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ABSTRACT

A linearized theory fof the response of a circulaf pen-
dulum spar in .2-dimensional waves and a uniform current is devel-
oped. The linear forces on the cylinder are predicted using an’
épproximate potential flow theory for slender bodies.“ The dynamic
equations are then amended to account fér the wake-effects of
viscous bluff body flow by including a éuadratic drag law and
neglecting &ave damping. A spectral model for the forces on a
cylinder due to an oscillating wake, modeling the force as a
frequénby modulation process, is proposed. The non-linear
equations of motion whiéh result are then solvéd, assuming con-
stant forcé coefficients, by 1;nearization’for-use-with a Gaussian
random sea. The method of equivalent 1inearizationvis extended to
include mean flow effects and a spatiall& distributed process.

Some numerical experiments are then used to test the performance
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of the linearization. For a variety of environments, the
linearization predicts.the standard deviation of the simulation
response to within 107% and the mean angle of inclimation to
within 30%. Results of the numerical experiments indicate that
therg‘is significant variation (order of magnitude changes) in
both response and mean angle of inclination. Thus, significant
éhanges are followed by the linearization.

A laboratory experiment was carried out to tést the
linearized spar model in a realistic fluid enviromment. Oﬁly
the low Keulegan Carpenter humber regime was investiéated.
With some minimal manipulations, good agreemen£ is obtained
between the experiment and the linearized estimates. It appeafs
that the drag coefficients for vortex induced iﬁ-line forces may
be an ordef of magnitude larger than those reported iﬂ the
literature, .5 instead of .06, and that the sheddiﬁg of vortices .
due to steady flow may reduce the added»mass coefficient signif;
icantly, as observed in oscillating flows with significant vortex

shedding.
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1. Introduction

The problém.which originaliy motivated this work
involved the analysis of the dynamics of a tilting spar current
sensor, Mavor, et.al. (1976). 1In this case it was necessary to
evaluate the effect of surface waves on the mean inclination of
the spar to determine its performance as a current sensor. The
spar has a natural frequency in the region of wave excitation
and therefore cannot be treated as stationary, allowing one to
make direct use of the large body of literature for wave forces
on cylinders. Bluff body drag, which is the dominant dissipative
force on tbe spar and a possible exciting force, is fundamentally
nqn-linear, so that an elementary application of linear vibration
theory is not possible. With the>advent of offshore o0il develop-
ment inbdeep water, 300 m or more, structures with cylindrical
components ;re being built with naturél-frequencies in the region
.of surface wave excitation. Motions of the structure and Teso- -
nance behavior must therefore be considered in evaluating envi-
ronmental loading. The question of dynamics of cylinder structures
in a wave current environment is then of some general interest.

The forces on'cylinder structures in various fluid
environments has been a topic of comsiderable interest in
classical and modern fluid dynﬁmics. Thg cylinder provides a
mathematically tractable geometry and is.a pépular engineering

structure because of its symmetry, large stiffness and ease of

R
i
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manufacture. With the_advent of éxtensive offshére oil producti§n>
considerable energy has been expended to determine the forces on
cylinders in waves and currents. In fact, most effort has been
directed at either the wave problem, oscillating flow, or the
steady flow problem, with minimal thought given to the interaction.
Ihe most complete set of 2-dimensional experimental data on
cylinders in sinusoidally oscillating flows is presented by
Sarpkaya (1976). Some interesting experiments on vertical
cylinders in sinusoidal waves have been‘berformed by Bidde (1971),
Isaacson (1974) and various other authors. The results concerning
in-line forces of such experimenfs are generally interpreted in
terms of Morison's equation. This formulation decomposes the
force into a component proportional to the instantaneous normal
écceleration, inertial force, and one proportional to the instan-
taneous square of the normal velocity, viscous force; which would
exist'in the undisturbed flow. The decomposition of the force

in this manﬁer is at first intuitively satisfactory, but there

is such large scale flow disturbance due to the viscous wake that
the géoa experimental performance of Morison's equation seems
somewhat fortuitous. This point is clearer if we note that for
small fluidvexcursion amplitudg—to-cylinder diameter ratios,

where inertial forces dominate, and for largg amplitude-to~diameter
ratios, where viscous forces dominate, Morison's equation performs

well, whereas in the intermediate range of fluid amplitudes, the
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equation experiences its poorest performance, see Sarpkaya (1976).
The transverse forces due to periodic asymmetries in the wake afe
not well behaved and the results are generally presented in a
purely empirical form.

Offshore structures have in the past been in relatively
shallow wetef so that they could be considered rigid and stationary.
Dynamic phenomena are not usually considered, and most wave force
experimentatioe and  theory make use of fixed rigid>cylinders.

The results of wave force experimentation are generally applied

by choosing a "design wave" ane competible force coefficients

to compute maximum forces on a structure. Borgman (1967) presents
an elegant random process description of wave forces on fixed
cylinders, ignoring transverse forces and mean currents, and
obtains good agteement with a single field experiment. Such an
approach is essential in the consideration of a system's dynamics.
- since using a de;efministic force instead of the essentially
random force imposed by ocean weves may lead to significant errors
in the determination of response. The linearization which is
presented here employs a random process model, and the result is
equivaient to Borgman's first order estimate when it is simplified
to the case which he considered.

.Investigators such as Griffin (1975), Gerrard (1966),
and Tanida, et.al. (1973) have been interested in the vortex

shedding behind cylinders. Of special interest to these investi-
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gators are the transverse vibrations of elastically supported
cylinders, as well as the effects of small forced sinusoidal
oscillations on the wake. A majority of these investigations
are motivated by a need to understand wake induced motions of
cables. Recently, as discussed by King (1977), in-line vortex
induced vibrétions have become of some interest. All of the
experimental work in this field has led to an empirical repre-
sentation of an elastic system's response to steady flows,
generally represented as an amplitude at the natural frequency.
Some limited success has been ébtained by applying the inviscid
von Karmen vortex street mo&el to estimating forces on fixed
cylinders,- Griffin (1972). A van der P§1 oscillator model of
elastic cylinder wake interaction near resonance, Griffin (1975),
has received a great deal of attention, but it is complex and quite
limited in applicability.

Only one work, Seymour (1973), could be found which

analyzed the dynamics of a simple hydrodynamic system with large . P

viscous drag forces and included experimental verificationm.

; el i

Seymour investigated the dynamics of a tethered sphere in waves
and was especially interested in the dissipation of wave energ§.
He modeled the sphere as a point oscillator, linearized the drag
term, and was able to achieve reasonably good agreement with
field experiments. It was decided therefore to perform a linear-

ization of the spar problem. The important concepts behind
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statistical linearization can be found in a papef by Caughey
(1963). The analysis éresented here includes the effects of
mean flow, vortex shedding and vertical spatial gradients not
previously discussed in the literature.

An experiment by Mercier (1973) is the only study
found which actually addressés the question of wave-current
interactions with respect to forces on cylinders. He oscillated
a cylinder sinusoidally in a flﬁme and measured the force on the
cylinder in different speed flows. Theiresults which he presents,
as well as those from other wave force measurements, indicate : \
a considerable change in forée céefficients for different wave-
current environments. A constant coefficient model, as presented
here, may therefore be severely limited. However, the success
of the few experiments presented here and those of Seymour and
Borgman indicate that with a‘judicious choice of theée coeffi-
cients, good results can be obtained.

The analysis presented here is directed at the question
-of spar dynamics in co-linear uniform current and random 2- o
dimensional waves. Although this is a somewhat artificial problem,
it embodies most of the‘complexities of realistic structure and
environment, while minimizing notational complexity. This is not
to imply that a single cylinder and coflinear waves and current
are typical, but that the treatment of séatial'gradients, random

waves and simultaneous current represents a significant advance
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in the analysis of engineering structures composéd of cylinders.
The developﬁent begins with an estimation of the first
order linear inviscid forces on the spar. The governing equations
which result are then amended to include the effects of the
separated wake and a linearization is then used to estimate the
spar response. The performaﬁce of the linéarization is then
investigated by comparing it with the results from a numerical
simulation. The entire spar response model is compared with
some laboratory experiments. The experimental work is limited
in scope and a more extensive set of experiments is necessary
for a thorqugh evaluation of the‘model. The technique presented
here can be generalized for more complicated structures and
realistic environments, and the results presénted here appear

‘to make such an effort worthwhile.
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2. Linearized Potential Solution

In this secfion, we will determine the first order
inviscid forces due to 2 -dimensional waves incident on a
pendulum spar, see Figure 2.1, The effects of viscosity will
be considered in Section 3. The scheme used here involves the
assumption of a slender body; that is a body with one dimension
much larger than tﬁe other two, exhibiting small pitch motions
in incident waves of small slope with a wavelength long compared
to the body diameter. These assumptions will yield the equations
of motion for an undamped linear oscillator. Since we are inter-
ested in the system response near resonance, a regime in which.
the first order conservative forces are in balance, we shall
also consider the lowest order damping term, which is of second
“order. The motivation for considering this inviscid damping
term is to allow us to compare it with the viscous damping esti-
mated in Section 3. The solution for zero mean current is
derived in Section 2.1, and the effects of a mean current are

addressed in Section 2.2. : b

2.1 Zero Mean Current

The analysis presented here follows closély the work
of Newman (1963) with some modifications. Newman considered the
response of a free-floating spar buoy‘iﬁ he#ve, surge, and pitch
to 2 -dimensional waves in a fluid of infinite depth. We shall

restrict our attention to the pitch motions of the pendulum spar,
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and include the effects of a finite depth. There is a non-
trivial error of a factor of 2 in the calculation of damping in
Newman's paper, so calculation of the proper source potential

for use in the damping calculations is included in Appendix A.

.2.1.1 Problem Definition

A fixed Cartesian coordinate system (x, y, z) with z
positive upwards is situated so that the origin coincides with
the ceater of rotation of the body. The undisturbed free sur-
face is at z = h and the x axis is the direction of incident
wave propagation; see Figure 2.1. Use is made of a body fixed -
coordinate éystem (x', y', z'), with z' along the axis of the
spar. When the spar is at rest (x, y, z).= x', y', z'). We
also use a -circ‘:ular cylindrical system (r,®, z) with x = r cos &
and y = r sin ® . The surface 6f the spar is defined by. r' = R(z").
Letting ¥ be.the instantaneous angle of the body axis
with respect to the z axis, we find that
x.= x' cos¥ + z' sin‘P . (2.1)
y=y
z=2"cosy - x' sin¥
Sinﬁe the displacement ¥ and the wave slope Ak, where A is the
amplitude and k is the wave number, axre assumed to be sméll, we
shall linearize all equations by neglecting terms which are

second order in these terms. Equation (2.1) is replaced by
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x' +2'Y _ : (2.2)

»
(1]

y y
z= z'-x'¢Y
Assuming an inviscid, incompressible fluid, a velocity
potential, éyﬁg v, z, t) whose gradient is the vglocity vector,
exists and must satisfy the following boundary conditions:
(1) a kinematic boundary condition at all boundaries
(fluid does not pass through the boﬁndary),
(2) a dynamic boundgry condition on the free surface
(pressure is constant), and
(3) a radiation condition at infinity (energy must
propagate away from the Body) for A and below.
The linearized free surface, bottom and radiation boundary con-
ditions are satisfied by the potentials of pulsating singularities,
see for example Wehausen and Laitone (1960). The linearized body.
boundary condition is satisfied by a distribution of these singu-
larities along the mean axis.
In order to simplify the analysis, we shall decompose
the vélocity>potentiél as foilows
$x, v, 2, 0) = b+ §, + Py - (@.3)

The potential of the incident waves is

g cosh kz i(kx -wt)
= A 2.
¢1 W - ¢osh kh ¢ ¢ 4)'

where w is the radian frequency, g is the acceleration of gravify,'
and i = 4 -1. Note that this implicitly assumes that the wave

slope is small. The dispersion relation for finite depth is
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w® = gk tanh kh
The potential ¢A is the diffraction.potenti

The potential ¢P is due to the motion of th

(2.5)
al of the fixed body.

e body and is linear

in Y. From Appendix A, Equations A.9 and A.11, we find that, to

lowest order in r, the above potentials are

by =) ;P[ZZB':‘@ cos 8-

(2.6)
iWKk? cosh kz, F” -
i 2258 R% Fipy )
where
K - _!k_ﬂ*k) e,"“‘ sinh_kh
Koh +sinh*kh
k.o’wa/g '
F*-f[h.S"R’(f) cosh kT oS
F = '/a-'lTKk"F” cosh k2
- and .
ga i dgh bl BB o opeivt

2.1.2 Equations of Motion

The equations of motion of the spar are obtained by

integrating the pressure over the surface of the body to obtain

the ¥ moment. This moment is balanced by t
of the body and the gravitational moment.
equation is used to find the bressure
1 2-h
p=piE - pylzh)

To lowest order on the body"

he angular acceleration

The linearized Bernoulli

(2.8)
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p=- 3(2-?"RCose -h) - -SQ*— (2.9)
/a[ :.Asfﬁ-h—‘& “"’t(lnk )] |

Pa-ps(z “PRcosO- h)-lo ‘Vchosé- (2.10)

2pg AR coso 2hkz o-iwt,

PIASELE ol

The equation of motion is - k _
I?-Mzcs‘l' “f.(zPRcosBowolz e
where I is the moment of 1nert1a, M is the mass, and Z g'is the
dlstance to the center of gravity. Substituting Equation (2.10)
for thevpressure and 1ntegrat1ng over &, Equation (2.11) becomes
I‘P MQJW"VPQW!ZR@)AZ -,o?TPf #*Riz)olz + (2.12)
zﬂgAkash kh {zR(z) cosh kzdz € St
The terms on the right-hand side of Equation (2. 12) are readily
recognized. The first term is the hydrostatic restoring moment
and the seéond term is the added moment of inertia. The last
term repfesents the exciting moment due to the horizontal pressure

gradient under the incident wave and the diffraction pressure

s et g ATt e

field necessary to.accelerate the fluid around the spar.

Equaﬁion (2.12) is the governing equation of an un- .
" damped oscillator, and as such would predict large motions near
resonance. Since, néar resonénce, the first oxrder consefvative
forces due to mass and stiffness cancel, it is reasonable to look
for the lowest order damping forces. For a-body in an inviscid

fluid with a free surface, the energy dissipated in damping takes
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the form of radiated waves.
The damping forces can be estimated by considering
terms in the pressure field which are in phase with the body
velocities. The force in phase with &‘is derived from the
imaginary part of the potential ¢* , Equation (2.6). Thus,
the damping potential can be written as
0y =-iMKk*cosh ke F*(r + -—-)'P (2.13)
The damping pressure ii. 7
- _P@_%L) | | (2.14)
= ipTKk® cosh k2 R F*¥ cos
Therefore, the damping moment is
M*‘“fkf P chosBdde | (2.15)
=-¢,077'Kk‘F* fecosh kza R de
==y f”o?T. P(l( f:*

We can now add this moment to Equation (2.12), and upon rearranging,

obtain the damped equation of motion,

¥ [-w? (I*pllf 2 R&dz) -wi pll UICF*2e .16
gﬂ'f 2 Réaydz - Mz, ]
¥ -Lcdt
= 2AKk LA — LT Fle

For the case of a right circular cylinder, R(%) =

con31dered here, Equatlon (2.16) can be written as

?I‘ ~w(@plTR* —)-Lw 2ol Rq (kh sinhkh=-  (2.17)
cos kh +I) *ﬂgnR A Mi‘cs] o
-2/03/\ K cos k kh (kh sinh kh -
cosh kh+1) g-¢®t |
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2.2 Effect of a Uniform Current

Including a uniform current in the inviscid solution
has three principal effects. There is a Doppler shift due to
wave advection by the current, so that the spar encounters wave
crests at a frequency other than Ww. The character and magnitude
of wave damping can change dfastically. A mean force in the
direction of the flow will exist due to surface wave generation.
This is identical to the wave drag experienced by ships. However,
the first order oscillating inertial and restoring forces are not
affected by the presence of a current.

Havelock (1958) has demonstrated analytically that the
effect of a uniform current on the damping.botential for low fre-
quencies corresponding to wave lengths much larger than the body

-diameter, i.e., kR¢& 1, is to increase the damping. He also shows

that there is a critical speed,IT = , at which infinite

—2_
o 4w
~damping may be predicted. It seems, therefore, that a computa-
tion of thé wave damping is necessary. However, the assumption
of inviscid flow about a bluff body when there is a mean current
is gfoésly inadequate and the solutions are not likely to have
much quantitative significance. The effort required to find
these solutions does not seem justified. In the next section we
will, in fact, demonstrate that for most cases of interest, large
motions, the linear wave damping term fér zero mean flow is

negligible in comparison with the viscous forces. We shall

therefore assume that viscous damping will always dominate.
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We shall now investigate the frequency change due to
the mean current. Assuming the current is in the x direction,
we write the incident wave potential in a coordinate system

moving with the mean current,

:A l:(kx”"wt>
b i e - ew

where x" = x - Uot and Uo is the magnitude of the uniform current.
Notice that in this coordinate system the wave is unchanged.

Rewriting Equation (2.18) in the fixed coordinate system, we

0 clkx - kU;,‘?w>f
¢y = % :ossﬁ kh © (ko= )*‘on (2.19)

We can see immediately that the lowest order term, dipole, in the

find

pc.>tentials ¢‘P and d)A will not be changed if we let the contri-
bution of on be balanced by a wave drag potential, which we are
'going to neglect as we stated above. The only change to the
equation of motion will be due to the moment exertedvby the
incident potential. Some care must be used in computing the
pressure,‘since we have introduced an arbitrary mean speed. We
will need the dynamic pressure térm in the unsteady Bernoulli

equation so that
Pr =*-Io[ v % (.V¢J: V¢z> (2.20)

[ ._a cos% kz (- KU,-w)e L (kx-(kT, w)t)
}2((-0 *Lk Ag cosh :’;:‘- :.(kx-([<U+w)t))

w cosh

k ﬂcosl\ lﬁh o thox- (kO fw)t)) )

:Slmpllfylng and neglectlng second order terms in Ak, we find that,

Ps* 4094 —-—“J‘ﬁ:::h p g <Uoxm UThredt), +0° emw
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2
Since the dynamic pressure %Uo contributes nothing to the

moment integral, it is clear that the only change in the equation

of motion, Equation (2.17), will be to substitute e-l(ka tw)t

for e-lUJt on the right-hand side.
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3. Viscous Effects

It has been observed that a viscous fluid flowing at a
moderate constant speed about a cylinder 'separates' from the
body ‘and forms vortices, coherent over varying lengths of the
cylinder, which shed and form a periodic wake. The result of
this process is a force in line with the flow with a mean and a
periodic component and a force normal to the flow with only a
periodic component. Comparable effects have been noticed in
slowly varying flows.

The forces on a cylinder in viscous flow have received
much attention during the last 20 years. The results have been-
largely empirical due to the intractable governing equations
for viscous flows. Expériments have been>carriéd out primarily
in steady flows, occasionally in oséillating floﬁs, but rarely
in a combination of the two. Tﬁe data from these experiﬁents
have been organized thfough a sét of dimensionless parameters,
which aid in generalizing specific results. These parameters
are generaﬁed through a knowledge of the relévant properties of
. the system being investigated, and use of the Pi Theorem which
defines the number of dimensionless groups which may be formed.
1f éll of the important properties are included, a physical law
~can be written as a function of the dimensionless groups; For a
cylinder in viscous flow, these "laws" are_complicated functions
;nd are presented in the form of graphs, although there are

parameter ranges in which simple analytical representations can
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be found.

| We shall review the real fluid effects for steady flow
case in Section 3.1 and for the oscillatory flow case in Section
3.2. A model based on "strip" theory, which incorporates this
empirical information with the inviscid solution of Section 2, is

presented in Section 3.3.

3.1 Steady Flow

A recent review article by King (1977) gives an
extensive summary of the state of knowledge on steady flow
normal to circular cylinders. Some of the highlights of this

article are presented here as background.

3.1.1 Fixed Cylinder

The important dimensionless parameters used in charac-

terizing steady viscous flow about a fixed cylinder of diameter

D are
UD
o
N = = )
R Y, Reynolds number
where Ub is the mean speed, and Y is the kinematic viscosity
£D .
—-— V — ‘
NS = T, = Strouhal number

where'fV is the frequency at which vortex pairs are shed, that

is, the lift force frequency,
F, / L
Cn = - . .
D ';;;ﬁ:Z'B- drag coefficient

where F, is the mean drag force on a cylinder of length L.

s
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A
A F, /L _ |
¢y = % ,OU-O-Z—D = time varying drag coefficient

A
where FD is a function of the time varying part of the total drag

force, for example, ,the amplitude or the root mean square, and

?

GL = T uZp = time varying lift coefficient
where ﬁL is the amplitude or maximum value of the lift force.
Note that there is mno mean lift on a non-rotating circular
cylinder.

For a fixed cylinder in 2 ~dimensional steady flow,
the general experimental relationship of the Strouhal number,
the drag coefficient and the Reynolds number is shown in Figure
3.1. The well-behaved subcritical region is usually characte?ized

by constant C_ & 1 and N_ < .21, and is the region in which most

D S

experimental work on vortex shedding is done. For short cylinders
'with a free end, the Strouhal number is reduced as much as 40%
due to end effects. The location of the transitiqn>from a laminar
to a turbulent boundary layer, the critical region, will vary with
surface roughness and flow turbulence, but behaves as shown in
Figure 3.1. |

The time varying lift and drag coefficients show a

5

great deal of scatter. For 103 ¢ N <107, C = .6 , and

L
CD & .06 . The frequency of the drag force is twice that of the
1ift force, and corresponds to the actual frequency of vortex
shedding. The measurements of these flﬁctuating coefficients

are complicated by the poorly understood longitudinal spatial

correlation of the shed vortices. For the subcritical region,
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Figure.3.1 Relationship between drag coefficient
Strouhal number and Reynolds number for
fixed cylinders in steady flow (from King)..
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the correlation length is the order of two or three cylinder
diameters and for NR > 105 ’ the correlation length is the order
of half a diameter. The amplitude of the lift force on a long
circular cylinder varies as the vortex '"cells" move into and out
of phase, as we would expect with a narrow band fandom process.
Since most test cylinders are longer than the correlation length,

this would explain some of the scatter in the data for the time

varying lift and drag coefficients.

3.1.2 TForced Cylinder Oscillation

When a cylinder is oscillated in otherwise uniform
flow, there are two significant changes'in the flow. The first
is known as "lock-in" or "wake capture". This is a region of
forced oscillation near the fixed cylinder vortex frequency, or
its first two harmpnics, where the vortices are shed in phase
with the forced cylinder motion. The second effect is an
jnerease in the correlation length and strength of the shed

vortices. To help deal with the additional complexity, two more

' ‘ » a
parameters are introduced; the dimensionless displacement, 5 R
f S
where a is the amplitude, and the frequency ratio, ES , where
v

fc is the forced frequency of oscillation.

3.1.2.1 Transverse Oscillations

When oscillations are transverse to the flow, lock-in
£
c . . .
occurs around - 1, that is, a vortex is shed from each side of -

v
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the cylinder during one cycle. The lock-in ranée increases witﬁ '

% up to roughly .7 < ?E < 1.3 for % 2 .1 . It has been observed,
v
Tanida, et.al. (1974), that the lift force is in phase with the

cylinder velocity for ?2 ? 1, with a maximum magnitude around

£ v £

?5 = 1.2, and out of phase for ?2 < 1. The lift force, there-
v v

fore, tends to maintain the bscillation for frequencies greater
than the fixed cylinder shedding frequency, fv . The lift forces
reach a maximum around % = .5 . This has been attributed to an
increasing correlation length, as well as a slight increase in
the circulation of each vortex, as % increases from zero. Fo?
large amplitudes, % 2 .5, a breakdown in the vortex shedding

occurs, as more than one vortex is shed during each half cycle,

and forces decrease.

3.1.2.2 1In-Line Oscillations

Lock-in for forced in-line motions exhibits two overlap-
£
ping regimes. The first occurs around EE = 2, and corresponds
v

to one vortex shed during each cycle, that is, near the fixed
cylinder drag oscillation frequency. The lift and drag coeffi-
cients in this regime are approximately the same as those of a

fixed cylinder. The second in-line lock-in regime occurs in the
f .

c . . ‘ .
rafe 4 and is characterized by simultaneous
v .

shedding of a pair of vortices with each cycle of oscillation. In

neighborhood of

this regime there is virtually no lift force and the oscillating

drag coefficient has not been measured directly. Griffin (1976)
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has observed both of these regimes occurring intermittently near
f ' ,

?s = 2. There is little force data on either of these in-line re-
v

gimes since the forces seem to be an order of magnitude less

than the transverse forces and result in correspondingly small

free vibrations.

3.1.3 Elastic Vibrations

Free vibrations have been observed in eaéh of the three
forced regimes, i.e., one traﬁsverse and two in-line. In general,
they are excited when the sysgem natural frequency lies in a
lock-in region and the system.damping is low enough to allow
motions wﬁich cause lock-in and increased spanwise correlationm.
The two dimensionless parameters which characterize the system
dynamics are the reduced velocity, Hg_ , where fn is the natural
frequency, and the stability parameizz, KS ='g—§§45', where Sl
is the logarithmic.decrement and m, is the equivalent mass/unit
1ength. L . ho.

m, = !mxfdz/g_galz
wherelg'is the "modal" displacement, equal to z for the spar, and
m is the actual mass per unit length plus the hydrodynamic aéded
mass,fn Rz; for the immersed length. The response of an elas-

tically §qpported ci;cular cylinder to a uniform current is
summarlzedbyi‘ g‘u'f;s 3.2 and 3.3, taken from King (1977).
>Figqfe §;2‘s£ows the three lock-in regimes and the response for

KS = 0, The variation of the response peaks with KS is shown
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- Figure 3.2 Composite graph of instability. regions
in-line and cross-flow (from King).
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in Figure 3.3. Efforts have been made by Skop and Griffin (1973)
and others to describe the cylinder-wake interactions using a
Van der Pol oscillator equation for the lift coefficient. . The
results of this work lend little physical insight to the problem
and are of use only in estimating system response near trans-

verse resonance.

3.2 Oscillatory Flow

The forces on cylinders in oscillating flows have been
investigated in waves and in ﬁniform flows, almost exclusively
with sinusoidal excitation. Results for in-line forces are
generallyvanalyzed in terms of Morison's Equation:

F/L = ClepDulul+ (1#C)pTTR?*G (3.1)
where u is the speed of the fluid in the absence of the cylinder.
There is a drag term similar to steady flow and a hydrodynamic
mass term represeﬁting the forces predicted by potential theory.
The lift forces are defined in terms of the amplitude of the

fluid velocity
é ( . _Fuman/L
Lmax) 2
max },af’ uLMQ;)

and an average shedding frequency. In addition, two other’

dimensionless numbers are important: the Keulegan Carpenter

_U(max)

vc = 6D , which includes the fluid oscillation

number, N
frequency, f, and the Reynolds number, usually based on U(max)'.
The graphs presented in Figures 3.4 to 3.7, from

Sarpkaya (1976), represent forces on a fixed cylinder in 2-
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dimensional oscillating flow in a "U" shaped water tunnel. The’
drag and mass coefficients, given in Figures 3.4 and 3.5, are the
first two coefficients of a normalized quasi Fourier series de-

composition of the total in-line force, that is

c . 2z [ F) cos®'d 6’
D szDu(mn |
v, - ¢ 2
Cy #gt F&) sin e'ale/ P WU maxy LTIR

where u= - U cos wt, and Q' = wt. Notice that the co-

(max)

efficient for CD is normalized bchos elcos elde %

Figure 3.6 shows the maximum 1ift coefficient observed during a
run and Figure 3.7 is a plot of the relative vortex shedding fre-
uenc f = f! 4

q Y: T f M

These figures become easier to interpret if we rewrite

NKC using the fact that U(max) = 2J[fA where A is the excursion

“amplitude of the fluid, that is
N =_2p_'é.
KC D N
The parameter/s —B— is introduced by Sarpkaya because it is
KC
independent of amplitude.
fDZ

‘3= _—

The Keulegan Carpenter number is, therefore, an amplitude axis
and the constantf3 lines are constant frequency lines. It is
also useful to note that the Keulegan Carpenter number is  pro-
»portlonal to“the ratio of the maximum drag force to the maxlmum
.ineft1al force, so that if we assume C =1 and CM 2, NKC" 20

represents equal drag and inertia forces.

If we invert the added mass coefficient, we see that
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Figure 3.7 Relative frequency of vortex shedding
as a function of the Reynolds and
Keulegan-Carpenter numbers, Sarpkaya (1976)
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Figures 3.4 to 3.6 have basically the same shape, with a maxima

around N__ = 15. The magnitudes of CM and C_ are fairly well be-

KC D

haved, but the lift coefficient varies by an order of magnitude,
and is larger than observed in steady flows. These large lift
coefficients seem to be the result of constructive interference
between the wake of the previous half cycle and vortices currently
being generated. Sarpkaya notes that in this regioﬁ Morison's
equation appears to have its poorest performance, due to large
in-1line forces at approximately twice the eddy shedding frequency.’
However, such large 1lift coefficients may not be characteristié

of the natural environment. Experiments by Mercier (1973) indi-
cate that with a small mean velocity introduced into the flow,

the lift coefficient is reduced. This supports the notion that
the large vortex forces may indeed be due to the high coherence

of purely sinusoidal flow. In a random velocity field with some
mean component, a more '"matural" environment, the iift coefficient
might be expected to behave more like a constant. In any case,
the model proposed here assumes constant drag, mass and 1ift co-
efficients. The exacf values chosen éould be taken from
Sarpkaya's data by characterizing the environment in terms of

the expected frequency and expected amplitude.

3.3 Equ&tioﬁs of Motion

Viscous effects may be incorporated into the equations

of motion by employing strip theory. That is, a 2- dimensional
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flow normal to the cylinder is assumed, which is not affected by
gradients along the cylinder axis or flow along the axis. This
assumption is compatible with the slender body potential theory
of Section 2 and is partially supported by steady flow drag
measurements on cylinders inclined to the flow, see Hoerner (1965),
where the_dr@g force is proportional to (Uocosq')2 . In waves
this implies that we will be considering only the horizontal
componént of water velocity, assuming small angles of inclination
for the spar. |

Thus using the strié theory, we decompose the viscous
effects into a "steady" force, i.e., a force which is proportional -
to the square of the normal velocity, and a "vortex" force. The | '

"yortex" force is modeled as a random process independent of the

other forces on the cylinder.

3;3.1 "Steady' Drag

Incorporation of the "steady'" drag force into Equation
2.20 is straightforward. In anticipation of férces and motions
normal to the wave current direction, we introduce an angular
displacement & in the x = o plane of Figure 2.1. For small |
motioﬁs, ¥ and 5 are orthogonal, and there is no coordinate
codpling; Therefore, thevviscous drag moments are

) .
My, TG0 U U Dedz

™M UM

. h N .
and M:’ =‘,£C,fz',o U, -ﬁi‘ Dzdz
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where u is the fluid velocity in the incident field and thé
resultant velocity

U = [u-2¥)+ S)zj_ya

The wave making drag moment is much smaller than this
viscous moment for long cylinders. To illustrate this, the ratio
of the wave drag to viscous drag in still water for Y= ?; sin @t
is plotted in Figure 3.8 for the experimental spar described in
Section 5. Note that the ratio is p;oportional to 7%— . In the
neighborhood of the natural frequency the wave dampiéE forces
are small, and we will therefore drop this term from the équations
of motiop, as well as ignore any contribution to the mean angle-of

inclination from the free surface wake. We postpone writing the

equations of motion until after considering the "vortex" forces.

3.3.2 Vortex Forces
The transverse vortex force is modeled as a frequency

modulation of the dynamic pressure, that is,

L ro2 — uN
7, = %oC u*DL sin L2 455 £ ] (3.3)
where the frequency,E%i,comes directly from the definition of the

Strouhal number., Agreement of this form with experimént when ﬁ
is ; constant is obvious. We shall demonstrate that in a purely
sinusoidal flow, this formulation for the lift force impiies
that the frequency content of the lift force is dominated by

the frequency corresponding to the maximum velocity. This

observation lends considerable helpiiﬁ%interpreting Sarpkaya's

e e LTI



-50-

l poe
— Experimental
spar—__
= I°
A
M} —
vt —
nﬁ?o
01 -
P—
|
00! 5 1 l._5
W
/tﬂo

Figure 3.8 Ratio of Wave Damping Moment to Bluff

' Body Drag Moment versus Frequency Ratio
for Model Experimental Spar, computed
for a pitch amplitude of 1°,

demdedi e A e



-51-

data, shown in Figure 3.7, which corresponds to an approximately
constant Strouhal number. We will look first at the sinusoidal

case, and then at the random wave case of special interest here.

3.3.2.1 Sinuscidal Flow

A constant Strouhal number, for steady flow, implies
that a pair of vortices is shed every time a fluid particle in
the free stream travels a certain number of diameters. We can

compute this length as

_ o = _D
L, = 3 Ng

In fact, one might imagine vortices as made up of a constant

length of boundary layer. In sinusoidal flow, or any flow for
that matter, we can imagine a vortex being shed each time the
fluid travels the distance, XV/Z. The vortices are in effect
integrating the flow up to some cutoff point where a vortex is
shed. This idea is supported by experimental results of Bruun
and Davies (1975), where the vortex frequency was found to be
almost constant with r.m.s. turbulence levels up to 10% of the
. mean. For harmonic flow with a particle excursion amplitude,

Ao s the relative vortex frequency, £ _ , can be written as’

r D/N
_ Nee N s
T

where ZAO is the distance a fluid particle travels during half a
cycle and xv is the distance a particle travels for each shed

vortex. If we assume Sarpkaya's data reflects the vortex shed-
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ding frequency, Equation (3.4) predicts a Strouhal number of

approximately .5 in the low Reynolds number regime. This Strouhal

number is disappointingly large, since we would expect a value

near .2 in this regime, corresponding to the steady flow case.

However, this apparent discrepency is misleading and comes about

because Sarpkaya's data reflects not the vortex shedding frequency,

but rather the lift force frequency. We will clarify this state-

ment by the following analysis of the expected frequency of the

lift forcé, Equation (3.3), and show that satisfactory agreement

between the Strouhal numbers is in fact found. _ o
Using the definition of expected frequency for a raﬁdom

process, éee for example Crandall and Mark (1963), the expected

frequency for the lift force can be found as
©
S o Juw 0? S0 ol o’ o (3.5)
: f‘OS(w‘)olw' |
~e L

where Ziis the expected lift force frequency and SLQJ) is the

power spectrum of the 1lift force. We note that for a narrow band

Saggaseses

process, the expectea frequency corresponds to the average time ) R
between zero crossings. The power spectrum, SLaq'), is approxi-
mated by employing the principle of stationary phase. A concise
presentation of the #pproximate integration method can be found
in Vakman (1968), but here we shall only make use of the conceptual
result.

Briefly, the principle of stationary phase demonstrates

that the pqﬁg:;;pectral dénsity of the function

YL
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f(t) = a(t) sin ut(f)t
where u%(t) is the frequency function of f(t)
at some frequency w is

s(w) = az(to)*TDF
t° is defined bytu;(to) = ' and TDF is the "time density function"
olec(t)( In other words, tﬁe energy atw is proportiomal to the
amplitude squared of the function when the instantaneous frequency
is W' and the fraction of time the frequency function, ag(t),
spends between w' and w'+ ew' for the limit of 4W' -+ 0., An important
assumption employed above is that the function f£(t) oscillates
much fastgr than the amplitude function a(t). For many cases of
interest in the vortex problem this is not strictly true, as we
rshall see below. .

Assuming a sinusoidal flow so that u = Aow sin wt, we

see from Equation (3.3) that

wc(t) = a_TrAID_S_A_Qi.’ Sin Wt
. 3 A 52 2
and a(t) = /a,oC,“(Aow DL sin® wt
For the frequency restriction to be satisfied during most of a
2TTa
cycle, we would like 5 2 Ng W to be much larger than w or
amA,
=52N, = Nie Ng >7 | (3.6)

In fact, as stated before, the important parameter»in vortex
formation is fluid excursion émpliéude, even though the frequency
of shedding is defined by the speed. If thé amplitude is not
large enough, even though the shedding frequency may be quite

high, no vortices will be shed. If there is a small mean flow,
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even though the mean fluid speed is much lower than the peak
flow values, the vortex shedding process will effectively filter
the time varying fluid motions if the above criterion, Equation
(3.6), is not satisfied, i.e., vorte# shedding will be controlled
by the mean flow. In this case, the lift force spectrum will be
an impulse at the shedding frequency predicted from the mean
fiow, esséntially.independent of the oscillating flow. With
this restriction in mind, we shall look at the predictions of
the stationary phase model.

If we let(uc(t)_= W sin w't wherecqm is the amplitude
of the frequency function, then the fraction of time which the

function(né(t) is less than w is

1 -1lw
CDF(W) = % +5 sin 5; for |w| g @
=0 for W< -w
m
=1 o for w ? w
m

where CDF is the "cumulative density function". The time density.
function, TDFW), is the derivative of CDF(w) with respect to w,
go that } ‘
2

TDF W) =-n':~(wm-w) Jwl £ W,
Applying the principle of stationary phase to Equation (3.3), we
find upon assuming u = U(max)51n¢ut, tha: )

YN ) e

s, @) =(4oC DDLU, ( ) L——- lw'] £ w

where we have used the fact that é%—— sin @t

27T U(max) Ng

in which “h =g Qu ) is plotted in Figure 3.9.

™M

Computing the expected frequency of SL@D') using
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Figure 3.9 Power spectrum of vortex sheddlng
in harmonlc flow
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Equation (3.5) we find that 2ﬂr;= ‘51 = .9lu%m. Thus, the Strouhal
f4 D

number based on the maximum oscillatory velocity, o,

(max)
should be nearly equal to the constant flow Strouhal number.
£, D
Sarpkaya, in fact, finds that ——ﬁJL————— = ,22 for all of the low
(max)

Reynolds number range, which is gratifyingly close to the fixed

cylinder steédy flow Strouhal number, Nsﬁg .21, In fact, now

that we see that the frequency content of the 1lift force is dominated

by the Erequency corresponding to the maximum oscillatory velocity,

it is quite reasonable for the.Strouhal number to increase as the - .

Reynolds number based on U max) enters the critical flow region.

(max

This is a phenomenon similar to what we see in the fixed cylinder

steady flow Strouhal number, see Figure 3.1.

3.3.2.2 1Lift Moment Spectrum

We now look at the lift force spectrum for the case of
a cylindrical strip of length L under 2 -dimensional random
waves with a steady co-linear current. - The probability density
function for the velocity under a Gaussian random wave system
is alsé Gaussian, assuming linear wave theory. Assuming ergo-
dicity, the time density function and the probability densify
function of the vélocity are identical. The power spectrum of
the lift force is therefore _

t
SD=(%pC.0L c;f.)z ( %v)q-@‘—;,;_— x (3.7)
exp (3 (A2 32) |

: g
where wM =27 'MSDLJ" andl Wy = 2”"%—0:
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and U, andd‘;1 are thé mean and standard deviation of the fluid
velocity, respective}y. Notice that the limit as G;"'O is an
impulse at the frequency corresponding to the mean velocity, as
it shoﬁld be. Some examples of possible spectra are plotted in
Figure 3.10,

The effects of lengthwise correlation for the strip
model prdposed can be described using the properties of a
spatially correlated narrow band process, as discuésed by Blevins
and Burton (1976). Herver, the amount of data on the correla-
tion coefficient is small, so that this aspect of the problem
will not be pursued. We shall in fact assume that the correla-
tion length is infinite. For the experimental system déscribed
iﬁ Section 5, this assumption is adequate, since most of the

.moments are due to forces near the top of the spar, only a few
diameters long.

The lift moment spectrum can readily be-obtained from
the cross spectrum of the lift forces. Thus, we write the power
spectrum of the lift forces as a spat1a1 cross spectrum

S(a,,z,_,w) =4 oC, Do) w, (a.)" (3.8)

%5 C, DA () a)oczz) rg‘ff :
expf-ki(w el el (z‘)) "‘(*“““@‘)) 1

wciz,) wo(z,)
where rc is the spanwise cdrrelation. Notice that for 21 = 22

Equation (3.8) is identical to Equation (3.7) except for Lz. As

mentioned above, we will use an infinite correlation length which
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Figure 3.10 Some examples of 1ift force spectra

under Gaussian waves, W= 1.
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The

impulse represents a case where the
fluid oscillation frequencies are
greater than the shedding frequencies -
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implies r = 1. The 1lift moment.spectrum is then. obtained from
the cross spectrum, as

5 (‘*") j {S (i‘,,?,,w?z 2, da,dz, (3.9)
where z is the "mode shape'" of the spar.

We approximate the vortex drag force in the same manner

as the lift force. For the alternate shedding mode, the 1lift
force spectrum is transforﬁed to twice the shedding frequency
and scaled by the drag coeff1c1ent to yield a drag spectrum

S“*’) ( > f (S(i.,iz,w/a) z,z,dzdz, (3.10 a)
The paired shedding mode drag force spectrum is generated by
transforming the lift spectrum to four times the vortex shedding
frequency, that is , .

S (w') (C° §§S(2n22, A)E? ol? 0'22 ~ (3.10 b)
. In employing these spectra, we must decide whether the paired or
alternate shedding will dominate. This can be done by assuming
that'the process which causes the lergest‘motions ﬁill dominate.
Notice that the paired shedding will dominate only when its peak
is near the system netural freqdency and that there will be no

1ift. forces with paired shedding.

3.3.3 Equations of Motion

We shall now write the equations of motion of the spar,
incorporating viscous effects into Equation (2.11)

¥I +9C.+ M =M, + M+ Mg (3.11)

8I_+8C,+8X =M,
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" where
zh"
- 2
C;={C,%2pDU, 2 de
K = pgTTR"h - Me,,
in which C is the added mass coefficient. ML and MD are defined
a
by their spectra, Equations (3.9) and (3.10) respectively
. TR*
Mw'(lw‘Cq),oﬁ/‘\ T eoch kh (I&(husmk)k}\' (3.12)
-L tw)t
c.o:h kh v1)e™* kUo
M, =£ % Cpp u@@) UMDao!}a;
s o\ & o \2 172
with Uy = [l - 92"+ (§2)°] o)
| . A cosh - (kUprw)t
= U, + 2Aw SR
and u@= U, + i Aw can ki €
In the next section we shall assume a spectral form for
the incident wave system and propose an approximate linear tech-
nique for obtaining the response of the spar pendulum in 2-

dimensional random waves and a uniform current.
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4. Equivalent Linearization of the Equations of Motion

The analytical methods for investigating linear systems
under random excitation are well-developed, compact and efficient,
see for example Papoulis (1965). On the other hand, investigation
of non-linear systems has been restricted mostly to harmonic
excitation or to brute force numerical techniques, although an
elegant method for treating randomly excited non-linear systems
does exist and involves the expansion of a system fesponse as a
functional (Volterra) series, see Bedrosian and Rice (1971). 1Im
fact, the entire theory of linear system response involveé the
investigation of the first term of this functional series, that | A‘{_
ig, if a system is linear, the series representation deéenerages
to only one term. The expansion of the system response in a
_functional series is in fact capable of handling input non-
linearities, non-linear waves in the present problem, as well as
non-linear system properties.

The method is most useful when the non-linear terms
take the form of polynomials, so that only a féw terms in the ' G
series are needed. However, it is not at all clear that a system
involving a magnitude or absolute value function, as in the case
considered here, even has a functional series expansion. We
shall, therefore, attack Equation (3.10) by linearizing the drag
term so that we can employ.the techniques for_prediéting linear
system response.

" A linearized treatment of this problem is probably
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more than adequate considering the linearizing assumptions we
have already made concerning wave kinematics and spar response
and the limifed knowledge of the forces exerted by flow around

a blgff body. Linearization of hydrédynamic drag in oscillating
flows has been considered for in-line forces on a fixed cylinder,
see Borgman (1965), and response of a point oscillator, see
Séymour (1974). ﬁowever, these treatments did not include the
effects of a mean flow or of vorfex shedding.

The linearization employed here equates the expected
vaiue of the power exerted on the system by the lineafized force
to the expected value of the power exerted on the system by the.
non-linear force. That is, we would like to find a linear system
which has the same average energy flow as the non-linear system
in the particular environment»of interest. If we look at a
strip of a cylinder which has a displacement x, then, ignoring
transverse motions, we can write the drag force as

Fo ""/ZpCDDL urlu,.l_
where ur = x - u, the relative velocity. This would be lineariéed
as F; “&pCDDLu,. UE
where the equivalent velocity, U,, is chosen so that it satisfies

E

" the following equation:
ELx$pC,DLu U= ELid oCDLulu, 1T
Ue = ECxu,luld]/ECka]

where E[[ ] means expected value. This linearization is equivalent

sz -
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to using the first térm of the series solution for wave force
statistics discussed by Borgman (1965). Another possible linear-
ization, used by Seymour (1974), is to minimize the mean square
error in the total drag dissipation. Both expected value and
mean square linearizations lead to almost identicai solutions.
The mean square method is biased toward predicting the instanta-
neous powér and therefore would probably provide better extremal
statistics. The energy balance implied by the equivalence in
expected power in the first method is physically attractive, and
is the reason for employing it here. |

In order to make computations of the expected values,
one must assume a probability density function for the s&stem ‘
résponse, x in the example above. The veldcity of the fluid, "
‘u, will be assumed Gaussian, a generally accepted distribution
for the velocity under random waves.  For the linearized system 7 T
this would imply a Gaussian output, and calculation of the
expected value»is straightforward. 1In fact, we will also assume
that the non-linear response is approximately Gaussian as well.
In the case of a strong non-lineérity, such as the absolute value
in the drag law, there seems to be, at first glance, no reason
to believe that the Gaussian assumption is reasonable. However,
for a narrow band process, one can see that the function x x|
leaves most of the output energy at the same frequenéies as the
input, see Figure 4.1. This fact is probably the principle reason

that linearization of hydrodynamic drag appears to perform so
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well. That is, a narrow band input, a realistic assumption for
ocean surface waves, to the non-linear drag process yields a
narrow band output at the same frequencies as the input, much
like a linear process. We can, therefore, expect little corre-
lation between frequency bands where there is significant energy,
implying a nearly Gaussian response. .

| In Section 4.1 we shall apply the linearization to a
simple analog system which can be thought of as a strip of the
spar. We will find that the 1ineariéation requires the solution
ofra set of simultaneous integral equations which we propose to
solve iteratively. Convergence of the iterative scheme proposed
is discﬁséed in Appendix B. Studying the transfer function of
the simple system for various parameter ranges will provide some
insight into the solutions of the spar equations. In Section 4.2
we attack the spar governing equations and consideration is givén
to the linearization of this spatially distributed process. In
Section 4.3 we discuss a numerical experiment in which we isolate
ourselves from some of the complexities of the real world, and
test the performance of the linearization against a numericai
simulation. A simplified form of the spar equation is used for

this purpose.

4,1 Simple Analog

We shall consider here the linearization of the

following equation:
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X+ Clx-u)lx-ul+x =Fu ' 4.1
As we stated in the introduction to this section, this may be
considered the dimensionless equation for a strip of the spar
with no vortex effects, where time is multiplied by the natural
frequency and length is divided by the diameter. We would find

that in this case

F'=(HC)/(£+C) | 4.2 a)
and C '-'%CD/(%*C“) (4.2 b)

where /Dc= is the density of the strip of cylinder and the added
mass coefficient CM =14+ Ca . The forcing function, u, is
characterized as a Gaussian random process with a power spectral

density,tuzsA (w) , and a mean m - We begin by substituting -
o .
into Equation (4.1) the equivalent velocity UE for the absolute

" value of the relative velocity.

ve . ’.
X+ CUgx*rx * Fu+rClUgu | (4.3)
Employing harmonic analysis, we let u = ione-not'and X = e-iwt
where X is complex, and solvé for the transfer function
2 - ) :}
x . =olF-iwCle (4.4) S
. i:
A, (rwt)-lwCle :
We can also compute the transfer function for the relative velocity . :
X -u= Ul_e-mJt which will be of use in finding the equivalent
velocity.
" w (1.,) | | (4.5)
Ao AQ .

Using the theory of linear random processes, it is easy to find

the spectrum of the output
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2
S, ) = I%ﬂ SA(w)
and the relative velocity spectrum ' ,
SUSU’) = ]%%IZSA‘(’w) (4.6)

where SA (w) is the spectrum of the input amplitude.
o

We now consider the value of the equivalent velocity to be used
in the previous analysis. The linearizing constraint of equiva4
léht expected powér can be written as

EL U 5y ]= ECxuplu ] @
As mentioned earlier, we will cqmpute'the expectations in Equation
(4;7) by assuming that u, is a Gaussian process. The PDF, proba-
bility density function, of u_ is therefore defined by its mean,
moos aﬂdrits standard deviation, 0; . Since we assume that
th:re is no mean velocity of the sysiem, ¥ = o, the mean of the

relative velocity is simply the mean of the incident velocity,

m - From the theory of random processes we know that

0’,;; '—‘:iSar(w)dw N

where Sd (w) is defined by Equatioﬁ (4.6). We can now write
T : :
Equation (4.7) in terms of probability integrals, where we
assume that x and u_ are jointly Gaussian with correlation/o',
that is o . .0

| UegxurPDgurdxolupgxu,fu,l PDF;urdxalu,.
where

PDF,, = (5 Garm)-,x
exp o all8) 2o )
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We have assumed that x has a zero mean. Solving for the equiva-

Upn=™My

~J - 2
Ue = ({arr G’uf)gu,lu,(ur-mu)e,é( Oy )alu,. (4.9)

Equation (4.9) can be easily integrated when there is no mean

lent velocity, we find that

incident Qelocity so that _
Ue =~E8; G, for m, =0 | (4.10)

We can also find the limit for m > G, is UE =2m . | {
Equations (4.8) and (4.9) are : pair of simultaneous |

equations with unknowns UE and (:; . We propose to obtain the

solution of these equations by successive approximation. That

is, we guess a value for UE , compute a response and find a new

value of UE , iterating untillsome error criterion for UE is
satisfied. We shall consider the convergence of such a routine
for this simple model in Appendix B.

Before moving on, it is instructive to consider the
t:ansfer function of the simple analog, Equation (4.4). This
function islplotted in Figures 4.2 a, b, ¢ for various values
of equivalent veloecity and three values of relative density,

4%? . -For the purpose of this discussion we have chosen to let
Ca'= CD = 1. A more general parameterizatioﬁ mighﬁ have used
CUE and F' as parameters but the physical significance of relative

density and linearized veiocity seemed more apparent. In fact,

the two parameterizations are equivalent and merely require a
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relabelling of the figures. The most striking feature of this
transfer function is its division into three distinct régions by
the real roots of uﬁ = (1 -~ F'2) -1 . These regions can be best
seen in Figure 4.2 ¢, where both positive roots are real. The
second important feature is the limit of the response as the
equivalent vélocity, UE , goes to infinity. That is, as the
viscous forces predominate, the motions of the body are in phase
and of.equal amplitude with the motions of the fluid. The body
is advected by the fluid, exac;ly as we would expect.

The first region, 0 { w < (1 + F') %

, always exists
and is characterized by a balance between the viscous exciting
force and the stiffness of the system. .The curve representing
the lower limit of response in this region is the balance of
inertial driving force and system stiffness, typical of the usual
single input singlg degree of freedom system studied in elementary
vibration theory. By comparing this region in Figures 4.2 a, b,
¢ we can see that, as the relative density decreases, the viscous
forces predominate at lower frequencies. This‘is due to an
increa#e in the dimensionless drag coefficient, C. The second
.region is an inertial forcing region, and may extend to infinity
if F'21 . 1In this region, the upper bound of the response is
controlled by the inertial driving force, and viscous forces act
to retard the response and bring it down to unity. The limit of
the response for high frequencies and low damping is always F' .

%

We see now that the third regionm, g)‘> (L -F") - , which exists
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when F' is less than 1, has a lower limit specified by inertial
forces where incfeasing vicsougs forces act to raise the response
to unity. We see, therefore, that the action of large viscous
forces is to try and bring the response of the system to unity,
and that around resonance, response always decreases. In this
light, it is not too surprising that the linearization is well-
behaved, fapidly yielding a solution under successive approxima-

tions.

4,2 Linearized Analysis of the Pendulum Spar

There is only one important difference between the
pendulum épar and the dimensionless analog of the previ&us sec-
tion. The spar involves a spatial process with significant

.gradients. That is, for the 2 -dimensional wave climate which
we will consider, the velocity profile is in no way uniform, and
it is necessary to consider an equivalent velociti "profile". 1In
fact, we can consider each strip of the spar as an oscillator
similar to the dimenéionless analog, where all of the strips are
coupled, in this case by being constrained to move as a rigid
body. We begin by considering the implications of this on the
analog equation, and then we will write down the linearized

solution of the spar.
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4.2.1 Linearized Spatial Process

The spat1a11y varying analog equation looks like

+[le‘§ u(z)l(rf’ ~u@)de + ;
Fu@)da

where §'is the "modal displacement", angle of inclination for
the spar, and f‘ is the "mode shape', z for the»spér. Thi.s
equation is 11nearlzed to

£+Ce §+§ = f[Fu(z)*CUE(t)u(Z)]dz
where

h .
Ce = f CIU.@dle
° ,

We see now that there is an equivalent velocity "profile" which
we muét cdmpute in a similar manner to the equivalent velocity
of the point problem. The response of this linearized system
to some random input involves a straightforward computation which
will yield a relative velocity spectrum which is a function of
depth. From this épectrum we can obtain the standard deviation
of the relative velocity as a function of depth and making the
Gaussian assumption as before, we use Equation (4.9) to compute
an equivalent velocity profile, Uﬁ(z) . An iterative procedure
similar to that discussed in Section 4.1 could be used to find

the correct profile.

4.2.2 Linearization Algorithm

The spar equations of motion, Equations (2.11) are

already in a linearized form. All that we need do is replace
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the velocity magnitude, Um s by the equivalent velocity, UE .
We shall discuss the linearized solution of these equations in
random waves and a uniform current, by describing the algorithm
used tb find the solution.

We begin by assuming some form for the input wave

spectrum, say SA(uf) . The input velocity spectrum is obtained

from the amplitude spectrum by assuming linear wave theory, so

that 2
S, zw) = | Hyw)]"S ?
where N o . / h kZ‘
Hu(w) = [ w '—_-j:?:h k
with

w'= w- kU,
~in which we note that w is the Doppler shifted frequency of the
wave
and w'? = 31& tanh kh
An initial estimate of the equivalent velocity is made by
aséuﬁing that the spar is fixed, that is, we just use the mean
square of the input velocity spectrum. A summation integration
of the power spectrum Su(z,uD over all frequencies where there is
significant energy is used to find the mean sqﬁare of the velocity
at various depths. The depth spacings used for the computations
presented later are given in Table 4.1. ' The depth ié divided
into regions of length 2% to simplify spatial integrations,

with the densest sampling near the surface where the largest
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TABLE 4.1
Fraction of where calculations are made on the spar.

POINT : z/h

1.0
.9375
.875
.75
.625
.5
.25

NoouPWw N
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changes in the velocity spectra will occur. The mean squaré
profile obtained from integrating Su(z,uD is then used to obtain
an equivalent velocity profile by applying Equation (4.9). The
integration of the probability integfal is accomplished with a
seven point Simpsons rule épplied at 1/3 standard deviation
intervals to 4 standard deviations. Now that there is a trial
eﬁuivalenf velocify profile, we can calculate the response of
the spar, and obtain a new approximation of UE(z)

Uéing the reldtive velocity'standard deviations, it
is ﬁow possible to calculate the cross spectrum of the vortex
1lift force, Equation (3.8), at each sample depth and then to
calcﬁlaté.the vortex lift moment and drag moment spectra,
' Equations (3.9) #nd (3.10) respectively. We can also calculate
the inertial moment aﬁd "steady" drag moment spectra by applying
the transfer functions of Equation (3.12) to the input spectrum,
that is o - |
St = [H 2] S0
where

Hye =€) pg LB ; (kk sinh kh= cosh kh ¢/}

c.osb kh
JipD['C, wicash Ka °°5h o h @) 2dz

" From Equation (3;11) we can see that the transfer functions for
‘P and S are identical so that

s(“’> H @)

and
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. -}
H_\P(w>= (H ‘szr “Lwc.,.)
where){, IT and CT are defined in Equation (3.11). We now use

this transfer function to compute the response spectrum of the

spar.

Sy = [H,@| [Sg+ S, <w>]
(po) I }1 @~DI [?f; &o):l

In order to compute the 1n-11ne relative velocity
spectrum,.we must be a bit careful since the spar response is
not independent of the input velocity spectrum. Note that if
it were independent we could simply compute the spar velocity
spectrum ét any depth, multiply by Quz)z , and add it to the
iﬁput veiocity spectrum. We have already presented the correct
- relative velocity transfer function in the discussion of the
simple analog, Equation (4.5).- Applying this to the spar, we
‘find |
(’-'“’) lsz"(w) H(w) H (w )1 S(w')f

@? | Hy (w)l Qw)
S, @:nw) = @ | Hw|® s <w>

The standard deviation of the relative velocity is then just the

(

sum of the two integrated spectra, since ? and 6 are orthogonal,

so that

e = f (S,,&9+ 8 2] dw

It is now clear that we can compute a new equivalent velocity

profile, check for convergence and repeat the response calculation



if necessary.

We have, asvyet, ignored the question of mean inclina-
tion of the spar. However, the idea of equating power flows
through the oscillator does not make sense at D.C., since there
is no energy flow, only a force balance. For calculating the
mean anglg_of inclination, we shall therefore turn to an energy
balance in the flow field. We shall assume that tbe expected
value of the flow dissipation from a linearized viscous force
is equal fo the expected value of the flow dissipation from the
non-linear force, therefore

ELu? U, ca>]=E[lu’l]
or, evaluatlng the expected values

U )= U—ﬁ'G’ (G rm )]

Sl exp[%(uﬁ‘ )1 dur

Note that UOE(z) is computed after we determine the spar response,

so that we use the final computation of O; (z) and that in general
. T

UOE(z) # UE(z). The mean angle of inclination is then computed

as a force balance using the linearized drag law.

4.3 Numerical Experiment

In order to get some idea of how well the linearization
performs under ideal conditioné, a numerical simulation of the
spar equations for various environments is performed. The effects
of vortex shedding are ignored, that is CB = Cﬁ = 0, and a rela-

tively simple 2 -dimensional problem results. The actual épar
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properties used in the numerical experiment are those of the
circular cylinder experimental system described in the next

section, and the important properties are

fo = natural frequency = .75 Hz
D =10 em
h =1.1m

It is also assumed that Cp=¢C, = 1 and that g = 1000 kg/m3
The input environments used are scaled Pierson-Moskowitz (P-M)
Spectra which were used in the experimental work plus some
improperly scaled P-M spectra which provided large amplitude
waves necessary for large viscous forces. The full-scale P-M
spectrum is

SP_(:h?.lxlO' ™ 5, e.xp[ 14 ()]
where V is the'spectrél wind speed. The scaled spectrum is
.scaled in time by a factor of 10 and in length by a factor of
100, so that .

Sie = .81 <3 exp 74 (3 ve)*]

P-M le‘) P
Various uniform currents are also used, and the above spectrum
is corrected for the doppler shift in wave frequency,. due torthe
uniform current.

The numerical simulation utilizes a Fast Fourier Trans-
form to produce a coherent velocity profile time-series and
acceleration moment time-series. The spar governing equation,
Equation (3.11), is then integrated numerically using these

forcing functioms.
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The scaled P-M spectrum is divided into 1024 bands with
the maximum frequency at 20 Hz, see Figure 4.3, so that each band

rad
has a width of 8w¥.12 777 . If we assign a random phase, ¢ , to

sec
each band, we can obtain a pseudo-Gaussian simulated amplitude
transform as follows . v
A,=LS, ) sw'] Z»
- w'= w- kL,
w naw

aw'= Aw/g-‘.f;r |
w't= gk tanh kh

Note that much of the high-frequency range of the spectrum in

and

_Figure 4.3 is nearly zero. This has the effect of generating a
"densely sampled" time series when the amplitude transform is
~inverted, making the numerical integration simpler. . The velocity
transform at z is obtained by applying linear wave.theory to

the ‘amplitude transform, so that

=+ rcosh k2

The depths used for calculations are the same as those used in
the linearization, and are given in Table 4.1. The velocity
;ransform is then inverted to obtain a velocity profile time
series. A typical time series is shown in Figure 4.4. The
acceleration moment time sefies is obtained in a similar manner

so that

Ma=UrC) o TR, Ckh smh kh- cosh khr)A,
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See Equation (3.10). The spar equation is integrated in time
using a fourth order Hamming predictor-corrector integration
algorithm. Because of the random simulation, it is not possible
to compute subsamples of the time series so that convergence of
this method is forced, rather than the usual single estimate of
a predictpr corrector, in order to avoid numerical instability.
Note that at each time step the relative velocity is found at the
spatial sample points and a spatial integral is evaluated to find
the drag moment. The integration in time is begun by assuming
that the spar is at rest. This introduces starting transients
into the response, which are eliminated by restarting the inté-
gration uéing conditions from a later time, after transients
h;ve decayed, as the initial conditionms.

In Figure 4.5, the ratio of the standard deviations of
the angular velocity predicted by the linearization and the

gsimulation is plotted in order to provide some measure of the

Ré , where

(:; is the standard deviation of the wave amplitude, is much

performance of the linearization. The parameter

like the Keulegan Carpenter number discussed in Section 3, so

for small and small mean flow, we would expeét inertial

R

forces to dominate, and for large values we would expect viscous

forces to dominate.

Each value of represents a particular spectral

R

wind speed, that is to say that the spectral wind speed deter-

mines the variance of the wave amplitude and that the variance
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ig independent of the mean.current. Thus, each spectrum uged
generates a column of data points on the graph.

For comparison with Figure 4.5, the values of the
standard deviations of the angular velocity predicted by the
linearization are plotted in Figure 4.6. The numbers in paren-
theses are the ratios of the wave spectral peak frequencies to |
the natural frequency of the spar. Notice that for any particular
input wave spectrum characterized by a colummn of data points,
this frequency ratio varies, due to ﬁhe Doppler shift introduced
by the mean flow. We point this out to emphasize that the change
in response, G’; , for any given input level, 0:., is due not,
only to tﬁe increased viscous forces caused by a mean flow, but
also to épectral smearing cauéed by the frequency shift.

The most important thing to notice abouﬁ Figures 4.5
and 4.6 is that the error in the linearized estimate is within
10% over a substantial range of inputs and responses. The r.m.s.
error, € , of the simulation variances, assuming a bandwidth
B = 1 Hz and a sampling interval T = 100 sec, is about 10%, where

2 1

€= 3T
see Bendat and Piersol (1971). Some of the scatter in Figure 4.5
may therefore be random error.
The linearized estimates of the mean inclination,
plotted in Figure 4.7, are not as good as the estimates of r.m.s.,

and differences as large as 307 are observed. Note that the mean

angle of inclination is substantially influenéed‘by wave energy,
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and that the linearization does reflect this behavior.

It appears that the linearization performs well, so
that any large discrepancies with experimental data cannot be
attributed to this technique, but rather to the physics of the

model.
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5. Experiment

The experimental system described here is designed to
test the performance of the drag linearization and the vortex
shedding model. It is not, in fact,rcapable of exploring all of
the parameter ranges which are of interest. The most significant
deficiency is the small maximum amplitude to radius ratio,
Kéulegen-Carpentef number, which can be achieved. We are, there-
fore, not able to explore the region of drag dominance which
exists in large amplitude oscillations. The small Keulegan-
Cafpenter number also implies negligible vortex shedding due to
wave motion so that the validity of the stationary phase vortex‘ i
model is not tested. The linearized approximation should perform ﬁ?
best in the region of small amplitude waves, N

KC

added mass and_drag coefficients are well-behaved (see Figures

< 10, where the !

3.4 and 3.5). This region, then, seems like a good place to

begin exploring the model's performance.

5.1 Spar and Instrumentation

5.1.1 Spar

The experimental spar consists of a right circular
cylinder 10 cm in diameter mounted on a large compression spring
and anchored with 60 1b of lead, see Figure 5.1. The spar is
mounted on a compression spring to elevate the natural fre-

quency of the system into the region of significant wave energy
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of the random wave spectrabavailable at the MIT ship model.
towing tank. A compression coil spring which is relatively weak
as a beam and offers roughly the same stiffness in all directions
is ideal for simulating an increased buoyancy. Due to the
asymmetry in the number of effective turns in the spring for
differen; directiqns of inclination, there is about a 57 varia-
tion in the bending stiffness which results in a slight coupling
of the in-line and transverse oscillation modes. For the purpose
of estimating the response using theilinearization, this coupling
is ignored.

The spring used has a nominal 10 cm outside diameter,,
is 15 cm iong and is wound from 1 cm diameter wire. The ends are
ground flat and the spring has a nominal compression-stiffness of

1.5 x 105 N/m (130 1b/in). The bending stiffness of the assembled

system in air was measured using a spring balance and found to be -

XA 2 110 Nm/rad. This value is used in place of Mz, in Eqﬁa-
tion (3.9) so that | .

X ".fh/ag TR*zdz *ﬂ){A
for this ;ystem. The moment of inertia in air is found by measur-
ing the naturél frequency of the system in #ir, that is,
I é)SA/qu. The natural frequency is fo = .8 Hz, which implies
that I = 4.4 kg m2. ' If we make a calculation of the natural
frequency of the spar in water, we find that the added moment of
inertia is Ia = 3.5 kg m2 assuming Ca =1 #nd that the buoyant

restoring force adds 45 N-M to the stiffness so that fo = .74 Hz.
v
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A measurement of this natural frequency in the MIT towing tank
showed fo = .75 Hz. The cylinder itself is nominal 4 in. out-
gide diam:ter with 1/8 in. wall extruded aluminum tubing. No
special effort was made to ensure roundness, but some sample
measurements showed it to be within 1% of the nominal outside
diameter. The end caps were machined from aluminum plate and
’o-ring seals were used to maintain a water tight seal, see
Figure 5.2 for some detail. The end caps are held in place by
internal tie rods, which are 1/2 in. x 1/2 in. x 1/8 in. aluminum
angles at the bottom of the cylinder and stud stock near the top.
Two rate gyros, two accelerometers and amplifiers are mounted'in
the frame.formed by the angles. Foam inserts are wedged betweén
the cylinder and the instruments to damp lateral vibrations of
-the internal structure. The first mode natural frequency of the
frame and instruments was near 20 Hz and any motions at resonance
could be filtered from the signal, since frequencies of interest
are in the meighborhood of 1 Hz. Electrical penetrations were
made through the botfom end cap using Amphenol type 165 hermeti-
cally sealed connectors fiiled with silicon dielectric to ensure
a water tight seal. The male halves of the connectors have an
o-ring seal at the end cap and the female halves are potted to
Belden shielded power supply cable using a urethane casting
compound. The cables run inside the mounting sprihg and through

the lead anchox. The cylinder, spring, and anchor are held

together with a short chain made of s-hooks and two eye bolts,



-94-

o)

L
:LJ:'!A 4
3
.3

|

€ P

Detail of the spar.

Figure 5.2



-95-

see Figure 5.2. The center of rotation is assumed to be af the
lower eye, even though the spar is no longer "rigid". The
spring is precompressed, by tightening the eye bolt in the
anchor, so that the end cap does not lift away from the spring

at large angles of inclination.

5.1.2 . Rate Gyros

The instrumentation in the spar includes two ortho-
gonal rate gyros. The rate gyros are surplus Minneapolis Honey-
well JRH 20 Rate Measuring Gyros. A three-phase, 400 Hz power
supply was built to drive the gyro motors. The saﬁe 400 Hz
signal is used to excite the variaBle reluctance pickoff, which
measures the gyro gimbal defléction. Theroutput from‘the pick-
off is an amplitude modulated 400 Hz signal which.is demodulated
by analog multiplication with the input signal. A low pass
filter at 40 Hz removes the unwanted high-frequency signal, so
that the output is a voltage proportional to the angular velocity
of the spar. Linearity of the system should be within 1%, limited
mainly by the performance of the analog multiplier. The claimed
resolution of the rate gyros is .0l degree/sec, but various
soﬁrces of noise degraded this to abgut .1 degree/sec. Note
that this corresponds to an oscillaticn at the natural ffequency
of the spar of .02 degree amplitude. The natural frequency of
£he gyros is between 30 Hz and 100 Hz with about 407 of critical

damping, and posed no problems for this experiment.
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The calibration of the rate gyros was-performed by
exciting the spar at a frequency near 1.5 Hz at a known amplitude.
This was done by attaching an aluminum channel to a bracket on
the top of the spar and to an eccentric on a rotating circular
plate. The signal from the gyros is fed into a Hewlett Packard
Fourier Analyzer and the frequency and amplitude of the signal
are detefmined.

Assuming a 2% error in each of the 1engtﬁ measurements
and a 2% error in the determination of the oscillation frequency,

the gyro calibration should be correct to within 6%.

v5.1.3 Accelerometers

Two Sundstrand Kistler Model 303 force balance accel-

. erometers were mounted with their sense axes parallel to the rate
gyro sense axes. 1In this orientation they act as inclinometers,
measuring gravity times the sine of the angle of inclination,

with an error due to horizontal accelerations. They were iﬁcluded
for measuring the meén angle of inclination as well as an alternate
source of response data. Unfortunately, a small amount of vibra-
tion of the internal mounting structure excited by the rate gyros
creatéd noise with an amplitude equivalent to about 6 degrees of
inclination at a frequency near 20 Hz. This was easily filtered
for purposés of data analysis but introduced extra fecorder noise -
because a lower gain was used.

The accelerometers are calibrated by placing them
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vertically on a level surface and measuring the output corfe-
sponding to 1 g. They are then inverted and the output corre-
sponds to -1 g. Half the sum of these two measurements is then
used as the zero measurement. Linearity of the accelerometers
is claimed to be better than .17 of full scale, which corre-

sponds to an accuracy of the zero within .1 degree.

5.2 Experimental Configuration and Data Handling Lo

5.2.1 Towing Tank

The experiments on the spar were carried'out in the
MIT Oceaanngineering Ship Model Towing Tank. The towing tank
is equipped with a steel belt.driven overhead carriage, which
runs at a number of fixed speeds. The tank is apéroximately
2.5 meters wide, 33 meters long and 1.1 meters deep. There is a
flat plate hydraulically driven wave maker at one end which can
be driven by a sine wave generator or a simulated Pierson-
Moskowitz wave form recorded on 7 track FM tape. A beach made
of stainless steel lathe turnings acts as a wave absorber at the
opposite end., Large windows near thé middle of the tank make it

‘ possible to view a section of the tank below the water line.

5.2.2 Wave Gauges

Two bridge balanced, parallel wire, resistance wave

gauges measured the wave height during the experiments. One was
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fixed to the side of the tow tank and the other was mounted on
the towing carriage. They are calibrated by recording the out-
put for varibus depths of immersion. There appeared to be about
& 5% nonlinearity in their response over 10 cm, and a slight
zero drift. The zero drift was eliminated in the data analysis
and the noniinearity was ignored. The accuracy of the calibra-
tion is on the order of 27 since the wave gauge mounts were
equippéd with dowels which mated with pairs of machined holes in

a fixed mounting plate.

5.2.3 The Experiment

.A current was simulated by towing the spar over the
bottom of the wave tank using the towing carriage. Two views
of the towing configuration are shown in Figure 5.3. An out-
rigger made of steel angle was bolted to the lead anchor and
plexiglas skids were attached to the ends to carry transverse
moments. Four cables made.of stainless aircraft control cable
were attachgd, as shown in Figure 5.3, to an aluminum channel
which was bolted to the towing carriage. A limitation on the
towing speed is introduced by the stabiiity of the anchor.’ Fér
speeds higher than about .3 m/s, the drag force and lift from the
tow cables became large enough to raise the leading edge of the
lead weight from the bottom. This also occurred during some of

the large waves in the simulated random seas.

The orientation of the instruments with respect to the -

g e
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tank was determined by inclining the‘spar in the direction of
tow and recording the.components of the angle of inclination
measured by the accelerometers. A coordinate rotation of .19
radians is necessary to separate the in-line from the transverse
motions. An error of 2 or 3 degrees in this measurement would
cause less than .2% crosstalk in the computed spectra, which was
far less than the coupling introduced by the spring.

The data from the four on-board instruments and the
two wave staffs is recorded in analog form on 6 FM tracks of
Sangamo 14 track tape recorder. The same machine is then used
to play back the data into a Hewlett Packard 2100 mini-computér'
eguipped with a 16 channel 12 bit digitizer. The signals pass
through active low pass filters with second order poles at 20

'Hz and are then digitized in parallel at a frequency of 80 Hz.
The digitization actually occurs serially with a 20’ sec lag be-
tween channels at each sample point. The small phase shift
introduced is ignored during processing. Each digitized run is
then recorded on 9-track digital magnetic tape, so that it can
be accessed for later processing. Processing was done on the
same machine which is equipped with an HP 5451 Fourier Analyzer
System. This system has a CRT display of blocks of machine
core, permitting visual interaction during processing. It is
programmable in a similar fashion to hand-held calculators,

allowing quick development of processing schemes.
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5.3 Experimental Results

The experiment consisted of towing the spar through-
simulated Pierson-Moskowitz fully developed seas. The wave
spectra are generated by filtering the signal of a white noise
generator. The P-M seas used in the experiment corresponded to
wind speedslof 10, 17.5, and 25 m/s. 1In addition,‘towing ;peeds '
of .15 and .3 m/s were used to simulate the combined wave and
curren& field. For the experiment, some values of the surface
wave Reynolds Number, NR _» the surface wave Keulegan Carpenter

Number, the fixed cylinder shedding frequency, fv, and the

NKC’

steady flow Reynolds Number, N_ , where

Re
Vee WG;\ND/))
Y T (E‘G-A'IT/F
£,0= Ns UO/D
"Re = .UDD/v

respectively, are given in Tables 5.1 and 5.2. Note that the

maximum N__. is 4.4 so that we would not expect much vortex

KC
shedding due to waves. In fact, in the 25 m/s P-M waves, one

could occasionally see a vortex shed as a large wave passed.
Approximately 10 minutes of data for each of the’
combinations of wave spectra and towing speeds was recorded,
including tows in calm water. This provided enough data for
averaging ten spectra with a resolution of .018 Hz. The experi;

mental spectra in the following figures were generated in this
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TABLE 5.1
WIND G _ N
SPEED AW Oa Re,, KC
10 9.3 cm/s | .8em | 13,000] .7
17.5 16.4 cm/s | 2.4 cm 23,000} 2.1
25 23.4 cm/s | 5.0 cm | 33,000 | 4.4
TABLE 5.2
TOW N £ (N. = .16)
SPEED Re S
.15 16,000 .24 Ha
.3 32,000 .48 Hz

B L TIE
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fashion using a rectangular window. Since the character of the
vortex shedding is a dominant feature governed by the towing
speed for these cases, the results are grouped according to

towing speed.

0 35.3.1 Zero Current

Figures 5.4 a, b, ¢ present the angular velocity spectra,

S; and Sé , as well as the waye spectra, SA’ from ﬁhe zero current
experiments and the linearized approximations to the response
spectra. It is clear from Figure 5.4 a that there is good agreement
between experiment and linearized response for the 10 m/s wave
spectrum. This is expectee since the weve energy is above the

spar natural frequency, so that drag damping is unimportant.

As shown in Figure 5.4 b and c, the estimates for 17.5 m/s and

25 m/s are somewhat high. This is due primarily to the nature

of the simulated séectrum, which appears to have discreet bands

at approximately .05 Hz frequency spacing. By looking at the

input wave spectra and the response spectra for these two caees,
one can see a "hole" in the response close to the natural fre-
quency which is due to low energy in the input spectrum. Thie
would cause an overestimate of response found using the smooth
input.spectrum with the same mean square as shown, because of

the amplification which occurs near the natural frequency. We

note that the energy in the J spectrum is due to the coupling
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introduced by the spring, mentioned earlier.

5.3.2 .15 m/s Towing Speed

The vortex shedding frequency for a fixed cylinder in

.15 m/s flow assuming N, = .2 is .32 Hz, and the in-line force

S
frequency would be .64 Hz so that we might expect alternate
shedding in-line lock-in for a cylinder with a natural frequency
near .75 Hz. This does not occur. However, it appears that the
actual Strouhal nuﬁber for the cylinder is about .16, since the
cyiinder experiences three dimensional effects at the free sur-
face. Gouda (1975) has shown that cylinders with % = 15 may
have a sﬁédding frequency reduced by as much as 35%, implyingr

a correspondingly lower Strouhal number. 'Thus, in this case,

where L- 10, using N, = .16, twice the shedding frequency is at

D S
.5 Hz and 4 times the shedding frequency is at 1 Hz. From
Figure 3.2 we see that this places the system in the center of
the paired shedding in-line, iock-in region.

The cylinder does in fact experience paired shedding
at this towing speed, and the response cén be seen clearly in
Figures 5.5 a, b. The formation of the vortex pairs could be
plainly viewed\during the tows, since vortex dimples appeared
on the surface. Each time the cylinder moved forward through

the flow, a pair of vortices was shed. it appears that the

acceleration of the spar ''cleans" the wake, and therefore permits
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nearly symmetric formation of another pair of vortices. This
process reminds one of the formation of a pair of vortices behind
a cylinder started from rest, which then shed and are followed by
alternate vortex formation. It seems that the in-line accelera-
tions of the cylinder are causing the vortices to be shed cleanly,
so that waké formation begins anew, maintaining symmetry in the
wake. |

There are two important differences between the model
proposed in Section 3 for vortex shedding and the one used to
generate the linearized responses of Figures 5.5 a, b, ¢, d. The
first is ;he obvious discrepancy in shedding frequency, the vor-
tices are shed exactly at the spar natufal frequency, which would
correspond to four times the alternate shedding frequency only if
the Strouhal number was .13. We see, therefore, that the wake
has been "captured" by the spar motions, similar to a forced
cylinder. This is-a well-documented phenomenon for alternate
shedding, and is not completely unexpected. The linearized pre-

dictions of Figure 5.5 use N_ = .13, that is to say that we

£ S

S

must éredict wake capture, since the model is not semsitive to
this phenomenon. It is also necessary to change the in-line |
drag coefficient. The value of CD = .06 proposed earlier led
to.reéponses an order of magnitudé too low. The linearized
responses in Figures 5.5 employ CD = .5, and produce reasonably‘

good results. This result is not exceptional either, considering
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the wide scatter in the available data. In fact, King (197?)
recommends a value of CD = ,2 as a safe design value. It appears,
however, that some extensive and consistent experiments would be
of much use.

Notice that the vortex models used in Figures 5.5 and
516 assume impuls;ve power spectra, i.e., sinusoidal forcing, at
the shedding frequency produced by steady flow since the wave

frequencies are higher than the shedding frequency and the sta-

tionary phase estimation is not valid, as mentioned in Section 3.

5.3.3 .3 m/s Towing Speed

The response of the spar when towed at .3 m/s was
dominated by alternate vortex shedding, see Figure 5.6 a, b,
c, d. The main eff;ct of the waves was to slightly decrease the
response in the lateral direction. The linearized model predicts
this due to increased drag, but decreased longitudinal correlation
of the vortices may also be important. The actual transverse
motions of the spar were observed to be somewhat squared. The
effects of this can be seen in Figure 5.6 a in the & spectrum
where there is a small peak around 1.5 Hz corresponding to the
seqénh Fourier series component of a square wave. The in-line
' mofions aré at'ekactiy twice the freqvency of the horizontal

motions, so that the motion of the spar at the surface follows

a "U"-shaped path in the coordinate system moving with the spar.
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A vortex was shed at each tail of the "U" trajectory, as the
motion reversed direction. As for the previous paired shedding
case, an oscillating drag coefficient of .5 rather than .06 was
necessary to achieve reasonable linearized predictions. Strouhal
number of .16, as mentioned earlier, giQes good agreement with
the expe;iméntal oscillation frequency.

All of the linearized estimates using Ca'= 1 afe a bit
low, and Figures 5.6 c, d show that the wave response is over-
predicted and that the peak wéve responsevis at a lower frequency
than in the experiment. By aésuming that the added mass co-
efficient is O, much better agreement is achieved. This assump-
tion is nbt altogether unreasonable if we consider Sarpkaya's
data, Figure 3.4, and note that there is a decrease in the added
mass coefficient when vortex shedding becomes important, around

NKC = 10. Thus, it appears that an important effect of vortex
shedding in a flow with a mean component may be the reduction of
the added mass coefficient. Vortex shedding due to a mean flow

could thereby have significant effects on structural response,

even if the actual vortex forces were not important.
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6. Summary and Conclusion

A linearized theory for the response of a circular
pendulum spar in two-dimensional random waves and a uniform
current has been developed. The linearized inviscid equations

of motion were developed using an approximate potential flow

theory for slender bodies. The reasons for pursuing the slender

body solution were (1) to lend some “"legitimacy" to the well-
known ;nd widely-accepted strip theory approach to writing the
equations, while formally stating the simplifying assumptions,
and (2) to allow an estimate ta be made of the linear, wave-
making, damping'force for comparison with estimates of viscous
damping. The dynamic equations were amended to account for the
"quasi-steady" wake effects of viscous bluff body flow by in-
cluding a quadratié drag law. This idea is inherent in the
Morrison equation, widely used to interpret wave force measure-
ments, and stems pfincipally from the concepts of superposition
and steady flow drag. The principal flaw in this concept is a
consequence of the fundamental "non-sﬁeadiness" of the bluff-
body dfag in steady flow, that is to say that there are always
gsignificant fluctuations from the mean in the forces on a |

cylinder in steady flow. This is due to periodic fluctuations

in the wake, generally characterized as vortex shedding. It

seems & bit hopeless therefore to attempt to describe the forces

with any fidelity without incorporating this effect. The

e FRHITTTRI AT
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quasi-steady drag force was therefdre supplemented, again
resorting to superposition, by a spectral model fér the forces
on a cylinder due to an oscillating wake.

The forces due to "vortex" effects were modeled as a
frequency modulation process. Note that this includes an in-line,
drag, component and a transverse, lift, component. The major
assumption was that the vortex shedding frequency was proportional
to the instantaneous speed of the fluid in the incident field. A
spectrum of vortex forces wés then estimated using the method of
stationary phase. There are two important faults With this model.
The first is a consequence of the fact that the stationmary phase.
approximation only works when the modulating signal, the dynamic
pressure in this case, is lower in frequeﬁcy than the carrier,

‘ ,

vortex frequency. This means that if the spectra of vortex
shedding forces predicted by the model Contain frequencies less
than or only slightly 1arger than the spectrum of the fluid
velocities, then this model is not valid. It was suggested that
in this case, sinusoidal forces predicted by the mean flow only
would be an appropriate substitution. The second shortcoming is
due to the neglect of feedback between the wake and the motions
of ; cylinder. Although it is possible to "adjust" the shedding
frequency of the model to produce an adequate result, this manip-
ulation is a little unsettling. However, since there is no

reasonably simple way to include the feedback, the user must be
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aware of lock-in phenomena, so that this solution can be "artifi-
cially" produced and studiedl The model proposed for forces on
the cylinder‘can be considered as composed of three components: -
first, the inertial force predicted by inviscid theory; second,

a quasi-steady quadratic drag; and third, a "vortex" induced 1ift
and drag fofce. When there is no current, the fofces are dominated
by the inertial term for small Keulegan Carpenter numbers, that
is, small fluid amplitude-to-cylinder diameter ratios, and by the
viscous effects fo: large NKC; this includes important vortex
shedding effects. This shoul& seem reasonable, since for small
motions compared‘to the cyiinder, one would expect that potential
theory woﬁld describe the flow well, and for large motions com-
pared to the cylinder one would expect things to look quasi-
steady in terms of‘the flow field. Ihe effect of a mean flow is

to push the dominance of viscous forces toward the low N range.

KC
The behavior of the vortex shedding forces is probably best
described in terms of a spectral impulse, corresponding to the
mean flow, which is smeared by the variations in the flow when
they dre large or comparable to the vortex length,,lV » discussed
in Section 3. The most important thing to note here is that,‘
even thpugh the forces are parameterized in terms of velocities
and accelerations, the relative importance of any effect is

determined by the length scales, that is excursion amplitude,

cylinder radius and the mean flow vortex shedding length, 'ev'
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The non-linear equations of motion which resulted from
the analysis of the forces were solved using a linearization
technique assuming a Gaussian random sea and constant force
coefficients. The lineérization equates the expected value of
the power transmitted to the spar by the non-linear viscous
forces to the expected value of the power transmitted by the
equivalent linear forces. The method discussed includes the
extens;on of the linearization needed to describe mean flow
effects and a spatially distributed process. Since this linear-
ized model was a further simplification of an at best questionable
equation, some numerical experiments were performed to test the
performance of the technique under "ideél" circumstances. For a
variety of simulated environments, the linearization predicts the
standard deviation of the simulation response within 107 and the

mean angle of inclination to within 30%. Since the various

simulations resulted in responses differing by orders of magni-

tude, the linearization performed extremely well.

A laboratory experiment was carried out to test the

ALY

1inearized spar model in a reélistic fluid environment. Only

the low Keulegan Carpenter number regime was investigated with
varioﬁs mean flows. Some maﬁipulations of the model coefficients
was required to obtain agreement between the experiment and the
linearized estimates. The drag coefficient-for vortex induced

in-line motions has not had much previous investigation, and a
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value of .5 fits the experimental results presented here much
better than the value of .06, which is more representative of
results given in the literature. 1t also appeared that

the Strouhal number was significantly reduced by the finite
length of the cylinder from .21 to .16. This effect is often
attriﬁuted to the motion of a cylinder, but little variatiom

in the response frquency could be found although the cylinder
response varied by an order of magnitude. As mentioned above,

it was necessary to further manipulate the Strouhal number to
model the case of lock-in. Perhaps the most interesting result,
however, is the apparent reduction in the added mass coefficient
when there is strong vortex shedding induced by the mean flow.
This is not too surprising though, if we note that the same
effect is observed in oscillating flows with no mean when there
is significant vortex shedding. Although this set of experiments
is by no means conclusive, some important interactions of mean
flow and oscillating flow are apparent.

It is obvious from the few experiments performed here,
if not intuitively, that there is significant interaction between
waves and current in producing structural loading. Since ocean
environments of interest,.particularly storms, will contgin
simﬁltaneous waves and current near the water surface, it seems
glear that any reasonable structural loading theory should consider

the complete problem. The linearization of bluff body drag
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forces on a cylinder appears to be an accurate method of pre-
dicting the response of an elastically supported cylinder so
that further investigation of its performance in this and ‘more
general applications is warrented. Extension of the present
theory should include the effects of horizontal correlation of
random waves, directional spreading of the wave spectrum, as

well as an arbitrary angle between waves and current.



-125-

REFERENCES

Bedrosian, E. and S.D. Rice, 1971, '"The Output Properties of
Volterra Systems (Nonlinear Systems with Memory) Driven
by Harmonic and Gaussian Inputs'', Proceedings of the
IEEE, Vol. 59, No. 12,

Bendat, J.S. and A.G. Piersol, 1971, Random Data: Analysis and
Measurement Procedures, Wiley-Interscience, New York.

Bidde, D.D., "Laboratory Study of Lift Forces on Circular Piles",
Journal of the Waterways, Harbors and Coastal Engineering
Division, ASCE, Vol. 97, No. WW4, pp. 595-614.

Blerins, R.D. and T.E. Burton, 1976, "Fluid Forces Induced by
Vortex Shedding", Journal of Fluids Englneerlng, Transactions
of the ASME, March, pp. 19-26.

Borgman, L.E., 1967, "A Statistical Theory for Hydrodynamic Forcés
on Objects'", Annals of Mathematics, February.

Bruun, H.H. and P.0.A.L. Davies, 1975, "An Experimental Investi-
gation of the Unsteady Pressure Forces on a Circular Cylinder
in a Turbulent Cross Flow'", Journal of Sound and Vibrationm,
Vol. 40, No. 4.

Caughey, T.K., 1963, "Equivalent Linearization Techniques', JASA,
Vol. 35, No. 4.

Crandall, S.H. and W.D., Mark, 1963, Random Vibration in Mechanical
Systems, Academic Press, New York.

Gerrard, J.H., 1966, "The Mechanics of the Formation Region of
Vortices Behind Bluff Bodies", JFM, Vol. 25, pp. 401-413.

Gouda, B.H.L., 1975, "Some Measurements of the Phenomena of Vortex
~ Shedding and Induced Vibrations of Circular Cylinders",
Technische Universitat Berlin Report DLR-FB 75-01.

Griffin, 0.M., 1972, "Flow Near Self-Excited and Forced V1brat1ng
Circular Cylinders", Journal of Engineering for Industry,
Vol. 94, No. 2, pp. 539-547.

R

R



-126-

Griffin, 0.M., R.A., Skop, and S.E. Ramberg, 1975, "The Resonant,
Vortex-Excited Vibrations of Structures and Cable Systems',
OTC Paper 2319.

Griffin, 0.M., R.A. Skop, and S.E. Ramberg, 1976, 'Modeling of
the Vortex-Induced Oscillations of Cables and Bluff Struc-
tures", 1976 Society for Experimental Stress Analysis Spring
Meeting, Silver Spring, MD.

Havelock, T.H., 1958, "The Effect of Speed of Advance Upon the
Damping of Heave and Pitch", Quarterly Transactions of the
Institution of Naval Architects. '

Hoerner, S.F., 1965, Fluid-Dynamic Drag, Published by the Author,
2 King Lane, Brick Town, NJ 08723,

Isaacson, M. de St. Q. and D.J. Maull, 1976, "Transverse Forces on
Vertical Cylinders in Waves', Journal of the Waterways,
Harbors and Coastal Engineering Division, ASCE, Vol. 102,
No. WWl, pp. 49-59. ’

King, Roger, 1977, "A Review of Vortex Shedding Research and Its
Applications", Ocean Engineering, Vol. 4, pp. 141-171.

Mavor, J.W., Jr., P.F. Poranski, and R.G. Walden, 1976, "A Current
Monitoring System for Ship Navigation", OTC Paper 2459.

Mercier, J., 1973, "Large Amplitude Oscillations of a Circular
Cylinder in a Low-Speed Stream', Ph.D. Thesis, Stevens
Institute of Technology. :

Newman, J.N., 1963, "The Motions of a Spar Buoy in Regular Waves",
David Taylor Model Basin Report 1499.

Newman, J.N., 1977, Maripne Hydrodynamics, The MIT Press,
Cambridge, MA.

‘ Papoulis, A., 1965, Probability, Random Variables, and Stochastic
Processes, McGraw-Hill, New York. '

Sarpkaya, T., 1976, "Vortex Shedding and Resistance in Harmonic
Flow about Smooth and Rough Circular Cylinders at High
Reynolds Numbers', Naval Postgraduate School Report NPS-
59SL76021.



-127-

Seymour, R., 1974, "Resistance of Spheres in Oscillatory Flows',
Ph.D. Thesis, University of California, San Diego.

Skop, R.A. and O0.M. Griffin, 1973, "A Model for the Vortex-
Excited Resonant Response of Bluff Cylinders', Journal
of Sound and Vibration, Vol. 27, No. 2, pp. 225-233.

Tanida, Y., A. Okajima, and Y. Watanabe, 1973, "'Stability of a
Circular Cylinder Oscillating in Uniform Flow or inm a Wake',
JFM, Vol. 61, pp. 769-784.

Vakman, D.E., 1968, Sophisticated Signals and the Uncertainty
Principle in Radar, Springer-Verlag New York, Inc., NY.

Wehausen, J.V., 1961, "Surface Waves', Handbuch der Physik,
Springer Verlag, Section 13. ‘ -



-128-

APPENDIX A

Solution of Velocity Potentials

We shall use the coordinate systems defined in Section
2.1.1 and begin the analysis by restating the decomposed velocity

potential defined by Equations (2.3) and (2.4).

i(kx-ewt ’
@(X)Y;z;'t)‘A '8"' c:ss:.‘ ":ﬁ (kx it ) ¢A+¢'l’ (A.1)

On the spar, the kinematic boundary condition may be written, see
for example Wehausen and Laitone (1960), as
-g-;[r'- Re]2 (QQ-E + V§‘V> [r'-Rev]=0 (A.2)
on l",:‘ R(_El)
That is,.;he substantial derivative of the equation for the sur-

face of the body is zero. Equation (A.2) may be rewritten as

9R 82’ 36 dr’. .é_ié 0

{
ot T T 32" 3¢ T or7 ar'” 3z’
Making use of the following properties

d - d
T Ht YR
r‘ (x* - 2xz'l’+yz.)z
—a{:‘--a‘PCpse

'y

keeping only the lowest order terms in ¥ the kinematic boundary

follows:

condition becbmes
~2¥cosO-x ¥ GIR %g

on r = R(z)

=0 (A.3)

:‘Jlf’.s,
e

We shall now assume that %% is the same order as Ak

and ignore second order terms in which it appears. Substituting
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Equation (A.l) into Equation (A.3) and equating terms according
to their dependence on different displacements, the following

boundary conditions are obtained:

i-——?_" = "chose | (A.4)
-twt
6'_ —-L&iwséﬁin—m Q,L | .(ATS)

onr = 1_{(2)
We now employ slender body theory, which matches an approximate
2-dimensiona1 solution near the body with a three-dimensional
solution, see for example Newman (1977). To satisfy the above
boundary conditions, we find that an axial line of dipoles pointed
in the X direction is necessary. The moment densiiéy necessary to
satisfy Equation (A.4) is %‘i’z CR(z)] 2 per unit length, so that
in an infinite fluid

Py =2 ‘P! S'R(ﬁ’)éx [1dS
where r*Z= x? ty +(Z~$) = [ *<Z'"§)z
To satisfy the free sufface, bottom and radiation boundary con-
ditions of Equations (A.4) and (A.5), we substitute for the source
potential, —1':;' , the potential, §S , of a source pulsating at
frequency W under a free surface in a fluid of depth h, see

Wehausen and Laitone (1960). L ,
Psxret; e it {.1 r* ' F"+ | | (a.6)
JMM -
‘f vsinh vh - k,cosh vh 3;(‘”30’\?

21T (km_k%p;’i:mk_kb_m_k_ks_@ﬂ\_h?. Tke)

h + sinh?* kh , 3 )
wheref denoted Cauchy principle value, r2* =x +y + (z +§)
2 .
and k = &,

g

.
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Knowing the solutign of Equation (A.4) in an infinité
fluid, we anticipate the form of the dipole strength in the
present case and wr1te )

do=2 I KI5+ FS) (8, ati NS A7)
We will be interested in the potential near the body, so that to

leading order inr for the real and imaginary terms, we find that

4’,, =b Y’LffR (?)gx (ri+@-sy R S+ (A.8)
2H'Lf fI?(Y) A cosh kS cosh kz f— Jlke) dS+

f“/e’rs)/-'(s) (ri+-sy 7S

kw + k&'kh nh kh
where. K kaoh + SI:IL\Z kh

Notlng that for small.values of kr, Jq (kr) ¥ 1 - f.(kr) and that

for any continuous bounded functlon f($)

[ "6 e (e 57 g 22 18 cos 6
for 0 €z < h and 2<<h, see Newman (1960), Equation (A.8)
becomes - . I

¢v <Y -22 .E‘_L_Z.‘) cos & - | ' (A.9)

{ TTIKKk*x cosh kz F¥-
0228 % Fe]

where  F¥ ""{AS’ R5) cosh kS dS

If we substitute Equation (A.9) into the boundary condition,

Equation (A.4), and solve for F(z_), we find that

Fe)= 2 TTKk? cosh kz F¥ (A.10)
Therefore, Equations (A.9) and (A.10) define the complex potential,
<b'?. , to lowest order in r for the real and imaginary parts. In

a similar manner, we find that, to lowest order in r, the solution
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to Equation (A.S)kis 2 .‘ :
¢A: (34 sshke R® o e—udt

W cosh kh T (A.11)
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APPENDIX B

Convergence of Iterative Solution

In order to show that a function = f() has a con-
vergent successive approximation solution, it is sufficient to

demonstrate that there is a region around &, )x—al <l'\ » such

Frald

that

We will look at the zero mean velocity case, since the equivalent
velocity is most sensitive to the oscillator response when there

is no mean flow. U51ng Equatlons (4.8) and (4.10) we can write
Ef} IS'Uol]

where K_ is defined by Equation (4.5). We shall simplify this
0 v B

" further by assuming that the input spectrum.sA (w) has a uniform

o

density of SA between w and Wy and is zero elsewhere, so that
o 2 Va
Ug =JZ [S f/ }dwj
' .

A sufficient condition for convergence is then to show that

f ﬁ’ dw < -S—L_gj- - (8.1)
' where Ao 7T-
lUr  2UwiC U w?F)
we [G-w9*+ wCU*]*®

Unfortunately, Equation (B.2) blows up near resonance and we
cannot satisfy the sufficiency condition for convergence. It

appears that the convergence condition, Equation (B.1l), can
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always be forced to fail by choosing an input density large
enough. Despite this apparent failure, it should be noted that
a number of numerical experiments discussed in Section 4.3 con-
verged rapidly, and only 7 or 8 iterations were necessary to
obtain 1% accuracy for UE + It appears, however, that the
successivg abproximation scheme may on occasion be‘divergent.
Even if this should occur, a solution can always be obtained

by a bisection routine. This can be demonstrated by noting
that the derivative of Equatioh (sz) is always negative. The
significance of this can be eaéily noted by looking at Figures
B.1 a, b, ¢ in which we havé plotted l%zl . That is, as UE
decreases; the relative velocity transfég function gréws uniformly.
The bisection routine begins by guessing a vaiue of UE and com-
puting a2 new value ;s in the successive approximation routine.

We can see from Figure B.l that, regardless of the shape or
magnitude of the iﬁput spectrum, if the guessed value of UE is
larger than the true value, the new value will be less than the
true value, and vice-versa. We now have an upper bound and a
lower bound for the true value. If we now bisect this region

and compute a new value of Ug » we can find which half of the'
bisected region includes the true value, even if the new value
1ies outside both regions. We can therefore maintain bounds omn
the true value and at least cut the region in half with each

jiteration. One could easily write a routine which begins

solution by successive approximation, checks for divergence and
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implements bisection if necessary. We shall limit the discussion.
of convergence to this simple model, and state that similar

arguments and conclusions can be made about the more complicated

case of the spar governing equations.
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