, and there is only a small 

quantitative discrepancy between the two. When nonstationary behaviors, 

such as the jump after penetration, occur, the nontrivial response obtained from 

the original governing equations occurs slightly after that .obtained from the 

perturbation equations. As discussed previously, part of the discrepancy is due 

to the difference in amplitude measures. Some of the discrepancy is also due 
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Figure 3.2 Forward frequency sweep. Solid line-nonstationary response 

found from perturbation equations. Dashed lines-nonstationary 
response found from original governing equations. 
ex = 1.0, p. = 0.05, e = 1.0, f = 0.5, r = 0.0004, 

p(O) = Y1 (0) = 0.001, q(O) = Y2(0) = 0, and 4>0 = 1.7. 
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to approximations that we made when using the method of multiple scales. 

These approximations cause the perturbation response to shift in time with 

respect to the actual response. 

In Figure 3.3, we plot the maximum amplitude of the response as a 

function of the sweep rate r. Here, we use the maximum amplitude determined 

from integrating the original governing equation. Responses are calculated at 

sweep rates which are multiples of 0.00002. All sweeps are started at the 

value of <b at which the trivial solution changes from stable to unstable, so that 

all sweeps have the same initial response as they enter this region. The 

maximum amplitude of the response tends to be smaller for larger sweep rates; 

however, this relationship is not strictly true for small sweep rates. For small 

values of r, there is a trend toward smaffer maximum amplitudes for larger 

sweep rates, but the data is scattered. For some sweep rates in this range, a 

smarr increase or a small decrease in sweep rate might result in a significant 

increase in the maximum response amplitude. A series of humps develops in 

the data for larger sweep rates before the maximum response amplitude 

becomes a strictly decreasing function of sweep rate. For very slow sweep 

rates, another behavior is possible. The slow sweep rate can result in little 

penetration so that the nonstationary solution jumps at a small value of <b. The 

stationary solution is large at the point of jump so that the jump has a large 

overshoot. Because unbounded solutions exist for the system at this excitation 

frequency I the large overshoot carries the nonstationary solution to 
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Figure 3.3 Maximum response amplitude versus sweep rate: + denotes 
maximum response arrlplitude and 0 denotes a sweep rate for 
which the response became unbounded. 

a = 1 .0, p. = 0.05 I E = 1 .0, f = 0.5, tbo = 1 . 751 , 
Y1 (0) = 0.001, and Y2(0} = O. 
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unboundedness. Sweep rates at which this occurs are denoted with an 0 in 

Figure 3.3. Note that when this situation occurs, the response changes from 

being trivial to unbounded directly or after only one or two cycles. This is a 

particularly dangerous situation for a physical system since the system goes 

from rest to failure with almost no warning. The sweep rates for which 

unboundedness occur are scattered among the sweep rates for which bounded 

solutions occur. For some small sweep rates that yield a bounded response, 

both a small increase or a small decrease in the sweep rate will yield an 

unbounded response. 

In Figure 3.4, we again plot maximum response amplitude as a function 

of sweep rate. However, the set of initial conditions used for all of these 

sweeps is smaller than the set used for the sweeps of Figure 3.3. For most 

sweep rates, the smaller initial conditions result in a smaller maximum 

amplitude, although this is not always true for small sweep rates. With smaller 

initial conditions, there are fewer sweep rates at which unboundedness occur, 

although unboundedness does occur at some sweep rates for which a bounded 

response occurs with larger initial conditions. With these initial conditions and 

large sweep rates, note that the response sweeps through, barely growing from 

the initial conditions and having an essentially trivial maximum response 

amplitude. 
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Figure 3.4 Maximum response amplitude versus sweep rate: + denotes 
maximum response amplitude and 0 denotes a sweep rate for 
which the response became unbounded. 

a = 1.0, J.l. = 0.05, E = 1.0, f = 0.5, tPo = 1.751, 

Y1{0) = 0.00001, and Y2(0) = O. 
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3.2 Reverse Frequency Sweep 

Now we consider a reverse sweep in which the excitation frequency 

decreases, that is, r is negative. In Figure 3.5, we again plot the stationary 

frequency-response curves as dashed lines for reference, and we plot the 

nonstationary response found from the perturbation equations (2.48) and (2.49) 

as a solid line. Note, however, that time increases from right to left in this 

figure since t/> is a linearly decreasing function of time. The same nonstationary 

characteristics that appear in the forward sweep are again evident in the 

response. The nonstationary response penetrates into the region where the 

stationary trivial solution is unstable. Then the nonstationary response jumps 

up and overshoots the frequency-response curve. The overshoot is very small 

for this sweep rate, and the convergence to the frequency-response curve 

occurs very quickly. There is no lingering here since the solutions do not 

become trivial again. In Figure 3.6, we show the response obtained from 

integrating the perturbation equations as a solid line and the response obtained 

from integrating the original governing equations (2.66) as a dashed line. 

Again, agreement between the two methods is good, but only up to a certain 

value of t/>. Beyond this value, a qualitative change occurs in the response 

obtained from integrating the original governing equations, and then that 

solution goes unbounded. 
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Figure 3.5 Reverse frequency sweep. Solid line-nonstationary response 
found from perturbation equations. Dashed lines-stationary 
frequency-response curves. 

a = 1.0, p. = 0.05, E = 1.0, f = 0.5, r = -0.00005, 
p(O) = 0.001, q(O) = 0, and cPo = 2.3. 
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Figure 3.6 Reverse frequency sweep. Solid Jine-nonstationary response 
found from perturbation equations. Dashed lines-nonstationary 
response found from original governing equations. 
a = 1.0, p. = 0.05, f = 1.0,/ = 0.5, r = -0.00005, 

p(O) = Y1 (0) = 0.001, q(O) = Y2(0) = 0, and 4>0 = 2.3. 
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To understand this behavior, we recall the Floquet analysis of the 

stationary solution performed in the last chapter. As tP decreases, the 

stationary solution undergoes a symmetry-breaking bifurcation, followed by a 

sequence of period doublings, and chaos before going unbounded. We have 

seen a correspondence between the stationary and nonstationary behaviors 

thus far in our work; therefore, we might expect the nonstationary solution to 

have some correspondence to these behaviors occurring in the stationary 

solution. Keeping this in mind to help us interpret the nonstationary response, 

we see behaviors analogous to symmetry breaking and period doubling in the 

nonstationary response before it becomes unbounded. 

Because we plot the envelope of the response from the original governing 

equations (that is, we plot the absolute value of every extremum of the 

response, both maximum and minimum), when symmetry breaking occurs, two 

distinct points are generated for each cycle. Therefore, symmetry breaking 

appears as a short wedge, as shown in Figure 3.6. Note that as tP decreases, 

the distance between the maximum and minimum tends to increase. Note also 

that when symmetry breaking appears, the difference between the absolute 

values of the maximum and minimum is already large; this suggests the 

response jumps to the asymmetric solution rather than evolving from the 

symmetric solution with a slowly increasing asymmetry. From the Floquet 

analysis, the stationary symmetric response becomes unstable at tP = 1.669, 

at which point symmetry breaking occurs. We mark this value in Figure 3.6 
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with a vertical line. In the nonstationary response, the onset of symmetry 

breaking is delayed to a lower value of ¢. This suggests that the nonstationary 

response remains symmetric in a region where the stationary symmetric 

response is unstable. The first cycles after symmetry breaking occurs have a 

greater difference between the absolute values of the maximum and minimum 

than the immediate succeeding cycles. This suggests that, as in the previously 

studied nonstationary behavior, there is a penetration, jump, and overshoot 

behavior associated with symmetry breaking. After several cycles of growing 

difference between the absolute values of the maximum and minimum, the 

response begins to change again and then quickly becomes unbounded. 

We see the last stages of the response in the time trace plotted in 

Figure 3.7, generated by integrating the original governing equation. Note that 

time increases as ¢ decreases from left to right in this figure. In the leftmost 

portion of this figure, the response is symmetric. Around ¢ = 1.650, the 

response suddenly becomes asymmetric. At first, the size of the asymmetry 

changes substantially from cycle to cycle (suggesting a nonstationary overshoot 

and oscillation behavior in the size of the asymmetry), but around ¢ = 1.645, 

the size of the asymmetry only grows slightly from cycle to cycle. At around 

¢ = 1.642, the response changes and begins to resemble that of a system 

which has undergone a period-doubling bifurcation. (We refer to this change 

in the nonstationary response as a quasi-period-doubling bifurcation because 

the nonstationary response has an infinite period.) Finally, the response 
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Figure 3.7 Time trace of a reverse frequency sweep. 

ex = 1.0, p. = 0.05, E = 1.0, f = 0.5, r = -0.00005, 
y,(O) = 0.001, Y2(0) = 0, and cPo = 2.3. 
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changes rapidly in the last cycles before going unbounded. Because of the 

nonstationary nature of the response, it is difficult to identify and distinguish 

these behaviors. For faster sweep rates, this would be more difficult, as both 

the asymmetry and the quasi-period-doubling bifurcation occur for only a few 

cycles before the solution goes unbounded. 

Floquet theory predicts that the asymmetric stationary solution becomes 

unstable at tP = 1.645, at which point period doubling occurs. (We mark this 

value in Figure 3.6 with a vertical line.) As with symmetry breaking, the quasi

period-doubling bifurcation is delayed in the nonstationary response, occurring 

at a value of tP smaller than that in the case of the stationary response. This 

is another example of a nonstationary behavior, in this case the asymmetric 

solution, penetrating into a region where the corresponding stationary response 

is unstable. 

In Figure 3.8, we plot tPoo versus the sweep rate r for reverse sweeps, 

where tPe» is the value of tP at which the response exceeds some large chosen 

value as it goes unbounded. All sweeps are started at the value of tP at which 

the trivial solution changes from stable to unstable, so that all sweeps have the 

same initial response as they enter this region. For reference, we mark 

tP = , .645, the value of tP at which period doubling is predicted to occur in the 

stationary solution, with a horizontal line and use it as an estimate of the value 

of tP at which the stationary solution becomes unbounded. For slow sweeps, 

tPCD tends to decrease as the absolute sweep rate I rl increases. For sweeps in 
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Figure 3.8 <1>00 versus sweep rate: + denotes value of cP at which the 

response magnitude exceeded 4 as the response became 
unbounded and 0 denotes a sweep rate for which the response 
remained bounded. 

a = 1.0, J.' = 0.05, € = 1.0, f = 0.5, cPo = 2.212, 
Y1 (0) = 0.001, and Y2(0) = O. 
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this range of r, unboundedness is delayed to a value of ¢ less than that at 

which unboundedness occurs in the stationary case. Considering faster 

sweeps, in the succeeding range of sweep rates, the data is more scattered. 

There is no definite trend for increasing or decreasing ¢~ as I rl is increased. 

For even faster sweep rates in the next range of r, ¢~ is generally larger than 

in the previous ranges of r. In this range, ¢~ tends to decrease for larger I rl, 

and for some sweep rates, ¢~ is significantly smaller than for similar sweep 

rates. But for most of the sweep rates in this region, the response becomes 

unbounded at a value of ¢ larger than that at which the stationary response is 

unbounded. This would be an important consideration in the design of a 

system subjected to nonstationary excitations because an analysis that 

assumes a stationary excitation would predict the response to be bounded for 

values of ¢ where the nonstationary response is unbounded. 

For many sweep rates, the response remains bounded. We mark these 

sweep rates with an 0 in Figure 3.8. For all sweep rates faster than a certain 

value of r, the response sweeps through-the response never jumps up to the 

stationary frequency-response curve; instead it remains small throughout the 

sweep. 

For some slow sweep rates, the response remains bounded, although it 

does not sweep through. For these sweep rates, the response penetrates, 

jumps up, oscillates about (and, for slow sweep rates, converges to) the 

stationary frequency-response curve. When ¢ reaches the range of values for 
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which the response to similar sweep rates becomes unbounded, the response 

to these sweep rates jumps down and converges to the trivial solution, which 

is stable for this range of 4>. We plot the envelope of the amplitude of the 

response, found from integration of the original governing equations, for one 

such sweep in Figure 3.9. In this figure, time increases right to left. We plot 

the stationary frequency-response curves as dashed lines in this figure for 

reference. The values of 4> at which the stationary solution becomes 

asymmetric and undergoes period doubling are marked with vertical lines, as in 

Figure 3.6. This type of response is very sensitive to changes in the sweep 

rate. A small increase or decrease in the sweep rate can change this type of 

response from bounded to unbounded. Note that the sweep rates for which 

this behavior occurs are scattered among those for which unboundedness 

occurs. Therefore, it is not safe to find a sweep rate that results in a bounded 

response and then assume that all faster sweep rates also will result in a 

bounded response. 

In Figure 3.10, we repeat the sweep-rate analysis using a smaller set of 

initial conditions than we used for the sweeps of Figure 3.S. The first range 

of r, in which 4>(» decreased for larger I rl, is very similar to that in Figure 3.S. 

The second range of r, in which there was no definite trend in 4>(»1 and the third 

range of r, in which 4>(» was much larger, are both ,smaller than the 

corresponding ranges in Figure 3.S. With smaller initial conditions, sweep 

through occurs at slower sweep rates. 
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Figure 3.9 Reverse frequency sweep. Solid line-nonstationary response 
found from original governing equations. Dashed lines-stationary 
frequency-response curves. 
ex = 1.0, ,.,. = 0.05, E = 1.0, f = 0.5, r = -0.00084, 

y,(O) = 0.001, Y2(0) = 0, and cPo = 2.212. 
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Figure 3.10 4>00 versus sweep rate: + denotes value of 4> at which the 

response magnitude exceeded 4 as the response became 
unbounded and 0 denotes a sweep rate for which the response 
remained bounded. 

ex = 1.0, p. = 0.05, f = 1. 0, f = 0.5, 4>0 = 2.21 2, 

Y1(0) = 0.00001, and Y2(O) = O. 
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In general, for both forward and reverse sweeps, larger sweep rates 

result in increased penetration of the trivial solution. The size of the overshoot 

and the size of the oscillations about the stationary frequency-response curve 

increase in proportion to the magnitude of the stationary frequency-response 

curve at the jump point. For forward sweeps and softening nonlinearity, the 

magnitude of the stationary response at the jump point will be smaller for larger 

r because faster sweeps have larger penetrations. Analogously, for reverse 

sweeps, the magnitude of the stationary response at the jump point will be 

larger with increasing I rl. 

The nonstationary response will not converge to the frequency-response 

curve if I rl is large. Instead, the solution changes directly from being trivial or 

from oscillating about the stationary frequency-response curve to lingering or 

unboundedness. The amount of lingering, which depends on the size and rate 

of change of the response when lingering begins, varies in a complicated 

manner with r. These nonstationary behaviors can vary widely, quantitatively 

and qualitatively, for only small changes in r. 

Although we have noted some general effects of the sweep rate on 

penetration, lingering, overshoot etc., we must remember that the effect of the 

sweep rate on the nonstationary behavior is very complex, as shown in 

Figures 3.3, 3.4, 3.8, and 3.10. 
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CHAPTER 4 

Amplitude Sweeps 

Now we turn our attention from frequency sweeps to sweeps of the 

excitation amplitude. The procedure is similar to that carried out in Chapter 3, 

except now cJ> is a constant, and the excitation amplitude / is a linear function 

of time given by (1.3), or by 

f=fo+Sf.2t (4.1) 

where s is the sweep rate. The scaling of fis consistent with (3.1). Again, we 

set f equal to unity because it was used only as a bookkeeping device in the 

perturbation analysis. 

We integrate the Cartesian form of the perturbation equations (2.48) and 

(2.49) using a digital computer to generate force-response curves. We also 

integrate the original governing equations (2.66) and plot the envelope of the 

response. For amplitude sweeps, the/axis is also a time axis because/varies 

linearly with time. As with frequency sweeps, we perturb the system with 
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small nontrivial initial conditions to prevent the response from balancing on the 

trivial solution when it is unstable. 

The nonstationary response to amplitude sweeps can be divided into two 

cases, depending on the excitation frequency: cJ> greater than or equal to two 

and cJ> less than two. For each case, we consider forward (s > 0) and reverse 

(s < 0) sweeps. 

4. 1 Excitation Frequency Greater than Two 

In this case, the stationary force-response curve consists of only one 

branch, which is stable, as shown in Figure 2.5. We plot this curve for 

reference as a dashed line. We also recall that the trivial solution is stable up 

to the intersection of this curve with the faxis and is unstable for all larger 

values of f In Figure 4.1, we plot as a solid line the nonstationary response 

found from integration of the perturbation equations (2.48) and (2.49) for a 

forward sweep (s > 0). The same nonstationary behaviors that occur in 

frequency sweeps are present in the nonstationary responses to amplitude 

sweeps. First, the nonstationary response remains trivial and penetrates into 

the range of f where the stationary trivial solution is unstable. Then, the 

nonstationary amplitude jumps up, overshoots the stationary force-response 

curve, and oscillates about it so that the time trace of u would have a beating 
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Figure 4.1 Forward amplitude sweep. Solid line-nonstationary response 

found from perturbation equations. Dashed lines-stationary 

frequency-response curves. 

a = 1.0, p. = 0.05, E = 1.0, cP = 2.2, s = 0.002, 

p(O) = 0.001, q(O) = 0, and fa = 0.0. 
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nature. As / increases further, the size of the oscillations diminishes, and the 

nonstationary amplitude converges to the stationary force-response curve. 

There is no lingering here because the solutions do not become trivial again. 

For forward sweeps, penetration tends to increase for larger values of s. This 

results in larger jumps, larger oscillations of the response amplitude, and a 

longer time interval for convergence to the stationary force-response curve. 

In Figure 4.2, we repeat the nonstationary response obtained from the 

perturbation equations as a solid line and plot the nonstationary response found 

from integrating the original governing equations (2.66) as a dashed line. There 

is good agreement up to a certain value of f, but the discrepancy between the 

solutions grows as / gets larger. (Recall that in the method-of-multiple-scales 

analysis, we assumed that/was small.) Then the response obtained from the 

original governing equations appears to undergo a symmetry-breaking 

bifurcation and then quasi-period-doubling bifurcations all within a few cycles 

before going unbounded. This is better seen in the time trace found from the 

original governing equations that we plot in Figure 4.3. It is difficult to identify 

these behaviors because they are short-lived. For a slower sweep rate, the 

asymmetry would extend for several cycles as it did in the frequency sweep of 

Figure 3.7. Floquet theory predicts that symmetry breaking occurs in the 

stationary solution at/ = 1.433, and that the asymmetric stationary solution 

becomes unstable at / = 1.490. (Again we use the value of / at which the 

asymmetric stationary solution becomes unstable as an estimate of the value 
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Figure 4.2 Forward amplitude sweep. Solid line-nonstationary response 

found from perturbation equations. Dashed lines-nonstationary 
response found from original governing equations. 
at = 1.0, p, = 0.05, E = 1.0, t/> = 2.2, s = 0.002, 

p(O) = Yl (O) = 0.001, q(O) = Y2(0) = 0, and fo = 0.0. 
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Figure 4.3 Time trace of a forward amplitude sweep_ 

a = 1.0, p. = 0.05, E = 1.0, t/> = 2.2, s = 0.002, 
Y, (0) = 0.001, Y2(0) = 0, andlo = 0.0. 
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of / at which the solution becomes unbounded.) We mark these values by 

vertical lines in Figure 4.2. Note that both symmetry breaking and 

unboundedness occur at values of / higher than those in the case of the 

stationary response. 

In Figure 4.4, we plot/oo as a function of the sweep rate s for forward 

sweeps, where/oo is the value of/at which the response exceeds some chosen 

value as it becomes unbounded. We mark the value of / at which period 

doubling occurs in the stationary solution with a horizontal line in Figure 4.4 

and use it as an estimate of the value of / at which unboundedness occurs in 

the stationary solution. Responses are calculated at sweep rates which are 

multiple of 0.0002. All sweeps are started at the value of/at which the trivial 

solution changes from stable to unstable, so that all sweeps have the same 

response as they enter this region. For a range of small values of s, the 

response jumps up and converges to the stationary curve before it undergoes 

a symmetry-breaking bifurcation, quasi-period-doubling bifurcations, and chaos, 

on its way to becoming unbounded. The nonstationary solution has no wide 

amplitude swings that might carry it to unboundedness prematurely. This 

allows the nonstationary response to penetrate into the region of / where the 

stationary solution is unbounded. This type of response occurs for the leftmost 

part of Figure 4.4, where the data points lie above the horizontal line. The 

sweeps of Figures 4.2 and 4.3 are examples of this type of behavior. 

Considering faster sweeps, in the next range of sweep rates, the size of the 
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Figure 4.4 /00 versus sweep rate: + denotes value of/at which the response 
magnitude exceeded 3 as the response became unbounded. 
a = 1.0, p. = 0.05, E = 1.0, cP = 2.2, fa = 0.475, 
y,(O) = 0.001, and Y2(0) = O. 
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jump or of the oscillations about the stationary force-response curve can carry 

the response to unboundedness. For many of these sweep rates, the 

nonstationary response becomes unbounded at values of I smaller than those 

at which unboundedness occurs in the stationary case, and/eo drops below the 

horizontal line. For a system undergoing sweeps with these sweep rates, it is 

dangerous to use the value of I at which the stationary solution becomes 

unbounded as a design estimate. However, for larger sweep rates,/eo always 

exceeds the value oflat which the stationary solution goes unbounded. In this 

range of s, the nonstationary response penetrates greatly before changing from 

trivial to unbounded in only a few cycles. In general for large s, leo tends to 

increase with s because the penetration increases with s. Note, however, the 

existence of values of s that have much larger values of/eo than the surrounding 

smaller or larger sweep rates. Thus, leo is very sensitive to the sweep rate. 

In Figure 4.5, we repeat the sweep rate analysis using a set of initial 

conditions smaller than those used for the sweeps of Figure 4.4. The range of 

small sweep rates, for which leo exceeds the value of I at which the stationary 

solution goes unbounded, is smaller in this case, although the values of leo are 

similar. The sweep rate for which all faster sweeps yield points above the 

horizontal line is smaller than in Figure 4.4. For a given sweep rate, leo tends 

to be larger in this case because the smaller initial conditions allow greater 

penetration of the trivial solution. 

Now we consider reverse amplitude sweeps (i.e., negative s). Since 
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Figure 4.5 /00 versus sweep rate: + denotes value of/at which the response 
magnitude exceeded 3 as the response became unbounded. 

a = 1.0, Il = 0.05, E = 1.0, tP = 2.2, fa = 0.475, 
Yl(O) = 0.00001, and Y2(0) = O. 
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these sweeps begin where the trivial solution is unstable, the nonstationary 

response jumps soon after the sweep begins. The sizes of the jump and 

overshoot depend on the value of fat which the sweep begins; the sizes tend 

to be larger for larger starting values of f The initial jump is large enough to 

take the solution directly to unboundedness in many circumstances. In other 

cases, the response jumps up, oscillates about, and converges to the stationary 

force-response curve. When the response becomes small, it separates from 

this curve and lingers. In Figure 4.6, we plot the result of integrating the 

perturbation equations for such a sweep as a solid line and plot the stationary 

force-response curve as a dashed line for reference. Remember that since this 

is a reverse sweep, time increases from right to left. In Figure 4.7, we repeat 

the perturbation result as a solid line, and plot the result of integrating the 

original governing equations as a dashed line. The agreement between the two 

methods is good and gets better asfgets smaller. For faster sweep rates, the 

nonstationary response may never converge to any nontrivial stationary 

solution; instead it goes directly from an oscillation about the stationary force

response curve to lingering. For some reverse sweeps, the nonstationary 

solution continues lingering so long that it is nontrivial even after the excitation 

amplitude has reached zero. 
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Figure 4.6 Reverse amplitude sweep. Solid line-nonstationary response 

found from perturbation equations. Dashed lines-stationary 
frequency-response curves. 

a = 1.0, p, = 0.05, E = 1.0, 4> = 2.2, s = -0.002, 

p(O) = 0.001, q(O) = 0, and!o = 1.3. 
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Figure 4.7 Reverse amplitude sweep. Solid line-nonstationary response 

found from perturbation equations. Dashed lines-nonstationary 
response found from original governing equations. 

a = 1.0, It = 0.05, € = 1.0, tP = 2.2, s = -0.002, 
p(O) = y, (0) = 0.001, q(O) = Y2(0) = 0, and to = 1.3. 
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4.2 Excitation Frequency Less than Two 

In this case, the stationary force-response curve bends back on itself, as 

in Figure 2.6. All of the solutions on this curve are stable except those on the 

part which lies below the larger part of the curve. The trivial solution is stable 

up to the intersection of the force-response curve with the faxis and is 

unstable for larger values of f 

For a forward sweep of the amplitude (s > 0), the nonstationary behavior 

is similar to that in the case of 4> ~ 2. Again there is penetration, jump up, 

overshoot of, oscillation about, and convergence to the stationary force

response curve, followed (when we integrate the original governing equations) 

by a symmetry-breaking bifurcation, quasi-period doublings, and 

unboundedness. The primary difference between this case and the case of 

4> ~ 2 is the shape of the stationary force-response curve about which the 

nonstationary behaviors take place. We show a forward sweep in Figure 4.8, 

with the nonstationary response found from integrating the perturbation 

equations being plotted as a solid line and the stationary force-response curve 

being plotted as a dashed line. In Figure 4.9, we repeat the solution for the 

nonstationary amplitude found from integrating the perturbation equations as 

a dashed line, and plot the time trace of the response found from integrating 

the original governing equations as a solid line. We see agreement between the 
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Figure 4.8 Forward amplitude sweep. Solid line-nonstationary response 

found from perturbation equations. Dashed lines-stationary 
frequency-response curves. 
a = 1.0, p. = 0.05, E = 1.0, c/> = 1.9, s = 0.0004, 

p(O) = 0.001, q(O) = 0, and fa = 0.0. 
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Figure 4.9 Forward amplitude sweep. Solid line-time trace of nonstationary 
response found from original governing equations, Dashed 
lines - amplitude of nonstationary response found from 
perturbation equations. 
ex = 1.0, J.L = 0.05, E = 1.0, cP = 1.9, s = 0.0004, 

p(O) = Y1 (0) = 0.001, q(O} = Y2(0) = 0, and to = 0.0. 
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methods, particularly as to the location of the beginning of the jump up from 

the trivial solution. But at f = 0.58, the response found from the original 

governing equations begins to differ qualitatively from the response found from 

the perturbation equations, and it quickly goes unbounded. For this sweep, the 

oscillations of the amplitude about the stationary force-response curve are large 

enough to carry the response to unboundedness. For the case of stationary 

excitation, Floquet theory predicts that the asymmetric solution becomes 

unstable atf = 0.890. Using this last value as an estimate of the value of fat 

which unboundedness occurs in the stationary solution, we note that in this 

sweep, unboundedness occurs at a value of f smaller than in the case of the 

stationary response. 

In Figure 4.10, we plotfco as a function of the sweep rate s for forward 

sweeps, where fo> is the value of / at which the response exceeds some large 

value as it becomes unbounded. The variation of fo> with the sweep rate is 

much like that for the case t/> ~ 2. We mark the value f = 0.890 with a 

horizontal line in Figure 4.10 and use it as an estimate of the value of / at 

which the stationary solution becomes unbounded. Responses are calculated 

at sweep rates which are multiple of 0.0002. All sweeps are started at the 

value of fat which the trivial solution changes from stable to unstable, so that 

all sweeps have the same response as they enter this region. As in Figure 4.4, 

there is a range of small values of s for which/o> lies above the horizontal line. 

This is followed by a range of values of s in which /0> is below the line-the 
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Figure 4.10 f«J versus sweep rate: + denotes value of fat which the response 
magnitude exceeded 3 as the response became unbounded. 

ex = 1.0, p, = 0.05, E = 1.0, 4> = 1.9, to = 0.273, 

Y1 (0) = 0.001, and Y2(0} = O. 
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response goes unbounded at a value of I at which the stationary response is 

bounded. The sweep rate used in the sweeps of Figures 4.8 and 4.9 lies in this 

region. For even larger values of s,lot> exceeds the horizontal line again. As in 

Figure 4.4, there are several sweep rates for which/ot> is significantly larger than 

for surrounding sweep rates. 

In Figure 4.11, we repeat the sweep rate analysis using a set of initial 

conditions smaller than those used for the sweep of Figure 4.10. The 

relationship between Figures 4.10 and 4.11 is analogous to that between 

Figures 4.4 and 4.5-the first range of small sweep rates for which 100 

surpasses the horizontal line is smaller for smaller initial conditions; the sweep 

rate for which all faster sweeps have/oo above the horizontal line is smaller for 

smaller initial conditions; and/ot> tends to be larger for smaller initial conditions. 

As we consider smaller and smaller values of <P, the first range of sweep 

rates in which lot> lies above the horizontal line gets smaller until it essentially 

disappears. We illustrate this situation in Figure 4.12. We mark the value 

I = 0.722 at which period doubling occurs in the stationary solution with a 

horizontal line in Figure 4. 12 and use it as an estimate of the value of I at 

which unboundedness occurs in the stationary solution. Except for extremely 

slow sweep rates, the response will not converge to the stationary response 

curve. Since there is no convergence to that curve, the .oscillations of the 

nonstationary response amplitude are large enough to carry the response to 

unboundedness. Thus, the response changes quickly over a few cycles from 
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Figure 4.11 foo versus sweep rate: + denotes value of fat which the response 
magnitude exceeded 3 as the response became unbounded. 

a = 1.0, JL = 0.05, E = 1.0, cP = 1.9,/0 = 0.273, 

Y1(0) = 0.00001, and Y2(0) = O. 
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Figure 4.12 /1» versus sweep rate: + denotes value of/at which the response 
magnitude exceeded 3 as the response became unbounded. 
a = 1.0, p. = 0.05, E = 1.0, ¢ = 1.8, to = 0.421, 

Y1 (0) = 0.001, and Y2(O) = O. 
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being trivial to being unbounded at a value of fwhere the stationary response 

is bounded. For faster sweep rates, the penetration of the trivial solution is 

large enough so thatfoo exceeds the horizontal line. 

As with forward sweeps, the nonstationary response characteristics for 

reverse sweeps when 4> is less than two is similar to those when 4> is greater 

than two. Again, the response jumps quickly because the sweep begins at a 

value of fwhere the trivial solution is unstable. The initial jump can carry the 

response to unboundedness, or to an asymmetric solution, or to a response 

that oscillates about the stationary response curve, depending on /0. In 

Figure 4. 13, we plot the nonstationary response found from integrating the 

perturbation equations as a solid line and the stationary force-response curve 

as a dashed line. Recall that time increases from right to left in this figure 

because this is a reverse sweep_ In this case, the nonstationary response does 

not converge to the stationary force-response curve, instead going directly from 

oscillation about this curve to lingering. There is much lingering here because 

the stable part of the stationary force-response curve is elevated above the f 

axis for tb < 2. In fact, the response remains nontrivial even after f has 

become trivial. 

In Figure 4.14, we compare the nonstationary response obtained by 

integrating the perturbation equations (solid line) with. that obtained by 

integrating the original governing equations (dashed line). The agreement is 

good, although there is some discrepancy between the results of the two 
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Figure 4.13 Reverse amplitude sweep. Solid line-nonstationary response 

found from perturbation equations. Dashed lines-stationary 
frequency-response curves. 

ex = 1.0, p. = 0.05, f = 1.0, cJ> = 1.9, s = -0.008, 
p(O) = 0.001, q(O) = 0, and fo = 1 .0. 

Amplitude Sweeps 80 



1.0+-------------------+ 

a 0.5 

0.0 0.5 1.0 

f 
Figure 4.14 Reverse amplitude sweep. Solid line-nonstationary response 

found from perturbation equations. Dashed lines-nonstationary 
response found from original governing equations. 

a = 1.0, p, = 0.05, E = 1.0, cJ> = 1.9, s = -0.008, 

p(O) = Y1 (0) = 0.001, q(O) = Y2(0) = 0, and fa = 1.0. 
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methods. The discrepancy, as before, results from differences in the measures 

of the amplitudes and from approximations used in the analysis. 

For smaller values of t/>, meaningful reverse sweeps are not possible 

because the solution either remains trivial or immed iately becomes unbounded, 

depending on the initial value of f 
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CHAPTER 5 

Analog-Computer Simulations 

In this chapter, we use an analog computer to verify the conclusions of 

the digital-computer results of the previous chapters. We also consider the 

behavior of the response after a sweep is stopped and the excitation frequency 

and amplitude are held constant. 

An analog computer is an actual physical system which can be 

programmed to model the system being studied. Because it produces a 

solution that is continuous in time, an analog computer yields a valuable 

verification of the digital-computer results. A digital computer must 

approximate the solution at discrete points in time, and the discretization of the 

solution can sometimes cause incorrect results. 

However, an analog computer is subject to noise and other inaccuracies. 

The noise prevents an accurate control of the initial conditions. Thus, the same 

initial conditions cannot be duplicated in all sweeps when using an analog 
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computer, and one cannot analyze the effect of initial conditions on the 

response. Because of the noise and the inaccuracies in such systems, the 

analog computer does not produce the same accuracy as a digital computer. 

Therefore, we use the analog computer for a qualitative check of the 

characteristics of the nonstationary response, rather than as a quantitative 

check. 

We use a Comdyna GP-10 analog computer in the slow (real time) 

integration mode. The excitation signal is generated using a Wavetek 650 

Signal Generator. We sweep the excitation frequency by using the Wavetek's 

internal sweeping programs. We sweep the amplitude by using a PC program 

which I wrote that controls the signal generator through a General Purpose 

Interface Bus (GPIB). 

5.1 Frequency Sweeps 

In Figure 5.1, we show the results of a forward frequency sweep with 

r = 0.001. As with the digital-computer results, we see penetration, jump up, 

and then oscillation of the response amplitude. As the sweep continues, the 

amplitude converges to the stationary solution. Towards the end of the sweep, 

we see lingering in the response because the amplitude of the response does 

not become trivial in the abrupt manner the stationary solution amplitude does. 
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Figure 5. 1 Analog computer response to a forward frequency sweep. 

a = 0.1, p. = 0.05, E = 1.0,/= 0.5, r = 0.001, and 4>0 = 1.7. 
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In Figure 5.2, we plot the analog-computer results using the same sweep 

rate as in Figure 5.1. Because of the presence of different initial conditions and 

noise, the response penetrates farther before jumping up. The response 

continues to grow, and in a few cycles, it has become unbounded. As in the 

previous chapters, we see that changes in the initial conditions or noise can 

have catastrophic effects on a system under a nonstationary excitation. 

In Figure 5.3, we plot the analog-computer results using the same sweep 

rate as in Figure 5.1, but this time, we stop the sweep after 300 seconds and 

hold the frequency at tb = 2. The end of the sweep is marked with a vertical 

line. The response during the sweep is much like that in Figure 5.1. At the 

beginning of the stationary excitation, the amplitude is still oscillating as it did 

during the sweep, but soon after the solution converges to the stationary 

response. 

In Figure 5.4, we plot the analog-computer results for a reverse sweep, 

with r = -0.0005. Here, the response penetrates, jumps up, oscillates, and 

converges to the stationary solution. Towards the end of the sweep, however, 

we see a distinct change in the behavior. The response undergoes a symmetry

breaking bifurcation and then a quasi-period-doubling bifurcation. The 

stationary response undergoes a period-doubling bifurcation at tb = 1.903. In 

this sweep, the excitation frequency passes this value of q:, at t = 794 seconds. 

Thus, for this sweep, the period-doubling behavior is delayed to a value of q:, 

smaller than that in the stationary response. After several cycles of this 
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Figure 5.2 Analog computer response to a forward frequency sweep. 

ex = 0.1, Il = 0.05, E = 1.0,/= 0.5, r = 0.001, and cPo = 1.7. 
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Figure 5.3 Analog computer response to a forward frequency sweep. 
After 300 seconds, the sweep is stopped at cP = 2. 
ex = 0.1, p. = 0.05, E = 1.0,/= 0.5, r = 0.001, and cPo = 1.7. 
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Figure 5.4 Analog computer response to a reverse frequency sweep. 

er = 0.1, p, = 0.05, € = 1.0,/ = 0.5, r = -0.0005, and 4>0 = 2.3. 
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behavior, the response becomes unbounded. 

In Figure 5.5, we plot the analog-computer results for a reverse sweep 

with r = -0.001. The response behaves much like that shown in Figure 5.4. 

Because of the faster sweep rate, penetration is greater in this sweep. The 

excitation frequency passes ¢ = 1.903 at t = 397 seconds for this sweep. 

Again, the quasi-period-doubling bifurcation is delayed to a value of cP smaller 

than that in the stationary response. In fact, the quasi-period-doubling 

bifurcation is delayed even more than in the slower sweep of Figure 5.4. It is 

more difficult to identify the quasi-period-doubled behavior separately from the 

other response behaviors because it occurs for only a few cycles before the 

response becomes unbounded. The response becomes unbounded at a value 

of ¢ slightly smaller than that in the previous sweep. 

In Figure 5.6, we plot the analog-computer results for a reverse sweep 

with r = -0.002. In this sweep, we see even deeper penetration. The 

response amplitude jumps up and begins to oscillate, but after a few cycles the 

response becomes unbounded. If a quasi-period-doubling bifurcation occurs, 

we cannot identify it because it occurs with all the other changes in the last 

few cycles of the response. The response becomes unbounded at a value of 

cP higher than that in the previous sweeps. 

In Figure 5.7, we plot the results of a reverse sweep with r = -0.004. 

After 150 seconds, we stop the sweep and hold the frequency at l/J = 1.7. 

When the sweep ends, the response is still bounded, unlike the sweeps of 
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Figure 5.5 Analog computer response to a reverse frequency sweep. 
a = 0.1, p. = 0.05, e = 1.0,/ = 0.5, r = -0.001, and tPo = 2.3. 
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Figure 5.6 Analog computer response to a reverse frequency sweep. 

a = 0.1, p. = 0.05, e = 1.0,/ = 0.5, r = -0.002, and cPo = 2.3. 
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Figure 5.7 Analog computer response to a reverse frequency sweep. 
After 150 seconds, the sweep is stopped at 4> = 1.7. 
a = 0.1, p. = 0.05, E = 1.0,/ = 0.5, r = -0.004, and 4>0 = 2.3. 
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Figures 5.4-5.6. However, the oscillations are large enough so that the 

solution goes unbounded a few cycles later, after the sweep has ended and the 

excitation is stationary. 

For some sweep rates, initial conditions, and noise levels, the response 

found from the analog computer sweeps through, just as it did in the digital

computer results. In such cases, the response never deviates significantly from 

the trivial response. 

5.2 Amplitude Sweeps 

In Figure 5.8, we show the results of an excitation-amplitude sweep on 

an analog computer with s = 0.00208. The results are very similar to those 

found on the digital computer. First, the response penetrates, jumps up, 

oscillates, and converges to the stationary solution. As the sweep continues, 

the response begins to change and no longer agrees with the stationary 

solution. After a few cycles, the response goes unbounded. The last few 

cycles of the response suggest the occurrence of a symmetry-breaking 

bifurcation and a quasi-period-doubling bifurcation that we found in the digital

computer simulations. The stationary solution undergoes a period-doubling 

bifurcation at! = 1.002. In this sweep, the excitation amplitude passes this 

value of ! at t = 480 seconds. Thus, the period-doubling behavior in this 
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Figure 5.8 Analog computer response to a forward amplitude sweep. 

a = 0.1, JJ. = 0.05, E = 1.0, cJ> = 2.2, s = 0.00208, and 

fo = 0.0. 
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sweep is delayed to a value of f higher than that in the stationary response. 

In Figure 5.9, we show the results of a forward sweep with 

s = 0.00167. After 600 seconds, we stop the sweep and hold the excitation 

amplitude at f = 1.0. Again, we see penetration, jump up, oscillation, and 

convergence to the stationary solution. At the end of the sweep, the 

nonstationary response has already converged to the stationary response; 

therefore, there is no nonstationary behavior evident in the response once the 

sweep has ended. 

In Figure 5. 10, we show the results of sweeping the amplitude with 

s = 0.0067 for 150 seconds, and then holding the excitation amplitude at 

f = 1 .0. The response penetrates farther than in the previous sweep because 

the sweep is faster, and only begins to grow at the end of the sweep. After 

the sweep is ended and the excitation is stationary, the response continues to 

grow and soon becomes unbounded. Again we see that the nonstationary 

behavior can have a critical effect on the response even after the excitation has 

become stationary. 

In Figure 5.11, we show the results of a reverse amplitude sweep with 

s = -0.00417. After 150 seconds, we stop the sweep and hold the excitation 

amplitude at! = O. The response jumps as soon as the sweep begins because 

the trivial solution is unstable at this level of excitation. The response soon 

converges to the stationary solution, but as the sweep continues, the response 

lingers. In fact, lingering is so great that the response is nontrivial even after 
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Figure 5.9 Analog computer response to a forward amplitude sweep_ 

After 600 seconds, the sweep is stopped atl = 1. 

Ci = 0.1, Jl = 0.05, e = 1.0, cJ> = 2.2, s = 0.00167, and 
10 = 0.0. 
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Figure 5.10 Analog computer response to a forward amplitude sweep. 
After 150 seconds, the sweep is stopped at! = 1. 
Q = 0.1, J.L = 0.05, € = 1.0, <p = 2.2, s = 0.0067, and 

fa = 0.0. 
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Figure 5.11 Analog computer response to a reverse amplitude sweep. 
After 150 seconds, the sweep is stopped at f = o. 
Q = 0.1, p. = 0.05, E = 1.0, cJ> = 1.8, s = -0.00417, and 

to = 0.625. 
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the excitation is trivial. However, the response decays after the sweep has 

ended and becomes trivial. 
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CHAPTER 6 

Conclusions 

We have considered a parametrically-excited one-degree-of-freedom 

system with nonstationary excitation. The excitation has either a frequency or 

an amplitude that is a linear function of time. Using the method of multiple 

scales, we determined equations governing the amplitude and phase of the 

response. From these, we found the stationary response of the system to a 

stationary excitation. We considered the stability of these solutions, and also 

examined the stability of stationary solutions to the original governing equation 

through a Floquet analysis. We found the nonstationary response to 

nonstationary excitation by (a) digital computer integration of the original 

governing equations; (b) digital computer integration of the equations found by 

applying the method of multiple scales; and (c) analog computer simulation of 

the original governing equation. We found good agreement between the 

responses found through digital computer simulation. The analog computer 
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simulations verified the digital computer results. We also found the maximum 

amplitude of the response as a function of sweep rate and the value of 

excitation amplitude or frequency at which the response goes unbounded as a 

function of sweep rate. We also examined the effect of initial conditions and 

noise on the response to nonstationary excitation. 

For sweeps of the excitation amplitude or frequency, there are many 

characteristics which separate the nonstationary response to nonstationary 

excitation from the stationary response to stationary excitation. The 

nonstationary response remains trivial and penetrates into a range of 

parameters where the stationary trivial response is unstable. Then, the 

responsejumps up and oscillates about the stationary response curve, and then 

converges to the stationary response. These characteristics vary with sweep 

rate in a complex manner, although we can identify trends in the variation. In 

addition to the sweep rate, initial conditions or noise in the system can greatly 

affect the response to nonstationary excitation. 

For some sweeps, there are response behaviors analogous to symmetry

breaking bifurcations, period-doubling bifurcations, and chaos in the responses 

to nonstationary excitation found from the analog computer simulations and the 

digital computer simulations of the original governing equation. There is 

evidence that these bifurcations involve a structure similar to that of the basic 

nonstationary characteristics. For instance, the symmetric nonstationary 

response penetrates into the range of parameters where the stationary response 
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is asymmetric. The degree of asymmetry then changes in a way that suggests 

jump up, oscillation and convergence. 

Future work in deterministic nonstationary excitations must proceed in 

two directions. First, different types and combinations of nonstationary 

variations need to be examined. Rather than the linear variations of excitation 

amplitude and frequency considered here, sinusoid variations might be 

considered, or the excitation amplitude and frequency could be varied at the 

same time. Secondly, the responses of different and more complex systems 

to nonstationary excitation must be considered. This will allow study of the 

interaction between nonstationary excitation and many dynamic behaviors. 
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APPENDIX 

Finding Initial Conditions on a Solution 

In order to use the Floquet stability analysis, we first need a way to 

compute the solution to the equation we are considering. We could use the 

solution found from the method of multiple scales. But since we will be using 

computer integration in the Floquet analysis, we also will use computer 

integration to find the solution. 

To do so, however, we must find initial conditions that place us on the 

solution that we wish to consider. We employ the following method to find 

such initial conditions. 

We wish to find initial conditions U1 (0) = '11 and u2(0) = -y such that the 

solution of the governing equations is periodic. We define the function 8/'",-y,t) 

to be the computed value of uJt) after we have integrated the system of 

differential equations with those initial conditions. If the choice of '11 and -y is 

on a periodic solution, then after one period T of the response, the system will 
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be back at its starting point; that is 

(A.1) 

This will not in general be true, because we must make a guess for 11 and 'Y. 

So we use a Newton-Raphson technique to refine our guess for 71 and 'Y. 

Assume that 

(A. 2) 

where 110 and 'Yo are the guesses for 11 and 'Y, and 111 and 'Y1 are the corrections 

to the guesses. Combining (A.1) and (A.2) we get 

1J1 ('70 + '11'1'0 + 1'1' 1') - '10 - '71 = 0 

1J2( '10 +'11'1'0 +1'1'1')- "Yo -"Y1 = 0 

We expand 81 and 82 using Taylor series and rearrange to get 

(A. 3) 

(A.4) 

Once we have the left side matrix in (A.4), we can solve for the corrections 'Y1 

and 'Y1' Using these corrections, we obtain a new guess. The process can be 

continued until an acceptable tolerance is met. We note that this process is 

very dependent on the original guess. We must use much trial and error just 

to find a guess that is close enough to the solution so that the method will 

work. 

In order to solve for the matrix in (A.4), we use the equations (2.66) 

Appendix 108 



derived in our application of the Floquet analysis. Replacing ui with 8i and 

differentiating the result with respect to ,., and 'Y, we get 

(AS) 

We also differentiate (A.1) with respect to 1J and 'Y to get the initial conditions 

aOl a(Jl 
-('1,j,0)=1 -(11",0)=0 
a'1 a, 
a02 a02 
-(1}",0)=0 -('1",0)=1 a,., aj 

(A.6) 

So now we have a set of six equations (2.66) and (A.5) that we integrate to 

find the response of the system and to compute the correction to our guess for 

initial conditions. 

There is a nice side benefit to this method. Note that equations (2.67) 

and their initial conditions are the same as (A.5) and their initial conditions. 

Therefore, in finding initial conditions for a stationary solution, we have also 

performed the calculations to compute the monodromy matrix. 
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