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ABSTRACT

A linearized theory for the response of a circular pen-

du1um spar in .2-dimensional waves and a uniform current is deve1-

oped. The linear forces on the cylinder are predicted using an

approximate potential flow theory for slender bodies. The dynamic

equations are then amended to account for the wake effects of

viscous bluff body flow by including a quadratic drag law and

neglecting wave damping. A spectral model for the forces on a

cylinder due to an oscillating wake, modeling the force as a

frequency modulation process, is proposed. The non-linear

equations of motion which result are then solved, assuming con-

stant force coefficients, by linearization for use with a Gaussian

random sea. The method of equivalent linearization is extended to

include mean flow effects and a spatially distributed process.

Some numerical experiments are then used to test the performnce

;. .
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of the linearization. For a variety of environments, the

linearization predicts the standard deviation of the simulation

response to within lO% and the mean angle of inclination to

within 30%. Results of the numerical experiments indicate that

there is significant variation (order of magnitude changes) in

both response and mean angle of inclination. Thus, significant

changes are followed by the linearization.

A laboratory experiment was carried out to test the

linearized spar model in a realistic fluid environment. Only

the low Keu1egan Carpenter number regime was investigated.

With some minimal mani~ulations, good agreement is obtained

between the experiment and the linearized estimates. It appears

that the drag coefficients for vortex induced in-line forces may

be an order of magnitude larger than those reported in the

literature, .5 instead of .06, and that the shedding of vortices

due to stea~y flow may reduce the added mass coefficient signif-

icantly, as observed in oscillating flows with significant vortex

shedding.
t
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1. Introduction

The problem which originally motivated this work

involved the analysis of the dynamics of a tilting spar current

sensor, Mavor, et. a1. (1976). In this case it was necessary to

evaluate the effect of surface waves on the mean inclination of

the spar to determine its performnce as a current sensor. The

spar has a natural frequency in the region of wave excitation

and therefore cannot be treated as stationary, allowing one to

make direct use of the large body of literature for wave forces

on cylinders. Bluff body drag, which is the dominant dissipative

force on the spar and a possible exciting force, is fundamentally

non-linear, so that an elementary application of linear vibration

theory is not possible. With the advent of offshore oil develop-

ment in deep water, 300 m or more, structures with cylindrical

components are being built with natural frequencies in the region

of surface wave excitation. Motions of the structure and reso-

nance behavior must therefore be considered in evaluating envi-

ronmenta1 loading. The question of dynamics of cylinder structures
Î
~i

¡

in a wave current environment is then of some general interest.

The forces on cylinder structures in various fluid

environments has been a topic of considerable interest in

classical and modern fluid dynamics. The cylinder provides a

mathemtically tractable geometry and is a popular engineering

struc~urELbecause of its synetry, large stiffness and ease of
. ~/j,' ~
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manufacture. With the advent of extensive offshore oil production

considerable energy has been expended to determine the forces on

cylinders in waves and currents. In fact, most effort has been

directed at either the wave problem, oscillating flow, or the

steady flow problem, with minimal thought given to the interaction.

The most complete set of 2-dimensional experimental data on

cylinders in sinusoidally oscillating flows is presented by

Sarpkaya (l976). Some interesting experiments on vertical

cylinders in sinusoidal waves have been performed by Bidde (l971),

Isaacson (l974) and various other authors. The results concerning

in-line forces of such experiments are generally interpreted in

ters of Morison's equation. This formlation decomposes the'

force into a component proportional to the instantaneous norml

acceleration, inertial force, and one proportional to the instan-

taneous square of the norml velocity, viscous force, which would

exist in the undisturbed flow. The decomposition of the force

in this manner is at first intuitively satisfactory, but there

is such large scale flow disturbance due to the viscous wake that

the good experimental performance of Morison's equation seems

somewhat fortuitous. This point is clearer if we note that for

smll fluid excursion amplitude-to-cylinder diameter ratios,

where inertial forces dominate, and for large amp1itude-to-diameter

ratios, where viscous forces dominate, Morison's equation performs

well, whereas in the intermediate range of £luid amplitudes, the
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equation experiences its poorest performance, see Sarpkaya (1976).

The transverse forces due to periodic asymetries in the wake are

not well behaved and the results are generally presented in a

purely empirical form.

Offshore structures have in the past been in relatively

shallow water so that they could be considered rigid and stationary.

Dynamic phenomena are not usually considered, and most wave force

experimentation and theory make use of fixed rigid cylinders.

The results of wave force experimentation are generally applied

by choosing a "design wave" and compatible force coefficients

to compute maximum forces on a structure. Borgman (l967) presents

an elegant random process description of wave forces on fixed

cylinders, ignoring transverse forces and mean currents, and

obtains good agreement with a single field experiment. Such an

approach is essential in the consideration of a system's dynamics

since using a determnistic force instead of the essentially

random force imposed by ocean waves may lead to significant errors

in the determination of response. The linearization which is

presented here employs a random process model, and the result is

equivalent to Borgmn's first order estimate when it is simplified

to the case which he considered.

Investigators such as Griffin (1975), Gerrard (1966),

and Tanida,et.a1. (1973) have been interested in the vortex

shedding behind cylinders. Of special interest to these investi-
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gators are the transverse vibrations of elastically supported

cylinders, as well as the effects of small forced sinusoidal

oscillations on the wake. A majority of these investigations

are motivated by a need to understand wake induced motions of

cables. Recently, as discussed by King (l977), in-line vortex

induced vibrations have become of some interest. All of the

experimental work in this field has led to an empirical repre-

sentation of an elastic system's response to steady flows,

generally represented as an amplitude at the natural frequency.

Some limited success has been obtained by applying the inviscid

von Karmen vortex street model to estimating forces on fixed

cylinders, Griffin (1972). A van der Pol oscillator model of

elastic cylinder wake interaction near resonance, Griffin (1975),

has received a great deal of attention, but it is complex and quite

limited in applicability.

Only one work, Seymour (l9J3), could be found which

analyzed the dynamics of a simple hydrodynamic system with large

viscous drag forces and included experimental verification. ¡o,
I

Seymour investigated the dynamics of a tethered sphere in waves

and was especially interested in the dissipation of wave energy.

He modeled the sphere as a point oscillator, linearized the drag

term, and was able to achieve reasonably good agreement with

field experiments. It was decided therefore to perform a linear-

ization of the spar problem. The important concepts behind

ll. ,,\....
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statistical linearization can be found in a paper by Caughey

(1963). The analysis presented here includes the effects of

mean flow, vortex shedding and vertical spatial gradients not

previously discussed in the literature.

An experiment by Mercier (l973) is the only study

found which actually addresses the question of wave-current

interactions with respect to forces on cylinders. He oscillated

a cylinder sinusoidally in a flume and measured the force on the

cylinder in different speed flows. The results which he presents,

as well as those from other wave force measurements, indicate

a considerable change in force coefficients for different wave-

cu~rent environments. A constant coefficient model, as presented

here, may therefore be severely limited. However, the success

of the few experiments presented here and those of Seymour and

Borgmn indicate that with a judicious choice of these coeffi-

cients, good results can be obtained~

The analysis presented here is directed at the question

of spar dynamics in co-linear uniform current and random 2-

dimensional waves. Although this is a somewhat artificial problem,

it embodies most of the complexities of realistic structure arid

environment, while minimizing notational complexity. This is not

to imply that a single cylinder and co-linear waves and current

are typical, but that the treatment of spatial gradients, random

waves and simultaneous current represents a significant advance
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in the analysis of engineering structures composed of cylinders.

The development begins with an estimation of the first

order linear inviscid forces on the spar. The governing equa tions

which result are then amended to include the effects of the

separated wake and a linearization is then used to estimate the

spar response. The performance of the linearization is then

investigated by comparing it with the results from a numerical

simulation. The entire spar response model is compared with

some laboratory experiments. The experimental work is limited

in scope and a more extensive set of experiments is necessary

for a thorough evaluation of the model. The technique presented

here can be generalized for more complicated structures and

realistic environments, and the results presented here appear

to make such an effort worthwhile.
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2. Linearized Potential Solution

In this section, we will determine the first order

inviscid forces due to 2 -dimensional waves incident on a

pendulum spar, see Figure 2. l. The effects of viscosity will

be considered in Section 3. The scheme used here involves the

assumption of a slender body, that is a body with one dimension

much larger than the other two, exhibiting small pitch motions

in incident waves of small slope with a wavelength long compared

to the body diameter. These assumptions will yield the equations

of motion for an undamped linear oscillator. Since we are inter-

ested in the system response near resonance, a regime in which

the first order conservative forces are in balance, we shall

also consider the lowest order damping term, which is of second

order. The motivation for considering this inviscid damping

term is to allow us to compare it with the viscous damping esti-

mated in Section 3. The solution for zero mean current is

derived in'Section 2. l, and the effects of a mean current are

addressed in Section 2.2. L
~

¡

2.1 Zero Mean Current

The analysis presented here follows closely the work

of Newmn (l963) with some modifications. Newmn considered the

response of a free-floating spar buoy in heave, surge, and pitch

to 2 -dimensional waves in a fluid of infinite depth. We shall

restrict our attention to the pitch motions of the pendulum spar,
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and include the effects of a finite depth. There is a non-

trivial error of a factor of 2 in the calculation of damping in

Newn's paper, so calculation of the proper source potential

for use in the damping calculations is included in Appendix A.

2. l.l Problem Definition

A fixed Cartesian coordinate system (x, y, z) with z

positive upwards is situated so that the origin coincides with

the center of rotation of the body. The undisturbed free sur-

face is at z = h and the x axis is the direction of incident

wave pr~pagation; see Figure 2. l. Use is made of a body fixed

coordinate system (x', y', z'), with z' along the axis of the

spar. When the spar is at rest (x, y, z) = (x', y', z'). We

also use a circular cylindrical system (r, a, z) with x = r cos e

and y = rsin e. The surface of the spar is defined by r' = R(z').

Letting ~ be the instantaneous angle of the body axis

with respect to the z axis, we find that

x = x' cos" + z' sin 'l (2.1)

y = y'

z = z' cos 'P - x' sin'"

Since the displacement ~ and the wave slope Ak, where A is the

amplitude and k is the wave number, aie assumed to be small, we

shall linearize all equations by neglecting terms which are

second order in these terms. Equation (2. l) is replaced by
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x = x' + z''f (2.2)

y = y'
z = z' - x''J

Assuming an inviscid, incompressible fluid, a velocity

potential, i (x, y, z, t) whose gradient is the velocity vector,

exists and must satisfy the following boundary conditions:

(1) a kinematic boundary condition at all boundaries

(fluid does not pass through the boundary),

(2) a dynamic boundary condition on the free surface

(pressure is constant), and

(3) a radiation condition at infinity (energy must

propaga te away from the body) for
A

and below.

The linearized free surface, bottom and radiation boundary con-

ditions are satisfied by the potentials of pulsating singularities,

see for example Wehausen and Laitone (1960). The linearized body

boundary condition is satisfied by a distribution of these singu-

larities along the mean axis.

In order to simplify the analysis, we shall decompose

the velocity potential as follows

!(x, y, z, t) = 'I + fA + ,., (2.3)

The potential of the incident waves is

~ = A!i cosh kz ei(kx -wt) (2.4)I cosh kh
where w is the radian frequency, g is the acceleration of gravity,

and ,i = N. Note that this implicitly assumes that the wave

slope is small. The dispersion relation for finite depth is
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w~. 9k t4nh kh (2~5)

The potential fA is the diffraction potential of the fixed body.

The potential l~ is due to the motion of the body and is linear

in 'P. From Appendix A, Equations A.9 and A.ll, we find that, to

lowest order in r, the above potentials are

+, ~~ tf2~ ~ COS e-

i. 7i Kk2x. cosh Klo F'" -

i. 2. eos ø R~t~) H2-) Jr

(2.6)

where

K -= .. (kcO+k) e,"'kh ~~inh kh
, k.i h .. Sin h2. k h

kic= wZ/j

F)l= J~r R(íJ cosh kr oI~.0
F(a-):: Ya1T K k z. Fir c.os h k ~

and

Å . ..d c.o~h g ~
'tA L w c.osh kh r e -iw tC.oS e. (2.7)

2.l.2 Equations of Motion

The equations of motion of the spar are obtained by

integrating the pressure over the surface of the body to obtain

the l moment. This moment is balanced by the angular acceleration

of the body and the gravitational moment. The linearized Bernoulli

equa tion is used to find the pressure

P .. ¡o ~! - fl9 (~- h )
(2.8)

To lowest order on the body
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P .',03 (i!- 'lR cose- h) - ,. ~ -
r.(~ -¿Aa os ki e.-Lwt(ll-~k )ar Jt .J cosh k

(2.9)

p. -pS (~-tJ R (,0$ e -h) -p 0/ R ~ cos e-
2,o,AkR C.D.se ~~:~ ~ e. -iwt T
/\ G A CoOS h k~ ..iu)t.f- J c.osh kh e

The equation ;; :o~:. i; = -/t:p R UlSe ole oh

oJ 0 0
where I is the moment of inertia,

(2. LO)

'(2.11)

distance to the center of gravity.

M is the mass, and Z
cg

Substituting Equation (2. LO)

is the

for the pressure and integrating over £;, Equation (2.11) becomes

I~'-'Mlc3 CP=-'lfJ9TTl~R(~)øl! -;?7T;;f~iR(~)oI~ T (2.l2)

2 Ak I rI'RI.° t L J -i.wtlS us h kh e- (f) CO.sn I"! ei! eo '
The terms on the right-hand side of Equation (2.l2) are readily

recognized. The first term is the hydrostatic restoring moment

and the second term is the added moment of inertia. The last

term represents the exciting moment due to the horizontal pressure

gradient under the incident wave and the diffraction pressure

field necessary to accelerate the fluid around the spar.

Equation (2.12) is the governing equation of an un-

damped oscillator, and as such would predict large motions near

resonance. Since, near resonance, the first order conservative

forces due to mass and stiffness cancel, it is reasonable to look

for the lowest order damping forces. For a body in an inviscid

fluid with a free surface, the energy dissipated in damping takes
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the form of radiated waves.

The damping forces can be estimated by considering

terms in the pressure field which are in phase with the body
.

velocities. The force in phase with ~ is derived from the

imaginary part of the potential l, , Equation (2.6). Thus,

the damping potential can be written as

~: ~-¿rrKkitosh k~ FlC(r l ~))t CoOS e (2.13 )

The damping pressure is

p* ~ -?t~~~)i ~ -
: L".1lkk c.osh k~ R F "c.ooS 8

(2. l4)

Therefore, the damping moment is¡",(ZIT .
M: : - Ð i p ~ l R eO$ e ai e d i!

. l 2. * '.f I'
:i - L¡OlT Kk F '" l: C.DS h kè.. 0
'= -¿ 'l~7Ti.K /.lZF,~

(2. l5)

R~i') øJ ~

We can now add this moment to Equation (2. l2), and upon rearranging,

obtain the damped equation of motion,

'l f. ".,z (X., pJJ! h~? Rt~)el 'f) - W i i fJ TI iJ( 1/ F" 2. 'lo ~ 1
' ¡og 1fr ~ Rt~J el2 - M l'C:j

= 2Ak ifA,. FlEe-iwtc."h kh
For the case of a righ t circular cylinder, R(~ = R,

(2. l6)

considered here, Equation (2. l6) can be written as
z. h' . z 71' "K (

."Gw2(!.-+I'TfR ,)- ¿tA (J R -p kh sinh Kh-
ccs /d\ .,1)2. + I'~ 7TR&l, - M ~e31
_ . rrR i- 2 l~ A k tuh kh (k h SIll h k h ..

c.osh kh +-1) e. -¿wt '

(2. l7)
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2.2 Effect of a Uniform Current

Including a uniform current in the inviscid solution

has three principal effects. There is a Doppler shift due to

wave advection by the current, so that the spar encounters wave

crests at a frequency other than to. The character and magnitude

of wave damping can change drastically. A mean force in the

direction of the flow will exist due to surface wave generation.

This is identical to the wave drag experienced by ships. However,

the first order oscillating inertial and restoring forces are not

affected by the presence of a current.

Havelock (l958) has demonstrated analytically that the

etfect of a uniform current on the damping potential for low fre-

quencies corresponding to wave lengths much larger than the body

diameter, i.e., kR~~ l, is to increase the damping. He also shows

that there is a critical speed, tTo = ~ ' at which infinite

damping may be predicted. It seem, therefore, that a computa-

tion of the wave damping is necessary. However, the assumption

of inviscid flow about a bluff body when there is a mean èurrent

is grossly inadequate and the solutions are not likely to have

much quantitative significance. The effort required to find'

these solutions does not seem justified. In the next section we

will, in fact, demonstrate that for most cases of interest, large

motions, the linear wave damping term for zero mean flow is

negligible in comparison with the viscous forces. We shall

therefore assume that viscous damping will always dominate.
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We shall now investigate the frequency change due to

the mean current. Assuming the current is in the x direction,

we write the incident wave potential in a coordinate system

moving with the mean current,

À\ ~ ~ co~ h lß'1% W cos" kh
¿(kx"-wt)

e. (2.l8)

where x" = x - U t and U is the magnitude of the uniform current.o 0
Notice that in this coordinate system the wave is unchanged.

Rewriting Equation (2. l8) in the fixed coordinate system, we

find
~ _ ~ c.o~li ¿ (kx - (i( Uo i'u.i t)'tX - w ~h e +lJox (2.l9)

We can see immediately that the lowest order term, dipole, in the

potentials l'V and ~ A will not be changed if we let the contri-

bution of U x be balanced by a wave drag potential, which we are
o

going to neglect as we stated above. The only change to the

equation of motion will be due to the moment exerted by the

incident potential. Some care must be used in computing the

pressure, since we have introduced an arbitrary mean speed. We

will need the dynamic pressure term in the unsteady Bernoulli

equation so that

P:r: -P ( ~t; .. ~ (\1cp¡: . \J~r.)
r . ~ CÐSi 1i (kl1 ~ ¿(kK -(kVotw)t:)= ¡o L l. (. CD& - 0 -W)e. 'l
~((U l-'k lk (.051, k2- ¿(kx-(ku,+l.)t)\:o L W (!osh l(h e. )
(tt k ~~~ll ~¡(k)(-(k.Vof-)t) )2)

Simplifying and neglecting second order terms in Ak, we find thai,

, . A ~ ¿(kJe-(k1Jot'w)t) L U.e¿~ ~ Ll'j ~ e. - -e 0

(2.20)

(2.2l)
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2
Since the dynamic pressure ~U contributes nothing to theo

moment integral, it is clear that the only change in the equation

of motion, Equation (2.l7), will be to substitute e-i(kUo +~)t

f - itA t h . h h d . dor e on t e rig t- an si e.
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3. Viscous Effects

It has been observed that a viscous fluid flowing at a

moderate constant speed about a cylinder "separates" from the

body' and forms vortices, coherent over varying lengths of the

cylinder, which shed and form a periodic wake. The result of

this process is a force in line with the flow with a mean and a

periodic component and a force normal to the flow wi th only a

periodic component. Comparable effects have been noticed in

s lowly varying flows.

The forces on a cylinder in viscous flow have received

much attention during the last 20 years. The results have been'

largely empirical due to the intractable governing equations

for viscous flows. Experiments have been carried out primarily

in steady flows, occasionally in oscillating flows, but rarely

in a combination of the two. The data from these experiments

have been organized through a set of dimensionless parameters,

which aid in generalizing specific rèsults. These parameters

are generated through a knowledge of the relevant properties of

the system being investigated, and use of the Pi Theorem which

defines the number of dimensionless groups which may be formed.

If all of the important properties are included, a physical law

can be written as a function of the dimensionless groups. For a

cylinder in viscous flow, these "laws" are complicated functions

and are presented in the form of graphs, although there are

parameter ranges in which simple analytical representati~ns can
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be found.

We shall review the real fluid effects for steady flow

case in Section 3. 1 and for the oscillatory flow case in Section

3.2. A model based on "strip" theory, which incorporates this

empirical informtion with the inviscid solution of Section 2, is

presented in Section 3.3.

3. 1 Steady Flow

A recent review article by King (l977) gives an

extensive sumary of the state of knowledge on steady flow

normal to circular cylinders. Some of the highlights of this

article are presented here as background.

3. l.l Fixed Cylinder

The important dimensionless parameters used in charac-

terizing steady viscous flow about a fixed cylinder of diameter

Dare

N =
R

U D
o

V
= Reynolds number

where Uo is the mean speed, and V is the kinematic viscosity,
f D
v

Uo

where f is the frequency at which vortex pairs are shed, thatv

NS = = S trouha 1 number

CD

force frequency,
FD I L

=

%fUo-¿ D
the mean drag force on a cylinder of length L.

= drag coefficient

is, the lift

where FD is
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"
CD

A
FD I L

'lpU02 D

function of the

= = time varying drag coefficient

A
where FD is a time varying part of the total drag

force, for example,~the amplitude or the rpot mean square, and

,. L/LCL = ~ U 2 D = time varying lift coefficient2 0
where FL is the amplitude or maximu value of the lift force.

Note that there is no mean lift on a non-rotating circular

cylinder.

For a fixed cylinder in 2 -dimensional steady flow,

the general experimental relationship of the Strouhal number,

the drag coefficient and the Reynolds number is shown in Figure

3.1. The well-behaved subcritical region is usually characterized

b! constant CD c! land NS d .2l, and is the region in which most

experimental work on vortex shedding is done. For short cylinders

with a free end, the Strouha1 number is reduced as much as 40%

due to end effects. The location of the transition from a laminar

to a turbulent boundary layer, the critical region, will vary with

surface roughness and flow turbulence, but behaves as shown in

Figure 3. l.

The time varying lift and drag coefficients show a

great deal of scatter. 3 5For lO c: NR (lO , CL e! .6 , and

CD ~ .06. The frequency of the drag force is twice that of the

lift force, and corresponds to the actual frequency of vortex

shedding. The measurements of these fluctuating coefficients

are complicated by the poorly understood longitudinal spatial

correlation of the shed vortices. For the subcritical region,
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Figure 3.1 Relationship between drag coefficient
Strouhal number and Reynolds number for
fixed cylinders in steady flow (from King),.
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the correlation length is th~ order of two or three cylinder

diameters and for NR ~ i05 , the correlation length is the order

of half a diameter. The amplitude of the lift force on a 
'long

circular cylinder varies as the vortex "cells" move into and out

of phase, as we would expect with a narrow band random process.

Since most test cylinders are longer than the correlation length,

this would explain some of the scatter in the da ta for the time

varying lift and drag coefficients.

3. l.2 Forced Cylinder Oscillation

When a cylinder is oscillated in otherwise uniform

flow, there are two significant changes in the flow. The first

is known as "lock-in" or "wake capture". This is a region of

forced oscillation near the fixed cylinder vortex frequency, 
or

its first two harmonics, where the vortices are shed in phase

with the forced cylinder motion. The second effect is an

increase in the correlation length and strength of the shed

vortices. To help deal with the additional complexity, two more
a

parameters are introduced; the dimensionless displacement, -D 'f .
where a is the amplitude, and the frequency ratio, f c , wh~re

v

fc is the forced frequency of oscillation.

3.1.2.1 Transverse Oscillations

When oscillations are transverse to the flow, lock-in
fc

occurs around t- = l, that is, a vortex is shed from each side 
of

v
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the cylinder during one cycle.
f

~ up to roughly. 7 ~ f c ( l.3 for ~ 2 .1. It has been observed,
v

Tanida, et.al. (1974), that the lift force is in phase with the
f

cylinder velocity for f c ~ l, with a maximum magnitude aroundf v fc c g-
l- = l.2, and out of phase for l- ' 1v v
fore, tends to maintain the oscillation for frequencies greater

The lock-in range increases with

The lift force, there-

than the fixed cylinder shedding frequency, fv The lift forces

reach a maximum around Ê = .5. This has been attributed to an

increasing correlation length, as well as a slight increase in

the circulation of each vortex, as Ê increases from zero. For

large amplitudes, Ê ~ .5, a breakdown in the vortex shedding

occurs, as more than one vortex is shed during each half cycle,

and forces decrease.

3.1.2.2 In-Line Oscillations

Lock-in for forced in-line motions exhibits two overlap-
fc

ping regimes. The first occurs around t- = 2, and corresponds
v

to one vortex shed during each cycle, that is, near the fixed

cylinder drag oscillation frequency. The lift and drag coeffi-

cients in this regime are approximately the same as those ofa

fixed cylinder. The second in-line lock-in regime occurs in the
f

neighborhood of f c = 4 and is characterized by simultaneous
v

shedding of a pair of vortices with each cycle of oscillation. In

this regime there is virtually no lift force and the oscillating

drag coefficient has not been measured directly. Griffin (l976)
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has observed both of these regimes occurring intermittently near

f
f c = 2. There is little force data on either of these in-line re-v
gimes since the forces seem to be an order of magnitude less

than the transverse forces and result in correspondingly small

free vibrations.

3. l.3 Elastic Vibrations

Free vibrations have been observed in each of the three

forced regimes, i.e., one transverse and two in-line. In general"

they are excited when the system natural frequency lies in a

lock-in region and the system damping is low enough to allow

motions which cause lock-in and increased spanwise correlation.

The two dimensionless parameters which characterize the system

dynamics are the reduced velocity, Uo , where
fnD

frequency, and the stability parameter, KS

f is the naturaln
_ 2 m~ r i r i-c g, where 0
- D2 '

is the logarithmic decrement and m is the equivalent mass/unite

length.

m =e

&. i S" t
J MX Š d e / r 01 ~o 0 .

where r is the "modal" displacement, equal to z for the spar, and

m is the actual mass per unit length plus the hydrodynamic addedx

mass, f' IT R~ for the innersed length. The response of an elas-

ticallysupported circular cylinder to a uniform current is

sUmmrizea,~YFigciTes 3.2 and 3.3, taken from King (l977).
".

Figure 3.2 shows the three lock-in regimes and the response for

K · O.
S

The variation of the response peaks with KS is show
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, Figure 3.2 Composite graph of instability, regions
in-line and cross-flow (fromKing).. .
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in Figure 3.3. Efforts have been made by Skop and Griffin (1973)

and others to describe the cylinder-wake interactions using a

Van der Pol oscillator equation for the lift coefficient. , The

results of this work lend little physical insight to the problem

and are of use only in estimating system response near trans-

verse resonance.

3.2 Oscillatory Flow

The forces on cylinders in oscillating flows have been

investigated in waves and in uniform flows, almost exclusively

with sinusoidal excitation. Results for in-line forces are

generally analyzed in terms of Morison IS Equation:

FIL = ~Ye.fDull.1 l' (l+c.4)l'TTR2.~ (3. l)

where u is the speed of the fluid in the absence of the cylinder.

There is a drag term similar to steady flow and a hydrodynamic

mass term representing the forces predicted by potential theory.

The lift forces are defined in terms of the amplitude of the

fluid velocity

ê F,.(M/lJ/,/L.. (""".) " " U 1. 0'2. ¡o ,""..)
and an average shedding frequency. In addition, two other'

dimensionless numbers are important: the Keulegan Carpenter

. U(max)
number, NyC = fD ' which includes the fluid oscillation

frequency, f, and the Reynolds number, usually based on U( )'max

The graphs presented in Figures 3.4 to 3.7, from

Sarpkaya (1976), represent forces on a fixed cylinder in 2-

"
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dimensional oscillating flow in a "Uti shaped water tunnel. The'

drag and mass coefficients, given in Figures 3.4 and 3.5, are the

first two coefficients of a normlized quasi Fourier series de-

composition of the total in- line force, that is3 ' L1n i i
C = _.m Flt) c.os8 olD Y2,,o 0 U;."U) L 2-
~ = '* !illF(t) sir¡ e'rAe'/ PWU(M_IC) L 1iR

where u = - U (max) cos wt, and e' = wt. Notice that the co-

efficient for CD is normalized by !~~sie 1 c.os elt:8 = ~

Figure 3.6 shows the maximum lift coefficient observed during a

run and Figure 3.7 is a plot of the relative vortex shedding fre-
f

quency, fr = f v

These figures become easier to interpret if we rewrite

NKC using the fact that U (max) = 2UfA where A is the excursion

amplitude of the fluid, that is

2JANKC=D
NR

The parameter)3 = ~ is introduced by Sarpkaya because it is
KC

independent of amplitude.

fD2ß=T
;. .
""

¡,
~i

. !

The Keulegan Carpenter number is, therefore, an amplitude axis

and the constant f3 lines are constant frequency lines. It is

also useful to note that the Keulegan Carpenter number is pro-

portionliJ ,.tÖ'jthe ratio of ,the maximum drag force to 
the maximum

inertial force, so that if we assume CD '= land CM = 2, NKC~ 20

represents equal drag and inertia forces.

If we invert the added mass coefficient, we see that
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Figures 3.4 to 3.6 have basically the same shape, with a maxima

around NKC = l5. The magnitudes of ~ and CD are fairly well be-

haved, but the lift coefficient varies by an order of magnitude,

and is larger than observed in steady flows. These large lift

coefficients seem to be the result of constructive interference

between the wake of the previous half cycle and vortices currently

being generated. Sarpkaya notes that 'in this region Morison IS

equation appears to have its poorest performance, due to large

in-line forces at approximate!y twice the eddy shedding frequency.'

However, such large lift coefficients may not be characteristic

of the natural environment. Experiments by Mercier (l973) indi-

cate that with a small mean velocity introduced into the flow,

the lift coefficient is reduced. This supports the notion that

the large vortex forces may indeed be due to the high coherence

of purely sinusoidal flow. In a random velocity field with some

mean component, a more "natural" environment, the lift coefficient

might be expected to behave more like a constant. In any case,

the model proposed here assumes constant drag, mass and lift co-

efficients. The exact values chosen could be taken from

Sarpkaya's data by characterizing the environment in terms of

the expected frequency and expected amplitude.

3.3 Equations of Motion

Viscous effects may be incorporated into the equations

of motion by employing strip theory. That is, a 2- dimensional
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flow normal to the cylinder is assumed, which is not affected by

gradients along the cylinder axis or flow along the axis. This

assumption is compatible with the slender body potential theory

of Section 2 and is partially supported by steady flow drag

measurements on cylinders inclined to the flow, see Hoerner (1965),

where the drag force is proportional to (U cos 'I) 2. In waves
o

this implies that we will be considering only the horizontal

component of water velocity, assuming small angles of inclination

for the spar.

Thus using the strip theory, we decompose the viscous

effects into a "steady" force, Le., a force which is proportional

to the square of the norml velocity, and a "vortex" force. The

"vortex" force is modeled as a random process independent of the

other forces on the cylinder.

3.3.1 "Stead:i" Drag

Incorporation of the" steady" drag force into Equation

2.20 is straightforward. In anticipation of forces and motions

normal to the wave current direction, we introduce an angular

displacement 8 in the x = 0 plane of Figure 2. l. For smaii

motions, , and S are orthogonal, and there is no coordinate

coupling. Therefore, the viscous drag moments are

and

M * :: rlir 1 U i. ((¡- ?;.p) D ~ 01 ž!
,i) 0 "D to M tJM

lv ". r ~C J. U i. -i1-'& 'i - P 2.~ li Ù D ~ ol~a 0 M
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where u is the fluid velocity in the incident field and the

resultant velocity

(( U - f ~) i + (f ~)-i iYaU
m

=

The wave making drag moment is much smaller than this

viscous moment for long cylinders. To illustrate this, the ratio

of the wave drag to viscous drag in still water for 'l = lM sin wt

is plotted in Figure 3.8 for the experimental spar described in

Section 5. Note that the ratio is proportional to ~ In the
M

neighborhood of the natural frequency the wave damping forces

are smll, and we will therefore drop this term from the equations

of motion, as well as ignore any contribution to the mean angle- of

inclination from the free surface wake. We postpone writing the

equations of motion until after considering the iivorte~' forces.

3.3.2 Vortex Forces

The transverse vortex force is modeled as a frequency

modulation of the dynamic pressure, that is,.. 1. (uN 1FL = YzpCLu DL Sin 2ïi T t (3.3)

where the frequency, u~s , comes directly from the definition of the

Strouha1 number. Agreement of this form with expariment whenu

l
¡

is a constant is obvious. We shall demonstrate that in a purely

sinusoidal flow, this formulation for t;e lift force implies

that the frequency content of the lift force is dominated by

the frequency corresponding to the maximum velocity. This

observation lends considerable help"in';i-nterpreting Sarpkaya' s
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data, shown in Figure 3.7, which corresponds to an approximately

constant Strouha1 number. We will look first at the sinusoidal

case, and then at the random wave case of special interest here.

3.3.2.l Sinusoidal Flow

A constant Strouhal number, for steady flow, implies

that a pair of vortices is shed every time a fluid particle in

the free stream travels a certain number of diameters. We can

compute this length as

U
o

= t-
D

Ns

imagine vortices as'made up of a constant

lv =

In fact, one might

length of boundary layer. In sinusoidal flow, or any flow for

that matter, we can imagine a vortex being shed each time the

fluid travels the distance, ~v/2. The vortices are in effect

integrating the flow up to some cutoff point where a vortex is

shed. This idea is supported by experimental results of Bruun

and Davies (l975), where the vortex frequency was found to be

almost constant with r.m.s. turbulence levels up to LO% of the

mean. For harmonic flow with a particle excursion amplitude,

f - zAo -r - -- -
= !JlCt. N~

1T

frequency, fr
2 (NkC.D/2rr)P/N.s

, can be written as'A , the relative vortex
o

(3.4)

where 2A is the distance a fluid particle travels during half a
o

and ~ is the distance a particle travels for each shedvcycle

vortex. If we assume Sarpkaya' s data reflects the vortex shed~
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ding frequency, Equation (3.4) predicts a Strouhal number of

approximately .5 in the low Reynolds number regime. This Strouhal

number is disappointingly large, since we would expect a value

near .2 in this regime, corresponding to the steady flow case.

However, this apparent discrepency is misleading and comes about

because Sarpkaya' s data reflects not the vortex shedding frequency,

but rather the lift force frequency. We will clarify this state-

ment by the following analysis of the expected frequency of the

lift force, Equation (3.3), and show that satisfactory agreement

between the Strouhal numbers is in fact found.

Using the definition of expected frequency for a random

process, see for example Crandall and Mark (l963), the expected

frequency for the lift force can be found as

10

:: S-fI Wi 2. S i.ÚA') di (. J

f: SL.~t)olw'

-
W.( (3.5)

where wi is the expected lift force frequency and SL (oJ) is the

power spectrum of the lift force. We note that for a narrow band

process, the expected frequency corresponds to the average time
, .~

between zero crossings. The power spectrum, SL (~' ), is approxi-

mated by employing the principle of stationary phase. A concise

presentation of the approximate integration method can be found

in Vakmn (l968), but here we shall only make use of the conceptual

resu1 t.

Briefly, the principle of stationary phase demonstrates

that the power:spectral density of the function. ','tt~' ,
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£(t) = aCt) sin W (t) tc

where w (t) is the frequency function of f(t)c

at some frequency w is

2
S(W') -: a (t )*TDF

o

t is defined by w (t ) = w' and TDF is the "time density function"o c 0
of W (t). In other words, the energy at W is proportional to thec

amplitude squared of the function when the instantaneous frequency

is w' and the fraction of time the frequency function, w (t),c

spends between w' and w'.. ~W' for the limit of 6W' -- o. An important

assumption employed above is that the function f(t) oscillates
! '

much faster than the amplitude function a(t). For many ,cases of

interest in the vortex problem this is not strictly true, as we

shall see below.

Assuming a sinusoidal flow so that u = A w sin wt, weo

see from Equa tion (3.3) tha t

W (t) = 2rrNsAotJ sin Wtc 0
and aCt) = Yzp eL, (AoWY Ol $in2. wt

For the frequency restriction to be satisfied during most of a
21f

cycle, we would like ~ NS W to be much larger than W or

2~Aø Ns = NI((, Ns )~ I (3.6)

In fact, as stated before, the important parameter in vortex

formtion is fluid excursion amplitude, even though the frequency

of shedding is defined by the speed. If the ampli tude is not

large enough, even though the shedding frequency may be quite

high, no vortices will be shed. If there is a small mean flow,
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even though the mean fluid speed is much lower than the peak

flow values, the vortex shedding process will effèctively filter

the time varying fluid motions if the above criterion, Equation

(3.6), is not satisfied, i. e., vortex shedding will be controlled

by the mean flow. In this case, the lift force spectrum will be

an impulse at the shedding frequency predicted from the mean

flow, essentially independent of the oscillating flow. With

this restriction in mind, we shall look at the predictions of

the stationary phase model.

If we let w (t) = W sin w't where w is the amplitudec ' m m
of the frequency function, then the fraction of time which the

function w (t) is less than W is
c

1 -lw
CDF(uJ) = % + Tr sin W

m
='0

for lw I oS c.m

for GJ ~-i.
m

for w l" L.
m

= 1

where CDF is the "cumlative density function". The time density,

function, TDF(w), is the derivative of CDF(w) with respect to W,

so tha t
..

TDF (W) = Tf (W~ - Wi.-~ I wI ~ Wt'
Applying the principle of stationary phase to Equation, (3.3), we

, find upon assuming u = U( )sin wt, that
max
.. 1 )2.(W')1SL (Wi) = (J2.'p c.(. D i. ~ct~) W;'l

i
where we have used the fact that l! = sin wt

2TI U(max) Ns I'
in which Wm = D . SL lL' ) is plotted

i.
G i , 2\-aW.. -LA .I

rr Iw',~w- fV

in Figure 3.9.

Computing the expected frequency of SL (tJI) using
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Equation (3.5) we find that 2!lt = Wi. = .9lwm.

number based on the maximum oscillatory velocity,

Thus, the Strouhal
f.t D

U(max)

Strouhal number.

,

should be nearly equal to the co~stant flow
f J. D

U
(max)

Reynolds number range, which is gratifyingly close to the

Sarpkaya, in fact, finds that = .22 for all of the low

fixed

cylinder steady flow Strouhal number, N ~ .2l. In fact, now
s

that we see that the frequency content of the lift force is dominated

by the frequency corresponding to the maximum oscillatory velocity,

it is quite reasonable for the Strouhal number to increase as the

Reynolds number based on U( ) enters the critical flow region.
max

This is a phenomenon similar to what we see in the fixed cylinder

steady flow Strouhal number, see Figure 3. l.

3.3.2.2 Lift Moment Spectrum

We now look at the lift force spectrum for the case of

a cylindrical strip of length Lunder 2 -dimensional random

waves with a steady co-linear current. The probability density

function for the velocity under a Gaussian random wave system ¡,

. .r

is also Gaussian, assuming linear wave theory. Assuming ergo-

dicity, the time density function and the probability density

function of the velocity are identical. The power spectrum of

the lift force is therefore

Sc.(w'):: (Y2. ¡o êi. 0 L Cf'l)2. (~)4.f 'W(T It

( .. ( w r - W4\ )2)!.Kp - 2. Wcr

WM :: 2Tf Ni:0 (H\ol Wcr :: an- ~

(3.7)

where
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and U and ~ are the mean and standard devia tion of the fluido u
velocity, respectively. Notice that the limit as ~~ 0 is an

impulse at the frequency corresponding to the mean velocity, as

it should be. Some examples of possible spectra are plotted in

Figure 3.10.

The effects of lengthwise correlation for the strip

model proposed can be described using the properties of a

spatially correlated narrow band process, as discussed by Blevins

and Burton (l976). However, the amount of data on the correla-

tion coefficient is small, so that this aspect of the problem

will not be pursued. We shall in fact assume that the correla-

tion length is infinite. For the experimental system described

in Section 5, this assumption is adequate, since most of the

moments are due to forces near the top of the spar, only a few

diameters long.

The lift moment spectrum can readily be obtained from

the cross spectrum of the lift forces. Thus, we write the power

spectrum of the lift forces as a spatial cross spectrum

S' ( "IJ'" 1. -!VaL ~I l~i,W';=72.PC.LDO"l4(e-,) W(J(e-.) K (3.8)
'" 1. -Sk LV 4Y2,oCLD~(~z.) tù~z) l 2rr IC

r_ ~ (c.'- W..i~i ))1. _ .. (W' - WL.(~&.))2. J xexp i: ~ Wctè,) 4 wJea)
"c. (t, , ri, w)

where rc is the spanwise correlation. Notice ,that for zi = z2
2Equation (3.8) is identical to Equation (3.7) except for L. As

mentioned above, we will use an infinite correlation length which
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implies r = l. The lift moment spectrum is then. obtained from

the cross spectrum, as
'" h

SM(W') : S r SL (t-/)2iIW~ èi ~i d~. oIii.&. 0 0
where z is the "mode shape" of the spar.

(3.9)

We approximate the vortex drag force in the same manner

as the lift force. For the al ternate shedding mode, the lift

force spectrum is transformed to twice the shedding frequency

and scaled by the drag coefficient to yield a drag spectrum
,. i. " "

SM~') ::(SC"'~) r r 5 (ai, rz.iw'l2) ~, ~l. dl, of ~i. (3. LO a)Ð &. 0 0 L
The paired shedding mode drag force spectrum is generated by

transforming the lift spectrum to four times the vortex shedding

frequency, tha t is A 2. '" h .

, SM(f./) e (~~) r r SL (l?q ~2 ,wÄ) ~I fz of i!, 01 r2 (3. LO b)S C&, 0 0 ' "
. In employing these spectra, we must decide whether the paired or

alternate shedding will dominate. This can be done 
by assuming

that the process which causes the largest motions will dominate.

Notice that the paired shedding will dominate only when its peak

is near the system natural frequency and that there will be no

lift, forces with paired shedding.

3.3.3 Equations of Motion

We shall now write the equations of motion of the spar,

incorporating viscous effects into Equation (2.ll)

~I T .. .pc, + '1)1 ~

Šlr 'tser., SX =
M", t Mp + MD

M"L.

(3.11)

. ~.~;. .'-: ..
. ..' :~. ". . r::1
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where
t-l3

IT: r.. C~ f TTR 3

CT ': ~"CJ) JI p D UM a7.ol~

X = P9ifR~h - Mrc~
in which Ca is the added mass coefficient. ~ and ~ are defined

by their spectra, Equations (3.9) and (3. LO) respectively

Ii) irR 2. ( \ L
Mwo,:\ltCq f~A k osh kh J.ih sml' Kri - (3. l2)

("osh kh toi) e.-i.O~.Vø+w)t

Ml) ': r~ C/)¡O lA.(~) VM D ~oIl

() Dr ' ')2. . i-J Y2.with M :& t. (U(~) - f~ T (Óf;)
and U(i!)= VO 1- i. Aw ~~~s: ~ e.-': (kV. ~..)t:

In the next section we shall assume a spectral form for

the incident wave system and propose an approximate linear tech-

nique for obtaining the response of the spar pendulum in 2-

dimensional random waves and a uniform current.
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4. Equivalent Linearization of the Equations of Motion

The analytical methods for investigating linear systems

under random excitation are well-developed, compact and efficient,

see for example Papoulis (l965). On the other hand, investigation

of non-linear systems has been restricted mostly to harmonic

excitation or to brute force numerical techniques, although an

elegant method for treating randomly excited non-linear systems

does exist and involves the expansion of a system response as a

functional (Volterra) series, see Bedrosian and Rice (l97l). In

fact, the entire theory of linear system response involves the

investigation of the first term of this functional series, that

is, if a system is linear, the series representation degenerates

to only one term. The expansion of the system response in a

. functional series is in fact capable of handling input non-

linearities, non-linear waves in the present problem, as well as

non-linear system properties.

The method is most useful when the non-linear terms

take the form of polynomials, so that only a few terms in the

series are needed. However, it is not at all clear that a system

involving a magnitude or absolute value function, as in the case

considered here, even has a functional series expansion. We

shall, therefore, attack Equation (3. LO) by linearizing the drag

term so that we can employ the techniques for predicting linear

system response.

A'linearized treatment of this problem is probably



-62-

more than adequate considering the linearizing assumptions we

have already made concerning wave kinematics and spar response

and the limited knowledge of the forces exerted by flow around

a bluff body. Linearization of hydrodynamic drag in oscillating

flows has been considered for in-line forces on a fixed cylinder,

see Borgmn (l965), and response of a point oscillator, see

Seymour (l974). However, these treatments did not include the

effects of a mean flow or of vortex shedding.

The linearization employed here equates the expected

value of the power exerted on the system by the linearized force

to the expected value of the power exerted on the system by the

non-linear force. That is, we would like to find a linear system

which has the same average energy flow as the non-linear system

in the particular environment of interest. If we look at a

strip of a cylinder which has a displacement x, then, ignoring

transverse motions, we can write the drag force as

Ft) =Y2pCpDl u..lurl
where u = x ~ u, the relative velocity. This would be linearizedr
as F; =)zpCD DL u.. Ue

t
r

where the equivalent velocity, UE, is chosen so that it satisfies

the following equation:

E eX ffCl)DL urUeJ= Erx ~fCJ)DL u,.ILtr' J

or

Ue ~ E ( X Ur furi1 / E Cieu..)

where EC J means expected value. This linearization is equivalent
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to using the first term of the series solution for wave force

statistics discussed by Borgmn (l965). Another possible linear-

ization, used by Seymour (l974), is to minimize the mean square

error in the total drag dissipation. Both expected value and

mean square linearizations lead to almost identical solutions.

The mean square method is biased toward predicting the instanta-

neous power and therefore would probably provide better extremal

statistics. The energy balance implied by the equivalence in

expected power in the first method is physically attractive, and

is the reason for employing it here.

In order to make computations of the expected values,

one must assume a probability density function for the system

response, x in the example above. The velocity of the fluid,

u, will be assumed Gaussian, a generally accepted distribution

for the velocity under random waves. For the linearized system

this would imply a Gaussian output, and calculation of the

expected value is straightforward. In fact, we will also assume

that the non-linear response is approximately Gaussian as well.

In the case of a strong non-linearity, such as the absolute value

in the drag law, there seems to be, at first glance, no reason

to believe that the Gaussian assumption is reasonable. However,

for a narrow band process, one can see that the function x Ix I

leaves most of the output energy at the same frequencies as the

input, see Figure 4. l. This fact is probably the principle reason

that linearization of hydrodynamic drag appears to perform so
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well. That is, a narrow band input, a realistic assumption for

ocean surface waves, to the non-linear drag process yields a

narrow band output at the same frequencies as the input, much

like a linear process. We can, therefore, expect little corre-

lation between frequency bands where there is significant energy,

implying a nearly Gaussian response.

In Section 4. 1 we shall apply the linearization to a

simple analog system which can be thought of as a strip of the

spar. We will find that the linearization requires the solution

of a set of simultaneous integral equations which we propose to

solve iteratively. Convergence of the iterative scheme propose~

is discussed in Appendix B. Studying the transfer function of

the simple system for various parameter ranges will provide some

insight into the solutions of the spar equations. In Section 4.2

we attack the spar governing equations and consideration is given

to the linearization of this spatially distributed process. In

Section 4.3 we discuss a numerical experiment in which we isolate

ourselves from some of the complexities of the real world, and

test the performnce of the linearization against a numerical

simulation. A simplified form of the spar equation is used for

this purpose.

4.1 Simple Analog

We shall consider here the linearization of the

following equation:
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X 't C (x-tt ) J ic - U 11- X - p' u (4.1) ,

As we stated in the introduction to this section, this may be

considered the dimensionless equation for a strip of the spar

with no vortex effects, where time is multiplied by the natural

frequency and length is divided by the diameter. We would find

tha t in this case

and

F' = (J-tcQ)/( 7s + CQ)

C :: ~ Cl)/(ff + CA)

(4.2 a)

(4.2 b)

where Pe. is the density of the strip of cylinder and the added

mass coefficient ~ = 1 + Ca' The forcing function, u, is

characterized as a Gaussian random process with a power spectral

density, w2SA (w) ,

o
into Equation (4. l)

and a mean mu We begin by substi tuting ,

the equivalent velocity UE for the absolute

, value of the relative veloci ty.

X .. 'C UE X l' X =i f' U +- C Us U (4.3)
L h L' 1 . ,A -i~t, d -iWtEmp oying armonic ana ysis, we et u = iWn e an x = eo

where X i~ 'complex, and solve for the transfer function

7.F". CUi = -W -loW ~ (4.4)
Ao (l-w'2)-iw CUE

We càn also compute the transfer function for the relative velocity

-iwt
x - u = U e which will be of use in finding the equivalentr

, '
""

f

veloci ty.

:~ = -iw (fa -I) (4.5)
Using the theory of linear random processes, it is easy to find

the spectrum of the output
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Sx(lf) :: ~*'1. SA(W)6 0
and the relative velocity spectrum

5 (~) = 1*/2 S (w)Or no Ao (4.6)

wher~ SA (w) is the spectrum of the input amplitude.
o

We now consider the value of the equivalent velocity to be used

in the previous analysis. The linearizing constraint of equiva-

lent expected power can be written as

£( 0E XLJrJ -: E r X UtI u"JÌ (4.7)

As mentioned earlier, we will compute the expectations in Equation

(4.7) by assuming that ur is a Gaussian process. The PDF, proba-

bility density function, of u is therefore defined by its mean,r
m , and its standard deviation, ~ Since we assume thatur ur
there is no mean velocity of the system, x = 0, the mean of the

relative velocity is simply the mean of the incident velocity,

mu From the theory of random processes we know that

(jUi. = ¡Su (~) rJ wr -.0 r (4.8)

where Stj (w) is defined by Equation (4'.6). We can now write
r

Equation (4.7) in terms of probability integrals, where we

Ii

'i

assume that x and ur are jointly Gaussian with correlation ¡o' ,

that is øo 1I
Ue rr iW,. PD~u dx olur ~ rL~ UrlLlt I PD F:" cJ itolur-40 ,,-0 J(",~

where , , ..,
PD F;ù :. (2rr~ Oü .Jp'21) X '

· exp f- 4 ;~p'z(( tY-2P(~)(i¡~.)+U~i::.YJJ
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We have assumed that x has a zero mean. Solving for the equiva-

lent velocity, we find that ii _~ )2-/~ i(~'" u
Us ~(.le1J' ()U;) J I~t'lur(ll-m~)i G-" olùr'" (4.9)

Equation (4.9) can be easily integrated when there is no mean

incident veloci ty so tha t

Ue = .ft' Uu" (4. lO)for- Ml. = 0

We can also find the limit for mu ~~ O"u is VE = 2mu
r

Equations (4.8) and '(4.9) are a pair of simultaneous

equations with unknowns UE and 0: We propose to obtain the
r

solution of these equations by successive approximation. That

is, we guess a value for UE, compute a response and find a new

value of UE ,iterating until some error criterion for UE is

satisfied. We shall consider the convergence of such a routine

for this simple model in Appendix B.

Before moving on, it is instructive to consider the

transfer function of the simple analog, Equation (4.4). This

function is plotted in Figures 4.2 a, b, c for various values

of equivalent velocity and three values of relative density,

~ . For the purpose of this discussion we have chosen to let

Ca ,= CD = 1. A more general parameterization might have used

CU and F' as parameters but the physical significance of relative
E

density and linearized velocity seemed more apparent. In fact,

the two parameterizations are equivalent and merely require a
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relabelling of the figures. ,The most striking feature of this

transfer function is its division into three distinct regions by4 2 -l
the real roots of W = (l - F1) . These regions can be best

seen in Figure 4.2 c, where both positive roots are real. The

second important feature is the limit of the response as the

equivalent velocity, UE ' goes to infinity. That is, as the

viscous forces predominate, the motions of the body are in phase

and of equal amplitude with the motions of the fluid. The body

is advected by the fluid, exactly as we would expect.

The first region, 0 ( w ~ (1 + F') -% , always exists

and is characterized by a balance between the viscous exciting

force and the stiffness of the system. The curve representing

the lower limit of response in this region is the ba lance of

inertial driving force and system stiffness, typical of the usual

single input single degree of freedom system studied in elementary

vibra tion theory. By comparing this region in Figures 4.2 a, b,

c we can see that, as the relative density decreases, the viscous

forces predominate at lower frequencies. This is due to an

increase in the dimensionless drag coefficient, C. The second

region is an inertia 1 forcing region, and may extend to infini ty

if F' ~ 1. In this region, the upper bound of the response is

controlled by the inertial driving force, and viscous forces act

to retard the response and bring it down to unity. The limit of

the ,response for high frequencies and low damping is always F1 .

We see now that the third region, w ~ (l - F1) -\ , which exists
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when F' is less than l, has a lower limit specified by inertial

forces where increasing vicsous forces act to raise the response

to unity. We see, therefore, that the action of large viscous

forces is to try and bring the response of the system to unity,

and that around resonance, response always decreases. In this

light, it is not too surprising that the linearization is well-

behaved, rapidly yielding a solution under successive approxima-

tions.

4.2 Linearized Analysis of the Pendulum Spar

There is only one important difference between the

pendulum spar and the dimensionless analog of the previous sec-

tion. The spar involves a spatial process with significant

gradients. That is, for the 2 -dimensional wave climate which

we will consider, the velocity profile is in no way uniform, and

it is necessary to consider an equivalent velocity "profile". In

fact, we can consider each strip of the spar as an oscillator

similar to the dimensionless analog, where all of the strips are

coupled, in this case by being constrained to move as a rigid

body. We begin by considering the i~plications of this on the

analog equation, and then we will write down the linearized

solution of the spar.
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4.2. I Linearized Spatial Process

The spatially varying analog equation looks like

5 + r'èirg'-~)i(rg -u(è))d ë' + r

= r fU(l)d2:
o

where r is the "modal displacement", angle of inclination for

the spar, and r is the "mode shape", z for the spar. This

equation is linearized to

r + Cr r t r ~ r~CFtA(~)l CVë(l-) uæJJ ofc
o

where

cl " tt r Ve ~)oië'

We see now that there is an equivalent velocity "profile" which

we must compute in a similar manner to the equivalent velocity

of the point problem. The response of this linearized system

to some random input involves a straightforward computation which

will yield a relative velocity spectrum which is a function of

depth. From this spectrum we can obtain the standard deviation

of the relative velocity as a function of depth and making the

Gaussian assumption as before, we use Equation (4.9) to compute

an equivalent velocity profile, UE(z) . An iterative procedure

similar to that discussed in Section 4. 1 could be used to find

the correct profile.

4.2.2 Li~~ion Algorithm

The spar equations of motion, Equations (2. ll) are

already in a linearized form. All that we need do is replace



-75-

the velocity magnitude, Um ' by the equivalent velocity, UE.

We shall discuss the linearized solution of these equations in

random waves and a uniform current, by describing the algorithm

used to find the solution.

We begin by assuming some form for the input wave

spectrum, say SA (WI) . The input velocity spectrum is obtained

from the amplitude spectrum by assuming linear wave theory, so

that
Su (~)w) ': L HL\(w')J2SA(w')

where

H (Wi)l.
=' I CO s h k èL. c. SIt' h kh

with
W' :. w- kvo

, in which we note that W is the Doppler shifted frequency of the

wave

and w'l = ~ k t~V\h kh

An initial ~stimate of the equivalent velocity is made by

assumiòg that the spar is fixed, that is, we just use the mean

square of the input velocity spectrum. A sumation integration

of the power spectrum S (z,w) over all frequencies where there isu

significant energy is used to find the mean square of the velocity

at various depths. The depth spacings used for the computations

presented later are given in Table 4.1. ' The depth is divided

-ninto regions of length 2 h to simplify spatial integrations,

with the densest sampling near the surface where the largest



-'76-

TABLE 4.1

Fraction of where calculations are made on the spar.

POINT z/h

1 1. 0
2 .9375
3 .875
4 .75
5 .625
6 .5
7 .25
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changes in the veloci ty spectra will occur. The mean square

profile obtained from integrating S (z,w) is then 'used to obtainu

an equivalent velocity' profile by applying Equation (4.9). The

integration of the probability integral is accomplished with a

seven point Simpsons rule applied at l/3 standard deviation

intervals to l4 standard deviations. Now that there is a trial

equivalent velocity profile, we can calculate the response of

the spar, and obtain a new approximation of U (z) .
E

Using the relative velocity standard deviations, it

is now possible to calculate the cross spectrum of the vortex

lift force, Equation (3.8), at each sample depth and then to

calculate the vortex lift moment and drag moment spectra,

~ Equations (3.9) and (3. lO) respectively. We can also calculate

the inertial moment and "steady" drag moment spectra by applying

the transfer functions of Equation (3. l2) to the input spectrum,

tha t is

SM(J) =' I HM(~/) ¡l 5lw')

where

HM(w') =Q+;)P3 k~~~ k~ (kh SIf\h kh- C()~~ kh+/)t

,l1 i..öDJ.~ w' cosh kh U (~) è,ol-l _roD sin h kh e
From Equation (3.ll) we can see that the transfer functions for

f and 6 are identical so tha t
HS(W~' ~",H'Ý (w)

ånd
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Ht(lA) =: ()1- w'2 Ir - iwCT)-1

where~, IT and CT are defined in Equation (3. ll). We now use

this transfer function to compute the response spectrum of the

spar.
l- (w) = J H (p) J z. Cs (w) .. s (~)L~'l 't M MS'
S~(w) = i H~(w)/2.CSt1t) J

In order to compute the in-line relative velocity

spectrum, we must be a bit careful since the spar response is

not independent of the input velocity spectrum. Note that if

it were independent we could simply compute the spar velocity

spectrum at any depth, multiply by (wz)2 , and add it to the

input velocity spectrum. We have alreàdy presented the correct

, relative velocity transfer function in the discussion of the

simple analog, Equation (4.5). Applying this to the spar, we

'find , '2
S ,.(~I~) = I ~(t H (00') H (w) - H (w')/ S (wi).,
(."'-&4) ",' l1 ,l 2. l. A
, , (~vJ)21 Hip(w)! .sM~), a P , ,
S .(2',w):: (tW)~ 1 H c(w)fsM(w)~~ ø t

The standard deviation of the relative velocity is then just the

sum of the two integrated spectra, since f and ~ are orthogonal,

""

¡o
h

, f

so that .0 '
~t(~) :: f Cs . (~)w).. S. ~a)w)J dw
l.r -4l (i ,*-1.) ~ ~ ' '

It is now clear that we can compute a new equivalent velocity

profile, check for convergence and repeat the response calculation'
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if necessary.

We have, as yet, ignored the question of mean inclina-

tion of the spar. However, the idea of equa ting power flows

through the oscillator does not make sense at D. C., since there

is no energy flow, only a force balance. For calculating the

mean 8ngleof inclination, wè shall therefore turn to an energy

balance in the flow field. We shall assume that the expected

value of the flow dissipation from a linearized viscous force

is equal to the expected value of the flow dissipation from the

non-linear force, therefore

E (u; Uoi,¡nJ = E C r u;Jl

evaluating the expected values

U .~i!) = (~q;, ((I..~ + M.... r i.

S fi.r'l exp C- t (tit" ~~' Yl of Uf'-~ ~r
Note that UOE(z) is computed after we determine the spar response,

or,

so that we use the final computation of or (z) and that in generalur
UOE(z) l UE'(z). The mean angle of inclination is then computed

as a force balance using the linearized drag law.

4.3 Numerical Experiment

In order to get some idea of how well the linearization

performs under ideal conditions, a numerical simulation of the

spar equations for various environments is performed. The effects

of vortex shedding are ignored, that is Cß = ~ = 0, and a rela-

tively simple 2 -dimensional problem results. The actual spar
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properties used in the numerical experiment are those of the

circular cylinder experimental system described in the next

section, and the important properties are

f = na tura 1 frequency = . 75Hz
o

D = 10 em

h = 1.1 m

3
It is also assumed that ~ = CA = 1 and that l' = lOOO kglm .

The input environments used are scaled Pierson-Moskowi tz (P-M)
I,'

Spectra which were used in the experimental work plus some

improperly scaled P-M spectra which provided large ampli tude

waves necessary for large viscous forces. The full-scale P-M

spectrum is -3~
Sp_'k) = a.ixlO 1",5') e.p (-/14 (9/V wY')

where V is the spectral wind speed. The scaled spectrum is

scaled in time by a factor of LO and in length by a factor of

100, so that

S;~) ~ .~i i!~¡ exp L-.74 (Sf. iV w)4 J

Various uniform currents are also used, and the above spectrum

is corrected for the doppler shift in wave frequency,- due to the

uniform current.

The numerical simulation utilizes a Fast Fourier Trans-

form to produce a coherent velocity profile time-series and

acceleration moment time-series. The spar governing equation,

Equation (3.ll), is then integrated numerically using these

forcing functions.

.' .::.;;,~.:" ~

. ;':~¿i~'-:.i:
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The scaled P-M spectrum is divided into l024 bands with

the maximum frequency at 20 Hz, see Figure 4.3, so that each band

rad
has a width of AW::. l2 ~ If we assign a random phase, ~ ' to

each band, we can obtain a pseudo-Gaussian simulated amplitude

transform as follows

A :: (S (W') 6W'JY2.n P-M
W' = w- kVo
W ': n 6W

and

W'-A -
v./2. ::

/~cw dW'

~k tttnh kh
Note that much of the high-frequency range of the spectrum in

Figure 4.3 is nearly zero. This has the effect of generating a

,"densely sampled" time series when the amplitude transform is

inverted, making the numerical integration simpler. The velocity

transform at z is obtained by applying linear wave theory to ,
, "

the amplitude transform, so that

U (i) -= ¿W' c.osh k:! An SlW\ k kn r\,
The depths used for calculations are the same as those used in

the linearization, and are given in Table 4. l. The velocity

transform is then inverted to obtain a velocity profile time

series. A typical time series is shown in Figure 4.4. The

acceleration moment time series is obtained in a similar manner

so that

Mn=(ItC.)f5 k~hZ.kh(kh Sf.lh kh- cÐsh k~TI)An
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See Equation (3.10). The spar equation is integrated in time

using a fourth order Hamming predictor-corrector integration

algorithm. Because of the random simulation, it is not possible

to compute sub samples of the time series so tha t convergence of

this method is forced, rather than the usual single estimate of

a predictor corrector, in order to avoid numerical instability.

Note that at each time step the relative velocity is found at the

spatial sample points and a spatial integral is evaluated to find

the drag moment. The integration in time is begun by assuming

tha t the spar is at rest. This introduces starting transients

into the response, which are eliminated by restarting the inte-

gration using conditions from a later time, after transients

have decayed, as the initial conditions.

In Figure 4~ 5, the ratio of the standard deviations of

the angular velocity predicted by the linearization and the

simulation is plotted in order to provide some measure of the

~
The parameter -R ' whereperformance of the linearization.

~ is the standard deviation of the wave amplitude, is much

like the Keulegan Carpenter number discussed in Section 3, so

~
for small -R and small mean flow, we would expect inertial

forces to dominate, and for large values we would expect viscous

forces to dominate.

~Each value of -R represents a particular spectral

wind speed, that is to say that the spectral wind speed deter-

mines the variance of the wave amplitude and that the variance
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is independent of the mean current. Thus, each spectrum used

generates a column of data points on the graph.

For comparison with Figure 4.5, the values of the

stan4ard deviations of the angular velocity predicted by the

linearization are plotted in Figure 4.6. The numbers in paren-

theses are the ratios of the wave spectral peak frequencies to

the natural frequency of the spar. Notice that for any particular

input wave spectrum characterized by a column of data points,

this frequency ratio varies, due to the Doppler shift introduced

by the mean flow. We point this out to emphasize that the change

in response, Ci , for any given input level, 0: ' is due not.

only to the increased viscous forces caused by a mean flow, but

also to spectral smearing caused by the frequency shift.

The most important thing to notice about Figures 4.5

and 4.6 is that the error in the linearized estimate is within

10% over a substantial range of inputs and responses. The r.m.s.

error, e , of the simulation variances, assuming a bandwidth

B = 1 Hz and a sampling interval T = lOO sec, is about LO%, where

2 1
e = BT

see Bendat and Piersol (l97l). Some of the scatter in Figure 4.5

may therefore be random error.

The linearized estimates of the mean inclination,

plotted in Figure 4.7, are not as good as the estimates of r.m.s.,

and differences as large as 30% are observed. Note that the mean

angle of inclination is substantially influenced by wave energy,
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Root mean square response of the spar from thelinearization. .
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and that the linearization does reflect this behavior.

It appears that the linearization performs well, so

that any large discrepancies with experimental' data cannot be

attrtbuted to this technique, but rather to the physics of the

model.

t
f
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5. Experimen t

The experimental system described here is designed to

test the performnce of the drag linearization and the vortex

shedding model. It is not, in fact, capable of exploring all of

the parameter ranges which are of interest. The most significant

deficiency is the small maximum amplitude to radius ratio,

Keu1egen-Carpenter number ~ which can be achieved. We are, there-

fore, not able to explore the region of drag dominance which

exists in large amplitude oscillations. The small Keulegan-

Carpenter number also implies negligible vortex shedding due to

wave motion so that the validity of the stationary phase vortex

model is not tested. The linearized approximation should perform

best in the region of small amplitude waves, NKC ~ 10, where the

added mass and drag coefficients are well-behaved (see Figures

3.4 and 3.5). This region, then, seems like a good place to

begin exploring the model's performance.

5.1 Spar and Instrumentation
I

I,

5.1.1 Spar

The experimental spar consists of a right circular

cylinder LO em in diameter mounted on a large compression spring

and anchored with 60 1b of lead, see Figure 5.1. The spar is

mounted on a compression spring to elevate the natural fre-

quency of the system into the region of significant wave energy
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of the random wave spectra available at the MIT ship model

towing tank. A compression coil spring which is relatively weak

as a beam and offers roughly the same stiffness in all directions

is ideal for simulating an increased buoyancy. Due to the

asymetry in the number of effective turns in the spring for

different directions of inclination, there is about a 5% varia-

tion in the bending stiffness which results in a slight coupling

of the in-line and transverse oscillation modes. For the purpose

of estimating the response using the linearization, this coupling

is ignored.

The spring used has a nominal LO em outside diameter"

is l5 em long ånd is wound from 1 em diameter wire. The ends are

ground flat and the spring has a nominal compression stiffness of

1.5 x 105 Nlm (l30 lb/in). The bending stiffness of the assembled

system in air was measured using a spring balance and found tp be

~~ ~ 110 Nm/rad.

tion (3.9) so thatfh i.V)~ s 0 f9 1T R ëol ~ +..A

This value is used in place of -Mz in Equa-cg

for this system. The moment of inertia in air is found by measur-

ing the natural frequency of the system in air, that is,

I .. ))/Loo 2 .

that I = 4.4

The natural frequency is f =.8 Hz, which implieso
2kg m. If we make a calr.ulation of the natural

frequency of the spar in water, we find that the added moment of

inertia is I = 3.5 kg m2 assuming C = 1 and that the buoyanta a
restoring force adds 45 N-M to the stiffness so that f =.74 Hz.o

w
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A measurement of this natural frequency in the MIT towing tank

showed fo
w

side diameter with l/8 in. wall extruded aluminum tubing.

= . 75Hz. The cylinder itself is nominal 4 in. out-

No

special effort was made to ensure roundness, but some sample

measurements showed it to be within 1% of the nominal outside

diameter. The end caps were machined from aluminum plate and

o-ring seals were used to maintain a water tight seal, see

Figure 5.2 for some detail. The end caps are held in place by

internal tie rods, which are l/2 in. x l/2 in. x l/8 in. aluminum

angles at the bottom of the cylinder and stud stock near the top.

Two rate gyros, two accelerometers and amplifiers are mounted in

the frame formed by the angles. Foam inserts are wedged between

the cylinder and the instruments to damp lateral vibrations of

, the internal structure. The first mode natural frequency of the

frame and instruents was near 20 Hz and any motions at resonance

could be filtered from the signal, since frequencies of interest

are in' the 'neighborhood of 1 Hz. Electrical penetrations were

made through the bottom end cap using Amphenol type 165 hermeti-

cally sealed connectors filled with silicon dielectric to ensure

a water tight seal. The male halves of the connectors have an

o-ring seal at the end cap and the female halves are potted to

Belden shielded power supply cable using a urethane casting

compound. The cables run inside the mounting ,spring and through

the lead anchor. The cylinder, spring, and anchor are held

together with a short chain made of s-hooks and two eye bolts,
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see Figure 5.2. The center of rotation is assumed to be at the

lower eye, even though the spar is no longer "rigid". The

spring is precompressed, by tightening the eye bolt in the

anchor, so that the end cap does not lift away from the spring

at large angles of inclination.

5.1.2 ,Rate Gyros

The instrumentation in the spar includes two ortho-

gonal rate gyros. The rate gyros are surplus Minneapolis Honey-

well JR 20 Rate Measuring Gyros. A three-phase, 400 Hz power

supply was built to drive the gyro motors. The same 400 Hz

signal is used to excite the variable reluctance pickoff, which

measures the gyro gimbal deflection. The output from the pick-

off is an amplitude modulated 400 Hz signal which is demodulated

by analog multiplication with the input signal. A low pass

filter at 40 Hz removes the unwanted high-frequency signal, so

that the output is a voltage proportional to the angular velocity

of the spar. Linearity of the system should be within 1%, limited

mainly by the performnce of the analog multiplier. The claimed

resolution of the rate gyros is . 01 degree I sec, but various

sources of noise degraded' this to about .1 degree/sec. Note

that this corresponds to an oscillation at the natural frequency

of the spar of .02 degree amplitude. The natural frequency of

the gyros is between 30 Hz and LOO Hz with about 40% of critical

damping, and posed no problems for this experiment.

: :
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The calibration of the rate gyros was, performed by

exciting the spar at a frequency near 1.5 Hz at a known amplitude.

This was done by attaching an aluminum channel to a bracket on

the top of the spar and to an eccentric on a rotating circular

plate. The signal from the gyros is fed into a Hewlett Packard

Fourier Analyzer and the frequency and amplitude of the signal

are determined.

Assuming a 2% error in each of the length measurements
i
I,'

and a 2% error in the determination of the oscillation frequency,

the gyro calibration should be correct to within 6%.

5 ~1. S Accelerometers

Two Sundstrand Kistler Model 303 force balance acce1-

, erometers were mounted with their sense axes parallel to the rate

gyro sense axes. In this orientation they act as inclinometers,

measuring gravity times the sine of the angle of inclination,

with an error due to horizontal accelerations. They were included

for measuring the mean angle of inclination as well as an alternate

source of response data. Unfortunately, a small amount of vibra-

tion of the internal mounting structure excited by the rate gyros

created noise with an amplitude equivalent to about 6 degrees of

inclination at a frequency near 20 Hz. This was easily filtered

for purposes of data analysis but introduced extra recorder noise

because a lower ga in was used.

The accelerometers are calibrated by placing them
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vertically on a level surface and measuring the output corre-

sponding to 1 g. They are then inverted and the output corre-

sponds to -1 g. Half the sum of these two measurements is then

used, as the zero measurement. Linearity of the accelerometers

is claimed to be better than .1% of full scale, which corre-

sponds to an accuracy of the zero within .1 degree.

5.2 Experimental Configuration and Data Handli~

~ 2.1 Towing Tank

The experiments on the spar were carried out in the

MIT Ocean Engineering Ship Model Towing Tank. The towing tank

is equipped with a steel belt driven overhead carriage, which

runs at a number of fixed speeds. The tank is approximately

2.5 meters wide, 33 meters long and l.l meters deep. There is a

flat plate hydraulically driven wave maker at one end which can

be driven by' a sine wave generator or a simulated Pierson-

Moskowitz wave form recorded on 7 track FM tape. A beach made

of stainless steel lathe turnings acts as a wave absorber at the

opposite end. Large windows near the middle of the tank make it

possible to view a section of the tank below the water line.

5.2.2 Wave Gauges

Two bridge balanced, parallel wire, resistance wave

gauges measured the wave height during the experiments. One was
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fixed to the side of the tow tank and the other was mounted on

the towing carriage. They are calibrated by recording the out-

put for various depths of immersion. There appeared to be about

a 5% nonlinearity in their response over 10 em, and a slight

zero drift. The zero drift was eliminated in the data analysis

and the nonlinearity was ignored. The accuracy of the calibra-

tion is on the order of 2% since the wave gauge mourtts were

.
equipped with dowels which mated with pairs of machined holes in

a fixed mounting plate.

5.2.3 The Experiment

A current was simulated by towing the spar over the

bottom of the wave tank using the towing carriage. Two views

of the towing configuration are shown in Figure 5.3. An out-

rigger made of steel angle was bolted to the lead anchor and

plexiglas skids were attached to the ends to carry transverse

moments. Four cables made of stainless aircraft control cable

were attached, as shown in Figure 5.3, to an alumnum channel
l

'1which 'was bolted to the towing carriage. A limitation on the

towing speed is introduced by the stability of the anchor.' For

speeds higher than about .3 mIs, the drag force and lift from the

tow cables became large enough to raise the leading edge of the

lead weight from the bottom. This also occurred during some of

the large waves in the simulated random seas.

The orientation of the instruments with respect to the
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Figure 5.3 Towing configuration of the spar.
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tank was determined by inclining the spar in thè direction of

tow and recording the components of the angle of inclination

measured by the accelerometers. A coordinate rotation of .l9

radians is necessary to separate the in-line from the transverse

motions. An error of 2 or 3 degrees in this measurement would

cause less than .2% crosstalk in the computed spectra, which was

far less than the coupling introduced by the spring.

The data from the four on-board instruments and the

two wave staffs is recorded in analog form on 6 FM tracks of

Sangamo 14 track tape recorder. The same machine is then used

to play back the data into a Hewlett Packard 2100 mini-computer

equipped with a 16 channel 12 bit digitizer. The signals pass

through active low pass filters with second order poles at 20

Hz and are then digitized in parallel at a frequency of 80 Hz.

The digitization actually occurs serially with a 20' sec lag be-

tween channels at each sample point. The small phase shift

introduced is ignored during processing. Each digitized run is

then recorded on 9-track digital magnetic tape, so that it can

be accessed for later processing. Processing was done on the

same machine which is equipped with an HP 5451 Fourier Analyzer

System. This system has a CRT display of blocks of machine

core, permitting visual interaction during processing. It is

programmble in a similar fashion to hand-held calculators,

allowing quick development of processing schemes.
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5.3 Experimental Results

The experiment consisted of towing the spar thro~gh

simulated Pierson-Moskowitz fully developed seas. The wave

spectra are generated by filtering the signal of a white noise

generator. The P-M seas used in the experiment corresponded to

wind speeds of LO, 17.5, and 25m/s. In addition, towing speeds

of .15 and .3 mls were used to simulate the combined wave and

current field. For the experiment, some values of the surface I

wave Reynolds Number, NR ' , theEt .
Number, NKC' the fixed cylinder

surface wave Keulegan Carpenter

shedding frequency, f , and thev

steady flow Reynolds Number, NRe, where

NR = .f G;w Dj))
~

.f ÛÃ 1T /rNKC =

f = Ns Uo/Dv

NRe = Uo nil'

respecti ve1y , are given in Tables 5.1 and 5.2. No te tha t the

maximu NKC is 4.4 so that we would not expect much vortex

shedding due to waves. In fact, in the 25 m/s P-M waves, one

cou1doccasiona1ly see a vortex shed as a large wave passed.

Approximately 10 minutes of data for each of the'

combinations of wave spectra and towing speeds was recorded,

including tows in calm water. This provided enough data for

averaging ten spectra with a resolution of .018 Hz. The experi-

mental spectra in the following figures were generated in this
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TABLE 5. 1

WIND
AW ÕÃ NR NKC

SPEED ~
10 9 . 3 cm/ s .8 em 13,000 .7

17.5 16.4 em/s 2.4 cm 23, 000 2.1

25 23.4 em/s 5.0 em 33,000 4.4

cr

TALE 5.2

""

TOW NRe

I

fv (NS = .16)
t

SPEED !

.15 16, 000
I

.24 He

.3 32,000 .48 Hz
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fashion using a rectangular window. Since the character of the

vortex shedding is a dominant feature governed by the towing

speed for these cases, the results are grouped according to

towing speed.

5.3.1 Zero Current

Figures 5.4 a, b, c present the angular velocity spectra,

Sf and S ¡ , as well as the wave spectra, SA' from the zero current

experiments and the linearized approximations to the response

spectra. It is clear from Figure 5.4 a that there is good agreement

between experiment and linearized response for the LO m/s wave

spectrum. This is expected since the wave energy is above the

spar natural frequency, so that drag damping is unimportant.

As shown in Figure 5.4 band c, the estimates for 17.5 m/s and

25 m/s are somewhat high. This is due primarily to the nature

of the simulated spectrum, which appears to have discreet bands

at approximately .05 Hz frequency spacing. By looking at the

input wave spectra and the response spectra for these two cases,

one can see a "hole" in the response close to the natural fre-

quency which is due to low energy in the input spectrum. This

would cause an overestimate of response found using the smooth

input spectrum with the same mean square as shown, because of

the amplification which occurs near the natural frequency. We
.

note that the energy in the J spectrum is due to the coupling
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introduced by the spring, mentioned earlier.

5.3.2 .15 m/s Towing Speed

The vortex shedding frequency for a fixed cylinder in

.15 m/s flow assuming NS = .2 is .32 Hz, and the in-line force

frequency would be .64 Hz so that we might expect alternate

shedding in-line lock-in for a cylinder with a natural frequency

near. 75Hz. This does not occur. However, it appears that the

actual Strouhal number for the cylinder is about . l6, since the

cylinder experiences three dimensional effects at the free sur-

face. Gouda (1975) has shown that cylinders with 1 = 15 may
D

have a shedding frequency reduced by as much as 35%, implying

a correspondingly lower Strouhal number. Thus, in this case,

L
where ñ = 10, using NS = . l6, twice the shedding frequency is at

.5 Hz and 4 times the shedding frequency is at 1 Hz. From

Figure 3.2 we see that this places the system in the center of

the paired shedding in-line, lock-in region.

The cylinder does in fact experience paired shedding

at this towing speed, and the response can be seen clearly in

Figures 5.5 a, b. The formtion of the vortex pairs could be

plainly viewed during the tows, since vortex dimples appeared

on the surface. Each time the cylinder moved forward through

the flow, a pair of vortices was shed. It appears that the

acceleration of the spar "cleans" the wake, and therefore permits
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nearly symetric formtion of another pair of vortices. This

process reminds one of the formtion of a pair of vortices behind

a cylinder started from rest, which then shed and are followed by

alternate vortex formtion. It seems that the in-line accelera-

tions of the cylinder are causing the vortices to be shed cleanly,

so that wake formtion begins anew, maintaining symetry in the

wake.

There are two important differences between the model

proposed in Section 3 for vortex shedding and the one used to

generate the linearized responses of Figures 5.5 a, b, c, d. The

first is the obvious discrepancy in shedding frequency, the vor-

tices are shed exactly at the spar natural frequency, which would

correspond to four times the alternate shedding frequency only if

the Strouhal number was . l3. We see, therefore, that the wake

has been" captured" by the spar motions, similar to a forced

cylinder. This is a well-documented phenomenon for alternate

shedding, and is not completely unexpected. The linearized pre-

dictions of Figure 5.5 use NS = . l3, that is to say that we

must predict wake capture, since the model is not sensitive to

this phenomenon. It is also necessary to change the in-line

drag coefficient. The value of CD = .06 proposed earlier led

to responses an order of magnitude too low. The linearized

responses in Figures 5.5 employ CD = .5, and produce reasonably

good results. This result is not exceptional either, considering
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the wide scatter in the available data. In fact, King (l977)

recommends a value of CD = .2 as a safe design value. It appears,

however, that some extensive and consistent experiments would be

of much use.

Notice that the vortex models used in Figures 5.5 and

5.6 assume impulsive power spectra, i.e., sinusoidal forcing, at

the shedding frequency produced by steady flow since the wave

frequencies are higher than the shedding frequency and the sta-

tionary phase estimation is not valid, as mentioned in Section 3.

5.3.3 .3 m/s Towing Speed

The response of the spar when towed at .3 m/s was

dominated by alternate vortex shedding, see Figure 5.6 a, b,

c, d. The main effect of the waves was to slightly decrease the

response in the lateral direction. The linearized model predicts

this due to increased drag, but decreased longitudinal correlation

of the vortices may also be important. The actual transverse

motions of the spar were observed to be somewhat squared. The
,

effects of this can be seen in Figure 5.6 a in the Ó spectrum

where there is a small peak around l. 5 Hz corresponding to the

second Fourier series component of a square wave. The in-line, ,
motions are at exactly twice the frequency of the horizontal

motions, so that the motion of the spar at the surface follows

a "U"-shaped path in the coordinate system moving with the spar.
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A vortex was shed at each tail of the "~, trajectory, as the

motion reversed direction. As for the previous paired shedding

case, an oscillating drag coefficient of .5 rather than .06 was

necessary to achieve reasonable linearized predictions. Strouha1

number of . l6, as mentioned earlier, gives good agreement with

the experimental oscillation frequency.

All of the linearized estimates using C= 1 are a bit
a

low, and Figures 5.6 c, d show that the wave response is over-

predicted and that the peak wave response is at a lower frequency,

than in the experiment. By assuming that the added mass co-

efficient is 0, much better agreement is achieved. This assump-

tion is not altogether unreasonable if we consider Sarpkaya Is

data, Figure 3.4, and note that there is a decrease in the added

mass coefficient when vortex shedding becomes important, around

NKC = 10. Thus, it appears that an important effect of vortex

shedding in a flow with a mean component may be the reduction of

the added mass coefficient. Vortex shedding due to a mean flow

could thereby have significant effects on structural response,

even if the actual vortex forces were not important.
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6. Sumary and Conclusion

A linearized theory for the response of a circular

pendulum spar in two-dimensional random waves and a uniform

current has been developed. The linearized inviscid equations

of motion were developed using an approximate potential flow

theory for slender bodies. The reasons for pursuing the slender

body solution were (l) to lend some "legitimacy" to' the well-

known and widely-accepted strip theory approach to writing the

equations, while formlly stating the simplifying assumptions,

and (2) to allow an estimate to be made of the linear, wave-

making, damping force for comparison with estimates of viscous

damping. The dynamic equations were amended to account for the

"quasi-steady" wake effects of viscous bluff body flow by in-

cluding a quadratic drag law. This idea is inherent in the

Morrison equation, widely used to interpret wave force measure-

ments, and stems principally from the concepts of superposition

and steady flow drag. The principal flaw in this concept is a

consequence of the fundamental "non-steadiness" of the bluff-

body drag in steady flow, that is to say that there are always

significant fluctuations from the mean in the forces on a

cylinder in steady flow. This is due to periodic fluctuations

in 'the wake, generally characterized as vortex shedding. It

seems a bit hopeless therefore to attempt to describe the forces

with any fidelity without incorporating this effect. The
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quasi-steady drag force was therefore supplemented, again

resorting to superposition, by a spectral model for the forces

on a cylinder due to an oscillating wake.

The forces due to "vortex" effects were modeled as a

frequency modulation process. Note that this includes an in- line,

drag, component and a transverse, lift, component. The major

assumption was that the vortex shedding frequency was proportional

to the instantaneous speed of the fluid in the incident field. A

spectrum of vortex forces was then estima ted using the method of

stationary phase. There are two important faults with this model.

The first is a consequence of the fact that the stationary phase

approximation only works when the modulating signal, the dynamic

pressure in this case, is lower in frequency than the carrier,

vortex frequency. This means that if the spectra of vortex

shedding forces predicted by the model contain frequencies less

than or only slightly larger than the spectrum of the fluid

velocities, then this model is not valid. It was suggested that

in this case, sinusoidal forces predicted by the mean flow only

would be an appropriate substitution. The second shortcoming is

due to the neglect of feedback between the wake and the motions

of a cylinder. Although it is possible to "adjust" the shedding

frequency of the model to produce an adequa te result, this manip-

ulation is a little unsettling. However, since there is no

reasonably simple way to include the feedback, the user must be
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aware of lock-in phenomena, so that this solution can be "artifi-

cial1y' produced and studied. The model proposed for forces on

the cylinder can be considered as composed of three components:

first, the inertial force predicted by inviscid theory; second,

a quasi-steady quadratic drag; and third, a "vortex" induced lift

and drag force. When there is no current, the forces are dominated

by the inertial term for small Keulegan Carpenter numbers, that

is, smll fluid amplitude-to-cylinder diameter ratios, and by the

viscous effects for large NKC' this includes important vortex

shedding effects. This should seem reasonable, since for small

motions compared to the cylinder, one would expect that potential

theory would describe the flow well, and for large motions com-

pared to the cylinder one would expect things to look quasi-

.

steady in terms of the flow field. The effect of a mean flow is

to push the dominance of viscous forces toward the low NKC range.

The behavior of the vortex shedding forces is probably best

described in terms of a spectral impulse, corresponding to the

mean flow, which is smeared by the variations in the flow when

they are large or comparable to the vortex length, 1 , discussed
v

in Section 3. The most important thing to note here is that,

even though the forces are parameterized in terms of velocities

and accelerations, the relative importance of any effect is

determined by the length scales, that is excursion amplitude,

cylinder radius and the mean flow vortex shedding length, 1. .v
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The non-linear equ~tions of motion which resulted from

the analysis of the forces were solved using a linearization

technique assuming a Gaussian random sea and constant force

coefficients. The linearization equates the expected value of

the power transmitted to the spar by the non-linear viscous

forces to the expected value of the power transmitted by the

equivalent linear forces. The method discussed includes the

extension of the linearization needed to describe mean flow

effects and a spatially distributed process. Since this linear-

ized model was a further simplification of an at best questionable

equation, some numerical experiments were performed to test the

performnce of the technique under "ideal" circumstances. For a

variety of simulated environments, the linearization predicts the

standard deviation of the simulation response within 10% and the

mean angle of inclination to within 30%. Since the various

simulations resulted in responses differing by orders of magni-

tude, the linearization performed extremely well.

A, laboratory experiment was carried out to test the

linearized spar model in a realistic fluid environment. Only

the low Keulegan Carpenter number regime was investigated with

various mean flows. Some manipulations of the model coefficients

was required to obtain agreement between the experiment and the

linearized estimates. The drag coefficient for vortex induced

in-1~ne motions has not had much previous investigation, and a

~:
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value of .5 fits the experimental results presented here much

better than the value of .06, which is more representative of

results given in the literature. It also appeared that

the Strouhal number was significantly reduced by the finite

length of the cylinder from .21 to .16. This effect is often

attributed to the motion of a cylinder, but little variation

in the response frquency could be found although the cylinder

response varied by an order of magnitude. As mentioned above,

it was necessary to further manipulate the Strouhal number to

model the case of lock-in. Perhaps the most inter~sting result,

however" is the apparent reduction in the added mass coefficient

when there is strong vortex shedding induced by the mean flow.

This is not too surprising though, if we note that the same
\

effect is observed in oscillating flows with no mean when there

is significant vortex shedding. Although this set of experiments

is by no means conclusive, some important interactions of mean

flow and oscillating flow are apparent.

It is obvious from the few experiments performed here,

if not intuitively, that there is significant interaction between

waves and current in producing structural loading. Since ocean

environments of interest, particularly storms, will contain

simultaneous waves and current near the water surface, it seems

clear that any reasonable structural loading theory should consider

the complete problem. The linearization of bluff body drag
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forces on a cylinder appears ,to be an accurate method of pre-

dicting the response of an elastically supported cylinder so

that further investigation of its performnce in this and more

general applications is warrented. Extension of the present

theory should include the effects of horizontal correlation of

random waves, directional spreading of the wave spectrum, as

well as an arbitrary angle between waves and current.
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APPENDIX A

Solution of Velocity Potentials

We shall use the coordinate syst~s defined in Section

2.1. i and begin the analysis by restating the decomposed velocity

potential defined by Equations (2.3) and (2.4).
;i( ) A 4- c:csh ki- i(kx-wt) A J.
'1 x,yi !~t li CA CoOS h k h e t 'fA T If." (A.l)

On the spar, the kinemtic boundary condition may be written, see

for example Wehausen a~d Laitone (l960), as

~rr'- R(2')J=Cft + V~.V) rr'- R(~')J =0

rf=Rl-r')
(A.2)

on

That is, the substantial derivative of the equation for the sur-

face of the body is zero. Equation (A,2) may be rewritten as

follows:
-l '_'ll Óf/ il k' _ il dj~ _dt r dr' øt i ør' Ør' dë'di-O

Making use of the following properties

~ -.à' ~
â'' - ~~ t 'fW

r / l = (X i ,- 2 X i! l + y i )J'2.

'* ~ - e 'P cps e

_d - Á
~I d Y'

keeping only the lowest order terms in ~ the kinema tic boundary

condi tion becomes

- r 'Î C.D:) e - X ~ ~R + il - M cl R 1£ 0Ol~ ø'r ~~ Q£
on r = R(z)

We shall now assume that :~ is the same order as Ak

and ignore second order terms in which it appears. Supstituting

(A. 3 )
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Equation (A.1) into Equation (A.3) and equating terms according

to their dependence on different displacements, the following

boundary conditions are obtained:

òtP == ~ l C.O$fJ

~r
~6A :: _ ¡ g. c,S e ~05 h kfór W c.O$ h kh
on r = R(z)

-i oJ t.

e.

(A. 4 )

(A.5)

We now employ slender body theory, which matches an approximate

2-dimensional solution near the body with a three-dimensional

solution, see for example Newmn (1977). To satisfy the above

boundary conditions, we find that an axial line of dipoles pointed

in the x direction is necessary. The moment density necessary to. 2
satisfy Equation (A.4) is % 'lz LR(z)J per unit length, so that

in an infinite fluid h

, ~r :: i ~ ¡ ) R7.()) b r ~J 0\ ~

where rll2:= X 2 + y 2 1- (~.. r)J. = r z... (2-"')') 2

To satisfy the free surface, bottom and radiation boundary con-

ditions of Equations (A.4) and (A.5), we substitute, for the source

potential, ;*" the potential, l s ' ofa source pulsating at

frequency W under a free surface in a fluid of depth h, see

Wehausen and Laitone (l960).

. _ .wt ,- -l .. of
, ,~S (~y)~)t; )') :: eLL r)f t lil'

£ø02(iJ+kM)C;l-"hcosh vi: eosh v'S I(vr)ol''l

o \o Slf\h I1h - k,o cosh ~h 0 y
2.Tf ¿ (ktJ"k)Q.-kh Slf\h kh co~h k)' c.~h ~!k.o~ .. 1m h1. kh '

~here f denoted Cauchy principle value, r2*2 = x2 + y2 +

. w2
and k = -

g

(A. 6 )

J:Ck ~ )

(z + f)2
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Knowing the solution of Equation (A.4) in an infinite

fluid, we anticipate the form of the dipole strength in the

present case and write

~,ei f JkTf)()+L F()))/x (~s(~)y) t)tj~))ø\)'
o

(A. 7)

We will be interested in the potential near the body, so that to

leading order in r for the real and imaginary terms, we find that

~'I=i2 ~Cr~R~))~ (rZ."'(r-$')2)i'ol S + (A.8)
2ffi.l'1R()) /~ cosh k) U)S~ kè ix ¡(kr) ol)' T

itRt)) F()) d~ (ri+(?- ))2.)-t ol)' .

K: k.M + k~-kh sl'nLkh
kcih of 31n ~ i kh

2Noting that for small values of kr, Jo (kr) ~ 1 - Jz(kr) and that

where

for any continuous bounded function ft,) i(

rJ,¡()') tx (ri.+~- SJ-)-io\ S' ~ -2 -f cos ê
.

forO .(, z .( hand r.c(, h, see Newmn (l960), Equation (A.8)

becomes
J. : Y? r-2 :1 ~) e -~~ ~ L ~ r CÐS

i ilJ.tk2.)( cosh k~ F*-
, i l eo; e Rtr-) F(~) J

F* :. r~f R2(S-) C.Ð-Sh k) d,)

(A.9)

where

If we substitute Equation (A.9) into the boundary condition,

Equation (A.4), and solve for F(z ), we find thato

Fæ) = 12. rrK k2. CD~ h kz F"- (A.lO)

Therefore, Equations (A.9) and (A.10) define the complex potential,

¥f ' to lowest order in r for the 

real and imaginary parts. In

a similar manner, we find that, to lowest order in r, the solution
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to Equation (A.5) is L
A :: i ~ cosh ig , ßl) c.os e
'fA LV C.O$ ~ k~ r

-iwt
e. (A. 11)
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APPENDIX B

Convergence of Iterative Solution

In order to show that a function = f(~) has a con-

vergent successive approximation solution, it is sufficient to

demonstrate that there is a region around 0(, 1 x- Ot 1 c: h , such

that

I~ i ;c i

We will look at the zero mean velocity case, since the equivalent

velocity is most sensitive to the oscillator response when there

is no mean flow. Using Equations (4.8) and (4.10)

Ur¡ ~ JT c f 1 ~j~SA~~) oI.JY:i

we can wri te

U

where Ar is defined by Equation (4.5).
o

, further by assuming

We shall si~plify this

that the input spectrum SA (w) has a uniform
o

density of SA between Wl and ~2 and is zero elsewhere, so that

Us ~ If (5 rw~1 U-j2dwJY2 , 'IT Ao w AD '
,

A sufficient condition for convergence is then to show that

where

rWi. ~ I Url2.. i~ A ólw ~ S 1.-Wi Ao Tr
L i ù,.)2._ 2U~w4Ci(l-wa+w2 F~2
dOe ~ - (0_(.1.)2. l- (w C Vf y. J z.

(B. l)

. (B.2)

Unfortunately, Equation (B.2) blows up near resonance and we

cannot satisfy the sufficiency condition for convergence. It

appears that the convergence condition, Equation (B. l), can

.-:.
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always be forced to fail by choosing an input density large

enough. Despite this apparent failure, it should be noted that

a number of numerical experiments discussed in Section 4.3. con-

verged rapidly, and only 7 or 8 iterations were necessary to

obtain 1% accuracy for UE. It appears, however, that the

successive approximation scheme may on occasion be divergent,

Even if this should occur, a solution can always be obtained

by a bisection routine. This can be demonstrated by noting

that the derivative of Equation (B.2) is always negative. The

significance of this can be easily noted by looking at ,Figures

lUAr IB. 1 a, b, c in which we have plotted That is, as UE
o

decreases, the relative velocity transfer function grows uniformly.

The bisection routine begins by guessing a value of UE and com-

puting a new value as in the successive approximation routine.

We can see from Figure B. 1 tha t, regardless of the shape or

magnitude of the input spectrum, if the guessed value of UE is

larger than the true value, the new value will be less than the

true value, and vice-versa. We now have an upper bound and a

lower bound for the true value. If we now bisect this region

and compute a new value of UE ' we can find which half of 
the

bisected region includes the true value, even if the new value

1iés outside both regions. We can therefore maintain bounds on

the true value and at least cut the region in half with each

iteration. One could easily write a routine which begins

solution by successive approximation, checks for divergence and
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implements bisection if necessary. We shall limit the discussion

of convergence to this simple model, and state that similar

arguments and conclusions can be made about the more complicated

case of the spar governing equations.
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