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Abstract

For trees in tropical forests, competition for light is thought to be a central process that offers opportunities for niche
differentiation through light gradient partitioning. In previous studies, a canopy index based on three-dimensional canopy
census data has been shown to be a good predictor of species-specific demographic rates across the entire tree community
on Barro Colorado Island, Panama, and has allowed quantifying between-species variation in light response. However,
almost all other forest census plots lack data on the canopy structure. Hence, this study aims at assessing whether position-
based neighborhood competition indices can replace information from canopy census data and produce similar estimates
of the interspecific variation of light responses. We used inventory data from the census plot at Barro Colorado Island and
calculated neighborhood competition indices with varying relative effects of the size and distance of neighboring trees.
Among these indices, we selected the one that was most strongly correlated with the canopy index. We then compared
outcomes of hierarchical Bayesian models for species-specific recruitment and growth rates including either the canopy
index or the selected neighborhood competition index as predictor. Mean posterior estimates of light response parameters
were highly correlated between models (r.0.85) and indicated that most species regenerate and grow better in higher
light. Both light estimation approaches consistently found that the interspecific variation of light response was larger for
recruitment than for growth rates. However, the classification of species into different groups of light response, e.g. weaker
than linear (decelerating) vs. stronger than linear (accelerating) differed between approaches. These results imply that while
the classification into light response groups might be biased when using neighborhood competition indices, they may be
useful for determining species rankings and between-species variation of light response and therefore enable large
comparative studies between different forest census plots.
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Introduction

For trees in tropical forests, light is widely believed to be one of

the most limiting resources and trade-offs resulting from differen-

tial responses of demographic rates (recruitment, growth, mortal-

ity) to light availability may contribute to the coexistence of the

large number of tree species in these habitats [1–4]. However,

quantifying how species’ demographic rates change depending on

light availability in hyper-diverse tropical forests is challenging and

previous studies that analyzed the light response of trees in tropical

habitats have yielded contradictory findings. Regarding recruit-

ment, conclusions about species’ light requirements range from

high light dependence for around half of the 320 species in the

tropical rainforest of La Selva, Costa Rica [5] to low light

dependence for .80% of the analyzed 108 species on Barro

Colorado Island (BCI), Panama [6]. However, these assessments

were based on species’ occurrences in gaps vs. non-gaps and high-

canopy sites vs. low-canopy sites, respectively. Concerning growth,

it has been proposed that reversals of growth rankings along the

light gradient could promote species richness [7,8]. But studies on

tropical tree seedlings including few species (,35) also led to

inconsistent results [9–12].

Recently, the degree of interspecific variation in light response

has been quantified across an entire tropical tree community

(.260 species) in a 50 ha forest census plot on Barro Colorado

Island, Panama [13,14]. These studies indicate that between-

species variation in light response is much larger for recruitment

than for growth. While light response of recruitment ranged from

negative to strongly positive, growth rates of nearly all species

increased less than linear with light and growth rankings in high

and low light were highly correlated. Thus, the potential for niche

differentiation through light gradient partitioning is thought to be
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larger for recruitment than for growth. Nevertheless, it was found

that nearly all species regenerate and grow better in higher light

and that for the majority of the species recruitment and growth

rates increase less than linear with light availability [13,14]. It is

unclear whether these findings hold for other forests, or if the

degree of interspecific variation in light response across a

community varies with abiotic or biotic conditions. While abiotic

factors, such as climate and soil composition, alter the availability

of other resources (e.g. water and nutrients), biotic factors like tree

density or canopy transparency additionally have a direct effect on

the average and/or heterogeneity of light availability. Compara-

tive studies covering a range of biotic and abiotic conditions are

needed to answer these questions.

The greatest challenge of such comparative studies is estimating

light availability. While information on demographic rates is

collected by e.g. the Center for Tropical Forest Science (CTFS,

http://www.ctfs.si.edu) or The Amazon Forest Inventory Network

(RAINFOR, [15]) in long-term forest monitoring plots, measuring

light availability at the top of thousands of individual trees in a

heterogeneous forest canopy is extremely labor-intensive. For the

studies at BCI, a canopy index was developed which is based on

canopy census data that report presence vs. absence of vegetation

in six height layers on a 565 m-grid in the census plot [13]. Until

lidar data become widely available, this method is considered to be

a valuable trade-off between time-consuming direct measurements

and a coarse classification of light availability into few categories,

e.g. gap/non gap [16,17]. However, this approach is not applicable

in most forests because few forest plots include high-resolution

measures of canopy structure.

An alternative approach to estimating light availability is using

neighborhood competition indices (NCIs) that are based on

information on the size and distance of neighboring trees. Since

diameter at breast height (dbh) and position are among the most

frequently measured properties in forest census plots [15,18],

neighborhood competition indices enable comparisons among a

large number of forest plots. The dbh can be used as a proxy for

tree height [17,19], which in turn can be used as a proxy for

canopy size and shading [20]. And there is a long tradition of

neighborhood analyses that are based on the dbh and position of

the neighboring trees (e.g. [21–23]). However, we assume that a

canopy index based on three-dimensional censuses of canopy

density is more refined than neighborhood competition indices

because the latter cannot account for asymmetric crowns or

leaning trees.

The objectives of this study are (1) to explore to which degree

information from canopy census data can be replaced by

neighborhood competition indices and (2) to investigate whether

recruitment and growth models using neighborhood competition

indices instead of the canopy index reveal similar patterns of

interspecific variation in light response. Using either the canopy

index or a neighborhood competition index as proxy for light

availability, we compared outcomes of hierarchical models for

recruit numbers and tree growth for .250 tree species on BCI.

Species-specific parameters of these models were estimated in a

Bayesian framework to account for different sources of uncertainty

and to correctly weight data from rare species [24,25]. If the

coefficients of the canopy index and neighborhood competition

indices were highly correlated, the neighborhood competition

indices could be used to determine species rankings and be applied

in comparative analyses among census plots. If estimates of species’

light response of both approaches would additionally fall on a 1:1

line, neighborhood competition indices could replace canopy

census data without a substantial loss of information.

Methods

Study site
We used data from the BCI Forest Dynamics Plot, which was

established in lowland moist forest on Barro Colorado Island, a

former hilltop in the Panama Canal (9u99N, 79u519W). In 1980, a

50 ha rectangular permanent plot (48 ha of old-growth forest and

2 ha of secondary forest) was laid out on the island [26]. Elevation

of the plot is 120–155 m a.s.l., the average annual temperature

and rainfall are 27uC and 2600 mm, respectively. Rainfall is

seasonal with a rainy season from April to November and a dry

season starting in December [27,28]. For a detailed description of

the site see [27]. Barro Colorado Island is managed exclusively for

field research by the Smithsonian Tropical Research Institute

(STRI), which has been granted long-term custodianship over the

island by Panama’s Environmental Authority.

Recruitment and growth data
On BCI, forest censuses were conducted in 1982, 1985 and

every five years thereafter (http://www.ctfs.si.edu, [18]). Census

data include stem diameter at breast height (dbh), xy-coordinates

and species identity of all freestanding woody plants with a dbh of

at least 1 cm. In this study, we used the census intervals 1985–

1990 and 1990–1995, because these are the only two census

intervals with consistent canopy census data for estimating light

availability [14]. To avoid edge effects, we imposed a 30 m margin

along each side of the plot and restricted the analysis to the

9406440 m core region.

We defined recruits as all individuals that were absent in the first

but present in the second census, i.e. all trees that had passed the

threshold of 1 cm dbh during this period. This yielded a total of

31,152 recruits of 253 species in the first, and 16,856 recruits of

231 species in the second census interval. We divided the census

plot into 565 m grid cells and determined the number of recruits

for each grid cell and each species.

Growth rates were defined as the dbh increment of a stem

between two censuses divided by the time elapsed (mm/yr). For

trees with multiple stems, we used only the single largest stem and

we excluded cases where a tree survived but its stem was measured

at a different position, or where one stem broke so a resprouted

stem of the same tree was measured; palms were excluded due to

lack of secondary growth. This resulted in growth records for

135,788 trees of 264 species in 1985–1990 and 139,625 trees of

268 species in 1990–1995. Because dbh was rounded down to the

nearest 5 mm for all stems ,55 mm in 1985 but not in 1990, it

was necessary to round 1990 dbh values below 55 mm down as

well before calculating growth rates over 1985–1990; no rounding

was done after 1985 [14]. Rounding down may bias growth

estimates of small stems, but [29] showed that this bias is minimal.

Canopy index
Canopy index values (CAI) were taken from Rüger et al. [13,30]

and represent the average of yearly estimates over one census

interval (1985–1990 or 1990–1995). The calculation of the canopy

index relies on canopy census data which reported presence vs.

absence of vegetation in six height intervals (0–2, 2–5, 5–10, 10–

20, 20–30 and $30 m) every 5 m across the plot. These data were

used to calculate a shade index for any focal point in the plot as a

weighted sum of vegetation above the point and ,20 m away.

The shade index was then converted into an estimate of light

availability by matching the distribution of shade estimates at 2 m

height with a published distribution of irradiance at 1 m height

that was based on 396 direct measurements on a nearby site on

BCI in 1993 [31]. For details see [13,30]. For recruitment models,

Neighborhood Indices as Proxies for Light
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the canopy index was calculated for the center of each 565 m grid

cell at 2 m height, because each recruit must have surpassed that

height during the recruitment census interval. Given that the

canopy census was performed with a resolution of 565 m, we

assume that there is little variation in estimated light availability

within grid cells. For growth models, the canopy index was

calculated for the top of the crown of each individual tree. The

height of the tree was estimated as a function of its dbh [30].

Neighborhood competition indices
To approximate the competition for light by neighboring trees,

we used distance-dependent neighborhood competition indices

(NCIs). These indices are based upon the traditional assumption

that the competitive pressure a tree experiences can be described

as a function of the size and distance of neighboring trees (e.g.

[21,22,32]). We used the equation

NCIi~
X

n

j~1

dbhaj

dist
b
ij

,

where dbhj is the dbh in cm of one of n neighboring trees within a

30 m radius and distij the distance to the focal point i in m, while a

and b are parameters which describe the weighting of tree size and

distance, respectively [33]. For grid cells, the neighborhood

competition index was calculated for the center of the 565 m

grid cell, whereas for individual trees their discrete position was

used. Since we were interested in competition for light, we

considered only trees taller than the focal tree as neighbors. We

systematically varied a and b from 0 to 3 in steps of 0.2, which

resulted in 256 different neighborhood competition index values

for a given focal point. This is a rather large range given that most

neighborhood competition indices use values of a between 1 and 2

and values of b between 0 and 1 [21,32,34–37] and that a=3 or

b=3 result in eight-fold increase of the shading effect when the

dbh is doubled and an eight-fold decrease of the shading effect

when the distance to the focal tree is doubled, respectively. In

contrast to the canopy index which integrates information on the

canopy structure over five years by averaging shade estimates from

yearly canopy censuses [13,30], the neighborhood competition

indices are calculated from census data in the first year of the forest

census interval (1985 or 1990).

The canopy index was lognormally distributed, while the

neighborhood competition indices were normally distributed, so

we log-transformed the canopy index but not the neighborhood

competition indices. For grid cells (recruitment) and individual

trees (growth), we selected the neighborhood competition index,

i.e. the combination of a and b, which had the highest correlation

(Pearson’s r) with the log(canopy index) across both census

intervals to model recruit numbers and growth rates in subsequent

analyses. Our goal was to compare models of demographic rates

with either the canopy index or the selected neighborhood

competition index as predictor and to evaluate how close

parameters of alternative models are to a 1:1 relationship.

Therefore, we converted the neighborhood competition index

into the log(canopy index) to obtain a similar range of light

estimation values for the models to allow a direct comparison of

parameters.

The conversion was done using quantile regression to approx-

imate the median of the log(canopy index) at a given neighbor-

hood competition index rather than the mean, because this

method is less sensitive to outliers. Since the relationship between

log(canopy index) and the neighborhood competition index was

linear for grid cells (recruitment), but non-linear for trees (growth),

we included an additional quadratic term into the regression for

trees:

log CAIð Þ~a:NCI (recruitment),

log CAIð Þ~a:NCIzb:NCI2 (growth):

The intercept was forced to be zero because the absence of taller

trees in the neighborhood (neighborhood competition index = 0)

should refer to 100% irradiance (canopy index = 1, log(canopy

index) = 0). We fitted interval-specific regressions as well as a

general regression pooling data of both census intervals. The

coefficients of the regressions were used to determine the interval-

specific transformed neighborhood competition index (NCIts) and

the general transformed neighborhood competition index for both

intervals (NCItg). For comparison, we also ran models including

raw untransformed neighborhood competition index values.

Recruitment model
In modeling light response of recruit numbers in 565 m grid

cells, we followed [13]. We used a power function (linear log-log

relationship) to describe the relationship between the predicted

number of recruits of species j in grid cell i (predij) and light:

log predij
� �

~arjzbrj : log lightið Þ:

To compare the two indices, the term ‘log(lighti)’ represents

either the log(canopy index), the transformed neighborhood

competition indices (NCIts or NCItg) or the untransformed

neighborhood competition index. All predictors were centered.

The parameter brj describes the species-specific light response of

recruitment, and since the equation above is equivalent to

predij~e
arj : lightið Þbrj ,

brj,0 indicates a negative response of recruitment to light, whereas

0,brj,1, brj=1 and brj.1 indicate a decelerating, linear or

accelerating response to light, respectively. This interpretation of

brj only holds if the term ‘log(lighti)’ refers to the log(canopy index)

or the neighborhood competition indices that are transformed into

the log(canopy index), but not for the untransformed neighbor-

hood competition index.

As there are other factors, apart from light, that lead to a spatial

clustering of recruit numbers, such as the distribution of seed trees,

heterogeneous seed dispersal or heterogeneous soil conditions [38–

41], we used a negative binomial distribution with the species-

specific clumping parameter kj to account for overdispersion of

recruit numbers:

obsij*NegBinomial predij ,kj
� �

,

where obsij is the observed number of recruits of species j in grid

cell i.

As Rüger et al. [13] showed that both ar and br may vary in a

systematic way with the abundance of a species, we modeled

species parameters as a function of abundance (abun), i.e. the

number of individuals of a species in the plot at the beginning of a

census interval:

Neighborhood Indices as Proxies for Light
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arj*Normal ar1zar2: log abunj
� �

,sra
� �

,

brj*Normal br1zbr2
: log abunj

� �

,srb
� �

:

The standard deviations sra and srb describe the interspecific

variation of the parameters arj and brj at a given abundance. As we

did not have prior knowledge of the parameter kj and the

hyperparameters, we used uninformative flat priors:

ar1, ar2, br1, br2*Normal 0, 100ð Þ,

sra, srb*LogNormal 0, 1ð Þ,

kj*Uniform 0, 100ð Þ:

We chose an upper bound of 100 for kj, because for kj.10, the

negative binomial already approximates a spatially homogeneous

Poisson distribution [42].

We computed the posterior distributions of the parameters and

hyperparameters with a Markov chain Monte Carlo method that

it is a hybrid of the Metropolis Hastings algorithm and the Gibbs

sampler [25,43]. The step size was adjusted during the burn-in

phase in such a way that acceptance rate was kept around 0.25

[43]. We ran two chains with different initial values and monitored

convergence with Gelman and Rubin’s convergence diagnostics

where values ,1.1 indicate that the chains have converged well

[44]. We used a burn-in period of 1000 steps and a sampling

period of 6000 steps, because parameters and hyperparameters

only needed 500 to 800 iterations to converge. All analyses were

performed using the Software package R version 2.15.1 [45]. The

R code for the hierarchical Bayesian model for recruitment can be

found in Appendix S1.

Growth model
In modeling growth, we followed [14]. We fit a two-level

hierarchical model in which individual tree growth was a species-

specific function of light availability and initial dbh, and species-

level parameters were predicted by the species’ abundance. At the

core of the model is the functional relationship predicting the

absolute dbh growth rate (mm/yr) of individual i of species j (predij)

as a power function of light availability and initial dbh,

log predij
� �

~agjzbgj : log (lighti)zcj : log (dbhi),

where parameters agj, bgj and cj describe the intrinsic growth rate

and the light and size response of growth of species j, respectively

[14]. Again, to compare the two indices, the term ‘log(lighti)’ either

represents the centered log(canopy index), the transformed and

centered neighborhood competition indices (NCIts or NCItg) or

the untransformed and centered neighborhood competition index.

The dbh was centered on 50 mm dbh. As in the model for

recruitment, the parameter bgj describes the species-specific

response of growth to light availability from negative to

decelerating, linear and accelerating increase, represented by

bgj,0, 0,bgj,1, bgj=1 and bgj.1, respectively. We included the

dbh into the model because tree size significantly affects tree

growth in many species [14].

Process error, i.e. variation of growth at a given light availability

and dbh, was modeled using a lognormal distribution

trueij*LogNormal predij ,dj
� �

,

where trueij is the estimated true growth rate of tree i. The process

error (dj) was estimated for each species. Using a lognormal

distribution, the process error automatically scales with predicted

growth. The process error (dj) was assumed to vary lognormally

across the community with hyperparameters d1 and d2:

dj*LogNormal d1, d2ð Þ:

Data entered our model as the observed annual dbh growth of

individual i of species j (obsij, mm/yr) and were assumed to be

subject to measurement error. We used previous estimates of two

types of measurement error: Routine error caused by a slightly

different placement of the callipers or tape measure, and large

error caused by missing a decimal place or recording a number

with the wrong tree. These were modeled as the sum of two

normal distributions [14,46]. Thus,

obsij* 1{fð Þ:Normal trueij ,
SD1

inti

� �

zf :Normal trueij ,
SD2

inti

� �

,

with SD1 describing the size-dependent error component and SD2

the size-independent error component affecting f=2.7% of the

observations. Standard deviations have to be adjusted to the time

period elapsed between the two dbh measurements of the tree (inti)

from which the annual growth rate has been calculated.

As for recruitment, species’ parameters were modeled as a

function of a species’ abundance:

agj*Normal ag1zag2: log abunj
� �

,sga
� �

,

bgj*Normal bg1zbg2
: log abunj

� �

,sgb
� �

,

cj*Normal c1zc2
: log abunj

� �

,sc
� �

:

As we did not have prior knowledge about the distribution of

the hyperparameters, we used uninformative flat priors:

ag1,ag2, bg1,bg2, c1,c2*Normal(0, 100):

The posterior distributions of all parameters were computed

using ‘‘Filzbach’’, a software library for performing Metropolis

Hastings Markov chain Monte Carlo parameter estimations

(http://research.microsoft.com/en-us/projects/filzbach/). We

used Filzbach because the growth model required a much longer

computation time than the recruitment model, and Filzbach runs

much faster than R. As we did not define priors for sga, sgb, sc, d1
and d2, Filzbach automatically imposed an uninformative prior

distribution for these parameter values. The code can be found in

Appendix S2.

Neighborhood Indices as Proxies for Light
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In contrast to the parameter estimation for the recruitment

model where in each iteration all parameters were updated

sequentially according to the conditional probability distribution,

posterior distributions of the parameters of the growth model were

sampled from the joint probability distribution, and in each step

only one parameter was updated. We ran the model with a burn-

in phase of 3 million iterations and a sampling phase of additional

3 million steps. Due to the long computation times, we ran only

one chain with each of the indices (transformed neighborhood

competition indices (interval-specific and general), untransformed

neighborhood competition index and canopy index) and conver-

gence was assessed by visual inspection.

Analysis of results
We computed the mean and the 95% credible intervals (CI) of

the posterior distributions of all parameters in both models, with

the different neighborhood competition indices and the canopy

index for both intervals. We compared the distribution of br and bg
across the community when using the different indices in the

models. For models with the log(canopy index) or the transformed

neighborhood competition indices (NCIts and NCItg) as proxy for

light, species were grouped into different classes of light response

(i.e. negative, decelerating, accelerating) based on the mean

posterior estimate of br and bg as well as based on the 95% CI

(i.e. the entire 95% CI had to be ,0, between 0 and 1, or.1), and

we determined the consistency of those classifications across census

intervals and light estimation approaches.

Results

Recruitment
For grid cells, the correlation between the log(canopy index) and

the neighborhood competition indices was negative in almost all

cases and ranged from 0.004 to 20.69 (Figure 1A, B). Generally,

the canopy index was best predicted with a.1 and b,1. The

correlation was strongest for a=1.6 and b=0.4 in the first, and

a=1.4 and b=0.4 in the second census interval with r=20.69

and r=20.56, respectively. As our aim was to identify a single

combination of a and b to conduct subsequent analyses, we pooled

data from both intervals and identified a=1.6 and b=0.4 as the

overall ‘best’ combination with only a minor loss of correlation for

the second census interval (r=20.55). Quantile regressions

converting the neighborhood competition index into log(canopy

index) tended to underestimate high light conditions and

overestimate low light conditions (Figure 2). Nevertheless, the

range of transformed neighborhood competition index values was

wider than the range of the log(canopy index), because especially

in the second census interval some outliers with very high

neighborhood competition index values were converted to

extremely low log(canopy index) values (Figure 2).

Light response parameters br were highly correlated between

models including the canopy index or the transformed neighbor-

hood competition indices (r.0.85, Figure 3). When using raw

(untransformed) neighborhood competition index values, the

correlations of the light response parameters br were practically

the same as for converted neighborhood competition index values

(r=0.90 in the first and r=0.85 in the second census interval,

Appendix S3). While the parameter estimates of the transformed

neighborhood competition indices and the canopy index were

relatively similar in the first census interval, there was considerable

deviation from a 1:1 relationship in the second census interval,

where br was underestimated by the neighborhood competition

indices, especially for light-demanding species.

The distribution of the posterior means of br across the

community revealed that the majority of the species regenerated

better in higher light (br.0, Figure 4). This result was independent

of the light estimation approach. In the first census interval, the

distributions of br were similar across all light estimation

approaches. However, in the second census interval, the range

of between-species variation in light response was underestimated

by the neighborhood competition indices compared to the canopy

index since higher values of br were underestimated by the

neighborhood competition indices.

Although all light estimation approaches revealed that the

majority of species responded to light in a decelerating manner,

there were differences in classifying light responses into negative

(br,0), decelerating (0,br,1), and accelerating (br.1) responses

(Table 1). The neighborhood competition indices identified more

species with a negative or decelerating response to light and fewer

species with an accelerating response to light than the canopy

index. Additionally, using the canopy index led to more

classifications that were consistent over the two census intervals.

Finally, consistent classifications through neighborhood compe-

tition indices and the canopy index and over two intervals were

made for around 40% of the number of species that had recruits in

both census intervals (n = 220): 3 negative responses, 70 (NCIts)

and 67 (NCItg) decelerating responses and 14 (NCIts) and 13

(NCItg) accelerating responses. When classifications of light

responses were based on the 95% CI instead of the posterior

mean estimate, only between 36 and 56 species could be classified

with the different indices in a single census (Table 1). Consistent

classifications across two census intervals were even rarer.

All light response parameters were significantly negatively

correlated with abundance, indicating that light-demanding

species tend to be rare and that abundant species tend to respond

less to light (Table 2).

Growth
For individual trees, the correlation between the log(canopy

index) and the neighborhood competition indices was negative in

all cases and ranged from 20.01 to 20.84 (Figure 1C, D). Values

of a and b,2 were best to approximate the canopy index and the

combination a=1.2 and b=0.6 yielded the highest correlation in

both census intervals (r=20.84). Quantile regressions converting

the neighborhood competition index into log(canopy index)

tended to underestimate high light conditions and overestimate

low light conditions (Figure 5). Interval-specific and general

regressions were only slightly different, especially in the second

census interval.

Similar to recruitment, the correlation of the posterior means of

bg between models of growth rates with the canopy index and

models with neighborhood competition indices was high (r.0.87,

Figure 6). When using raw (untransformed) neighborhood

competition index values, the correlations of the light response

parameters bg were slightly lower than those obtained with

transformed neighborhood competition index values (r=0.90 in

the first and r=0.85 in the second census interval, Appendix S3).

For the transformed neighborhood competition indices the

deviation from a 1:1 relationship showed a different pattern than

in recruitment models. For 1985–1990, values of bg were

overestimated by the neighborhood competition indices, especially

by the general transformed neighborhood competition index. For

1990–1995, in turn, higher values of bg tended to be underesti-

mated by the general transformed neighborhood competition

index compared to the canopy index, while parameter estimates

with the interval-specific transformed neighborhood competition

Neighborhood Indices as Proxies for Light

PLOS ONE | www.plosone.org 5 December 2013 | Volume 8 | Issue 12 | e81787



index and the canopy index were scattered quite evenly around

the 1:1 line (Figure 6).

Compared to recruitment, responses of growth rates to light

availability showed a less variable pattern of light responses across

the community (Table 3, Figure 7). Posterior means of bg fell

between 0 and 1 for almost all species and light estimation

approaches. Only 24 species were identified to have an

accelerating response to light (general transformed neighborhood

competition index in the first census interval) and only one species,

Piper cordulatum (canopy index), had a negative value of bg in the

second census interval. Therefore, almost all species were classified

with a positive but decelerating response to light, even when

classifications were based on 95% CIs.

As for recruitment, but to a lesser extent, light response of

growth rates (bg) was significantly negatively correlated with

abundance, indicating that light-demanding species tend to be

less common and that abundant species tend to respond less to

light (Table 4).

Discussion

In this study we assessed the ability of neighborhood compe-

tition indices to replace information from canopy census data. We

compared recruitment and growth models that included as

predictors either a canopy index, which was derived from canopy

census data or a neighborhood competition index that was most

strongly correlated with the canopy index. Comparison of

Figure 1. Correlation between log(canopy index) and neighborhood competition indices with different values of a and b. The
correlation is based on the canopy index and neighborhood competition indices (NCIs) for 16,544 565 m grid cells (A, B) and for 135,788 (C) and
139,625 trees (D) in the BCI forest plot. For grid cells, the highest correlation was achieved with a= 1.6 and b= 0.4 in the first, and a= 1.4 and b= 0.4 in
the second census (highlighted). For individual trees, the highest correlation was achieved with a= 1.2 and b= 0.6 (highlighted) in both censuses.
Colors indicate Pearson’s r.
doi:10.1371/journal.pone.0081787.g001
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parameter estimates indicated that species-specific light response

parameters of alternative models were tightly correlated, but that

there was considerable deviation from a 1:1 relation. That is, a

given species would be assigned a similar rank in the community

concerning the strength of its light response, but the specific value

for that light response parameter would generally be different in

canopy index and neighborhood competition index models.

Hence, using neighborhood competition indices to approximate

competition for light seems to be a simple and robust method

when the aim of the study is to compare species rankings or

between-species variation of light responses among different

forests.

Relationship between canopy index and neighborhood
competition indices
The parameters of the neighborhood competition index that led

to the highest correlation with the canopy index were a=1.6 and

b=0.4 for recruits and a=1.2 and b=0.6 for individual trees.

These optimal combinations performed well in both census

intervals and indicate that for small trees (recruits) the size of

neighbors is more important for light availability and that

competitive effects decrease less with distance to the focal tree as

compared to larger trees. To resemble the canopy index, our

optimal values of a were between 1 and 2 and thus, between a

linear increase of shading with the dbh (a=1) and a linear increase

of shading with the basal area of neighboring trees (a=2). Since

the canopy area also increases less than linearly with the basal area

(the canopy diameter increases less than linearly with the dbh, e.g.

[47]), we hypothesize that shading is related to canopy area.

Previously, neighborhood competition indices have not been used

to describe explicitly the light conditions, but competition in

general, including below-ground competition and competition for

space [33]. Competitive effects in tropical forests are often

assumed to scale with the basal area of neighboring trees [34–

36], thus the relationship between size and competitive effect is

assumed to be steeper than the relationship between size and

shading we found here.

Regarding the decrease of shading intensity with the distance of

neighboring trees, values of b were between 0 and 1. While b=0

results in no decrease of the shading effect of neighbors with

distance, for b=1 the shading effect is divided by the distance to

the neighboring tree, i.e. the effect is halved when the distance is

doubled. No decrease of overall competition with distance was

assumed by e.g. Gourlet-Fleury & Houllier [37] for neighbors

within 30 m from the focal tree in a tropical forest, whereas e.g.

Hegyi’s index [21] divides the competitive effect of neighbors in

jack-pine stands by the distance.

A study that was conducted in a Puerto Rican forest plot made

use of the same neighborhood competition index equation, but

estimated a and b individually for 11 dominant target tree species

[48]. In that study the neighborhood competition indices were

optimized for predicting growth rates, and species-specific optimal

values of a and b ranged from 1.19 to 2.81 (a) and 0.0001 to 0.86

(b). Average values of a and b across the 11 species were 1.74 and

0.41, and thus similar to the values which here best approximated

the canopy index. These results also indicate that species react

differently to competition in terms of growth. We accounted for

those differences with the parameters of our growth model, while

keeping a and b constant.

While the correlation between the canopy index and the

neighborhood competition index for individual trees was very

similar in both census intervals (r=20.84), the correlation for grid

cells (recruitment) was higher in the first (r=20.69) than in the

second interval (r=20.55). This might be a result of some

extremely high values of the neighborhood competition index for

grid cells in 1990 (Figure 2). In 1985, at the beginning of the first

census interval, the BCI forest was still influenced by the

consequences of an El Niño event in 1982 [49]. There were less

tall trees and more tree fall gaps than in the 1990 census.

Extremely high values of the neighborhood competition index can

arise when there are many tall neighbors in the surroundings of a

Figure 2. Best neighborhood competition index (NCI, a=1.6, b=0.4) versus canopy index (CAI). Lines show quantile regressions to
convert neighborhood competition index (NCI) into an interval-specific estimate of log(canopy index) (NCIts, dashed line) or into a general estimate of
log(canopy index) which is based on pooled data from both census intervals (NCItg, dotted line).
doi:10.1371/journal.pone.0081787.g002
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focal point, i.e. the center of a 565 m grid cell, or when one large

tree is very close to the focal point. In 1985, such a constellation

was less likely than in 1990 because of fewer large trees. This

implies that estimating light with the neighborhood competition

index for arbitrary points in the understorey should be applied

with caution, especially when there are many tall trees.

A major drawback of the neighborhood competition indices

compared to the canopy index is that they estimate the shade a

tree casts, i.e. the geometry of its canopy, on the basis of its dbh,

while the canopy index is based on direct observations of presence

vs. absence of vegetation in six height layers. The allometry

between dbh, height and canopy structure varies among species

(e.g. [47]) and an approach that assumes allometry to be constant

among an entire diverse community could lead to biased results.

Another source of mismatch between neighborhood competition

indices and the canopy index is that canopies are asymmetric and

not centered above the stem base and that they might, for

example, grow toward recent gaps in the canopy layer. Moreover,

the canopy censuses, on which the canopy index relied, were

performed every year during the two census intervals, and data

were integrated over six years, whereas the neighborhood

competition indices are based on one single census. This difference

should also lower the correlation between the neighborhood

competition index and the canopy index.

Figure 3. Species-specific light response of recruitment (br) in models with neighborhood competition index versus canopy index.
Panels show posterior means of br in models with the interval-specific neighborhood competition index (NCIts, A, C) and the general neighborhood
competition index (NCItg, B, D) compared to br in models with the canopy index (log(CAI)). The correlation between the coefficients (r) and the 1:1 line
are indicated.
doi:10.1371/journal.pone.0081787.g003
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Since the regression coefficients of the transformation of

neighborhood competition indices into the log(canopy index)

varied only slightly between the first and second census interval,

we propose that the coefficients of the general regression over both

census intervals might be used to convert values of the

neighborhood competition index into an approximation of light

availability. However, the use of the optimal values of a and b

identified in this study and the application of our transformation

equations in forests with a significantly different structure should

be treated with caution. The forest of BCI has an average basal

area of 32 m2/ha (based on census data from 1985 and 1990), a

canopy height of 33 m and 3 crown layers [45].

Species’ light response and between-species variation
Posterior means of the light response parameters br and bg of the

models with the neighborhood competition indices and the canopy

index were highly correlated (r.0.85) for both processes, growth

and recruitment, and for the interval-specific and the general

Figure 4. Community-wide distribution of the light response of recruitment (br). Light is estimated either with the canopy index (log(CAI)),
the interval-specific neighbordood competition index (NCIts) or the general neighborhood competition index (NCItg). The underlying histogram can
lead to sharp edges of the density plot.
doi:10.1371/journal.pone.0081787.g004

Table 1. Classification of tree species on the basis of their recruitment responses to light availability: negative (br,0), decelerating
(0,br,1) and accelerating (br.1).

Light estimate Census interval Light response of recruitment

defined by posterior mean of br defined by 95% CI of br

negative decelerating accelerating inconsistent negative decelerating accelerating inconsistent

log(CAI) 1985–1990 11 141 101 – 2 33 32 186

log(CAI) 1990–1995 12 107 112 – 2 24 30 175

log(CAI) both 5 92 72 51 1 15 21 183

NCIts 1985–1990 24 143 86 – 5 39 19 190

NCIts 1990–1995 22 186 23 – 5 29 2 195

NCIts both 10 113 15 82 4 17 2 197

NCItg 1985–1990 24 139 90 – 5 37 22 189

NCItg 1990–1995 23 186 22 – 5 30 2 194

NCItg both 10 109 14 87 4 15 2 199

NCIts + log(CAI) both 3 70 14 133 1 7 2 210

NCItg + log(CAI) both 3 67 13 137 1 7 2 210

CAI: canopy index, NCIts: interval-specific transformed neighborhood competition index, NCItg: general transformed neighborhood competition index. Classifications for
both intervals refer to the number of species that had consistent classification over both intervals. The last two lines indicate the number of species that were classified
into the same group by the log(canopy index) and a neighborhood competition index in both intervals.
doi:10.1371/journal.pone.0081787.t001
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transformed as well as for the raw untransformed neighborhood

competition index. Thus, species rankings and between-species

variation in response to light availability were described well by the

neighborhood competition indices, indicating that even untrans-

formed neighborhood competition indices can be used to

determine species rankings when no canopy census data are

available. Potentially, neighborhood competition indices that are

transformed into the log(canopy index) could be used to determine

the mode of light response according to the light response

parameters br and bg. However, classifications of species into light

response groups were found to be rather inconsistent among the

recruitment models for both census intervals. While transformed

neighborhood competition index parameter estimates of br were

quite similar to those obtained by the canopy index in the first

census interval, parameter estimates for the second census interval

were underestimated by the neighborhood competition index,

especially for high light responses. This deviation could be caused

by some extremely high values of the neighborhood competition

indices in the second census interval that led to a wider range of

light estimates compared to the canopy index. This wider range of

light estimates might have been compensated by smaller light

response parameters as compared to canopy index models.

Analogously, for growth the values of the transformed

neighborhood competition indices have a smaller range than the

canopy index in the first census interval and constantly higher

values for the light response parameter bg. The second census

interval, in turn, revealed a different pattern that can not easily be

explained by differences in light estimate distributions. However,

based on the posterior mean of bg, almost all species were identified

to show a decelerating response of growth to light, by the canopy

index models as well as by the neighborhood competition index

models. And the applicability of the neighborhood competition

indices for assessing species rankings and between-species variation

Table 2. Posterior estimates of hyperparameters for the species-specific parameters of the recruitment model.

Parameter Light estimate Intercept Slope (abundance) Standard deviation

(ar1, br1) (ar2, br2) (sra, srb)

1985–1990 1990–1995 1985–1990 1990–1995 1985–1990 1990–1995

Intercept (ar) log(CAI) 210.59 211.34 0.78 0.81 0.97 0.88

Intercept (ar) NCIts 210.53 210.96 0.78 0.77 0.97 0.92

Intercept (ar) NCItg 210.50 210.97 0.77 0.77 0.97 0.92

Light response (br) log(CAI) 1.60 1.99 20.15 20.20 0.67 0.63

Light response (br) NCIts 1.54 1.06 20.16 20.12 0.63 0.39

Light response (br) NCItg 1.59 1.05 20.17 20.12 0.65 0.37

CAI: canopy index, NCIts: interval-specific transformed neighborhood competition index, NCItg: general transformed neighborhood competition index. Models were run
with different light estimates and for two census intervals. All hyperparameters were significantly different from 0 (based on 95% CIs).
doi:10.1371/journal.pone.0081787.t002

Figure 5. Best neighborhood competition index (NCI, a=1.2, b=0.6) versus canopy index (CAI). Lines show quantile regressions to
convert neighborhood competition index (NCI) into an interval-specific estimate of log(canopy index) (NCIts, dashed line) or into a general estimate of
log(canopy index) which is based on pooled data from both census intervals (NCItg, dotted line).
doi:10.1371/journal.pone.0081787.g005
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of light responses is not hampered by those deviations from the 1:1

line, because the correlation is still very high.

Limitations
There are several general problems inherent to such commu-

nity-wide studies irrespective of the approach used to estimate

light. Most important, both measures are surrogates of light

availability, while leaves respond to light itself. As an example, the

canopy index and the neighborhood competition index assume

that crown transparency is the same for all species, although it has

been shown that this is not the case [50].

Another caveat is that both growth and especially recruitment

might respond to light availability over more than five years. For

each census interval, we used data on light estimates that were, in

the case of neighborhood competition indices, based on a single

census and, in the case of the canopy index, integrated over six

years. However, assuming that recruits have a radial growth of

,1 mm/yr, they should on average be 10–20 years old when

surpassing the 1 cm threshold. Thus, the light conditions in only a

narrow time frame of a recruit’s life could be captured, especially

by the neighborhood competition index, and light conditions

under which the seedling established and grew might have been

different from those at the time of the census [51]. Therefore, it

Figure 6. Species-specific light response of growth (bg) in models with neighborhood competition index versus canopy index.
Panels show posterior means of bg in models with the interval-specific neighborhood competition index (NCIts, A, C) and the general neighborhood
competition index (NCItg, B, D) compared to bg in models with the canopy index (log(CAI)). The correlation between the coefficients (r) and the 1:1
line are indicated.
doi:10.1371/journal.pone.0081787.g006
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could be advantageous to include not only the last but also the

penultimate census into the analysis to capture light environments

from five and ten years before recruit data collection.

For the large number of rare species, predictions can only be

made with a considerable amount of uncertainty. However, the

hierarchical Bayesian approach explicitly accounts for that

problem by superimposing a form of variation across the whole

community in the parameter models [24,25]. Moreover, the

Bayesian approach allows calculating the credible intervals for

parameters of every single species, so that uncertainty can be

included in the analysis of model results.

Conclusion
Using information about the three-dimensional canopy struc-

ture or neighborhood competition indices to estimate the species-

specific strength of light response in general yielded slightly

different results. However, given that the ranking of species

regarding their light response is remarkably stable, neighborhood

Figure 7. Community-wide distribution of the light response of growth (bg). Light is estimated either with the canopy index (log(CAI)), the
interval-specific neighbordood competition index (NCIts) or the general neighborhood competition index (NCItg). The underlying histogram can lead
to sharp edges of the density plot.
doi:10.1371/journal.pone.0081787.g007

Table 3. Classification of tree species on the basis of their growth responses to light availability: negative (bg,0), decelerating
(0,bg,1) and accelerating (bg.1).

Light estimate Census interval Light response of recruitment

defined by posterior mean of bg defined by 95% CI of bg

negative decelerating accelerating inconsistent negative decelerating accelerating inconsistent

log(CAI) 1985–1990 0 264 0 – 0 210 0 54

log(CAI) 1990–1995 1 267 0 – 0 191 0 77

log(CAI) both 0 258 0 1 0 183 0 76

NCIts 1985–1990 0 264 0 – 0 179 0 85

NCIts 1990–1995 0 268 0 – 0 225 0 43

NCIts both 0 259 0 0 0 175 0 84

NCItg 1985–1990 0 240 24 – 0 96 0 168

NCItg 1990–1995 0 268 0 – 0 266 0 2

NCItg both 0 239 0 20 0 94 0 165

NCIts + log(CAI) both 0 258 0 1 0 157 0 102

NCItg + log(CAI) both 0 238 0 21 0 85 0 174

CAI: canopy index, NCIts: interval-specific transformed neighborhood competition index, NCItg: general transformed neighborhood competition index. Classifications for
both intervals refer to the number of species that had consistent classification over both intervals. The last two lines indicate the number of species that were classified
into the same group by the log(canopy index) and a neighborhood competition index in both intervals.
doi:10.1371/journal.pone.0081787.t003
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competition indices open the possibility to produce rankings and

estimates of between-species variation in light response for a large

number of forest plots where no canopy census data are available

but where dbh and position of trees are recorded. We believe that

the gain in information by applying this straightforward method to

many more forests largely outweighs the imprecision. Compara-

tive studies might shed light on the nature of light response on a

global scale and reveal possible relationships between light

response and species’ characteristics like functional traits, abun-

dance, or phylogenetic relationship, or plot characteristics, such as

soil, climate, or species richness.
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