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SUMMARY 
The displacement field of an elastic transversely isotropic medium due to a harmonic force, 
located at one point of an infinite 3-D space, is given in this paper. The Kupradze method 
allows the number of unknown displacement functions to be reduced to only one potential 
scalar function and permits an analytical solution in Hankel space. 
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1 INTRODUCTION 

To solve wave problems, boundary methods have 
increasingly been used in elastic isotropic media and more 
recently in anisotropic media. But this approach is 
dependent on progress being made in our knowledge of 
fundamental solutions which are trivial for the isotropic 
case, but partly known or non-existent in more complicated 
media. It is remarkable, for instance, that even in the simple 
case of a transversely isotropic medium no general 
fundamental solution exists. 

Several authors have made partial approaches to this 
problem. Kraut (1963) gives Green displacement functions 
at a distance from the force source using an infinite number 
of plane waves. Other authors (Mikhailenko, Martinov & 
Mikhziilenko 1984) give a numerical-analytical solution at 
any distance from the source for a vertical force, an 
explosion and a dipole, using separate variables and the 
finite-difference method. More recently, Ha (1986) gives 
elaborate algorithms for far-field wave computations in the 
case of a layered or transversely isotropic medium. 

The aim of this article is to obtain general fundamental 
solutions or so-called Green's functions which give the 
response at any point of an infinite transversely isotropic 
elastic medium to a harmonic point force source. 

In the next section fundamental dynamic movement 
equations are recalled in the frequency space and in a 
transformed geometrical space. In Section 3, the Kupradze 
method is developed, giving the displacement scalar potential 
in this transformed geometrical space. In Section 4 the 
analytical solution in Hankel space is given, using an inverse 
Fourier transform with respect to the anisotropy axis.  This is 
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followed by a brief overview of methods for returning to the 
original space. 

2 EQUATIONS OF MOTION 

In principal axes i,, iz,  i, of a transversely isotropic medium 
with axis i, giving the direction of anisotropy, the balance of 
momentum and elastic stress-strain relations are given, 
after a time Fourier transform, by: 

0.. t2.I . = -pw2u. t i  - F. (2.1) 

c,, c,, Cl ,  0 0 0 ell 

c12 c13 cll c13 c13 '33 1 i] 0 0 o c , o  0 
0 0 0 o c , o  
0 0 0 0 O C W  e12 

Cl,  = c,, + c,, 

where uij are the components of the stress tensor a, ui the 
components of the displacement u in the frequency space, eij 
the components of the strain tensor e, o the pulsation, p the 
mass density, cI1 to c- the elastic constants of the 
transversely isotropic medium and F; the components of the 
mass force F. 

The displacement field u(x, w) at point x (xl, xz, x g )  is a 
solution of the differential equation 

2' is the differential operator of components zij given by 
Table 1 or under a symbolic form as follows, with 
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Table 1. Differential operator 2. 

i ,  j ,  k, m = 1, 2, 3: 

= [('11 - ic66)(6i l  + 6i2) (6 j l  + 6j2)6ik6jrn 

+ icM56ij(6il + hi2)('kl + 

+ $c446ij(6i16k3 + 6i26k3 + 6i3(6k1 + 6k2))skm 

+ (c13 + $c44)(6i3(6jjl + 6 j 2 )  + 6j3(6i1 + 6i2))6ik6jrn 

+ c336i36j3ak3am3] axm + pw26ij, 

with 6,  the Kronecker symbol (=1 only for i = j ) .  
Green's function ukj represents the displacement com- 

ponent in direction k due to a Dirac force of pulsation w, in 
direction j ,  which may be placed, in view of some half-space 
problems and without reducing generality, at point 
P(0, 0, c). It is given by: 

%kukj = 6ijA(O, 0, C) ' f (w),  (2.4) 

where z i k  are the components of operator 3 and A the 
Dirac function. 

In order to solve analytically the differential equation 
(2.4) for a given force, in direction j ,  a 3-D Fourier 
transform is used, vector x becoming vector 5 and 
displacement components ukj becoming uEj according to the 
transform formula (2.5): 

+m 

uzj = 111 ukj exp (-ix . E )  d ~ .  (2.5) 
-m 

Then equation (2.4) becomes: 

6e:urZ, = 6, exp (-icE3)f(w), (2.6) 
where 3: are the components of the algebraic operator 
given in Table 2. 

Table 2. Algebraic operator S*. 

3 DISPLACEMENT FIELD IN THE 3-D 
FOURIER TRANSFORMED SPACE 

Equation (2.4) shows that six functions uk, are unknown, the 
operator 3 i k  being symmetrical. Kupradze gives a method 
(Kupradze 1979) for finding out these functions using one 
scalar potential function q ( x ,  w )  defined by the following 
expression: 

ukj = 3 g . q  (3.1) 

in which the operator 3+ is the differential operator (3 x 3) 
given by the cofactors of 2. In the case of a tranversely 
isotropic medium, operator 3+ is given in Table 3. 
Equation (2.4) becomes: 

(3i,$t?g.)q = (6,  det 3 ) q  = 6,A(O, 0, c )  . f ( w ) .  

(det 3 ) q  = A(0, 0, c )  -f(o). 

(3.2) 

Hence, 

(3.3) 

The 3-D Fourier transform of equation (3.3) leads to: 

(det 3* )q*  = exp (-icE3)f(w). (3.4) 

This determinant det 2* is an algebraic function of 
E l ,  E 2 ,  E3 and may be developed according to E3 as follows: 

{A& + BE$ + C} (3.5) 

with the following coefficients: 

c33c44 A = -  
2 

c = * 5 4  - [ C l 1  + - E2pw2 + p2w4, 
2 c-l 2 

where E2 = 2jf + Ef. 
Such a determinant is analogous to the left member of the 

classical Christoffel equation, the wave number k in the 
direction of propagation parallel to the vector ( E l ,  e2, E 3 )  
being given by k2 = 5: + E: + 5;. 

The algebraic solution of equation (3.4) is: 

Using a 3-D Fourier transform on operator 2+ given in 
Table 3, it would be possible to obtain the six fundamental 
displacement functions uzj in the transformed geometrical 
space. But to return to the original space, applying inverse 
transformation to q* first, is more convenient, as shown 
below. 
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Table 3. Differential operator X i  

symmetric 

symmetric symmetric 

4 INVERSE TRANSFORMATIONS 

Coefficients of expression (3.5) show a symmetry around E3 
axis for q*(E,, E 2 ,  E3) .  Such a symmetry is not true for 
functions uii but is restored for scalar Kupradze potential q, 
a fundamental property for what follows. When dealing with 
variables x, and x2 a direct Fourier transform F may be 
replaced by a Hankel transform &, using the following 
properties (Bracewell 1965, p. 247, footnote 7): 

F l f ( v G : ) ]  = &[f(r ) ]  x 2 n  with r2 = x: +XI ,  
and with the following expression of the Hankel transform: 

&tf(r)l= cm rf(r)Jo(qr) dr. 

In the case of potential cp this identity becomes, for a given 
value of c3: 
~ * ( E I ,  E2, 53)  = 2 q ' * ( E ,  E 3 )  with E2 = 6: + Ef, (4.1) 

where q'* is the Hankel transform of q ( x l ,  x2,  f 3 ) .  

To return to the geometrical space, an inverse Fourier 
transform acting on 5, is used as a first step to a return to 
the Hankel space; then, in a second step, an inverse Hankel 
transform acting on the variable E is needed. Finally, we 
have to come back to the time space. 

4.1 Fourier inverse transformation on variable 
5,-solution in Hankel space 

Equation (3.5) may be written as follows: 

where the first root is: 

5'---E C M  2 +- 2 p 0 2  
31 - c44 c44 

(4.3) 

and the two others are the roots of a second-degree 
equation. 

Formula (3.6) thus becomes, using identity (4.1) and 
expression (4 .2) ,  

Inverse Fourier transform on variable E 3 ,  according to 
direct transform formula (2.5), is given by: 

Considering E3 as a complex number and integrating 
along a circuit made by the real axis and a semi-infinite 
circle, we obtain: 

q 3 5 ,  x3) = - -- f(o) 
K Ac, 

residues, 

which gives 

(4.6) 

with S;, = Egl and Sif, = E;,. 
This expression takes into account the Sommerfeld 

condition and is written with values of poles in the first 
quadrant. 
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4.2 Hankel inverse transformation on variable &solution 
in original space 

The Potential solution given by an inverse Hankel 
transformation applied to qi*(E, x3) ,  according to variable 
5, at pulsation w, is: 

i f ( w )  q ( r ,  x3)  = - -- 
n Ac,  

The fundamental solutions or Green's functions are finally 
given by: 

U i j ( X 1 ,  x2, x3, 0 )  = 3 ; q ( ( x :  + x Y 2 ,  x3, 01, (4.8) 

where operators 3; are given in Table 3. This approach 
involves numerical derivations of the preceding expression 
of the potential. 

To avoid such additional numerical derivations, an 
alternative method consists in inversing the process of 
integration and derivation, allowing analytical derivations to 
be made before numerical integrations. Of course, the 
number of integrations is higher, and the integrand is 
composed of elementary terms as: 

Different numerical methods have been used to integrate 
similar expressions in the simpler case of an isotropic infinite 
medium. A first method consists in a discretization of the 
integrals according to the discrete wave-number method, 
described, for instance, in Bouchon (1980, 1981) and 
Bouchon & Aki (1977). A second method uses algorithms of 
Fast Fourier Transform (Chapel & Tsakalidis 1985). 

4.3 Time Fourier inverse transform 

In all cases discretizations of the integrals, as described 
above, introduce, when doing a time Fourier inverse 
transform, systematic errors which may be interpreted as the 
effect of periodically located virtual sources added to the 
original source. But if the distance of these sources to the 
original source is large enough, compared with the time 

interval, the attained fields uij(xl ,  x 2 ,  x3,  t )  are the desired 
solutions. 

CONCLUSION 

The solution given in this paper describes the method for 
computing the displacement field in an infinite elastic 
transversely isotropic medium, created by a point force 
source, without any restriction on the distance to the source. 
For each component of the displacement fields, the only 
required numerical computations are one Hankel transform 
and one time Fourier transform. The applications of this 
method are numerous in the field of fundamental geophysics 
but also in seismic engineering. 
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