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The structure of a stratified boundary layer over a tilted bottom with a small stream-
wise undulation is studied theoretically and numerically. We show that the tilt of the
boundary can induce strong density variations and wall-transverse velocities in the critical
layer where the frequency of the forcing by the topography kU(zc) is equal to the trans-
verse Brunt-Väisälä frequency N sinα (N being the vertical Brunt-Väisälä frequency).
The viscous solution in the critical layer, obtained and compared with direct numerical
simulation results, are in good agreement for both the scaling and the spatial structure.
The amplitude of the transverse velocity response is also shown to exhibit quasi-resonance
peaks when the stratification strength is varied.

Key words: Stratified flow, boundary-layer flows, rough surface, critical layers.

1. Introduction

Stratified boundary layer flows occur in both the ocean and the atmo-
sphere when a tidal current or a nocturnal wind develops along a surface.
The topology of these surfaces is generally complex and in the case of slopes,
tilted with respect to the stratification. A natural approach to account for
small amplitude topology is to consider a corrugated surface. For instance,
these surfaces are representative of ocean bottoms such as seamounts where
strong flow acceleration along the slopes has been reported in (Genin et al.

1986). Sand waves formation, merely found along shallow continental slopes,
are also a representative configuration (Besio et al. 2004). In the present
work, we show that a free stream in a stratified medium on a tilted cor-
rugated surface generates a strong transverse flow by a subtle interplay of
stratification and shear.
Stratified boundary layer flows have mainly been studied on flat horizontal surfaces.

Numerous works exist in the atmospheric context (see Garratt 1992). More recently,
Mahrt (2014) reviewed the characteristics of the stably stratified atmospheric boundary
layer. Corrugated surfaces have often been used to facilitate the boundary layer transi-
tion. There is an important piece of literature on the receptivity of boundary layers for
its possible applications to aeronautics (see for instance Saric et al. 2002). In the atmo-
spheric context, most works were motivated by understanding the effect of topography

† Email address for correspondence: meunier@irphe.univ-mrs.fr
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(e.g. Jackson & Hunt 1975; Taylor et al. 1987; Gong et al. 1996; Athanassiadou & Cas-
tro 2001), and vegetation (e.g. Finnigan et al. 2009) on the boundary layer turbulence
characteristics. The influence of a stable stratification has also been considered in the
experimental works of Ohya (2001) and Ohya & Uchida (2008). On the theoretical side,
Thorpe (1992) has derived the structure of the lee internal waves generated by an un-
dulated topography over a sloping bottom, in the presence of stratification and rotation.
This structure has been observed numerically by MacCready & Pawlak (2001) over a
sinusoidal topography but also over a solitary hill. Finally, one can mention the recent
works of Wu & Zhang (2008a,b) who analyzed the development of a viscous instability
wave and its interaction with a bump in a stratified boundary layer using the triple-deck
framework (Sykes 1978). The effect of a slope has also been considered in a few field
studies (Park & Park 2006; Nadeau et al. 2013) but we are not aware of any fundamental
study in a controlled experimental framework.
When the surface is flat but inclined, we know that the deformation of the isopycnal

near the boundary is the source of a flow along the slope which has been studied by Gar-
rett et al. (1993). Candelier et al. (2012) have recently shown that an inviscid instability,
different from the inflectional instability, may also be active. This instability involves
a phenomenon of over-reflection (Acheson 1976; Lindzen & Barker 1985) between the
boundary and a critical point where the phase velocity matches the meanflow velocity.
It is very similar to the instability observed around a rotating cylinder (Riedinger et al.
2011). In the present work, this instability, as well as the viscous boundary layer insta-
bility are not considered. We therefore assume that either the flow is stable (this will
be the situation for our numerical simulations) or the forced response described below
is not destroyed by these instabilities. We consider a small sinuous undulation with a
fixed wavenumber. We are going to show that the wave generated by this undulation
may exhibit a singular structure due to the presence of a critical point singularity.

This very thin structure is located within the boundary layer, with a large
amplitude, even for small amplitudes undulations, which is very likely to be
an important source of mixing and transport for ocean and atmospheric flows
over slopes.
The paper is organized as follows. In §2, we introduce the framework with the flow con-

figuration and the numerical procedure. In §3, we first provide numerical results. These
results are then interpreted using an asymptotical analysis for large Reynolds numbers
and small undulation amplitudes which leads to an expression for the maximum trans-
verse velocity. The dependence of this expression with respect to the Froude number and
the undulation wavenumber is further analyzed using a small Froude number description.
Details of the analysis are given in an appendix. Section §4 provides a brief summary
of the results and tentative applications to oceanic currents and atmospheric boundary
layers.

2. Problem formulation

2.1. Flow configuration

We consider a boundary layer flow in a stratified fluid on a sinusoidally deformed tilted
wall, as shown in Fig. 1. The wall is globally tilted in the cross-stream direction such that
the z∗-axis of the (x∗, y∗, z∗) frame attached to the wall makes an angle α with respect
to the Z∗-direction of stratification. The tilted frame of reference is obtained from
the horizontal/vertical coordinates (X∗, Y ∗, Z∗) using the change of variables:

x∗ = X, y∗ = Y cos(α) + Z sin(α) and z∗ = Z cos(α) + Y sin(α). (2.1)



Response of a stratified boundary layer on a tilted wall to surface undulations 3

The inlet flow is assumed to be a typical tanh boundary layer flow of thickness δ∗ and
free stream velocity U∗

∞ :

U∗ = U∗
∞ tanh

(

z∗ + z∗0
δ∗

)

ex. (2.2)

A small penetration length z∗0 has been introduced to authorize the flow to slide on
the boundary with a velocity U∗

0 = U∗
∞ tanh(z∗0/δ

∗). This boundary condition mimics
the condition obtained on the top of a viscous sublayer where roughness or small scale
inhomogeneities could be present. It is the simplest way to model the flow over a canopy.

The fluid is assumed stably stratified along the vertical Z∗ direction with a constant
buoyancy frequency

N∗ =
√

−(g/ρ∗0)(∂ρ̄
∗/∂Z∗), (2.3)

where g is gravity.
The boundary is defined by the 2D surface:

z∗ = η∗(x∗) = h∗ sin(k∗x∗) (2.4)

where h∗ and k∗ correspond to the amplitude and wavenumber of the topography, re-
spectively.

The flow is governed by the Navier-Stokes equations under the Boussinesq ap-
proximation, the incompressibility condition and the advection-diffusion equation for
the density

Du∗

Dt
= −∇p∗

ρ∗0
− ρ∗

ρ∗0
geZ + ν∆u∗ (2.5a)

∇ · u∗ = 0 (2.5b)

Dρ∗

Dt
= κ∆ρ∗, (2.5c)

where ν and κ are the kinematic viscosity and the thermal diffusivity respectively. It
satisfies the following boundary conditions at the wall

u∗|z∗=η∗ = U∗
0 t; ∇ρ · n|z∗=η∗ = 0, (2.6)

where t and n are the wall tangent and normal vectors respectively. Far from the wall
(z∗ → ∞), the velocity and density fields are assumed to satisfy

u∗ ∼ U∗
∞ex; ρ∗ ∼ ρ̄∗ = ρ∗0

(

1− (z∗ cosα+ y∗ sinα)N∗2/g
)

. (2.7)

In the following, we non-dimensionalize all the variables using δ∗, U∗
∞ and ρ∗0, and de-

note these variables without the star. The problem is characterized by 6 non-dimensional
parameters

Re =
U∗
∞δ∗

ν
, F =

U∗
∞

N∗δ∗
, α, h = h∗/δ∗, k = k∗δ∗, Pr =

ν

κ
, U0 =

U∗
0

U∗
∞

. (2.8)

We are interested in the configurations where Re is large and h is small. We also implic-
itly assume that the boundary layer flow on the undeformed wall is stable. This means
that the Reynolds number is below the critical Reynolds number for the appearance of
unstable Tollmien-Schlichting modes and unstable radiative modes.

2.2. Numerical procedure

Since the inlet flow is two-dimensional, we can assume that the flow remains two-
dimensional downstream that is independent of the cross-stream variable y. For most
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h∗

y∗

2π/k∗
x∗

α

U ∗
0

η∗(x∗)

ρ̄∗

α

U ∗(z∗)

Z∗z∗

δ∗

~g

U ∗
∞

Figure 1. Sketch of the flow geometry

numerical simulations, the numerical computational domain is taken from x = −7.5 to
52.5 and from z = η(x) to H = 18. However, the boundary deformations only extend
from x = 0 to x = 42.5, as shown in Fig. 2(b). The infinite flow domain is transformed
into a Cartesian one using the mapping x̄ = x, z̄ = z − η(x), the barred coordinates
being the computational ones. The numerical procedure is detailed in Marquillie & Ehren-
stein (2002) and proved to accurately predict transitional boundary-layers phenomenon
(Marquillie & Ehrenstein 2003; Passaggia et al. 2012). Since the mapping transformation
requires η(x) to be twice differentiable, the lower boundary has been smoothed in the
vicinity of x = 0 and x = 42.5 using regularization procedures based on convolution
between the wall function η(x) and a third order polynomial kernel. The inlet boundary
condition is given by the boundary layer profile (2.2) and ρ = ρ̄.

Following the numerical procedure of Marquillie & Ehrenstein (2003), a convective
condition has been implemented at the outflow for all velocity components u and the
density ρ such that

∂u

∂t
= Uc

∂u

∂x
,

∂ρ

∂t
= Uc

∂ρ

∂x
, Uc =

1

z†

∫ z†

0

ux(42.5, z)dz (2.9)

where z† was chosen for the streamwise velocity ux(42.5, z) to be equal to 0.5, which is
the uniform flow at infinity (Marquillie & Ehrenstein 2002).

When addressing the question of stratified incompressible flows in a finite computa-
tional domain, sponge layers appear to be mandatory to avoid spurious modes arising
from a finite computational domain together with boundary conditions (2.9). In the
present case, the sponge layers consist of hyperbolic tangent functions which smoothly
cancel the advection term of the equation for the density ρ. In the present study, they
are present close to the inlet for −7.5 < x < −4.5 and far from the wall for 15 < z < 18,
which has proved to be appropriate to achieve convergence in all cases considered. The
present calculations have been performed calculating first the vertical flow solution at
α = 90°. Restarting from this solution, the tilted flow solution has been computed until
convergence of the time marching algorithm up to 10−6 of the solution vector.

Most numerical simulations are carried out in the computational domain defined above.
The Reynolds number Re is varied from 60 to 1200, the Froude number F from 0.95 to
1.15, the tilt angle α from 15 to 75 degrees and the non-dimensional wavenumber k from
0.85 to 1.25. Different computational domains have also been considered in order to treat
more extreme values of k and document the behabiour of the solution for small and large
Froude numbers. In all the simulations, the sliding velocity is fixed to U0 = 0.1 and the
Prandtl number Pr is equal to 0.7 in order to simulate the thermal diffusion of air.
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Figure 2. Inlet (solid line) and at the summit of an oscillation x = 30.3 (dashed line) velocity
profiles (a) at Re = 593 and h = 0.06. Graph of the lower boundary η(x) (b) of the small
computational domain at h = 0.06.
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Figure 3. 2D field of the transverse velocity v(x, z) for h = 0.06, F = 1.046, k = 1.041,
Re = 1186 and α = π/4.

3. Structure of a stratified tilted boundary layer

3.1. Numerical results

In this section, we present the typical characteristics of the flow obtained in the numerical
simulations. Figure 3 shows the transverse component of velocity in a plane normal to the
bottom. The field contains a series of alternate lobes clearly separated from the bottom
with the same wavelength as the undulated topography, but in phase quadrature. Above
these lobes, the velocity presents almost vertical bands of weak amplitude, characteristic
of lee waves created by an undulated topography.
Figure 4 shows the profile of velocity and density at the altitude of the lobes zc = 0.75.

It is striking to see that the transverse velocity (dashed line) is 5 times larger than
the normal velocity although the sliding velocity along the topography generates only
a normal velocity. The density also exhibits large sinusoidal perturbations which are 10
times larger than the normal velocity. These oscillations start at the beginning of the
undulated topography (x = 0), grow during a transient stage of about 3 to 4 undulations
and then saturate.
The altitude zc of the divergence of v and ρ has been measured for various parameters.

As shown in Fig. 5, it is independent of the height of the topography and very weakly
dependent on the Reynolds number. However, it clearly depends on the Froude number,
the tilt angle and the wavenumber. This critical altitude zc corresponds to the
position where the normal component of the wavevector diverges. Indeed, in
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Figure 4. Streamwise profile of the normal velocity w (solid line), transverse velocity v (dashed
line) and density ρ (dotted line) at zc = 0.75. Re = 593, F = 1.046, k = 1.041, α = π/4 and
h = 0.06

the tilted frame of reference (x, y, z), a lee wave with wavevector k = (k, 0,m)
has a frequency given by the linear dispersion relation:

ω = kU ± 1

F

‖kHor.‖
‖k‖ = kU ±

√

k2 +m2 sin2 α

F
√
m2 + k2

(3.1)

The variation of U with the altitude bends the waves such that the normal
wavenumber m varies with the altitude in order for the wave to be stationary.
Assuming ω = 0 in (3.1) leads to

m2 = k2
1− k2U2F 2

k2U2F 2 − sin2 α
(3.2)

which diverges for

U(zc) =
sinα

Fk
(3.3)

This criterion defines a critical altitude zc which is plotted in Fig. 5 as a
solid line. It is reasonably close to the altitude where v and ρ diverge. This
indicates that the strong variations of v and ρ come from the divergence of
the wavenumber m. However, this analysis is only valid when the wavelength
of the lee wave is much smaller than the thickness of the boundary layer. In
the next section, the analysis is extended for any wavelength, but for the case
of small undulation height h.

3.2. Expansion for small wall oscillations amplitudes

The structure of the boundary layer can be described asymptotically for a small ampli-
tude h of the topography and a large Reynolds number. The solution is decomposed into
a base flow (Ub, ρb, pb) and a small perturbation (u, ρ, p) which is searched as a spatial
Fourier mode of wavenumber k and amplitude h:

(u, ρ, p) =
1

2
hk(ũ, U2

∞/(δg)ρ̃, p̃)eikx + c.c. (3.4)

The base flow corresponds to the solution on a flat but inclined wall. In the limit of large
Reynolds numbers, it remains close to the inlet flow as long as we consider streamwise
location small compared to the viscous diffusion scale xv = O(Re). The normal flow
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Figure 5. Position of the critical layer zc measured at the maximum of v. In (a), zc is plotted
as a function of h (�) and as a function of Re ( ) for F = 1.046, α = π/4 and k = 1.041. In (b),
zc is plotted as a function of sinα/kF for Re = 593 and h = 0.06. In (b), symbols correspond to
variations of F (�), k ( ) and α (N)and the solid line corresponds to the velocity profile U(zc).

correction induced by this weak diffusion process is O(1/Re). A weak cross flow is also
present as soon as the wall is inclined. This flow is associated with density correction
generated by the inclination of the isopycnals with respect to the boundary. To cancel
the normal density gradient at the wall, a density correction and a weak cross flow is
created very close to the wall. This boundary layer flow has been analyzed in details in
Garrett et al. (1993). Neither the cross flow, nor the density correction have an impact
far from the boundary.
The equations satisfied by the amplitude of the Fourier mode can be obtained by

linearizing the governing equations (2.5) around the base flow solution. We get at first
order in h:

ikUũ+ w̃U ′ = −ikp̃+
1

Re
∆̃ũ (3.5a)

ikUṽ = − sinαρ̃+
1

Re
∆̃ṽ (3.5b)

ikUw̃ = − cosαρ̃− ∂p̃

∂z
+

1

Re
∆̃w̃ (3.5c)

ikUρ̃ =
w̃ cosα+ ṽ sinα

F 2
+

1

RePr
∆̃ρ̃ (3.5d)

ikũ+
∂w̃

∂z
= 0, (3.5e)

where ∆̃ = ∂2
z−k2. Note that we have artificially kept small diffusion terms but neglected

the base flow corrections mentioned above. We will see below that the diffusion terms do
become important close to the critical layer singularity while the base flow corrections
remain negligible. The boundary conditions obtained from (2.6) are at leading order in
h

ũ(z = 0) = i(1− U2
0 ); ṽ(z = 0) = 0; w̃(z = 0) = U0; ∂z ρ̃(z = 0) = 0. (3.6)

Far from the wall, as z goes to infinity, the perturbation should either vanish or be an
outgoing wave.
In the inviscid regions where the diffusion terms are negligible, we get from (3.5) as
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Re → ∞

p̃ =
U

ik

∂w̃

∂z
− w̃

U ′

ik
, ρ̃ =

ikUw̃ cosα

sin2 α− k2U2F 2
. (3.7)

Introducing these expressions into (3.5c) leads to a single differential equation for the
wall-normal velocity

w̃′′ − U ′′

U
w̃ − k2

1− k2U2F 2

sin2 α− k2U2F 2
w̃ = 0. (3.8)

This equation reduces to the well-known Taylor-Goldstein equation for the
tilt angle α = 0. It is clear that the last term of this equation diverges at the point
zc where kU(zc)F = sinα. Such a singularity corresponds to a so-called critical point.
Viscous effects have to be re-introduced to smooth the singularity. The singularity is
weak as an expansion of the coefficients in powers of z − zc indicates that w̃ expands
as w̃ ∼ a± + a±κ(z − zc) log |z − zc| + b±(z − zc) with κ = k cos2 α/(2 sinαFU ′(zc)) on
either side of zc. This critical point singularity is the classical singularity found in the
stability of homogeneous shear flows (Lin 1955). Note that it is different from that
of stratified shear flows over horizontal walls. The viscous smoothing can be used
to get the adequate jumps conditions across the critical point:

a+ = a− = w̃c; b+ = b− + iπκw̃c. (3.9)

These jump conditions can also be obtained from the property that the inviscid solution
remains asymptotically valid in any contour that avoids the critical point in the lower
complex half plane, a condition which is derived from the asymptotic behavior of the
viscous solutions near zc or from the condition of causality (see Lin 1955, for more
explanations on this issue). These conditions tell us that the solution is continuous at zc
but its derivative exhibits a jump.

Using these jumps conditions, equation (3.8) with the boundary conditions prescribed
above can easily be solved using classical integration softwares. We get the solution
which has been plotted in Fig. 6(a). Note that the jump of w̃′ at zc is clearly visible
on the real part of the signal. In this figure, the real part and the imaginary part of
the solution are compared to the numerical signals of the normal velocity at the lee side
(kx = 7π) and at the bottom (kx = 7.5π) of the undulation, respectively. We can note
that except in the wall boundary layer there is a good qualitative agreement between the
two results.

The inviscid approximation of the normal velocity is continuous at zc. By contrast,
equations (3.7) and (3.5b) demonstrate that both the transverse velocity v and ρ diverge
at z = zc. This behavior is in agreement with the very large amplitudes of the transverse
velocity and of the density observed in the numerics. In order to determine the maximum
amplitude of these two quantities, we have to solve the viscous critical layer. This is done
in the next section.

3.3. Viscous critical layer analysis

The analysis of viscous critical layers is a classical problem which is described in several
textbooks (see for instance Drazin & Reid 1981). A very similar analysis has also been
done in the context of vortices in Boulanger et al. (2007). We provide here the main steps
of the analysis.
In the viscous critical layer, the structure of the solution is obtained by introducing a

new local viscous scale ẑ = (z−zc)Re
1/3. The form of the solution can be obtained

by expanding the non-viscous solution close to the critical point. We obtain
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Figure 6. Normal profile of (a) normal velocity w and (b) transverse velocity v. The profiles
are measured on the lee side of the undulations at x = 7π/k (•, solid line) and on the bottom
of the undulation at x = 7.5π/k (�, dashed line). Symbols correspond to numerical simulations
and lines to theoretical predictions. h = 0.03, F = 1.046, k = 1.041, Re = 1423 and α = π/4.

that the solution has to be searched as

ũ = û(ẑ) + log(Re)ûs, (3.10a)

ṽ = v̂(ẑ)Re
1/3, (3.10b)

w̃ = w̃c + ŵ(ẑ)Re
−1/3 +Re

−1/3 log(Re)ŵsẑ, (3.10c)

ρ̃ = ρ̂(ẑ)Re
1/3, (3.10d)

p̃ = p̂(ẑ) + log(Re)p̂s. (3.10e)

Note that the log(Re) terms come from the special behavior of the normal
velocity close to the critical point. Expanding the base flow velocity as

U(z) ∼ U(zc) + U ′(zc)(z − zc) =
sinα

kF
+ U ′

cẑRe
−1/3,

the system (3.5) reduces to

ikUc(û+ log(Re)ûs) + ŵcU
′
c = ik(p̂+ log(Re)p̂s) (3.11a)

ikUcw̃c = − cosαρ̂Re
1/3 − ∂p̂

∂ẑ
Re

1/3 (3.11b)

i sinαv̂Re
1/3

F
+ ikU ′

cẑv̂ = − sinαρ̂Re
1/3 + v̂′′ (3.11c)

i sinαρ̂Re
1/3

F
+ ikU ′

cẑρ̂ =
(v̂ sinαRe

1/3 + cosαw̃c)

F 2
+

1

Pr
ρ̂′′ (3.11d)

ik(û+ log(Re)ûs) = −∂ŵ

∂z̃
− log(Re)ŵs. (3.11e)

At leading order in Re
−1/3, Eqs. (3.11c) and (3.11d) both indicate that ρ̂ =

−iv̂/F . Introducing this result in (3.11c)-iF(3.11d) leads to a differential equa-
tion at first order for the transverse velocity v̂

2ikU ′
cẑv̂ = (1 +

1

Pr
)v̂′′ +

iw̃c cosα

F
. (3.12)

The function p̂(ẑ) can then be deduced from (3.11b), which then gives û(ẑ)
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from (3.11a) and ŵ(ẑ) from (3.11e) provided that ŵs = −ikûs = −ikp̂s/Uc (such
that the log terms disappear). The matching with the outer solution gives
ŵs = −w̃cκ/3.

Equation (3.12) is an inhomogeneous Airy equation. In order to match an inviscid
solution in the outer region, the solution must behave as ẑ−1 for large |ẑ|. As shown
by Drazin & Reid (1981), the solution which satisfies this condition is a generalized
Airy function Bk(Kẑ, 1). It can also be expressed in terms of the Scorer’s function Hi(z)
(Abramowitz & Stegun 1965, p. 448) which verifies Hi′′(z)− zHi(z) = 1/π as follows

v̂(ẑ) =
iw̃cπ cosα

ξ2F (1 + 1/Pr)
Hi(−iξẑ). (3.13)

with ξ = (
2kU ′

c

1+1/Pr
)1/3. This expression is plotted in Fig. 6(b) as a solid line for the real

part and a dashed line for the imaginary part. We can see that these two profiles are
comparable to the numerical results obtained at the lee side and at the bottom of the
undulation. A small shift is nevertheless observed which might come from higher order
corrections.
The maximum of the transverse velocity vmax over the whole field can now be predicted

from the maximum of the Scorer’s function Himax = Hi(0) ≈ 0.41. In terms of the initial
variables, we get

vmax =
hkU0Re

1/3

(1 + 1/Pr)1/3
V (F, k, α, U0), (3.14)

where

V (F, k, α, U0) =
Himaxπ cosα

F (2k)2/3(1− sin2 α/(kF )2)2/3
∆c , (3.15)

with

∆c =

∣

∣

∣

∣

w̃c

w̃0

∣

∣

∣

∣

, (3.16)

In the above expression, we have used the relation U ′
c = 1 − sin2 α/(kF )2 and the

definition w̃0 = w̃(z = 0) = U0.
The function vmax is plotted and compared to the numerical results in Fig. 7. It clearly

shows that the amplitude of the critical layer is linear in h with an excellent quantitative
prediction of the amplitude. The amplitude also scales as Re1/3 although the lowest
Reynolds number is slightly above the theoretical prediction. This is possibly due to the
modification of the mean profile by viscous effects in the numerics or to the fact that the
critical layer becomes so large that it interacts with the near wall boundary layer flow.
The thickness ζ of the critical layer has also been measured in the numerics as the

distance between the maximum and the minimum of v in the shear profile (at kx = 7.5π).
Note that each value of the thickness ζ was rescaled with the local thickness
of the boundary layer, for each value of Re. The data is plotted in figure 8. We
observe that the thickness does decrease as Re−1/3 and is in good agreement with the
theory although it is 20% below the prediction.

3.4. Dependence with respect to the Froude number and the undulation wavenumber

In this section, we use the theory to discuss the dependence of vmax with respect to the
Froude number and the undulation wavenumber.

The contours of the function V (F, k, α, U0) appearing in (3.14) are plotted in Fig. 9 for
a small and a large tilt angle (α = π/60 and α = π/6). These plots show that V exhibits
complex variations with respect to the parameters. Note in particular in figure 9(b) the
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Figure 7. Renormalised amplitude of the critical layer vmax/(hkU0) as a function of (a) the
height of the hills h and (b) the Reynolds number. Numerical values (�) obtained at x = 7.5π/k
are compared with the theoretical prediction (solid line) given by (3.14). F = 1.046, k = 1.041
and α = π/4. In (a) Re = 593 and in (b) h = 0.03.
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Figure 8. Thickness of the critical layer as a function of the Reynolds number measured on
the lee side of a hill at x = 7.5π/k. The theoretical prediction (solid line) is compared to the
numerical simulations (�). h = 0.03, F = 1.046, k = 1.041 and α = π/4.

discontinuous behavior across the line kF = 1 and the peaky structure for small F close
to the right frontier corresponding to kF = sinα/U0. Large values of V are reached in
two limits which can be analyzed separately: (1) large F and kF close to sinα (top left
corners of figure 9), (2) small F and kF close to sinα/U0 (bottom right corner of figure
9).

The first limit is the easier to analyze. For large F , the solution w̃ has indeed a simple
approximation in the bulk† w̃(z) ∼ U(z) so

∆c =

∣

∣

∣

∣

w̃c

w̃0

∣

∣

∣

∣

∼ sinα

kFU0
, as F → ∞. (3.17)

† This approximation is valid up to the (large) altitude where the second term
in (3.8) becomes of same order as the third term.
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Figure 9. Contour levels of the function log10 V in the (kF, F ) plane for U0 = 0.1 and (a)
α = π/60 or (b) α = π/6. The function V is defined for sinα < kF < sinα/U0 only (condition
of existence of a critical point).
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Figure 10. The function ∆c versus kF for different values of F for (a) α = π/60 and (b)
α = π/6. Solid lines: numerically computed values; Symbols: expression (3.17). The stars in (b)
are estimates obtained from the direct numerical simulation for F = 10, Re = 593 and h = 0.12.

We can then deduce that

V ∼ Himaxπ cosα

U0F 1/3(2 sinα)2/3(1− sin2 α/(kF )2)2/3
as F → ∞, (3.18)

which tell us how vmax varies with respect to kF for large F . Figure 10 demonstrates
that (3.17) provides a very good estimate of ∆c as soon as F is larger than a few tens.
In figure 10(b), we have also added values of ∆c obtained from the direct numerical
simulation for F = 10, Re = 593 and h = 0.12. We can see that they follow reasonably
well the theoretical curve.

The second limit is more involved due to the singular structure of the normal velocity
w̃(z) as F → 0. In the appendix, we show how an approximation of the function ∆c

can be obtained using a WKBJ analysis. It is first shown that, when F is small, ∆c is
in general exponentially small. Large values of ∆c are only obtained when sinα/(kF ) is
very close to U0, as expected from figure 9. This case corresponds to the limit (2). In this
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Figure 11. The function ∆c versus F for different values of kF for (a) α = π/60 and (b)
α = π/6. Solid lines: numerically computed values; Dashed lines: expression (3.19a,b). The stars
in (b) are estimates obtained from the direct numerical simulation for kF = 4.96, Re = 593 and
h = 0.12.

limit, a simple approximation is obtained for ∆c as

∆c =
1

X
√

[K1(X)]2 + π2[I1(X)]2
when kF < 1 (3.19a)

∆c =
1

X
√

[K1(X) + π
2tanΦI1(X)]2 + π2

4 [I1(X)]2
when kF > 1, (3.19b)

where I1 and K1 are modified Bessel functions and

Φ = k

∫ z∞

zc

√

1− (kF )2U2(z)

(kF )2U2(z)− sin2 α
dz, (3.20a)

X =
cosα

(1− U2
0 )F

√

2

(

1− kFU0

sinα

)

. (3.20b)

The approximation depends on the value of kF with respect to 1 because the structure
of w̃ changes when kF exceeds 1. When kF < 1, the solution is oscillating up to in-
finity, whereas, when kF > 1 it becomes evanescent after the turning point z∞ where
kFU(z∞) = 1. The theoretical approximation is compared to the computed curve in
figure 11. We can observe that it provides a good approximation even for F as large as
unity. In figure 11(b), we have also plotted the values provided by the direct numerical
simulation for kF = 4.96, Re = 596 and h = 0.12. Although the largest and smallest
values of ∆c are not recovered, we can observe that the oscillations of ∆c as F varies are
qualitatively reproduced.
The behavior of ∆c for kF > 1 is particularly interesting as it exhibits distinct peaks

and valleys. A simple estimate of Φ can be obtained in the limit of small α:

Φ ∼ − log(α)

F
. (3.21)

The valleys correspond to the configurations where tanΦ = 0, that is Φ = nπ, n =
1, 2, 3.... For small α, they are therefore obtained for fixed values of F (whatever k and
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U0) given by

F
(n)
V = − log(α)

nπ
. (3.22)

Present between each valley is a peak, which is reached (for small α) for

F
(n)
P = − log(α)

nπ − arctan
(

π
2

I1(X)
K1(X)

) . (3.23)

These peaks are the largest when X is the smallest, that is when kF is the closest to
sinα/U0. Their amplitude decreases as X increases. This means that for a fixed value of
kF , the amplitude of the peak decreases as F decreases, as observed in figure 11.
In summary, when F is small, we have shown that ∆c (and thus also vmax) reaches its

largest values when kF is slightly below sinα/U0, that is when the critical point is close
to the wall. When kF > 1, a phenomenon of resonance and anti-resonance is observed
generating large fluctuations of ∆c as F is varied. This phenomenon directly affects the
maximum transverse velocity vmax which is proportional to ∆c [see (3.14) and (3.15)].
For large F , we have seen that the largest values of vmax are obtained when kF is slightly
above sinα, that is when the critical point is far away from the wall.
Note however that when F is of order 1, V remains O(1). In that case, all the corruga-

tion wavenumbers k satisfying (sinα)/F < k < (sinα)/(U0F ) are thus expected to give
a large transverse flow response.

4. Conclusion

In this paper, we have presented some numerical and theoretical results on the internal
waves generated by a sinusoidal topography on an inclined bottom. The velocity profile
U∗(z∗) has been chosen as an hyperbolic tangent profile, with a sliding velocity at the
bottom. The inclination of the bottom has been found to create a large transverse velocity
at the distance to the wall where the frequency of the topographic forcing k∗U∗(z) is
equal to the transverse buoyancy frequency N∗ sinα (in dimensional units). We have
shown that this large amplitude is associated with a critical layer singularity of the
inviscid solution. We have also shown that the solution can be regularized by performing
a viscous critical layer analysis. An analytic solution has been obtained and found to be
in good agreement with the numerical results. The maximum transverse velocity has been
shown to be larger by a Re1/3 factor - the normal velocity generated by the undulation at
the wall. Interestingly, the transverse velocity has also been found to exhibit well-defined
peaks associated with a quasi-resonance phenomenon for specific values of the Froude
number when kF is larger than 1 and close to sinα/U0.

The analysis has been based on the hypothesis that the fluid slides on the
boundary with a constant velocity. This sliding velocity guarantees that a
non-negligible normal velocity is created by the undulations. This hypothesis
implicitly assumes that the size of the undulations is larger than the viscous
sublayer width. Note in particular that if the undulations were within the
sublayer (h ≪ Re

−1/3), the normal velocity would scale as O(Re
−1/3) and the

maximum transverse velocity would then not be that large.
The present study demonstrates that the interplay between undulation and tilting

could have a strong impact on the dynamics of stratified boundary layer flow. A small
deformation on a weakly inclined bottom can generate a large transverse flow. This trans-
verse flow is O(Re

1/3) larger than the sliding velocity and localized in a O(Re−1/3)
layer. For large Reynolds numbers, it therefore induces a strong transverse shear which
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may become unstable with respect to the Kelvin-Helmholtz instability. Such a mecha-
nism has been observed in the dynamics of a tilted vortex (Boulanger et al. 2008). We
suspect that it could be active in the boundary layer.

Note also that nonlinear effects are expected to arrive first in the critical
layer. In particular, the critical layer is expected to become nonlinear as
soon as the amplitude of the transverse velocity reaches Re

−1/3. It would
therefore be interested to pursue the analysis in the nonlinear regime using
the framework of the nonlinear critical layer theory (Benney & Bergeron
1969; Haberman 1972).

The present mechanism of mixing is expected to be in competition with the mixing
induced by the boundary layer instabilities on a flat wall. At least, two types of instability
are expected to be present on a tilted wall for large Reynolds numbers: the viscous
boundary layer instability associated with Tollmien-Schlichting modes (Wu & Zhang
2008a), the radiative instability which is inviscid in nature and present only if the wall is
inclined (Candelier et al. 2012). The conditions of appearance of these two instabilities in
the parameter space (α, F,Re) are only partially known (Bai 2012) but both instabilities
are expected to be present for the large Reynolds numbers of geophysical flows. It would
thus be interesting to simulate a configuration where one of these instabilities is also
present.

For very high Reynolds numbers, we expect the boundary layer to become
turbulent. Yet, it is possible that the present mechanism could still be active
in this regime. Indeed, a similar analysis can a priori be performed with a
mean turbulent boundary layer profile and a turbulent eddy viscosity and it
would lead to the same conclusion.

The phenomenon could then be present in real geophysical flows. For in-
stance, taking values from the continental slope in Besio et al. (2004), the
mean current flows velocity is 0.07 cm/s, the boundary layer thickness esti-
mated at 10 m, the mean Brunt-Väisälä at frequency measured at N = 0.024
(van Haren & Howarth 2004), we obtain F = 0.29. For U0 = 0.1 and a tilt
angle close to tilted with an angle α = π/90 the present results tell us that all
the corrugation wavelengths larger than 73 m will generate a response with
a critical layer and therefore will be a source of transverse flow. Note that
the wavelength of sand waves studied in Besio et al. (2004) appear to have a
threshold close to a 100m and height between 1 and 10 m, which is consistent
with the present study.

For a stably stratified atmospheric boundary layer flow, if we take the values reported
by Frehlich et al. (2008), that is a nocturnal wind of velocity 10 m/s with a boundary layer
thickness 100 m in a stable stratification with a Brunt-Väisälä frequency equal to 0.03
rad/s, we get F = 3. On a slope of 10 degrees (if U0 is still equal to 0.1), we therefore
expect all the corrugation wavelengths larger than 60 m to be active. For both cases,
the Reynolds number is so large (Re = 106 and Re = 108 for the current and the wind
respectively) that even small corrugation amplitudes (of the order of 10% of the boundary
layer thickness) generate transverse flows of the order of the mean flow (assuming ∆c of
order unity). Moreover, these flows are present in a very thin layer, which leads to strong
transverse shears 2 orders of magnitude larger than the mean shear of the boundary
layer. These shear layers are probably unstable by the Kelvin-Helmholtz instability and
a non negligible source of mixing in the boundary layer.
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Appendix A. Small F analysis of the equation for w̃

In this section, we provide an asymptotic analysis in the limit of small F of the solution
to equation (3.8). Our objective is to obtain an estimate of the ratio ∆c = |w̃c/w̃0|
appearing in expression (3.15).
We assume that sinα/(kF ) = O(1) such that we can define the O(1) parameter

α1 = sinα/(kF ). (A 1)

We also assume that there exists a critical point zc (different from the wall boundary)
defined by

U(zc) = α1. (A 2)

This implies that α1 satisfies Umin < α1 < Umax, that is

sinα < kF <
sinα

U0
. (A 3)

A.1. WKBJ analysis

When F ≪ 1, (3.8) reduces to

w̃′′ −
(

1− k2F 2U2

F 2(α2
1 − U2)

+O(1)

)

w̃ = 0. (A 4)

This equation is adequate for a resolution using WKBJ methods (see, for instance, Bender
& Orszag 1978). Far from the critical point, the solutions can be written at leading order
as

w̃ ∼ Aβ−1/4 exp

(

1

F

∫ z

zc

√

β

)

+Bβ−1/4 exp

(

− 1

F

∫ z

zc

√

β

)

, (A 5)

where

β(z, kF ) =
1− (kF )2U2

α2
1 − U2(z)

. (A 6)

Between 0 and zc, β is positive, so the solution is of exponential type. In this interval,
the solution will then be dominated by one of the exponentials. It will be convenient to
write it as

w̃ ∼ w̃(0)

(

β(0)

β

)1/4

exp

(

− 1

F

∫ z

0

√

β

)

. (A 7)

By contrast, in the outer interval (zc, z∞), the solution is oscillatory and can be written
as

w̃+ ∼ A(−β)−1/4 exp

(

i

F

∫ z

zc

√

−β

)

+B(−β)−1/4 exp

(

− i

F

∫ z

zc

√

−β

)

. (A 8)

If kF < 1, the solution is oscillatory up to infinity (z∞ = ∞): it must be an outgoing wave
(as required by causality) which imposes B = 0. If kF > 1, z∞ is a finite location defined
by kFU(z∞) = 1. The solution becomes evanescent again after the turning point z∞.
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The condition of matching of an oscillating solution and an evanescent solution across a
turning point is classical (see Bender & Orszag 1978). It gives the condition:

B = −iA exp

(

2i

F

∫ z∞

zc

√

−β

)

. (A 9)

In the following, we write B = K± A where K− and K+ correspond to the constant
when kF < 1 and kF > 1 respectively. We do not consider the special case kF = 1 for
which the turning point is at infinity.
The WKBJ approximations are not valid close to zc. If F 2Re1/3 ≫ 1, the region

|z − zc| = O(F 2) is far away from the critical layer. In this region, w̃ is still given by
(A 4) which now reduces at leading order to

w̃′′ +

(

cos2 α

2F 2α1U ′
c(z − zc)

)

w̃ = 0. (A 10)

This equation admits the general solutions

w̃ = a+
√
z̃J1(

√
z̃) + b+

√
z̃Y1(

√
z̃) for z̃ > 0, (A 11a)

w̃ = a−
√
−z̃I1(

√
−z̃) + b−

√
−z̃K1(

√
−z̃) for z̃ < 0, (A 11b)

where

z̃ =
2 cos2 α

F 2α1U ′
c

(z − zc). (A 12)

The matching with the WKBJ approximations requires

a− =

√

2πα1U ′
cF

cosα(α2
1 − U2

0 )
1/4

w̃(0) exp

(

− 1

F

∫ zc

0

√

β

)

, (A 13a)

a+ =

√

2πα1U ′
cF

2 cosα
e3iπ/4(1 + iK±)A, (A 13b)

b+ =

√

2πα1U ′
cF

2 cosα
e−3iπ/4(1− iK±)A. (A 13c)

The solutions (A 11a,b) are not regular at zc. Close to zc, (A 11a,b) expand as

w̃ ∼ a+
z̃

2
− 2b+

π

(

1− z̃(ln(z̃)− 2 ln(2)− 1 + 2γ)

4

)

, for z̃ > 0, (A 14a)

w̃ ∼ −a−
z̃

2
+ b−

(

1− z̃(ln(−z̃)− 2 ln(2)− 1 + 2γ)

4

)

, for z̃ < 0. (A 14b)

This critical layer singularity can only be smoothed by introducing viscous effects. How-
ever, this is not necessary for obtaining the relations between a−, b− and a+, b+. Indeed,
when F 2Re1/3 ≫ 1, the solution is expected to remain regular on a contour that avoids
the singularity in the lower complex z̃-plane. This condition means that (A 14b) should
correspond to (A 14a) where −z̃ has been changed into z̃e−iπ in the logarithm. This
yields the following conditions:

b− = − 2

π
b+, (A 15a)

a− + a+ = − iπ

2
b−. (A 15b)

Note that these conditions could have been directly obtained by requiring (A 11a) to be
valid for −π 6 arg(z̃) 6 0. This would have implied that (A 11a) is valid for negative z̃
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with
√
z̃ defined as −i

√
−z̃ for negative z̃. The equations (A 13a-c) and (A 15a,b) give a

relation between w̃(0) and w̃(zc) = b− which can be written as

w̃(zc) = w̃(0)Ko±

√
F exp

(

− 1

F

∫ zc

0

√

β

)

, (A 16)

where Ko± is a constant independent of F :

Ko± =
(1− iK±)

√

2πα1U ′
c

π(α2
1 − U2

0 )
1/4 cosα

eiπ/4. (A 17)

Expression (A 16) demonstrates that |w̃c/w̃0| is in general exponentially small. There is
an important exception which occurs when zc is close to the wall.

A.2. Special case of the critical point close to the wall

We are going to see that large values of |w̃c/w̃0| can be obtained when zc = O(F 2). This
condition requires that α1 − U0 = O(F 2), such that

zc ≈ (α1 − U0)/U
′
0 = (α1 − U0)/(1− U2

0 ). (A 18)

The local solution is then valid between 0 and zc and can be written for z̃ < 0 as

w̃ = (1 + iK±)
√
−z̃J1(−i

√
−z̃) + i(1− iK±)

√
−z̃Y1(−i

√
−z̃). (A 19)

Therefore the ratio ∆c = |w̃(z̃c)/w̃(0)| satisfies

∆−
c =

2

πX |J1(−iX) + iY1(−iX)| when kF < 1, (A 20a)

∆+
c =

2

πX |J1(−iX)/tanΦ + Y1(−iX)| when kF > 1, (A 20b)

where

Φ =
1

F

∫ z∞

zc

√

−β, (A 21a)

X =
√

−z̃c =

√

2(α1 − U0) cos2 α

(1− U2
0 )

2F 2α1
. (A 21b)

The functions ∆±
c can also be written as

∆−
c =

1

X
√

[K1(X)]2 + π2[I1(X)]2
, (A 22a)

∆+
c =

1

X
√

[K1(X) + π
2tanΦI1(X)]2 + π2

4 [I1(X)]2
. (A 22b)

When kF < 1, the maximum of ∆−
c is ∆−

cmax ≈ 1.1, reached for X ≈ 0.42; when kF > 1,
the maximum of ∆c is not bounded. For a fixed X, its maximum value, reached when

tanΦmax = −π

2

I1(X)

K1(X)
, (A 23)

is

∆+
cmax(X) =

2

πXI1(X)
. (A 24)

This maximum diverges as 4/(πX2) for small X. For a fixed Φ, ∆+
c exhibits a maximum
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Figure 12. Function ∆c = |w̃(z̃c)/w̃(0)| versus X. The solid black line is ∆−

c
(X), that is for

kF < 1. The solid red line is ∆+
cmax(X) (maximum value of ∆+

c
over all Φ for kF > 1). The

dotted lines are ∆+
c

for Φ = π/2 (green), Φ = 2π/3 (blue) and Φ = 5π/6 (red).

for a value Xmax smaller than 0.73. This maximum is the largest when Φ is slightly below
a multiple of π. In that case, Xmax is very close to 0. On the opposite, when Φ is exactly
equal to a multiple of π, the function ∆+

c vanishes for all X > 0.
The function ∆c is plotted for both cases kF < 1 and kF > 1 in figure 12.
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