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Abstract: Located at the junction between the continental climate region and marine climate region,
the Qilian Mountains have experienced significant climate change. Vegetation phenology in the
Qilian Mountains is sensitive to climate change. However, the response of vegetation phenology to
temperature and precipitation change is still unclear, and the same is true for their interactions. First,
we extracted grassland phenological parameters such as SOS (the start of the growing season), EOS
(the end of the growing season), and LOS (the length of the growing season) from revised MODIS-
NDVI data in the Qilian Mountains during the period from 2000 to 2019. Second, we analyzed change
trends of the phenological parameters, temperature, and precipitation. Furthermore, the effects of
each meteorological element changes and their interaction on multiple phenological parameters
were detected using the GeoDetector method. The result implied that (1) the SOS in most areas
except the northwestern mountain region showed an advanced trend (10 d/10a); the EOS showed
a delayed trend in the southeast (5 d/10a), and an advanced trend (5 d/10a) in the northwest; the
LOS showed an extended trend (10 d/10a) in the southeast, and a shortened trend (5 d/10a) in the
northwest. (2) Compared with a single meteorological element in a single period, the interaction of
temperature and precipitation in different periods had a higher impact on grassland phenology, with
the maximum q-value increasing by about 0.4 for each phenological parameter. (3) The change in the
grassland phenology in the Qilian Mountains was inconsistently complete with climate change in
the spatial distribution. Our research reveals the response of grassland phenology to the interaction
of different meteorological elements in different periods. Compared with a single element, this can
reflect the response of vegetation phenology to climate change more comprehensively.

Keywords: climate change; grassland phenology; Qilian Mountains; GeoDetector; earth observation

1. Introduction

In recent decades, the global climate has undergone significant changes. The United
Nations Intergovernmental Panel on Climate Change (IPCC) pointed out that a global
warming trend has been obvious in the past 100 years, and the surface temperature has in-
creased by 0.85 ◦C on average [1]. Zuo et al. analyzed the monthly average temperature and
precipitation and found that the trend of temperature increase in China has been slightly
higher than the global average by more than 0.25 ◦C/10a since 1970. The change trend
of precipitation is not spatially homogeneous. The Qilian Mountains have experienced
the same significant precipitation increases as Xinjiang, Northeast China, Southeastern
Qinghai-Tibet Plateau, and Eastern China [2]. The Qilian Mountains region is located at
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the transition of multiple climate zones with a unique geographical condition, coupled
with large topography, with complex and large temporal and spatial differences in climate
conditions. Mainly due to the altitude variations in the region, there are significant spatial
and temporal differences in the changes in the meteorological features. To study vegetation
and carbon cycles in the region, the temporal and spatial patterns of the meteorological
elements in the Qilian Mountains must be clarified first [3–5].

In mountainous areas such as Qilian, the climate is the dominant element affecting the
growth and development of vegetation. Climate has profound impacts on the temporal and
spatial patterns of ecosystems [6,7]. Among them, the alpine grassland is the most sensitive
and thus fragile to climate change. Changes in grass phenology, distribution, and growth
status are not only indicators of climate change but also have fundamental impacts on the
carbon cycle, energy budgets, and even watershed hydrology of the entire region [8–10].

Phenology is a periodic phenomenon of plants and animals affected by environmental
elements, such as meteorology, hydrology, and soil [11,12]. Among these, meteorological
elements have the most significant influence. Through the study of phenology, we can
understand the changes in the local climate and their impacts on animals and plants.
As the primary producer of terrestrial ecosystems, vegetation is conditioned by external
environment factors such as light, temperature, and precipitation. It is sensitive to climate
change and can indicate local climate change [13–16]. Since the 1970s, researchers have
completed many studies on the responses of vegetation to climate change. The International
Geosphere Biosphere Programme (IGBP) points out that global climate change is caused by
changes in atmospheric composition, and land use/land cover, and will eventually lead to
biodiversity loss and land desertification [17]. However, some studies with long-term, large-
scale satellite remote sensing monitoring found that the vegetation coverage in the mid-high
latitudes of the northern hemisphere has shown a significant increase in recent decades;
that is, the mid-high latitudes of the northern hemisphere have become “greener” [18].
Kawabata et al. [19] analyzed the change trend of the global normalized vegetation index
(NDVI) and found that the main element affecting the increase in vegetation activity in the
mid-high latitudes of the northern hemisphere is the increase in temperature. Piao et al. [20]
analyzed the relationship between NDVI and climate in China’s temperate grassland. The
study showed that China’s grassland NDVI continued to increase from 1982 to 1999, and
the precipitation of 200 mm in the growing season was the turning point for the growth
of temperate grassland vegetation. Additionally, there was a 3-month lag in precipitation.
Qiao et al. [21] studied the temporal and spatial patterns of vegetation phenology in the
Qilian Mountains and found that the vegetation in the Qilian Mountains have a trend
of SOS advance, EOS delay, and LOS extension. At the same time, with the minimum,
maximum, and average temperature, correlation analysis showed that the SOS and EOS
were triggered more by the maximum temperature than the minimum temperature or
average temperature, and the LOS was significantly positively correlated with the annual
average temperature.

In the past, researchers have usually used linear regression analysis to study the effect
of a single element on vegetation phenology change, or to compare the impact of multiple
factors on phenology change [21,22]. Yang et al. [23] used the redundancy analysis method
to detect the impact of the interaction of climate and human activities on the vegetation
phenology of the Qinghai-Tibet Plateau, which broke through the previous studies that
only focused on the correlation of a single element and comprehensively considered the
interaction of multiple elements. However, the essence of this method is still based on
linear regression analysis. Each piece of data was used as an independent sample without
considering the spatial distribution relationship. By using simple mathematical, statisti-
cal algorithms, regression analysis can reveal the correlation between different elements
quickly and accurately. However, the processes in terrestrial ecosystems are very complex,
and geographic conditions are usually spatially heterogeneous and show a nonlinear dis-
tribution. While linear regression analysis can analyze the relationship between elements
in an efficient and easy way, it will be difficult to analyze the impacts of multi-element
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interactions on the research subjects [24]. If two geographic elements are relatively weakly
correlated at the overall regional scale, this does not mean they are necessarily uncorrelated.
It is possible that there are positive correlations in some parts and negative correlations in
other parts, which together results in a weaker overall correlation in the study area as a
whole. Unlike Independent Identical Distribution (I. I. D.) in classical statistics, the spatial
distribution pattern of spatial features provides us with “excess information” from a geo-
graphic perspective. If a spatial element X has an interpretation of a spatial element Y, then
the spatial distribution of X and Y should also be consistent. Based on the above theoretical
perception, Wang et al. proposed a theoretical spatially statistical analysis approach, which
expounds the use of Spatial Stratified Heterogeneity (SSH) and Q statistical theory to carry
out objective and quantitative stratification analysis of geographic features, and developed
GeoDetector to detect the interpretation degree of different geographic elements and their
interaction with subject geographic phenomena [25–27].

After 2000, MODIS data with higher spatial resolution, more spectral bands, and
shorter revisit periods gradually replaced NOAA-AVHRR and became the main data source
for the remote sensing and monitoring of phenological changes [28]. The production of var-
ious thematic products based on MODIS data is more convenient for relevant research [29].
However, in the high altitudes of the northern hemisphere, there is a cold climate and
snow cover. Picard et al. [30] pointed out that due to the interference of snow cover, the
use of high-resolution satellite remote sensing images to extract vegetation phenology
may create large errors. Based on MODIS MOD-09 data, Liu et al. from the Resource
and Environmental Science Data Center of the Chinese Academy of Sciences (RESDC,
http://www.resdc.cn/, accessed on 1 November 2021) re-executed the fine detection of
clouds, snow, and shadows. At the same time, using benchmark growth synthesis and
optimized interpolation algorithms, the NDVI products produced by the revised methods
can better reflect the true growth process of vegetation [31–34].

Based on the MODIS-NDVI time series products from 2000 to 2019, this study com-
pared various time series fitting functions such as SG smoothing filter fitting, asymmetric
Gaussian fitting and Double-Logistic fitting and selected the one most suitable for veg-
etation in the Qilian Mountains. Using the asymmetric Gaussian fitting method for the
temporal NDVI curve, combined with the dynamic threshold method, we extracted three
remote sensing phenological parameters to reflect the growth status of the grassland in the
Qilian Mountains: the start of the season (SOS), the end of the season (EOS), and the length
of the season (LOS). The linear regression of the long-term series data of each parameter
with time was performed, and the temporal and spatial change pattern of the parameters in
each growing season was analyzed. Then, to reveal the response rules of grassland remote
sensing phenology to climate change in the Qilian Mountains, the geographic detectors
developed by Wang [25–27] were used to quantify the degree of the temperature and
precipitation and their interactions in each month to interpret the changes in remote sensed
phenological parameters over the course of 20 years.

2. Materials and Methods
2.1. Study Area

The Qilian Mountains are located at 35–40◦ N, 93–104◦ E, are about 1000 km long from
east to west, and are about 300 km wide from north to south (Figure 1). Located at the
transition between northeastern Qinghai Province and southwestern Gansu Province, the
Qilian Mountains are composed of mountains and wide valleys paralleling northwest to
southeast, with Altun Mountain in the west and Wushaoling in the east. The mountainous
areas above 4100 m are covered with snow all year round and have the distribution of
modern glaciers. According to the data of the second China glacier catalogue, there are
2684 glaciers, with a total area of 1597.81 ± 70.30 km2 and reserves of about 84.48 km3.
Rivers include Heihe River, Buha River, Shule River, and Yema River, and lakes include
Qinghai Lake, and Hara Lake. The water source of these rivers is mainly ice melt water.

http://www.resdc.cn/
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Figure 1. Geographical background of Qilian Mountains. (a) DEM, river network and location of
study area; (b) mean of annual NDVI Maximum Value from 2000 to 2019.

The terrain is high in the northwest and low in the southeast, with an average elevation
of 3523 m. Its unique geographical location and mountain orientation form the northern
edge of the Qinghai-Tibet Plateau with Altun Mountains, Kunlun Mountains, and other
mountains, blocking the continental dry and cold monsoon, creating a humid monsoon area
in southeast, arid areas in the northwest of China, and the typical diverse climate pattern
in the alpine region of the Qinghai-Tibet Plateau. Most areas of the Qilian Mountains have
a continental climate. This area is the transition zone between arid and semi-arid regions in
China and from the world’s most typical temperate monsoon climate zone to a temperate
continental climate zone. The eastern section of Qilian Mountains is greatly affected by the
southeast monsoon climate, with a relatively humid climate and more precipitation than
the western section. Due to the characteristics of the mountain range and the influence of
the Qinghai-Tibet Plateau on the atmospheric circulation, the climate of the study area can
be divided into two parts: southeast and northwest. The southeast is a temperate monsoon
area, and the northwest is an alpine climate area. In summer, the southeast monsoon
from the Pacific extends northward and westward in the Hexi Corridor, making the area
warm and humid; in winter, the area is cold and dry due to the northwest dry and cold air
currents. The precipitation varies greatly at different times and in different regions. Rainfall
is mainly concentrated in summer in the southeast, and the snow is mainly concentrated
in spring and autumn in the central and western regions, respectively. The precipitation
of the whole region is less in winter. The wind speed in the northwest of the study area
is stronger than that in the southeast. The northwest is affected by the dry and cold wind
from Siberia, which makes the snowfall mainly concentrated in the north of the mountain.
After summer, the southeast of the study area is dominated by the southeast wind from the
Pacific Ocean, which is warm and humid. In winter, it is also dominated by the northwest
wind from Siberia, which is cold and dry.

The vegetation in the Qilian Mountains is dense in the southeast and sparse in the
northwest. The main vegetation in the study area includes grassland, such as alpine
meadow, subalpine meadow, and desertified grassland; woodland, such as shrub, conifer-
ous forest, broad-leaved forest, and mixed forest; and farmland. Among them, grassland
vegetation accounts for about 60% of the total area of the study area, which is the main
vegetation type in the area, and is mainly distributed in river valleys and mountain plains
in the middle and east of the study area, including Stipa and Achnatherum splendens.
Alpine meadows are distributed higher than 3000 m above sea level and include perennial
dwarf wormwood, alpine wormwood, and wormwood. Due to the difference in topog-
raphy, precipitation, and temperature between the east and west of the study area, the
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vegetation coverage has also formed a distinct zonal distribution. From east to west, there
are temperate grasslands, temperate broad-leaved forests, temperate coniferous forests,
alpine shrubs, alpine meadows, alpine grasslands, and alpine deserts.

The environment in the Qilian Mountains is harsh for humans; therefore, the popula-
tion is sparse, and the impact of human activities is relatively trivial. Additionally, limited
by the policy, there is no large-scale grazing phenomenon. The grassland is mainly natural
wild grassland, and there is almost no pasture. The northwest of the study area is unused
land, most of the central and eastern areas are grasslands, and there is a small amount of
forest in the northeast. Only the eastern and northern river valleys and piedmont oasis
areas have a small number of cities and agricultural land with strong human disturbance.
Therefore, this study area can reflect the response of vegetation to climate change under
natural conditions. Especially in recent years, the establishment of the Qilian Mountains
National Park has protected the naturalness of the ecological system and protected the
vegetation in the area from being destroyed by human activities.

The land cover types in some parts of the study area have changed from 2000 to 2019.
Some grassland became woodland, and some unused land became grassland due to natural
ecological succession. This kind of land cover change will lead to significant changes in
remote sensing phenological parameters. This kind of change is not caused merely by
climate change and is not discussed in this study. Additionally, we selected grassland that
has not changed between 2000 and 2019 as the research subject, as shown in Figure 2.

Figure 2. The distribution of remaining grassland in the study area from 2000 to 2018.

2.2. Data Source and Preprocessing
2.2.1. Meteorology Data

A dataset of daily meteorological observation in China (http://data.cma.cn/, accessed
on 1 September 2021) was used to explore the correlation between phenology and mete-
orology. The dataset is derived from nationwide digitalized CLIMAT files from various
provincial meteorological administrations through statistic compilations. This dataset
covers data from basic, reference, and ordinary surface meteorological stations in China
from 1951 to the present, and it includes the daily averages of weather elements, such as
pressure, temperature, precipitation, and wind. The meteorological data from 1 January
2000, to 31 December 2019, including temperature and precipitation of 35 stations in and
near the study area were used (Figure 3). A spatial interpolation [35,36] based on a Gauss
distance weight operator was used to interpolate the meteorology data to raster data of
500 m resolution. The feature of this interpolation method is that it is based on the Gauss
function and considers the influence of terrain on temperature, due to the air temperature
decreasing with an increase in altitude.

http://data.cma.cn/
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Figure 3. Distribution of weather stations.

2.2.2. NDVI Data

This research used the BVI-based revised MODIS-NDVI data, characterized by the
better weakening of cloud and snow interference, produced by the Resource and Envi-
ronmental Science and Data Center of the Chinese Academy of Sciences [31–34], with a
spatial resolution of 0.005◦ and a time resolution of 8 days. The time span is 20 years
from 2000 to 2019, with 46 images per year, totaling 920 images. The nearest method was
applied for image preprocessing, and the original MODIS-NDVI data products of 0.005◦

were resampled to 500 m.

2.2.3. Landcover Data

China multi-period land use and land cover remote sensing monitoring datasets
(CNLUCC) were produced by the visual interpretation of the Thematic Mapper (TM)
images of Landsat [37,38]. The data of 2000, 2005, 2008, 2010, 2015, and 2018 were used in
this study. The remaining grassland in the past 20 years was extracted.

2.3. Methods
2.3.1. Extraction of Phenology

At high altitudes, the NDVI curve of each growth season is asymmetric, where the
NDVI change is more rapid in the early period of the growth season and slower in the later
period. Thus, this study selected the asymmetric Gaussian function for piecewise fitting,
taking the maximum value of NDVI as the midline and fitting the two halves before and
after each vegetation period.

The asymmetric Gaussian function fitting was proposed by Jonsson in 2002 [39]. The
point of this method is to use a combination of piecewise Gaussian functions to simulate
each half of the seasonal growth changes in vegetation. Finally, we connected the Gaussian
fitting curves through a smoothing algorithm to realize the reconstruction of the time series.

The formula is:

f (t) = f (t; c1, c2, a1, . . . , a5) = c1 + c2g(t; a1, . . . , a5) (1)

In the formula, c1, c2 determine the reference plane and amplitude; a1, . . . , a5 are
nonlinear parameters, which determine the shape of the function g(t; a1, . . . , a5).
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Among them:

g(t; a1, . . . , a5) =

 exp
[
−
(

t−a1
a2

)a3
]
, t > a1

exp
[
−
(

a1−t
a4

)a5
]
, t < a1

(2)

In the formula, a1 determines the position of the maximum or minimum with respect
to the independent time variable t; a2 and a3 determine the width and flatness (kurtosis) of
the right function half, respectively; a4 and a5 determine the width and flatness (kurtosis)
of the left function half, respectively.

Based on the data after fitting and smoothing, TIMESAT software was used to extract
the three vegetation growth season parameters: SOS, EOS, and LOS. The three vegetation
growth season parameters were defined as follows:

(a) The start of the season (SOS): time it took for the left edge to increase to 10% measured
from the left minimum level.

(b) The end of the season (EOS): time it took for the right edge to decrease to 10%
measured from the right minimum level.

(c) The length of the season (LOS): time from the start to the end of the season.

The dynamic threshold method was used to extract vegetation phenological param-
eters. According to the characteristics of shorter vegetation growing seasons and rapid
growth starting and ending periods in high altitudes, the threshold setting followed the
following principles: first, the criteria should be as close to winter NDVI background values
as possible; second, they should not be too small and cause noise, overwhelming the NDVI
signal. Based on the results of previous studies, the dynamic thresholds for the start and
end of the growing season were set to 10% of the difference between the maximum and
minimum values of the curve [40].

The NDVI time series data were fitted with a curve (Figure 4) to simulate the sea-
sonal vegetation growth of NDVI, and three vegetation growth season parameters were
extracted [39,40].

Figure 4. The asymmetric Gaussian function was used to fit the NDVI curve. Additionally, the
dynamic threshold method was used to extract vegetation phenological parameters.
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2.3.2. Trend Analysis

Linear regression analysis was used to extract the temporal linear trend of the yearly
and monthly meteorology and phenology elements for 20 years. The formula is as follows.{

k = ∑n
i=1(xi−x)(yi−y)

∑n
i=1(xi−x)2 = ∑n

i=1 xiyi−nxy
∑n

i=1 x2
i −nx2

b = y− kx
(3)

y = kx + b (4)

D = k× 20 (5)

In these equations, k represents the slope, b represents the intercept, n represents the
time span, i represents the i year(s) after 2000, x represents the year, and y represents the
meteorology/phenology elements. x represents the average value of the year, y repre-
sents the average meteorology/phenology elements, and D represents the difference in
meteorology/phenology elements change between 2000 and 2019.

2.3.3. GeoDetector

GeoDetector, developed by Wang et al. [25–27] based on Spatial Stratified Heterogene-
ity (SSH), is a tool to measure Spatial Heterogeneity (SH) and to explore the determinants
of SH. The key point of GeoDetector is that: if X can explain Y, the distribution of X is
consistent with that of Y. The value of q is used to measure how much X explains Y.

q = 1− ∑L
h=1 ∑Nh

i=1

(
Yhi −Yh

)2

∑N
i=1
(
Yi −Y

)2 = 1− ∑L
h=1 Nhσ2

h
Nσ2 = 1− SSW

SST
(6)

where the total sum of squares:

SST =
N

∑
i

(
Yi −Y

)2
= Nσ2 (7)

and the within sum of squares:

SSW =
L

∑
h=1

Nh

∑
i

(
Yhi −Yh

)2
=

L

∑
h=1

Nhσ2
h (8)

In these equations, h = 1, 2, . . . , L is the strata of X or Y; Nh represents the unit
number of strata h; N represents the unit number of all strata; Yi and Yhi denote the value
of unit i in the population and in stratum h, respectively; σ2

h represents the within strata
variance; and σ2 represents the total variance.

If Y is stratified by a variable X, then q = 0 indicates that there is no coupling between
Y and X; q = 1 indicates that Y is completely determined by X. The q-statistic measures the
association between X and Y, both linearly and nonlinearly [25–27].

By superimposing variable X1 and variable X2, a new variable X1 ∩X2 can be obtained
(Figure 5). Then, q(Y|X1∩ X2) can be calculated according to the above formula. The
q(Y|X1∩ X2) indicates the explanatory degree of the interaction of variables X1 and X2
on Y.
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Figure 5. Diagrammatic sketch that GeoDetector used to detect the interaction between explanatory
variables X1 and X2.

3. Results
3.1. Climate Change Trend
3.1.1. Temperature

In Figure 6, the monthly average temperatures showed increasing trends from 2000 to
2019 in most areas in most months, except for January.

Figure 6. Difference in monthly average temperature for 20 years by linear regression from 2000 to
2019 per month.
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Specifically, the monthly average temperature showed an increase of more than 2 ◦C in
most areas in March, April, and August, and in the central and western regions in December.
More than 3 ◦C increments occurred in central and western areas in March, northwestern
areas in April, central mountain areas in August, and northwestern areas in December.
However, there was also a distinguished decrease in most areas in January, northeast and
north in February, west and northeast in May, and northeast in December. However, the
temperature decrease was less than 1 ◦C, except in January, where the temperature in the
northeastern area decreased by more than 2 ◦C.

3.1.2. Precipitation

Figure 7 shows that the changes in monthly precipitation in the study area differed
significantly. Except in the northeastern part of the study area in September, where there
was a precipitation decrease of 10–20 mm, the rest of the region showed a precipitation
increase in all months. More than a 20 mm precipitation increase occurred in the northeast
in April, northwest and southwest in May, north in June, east in July and August, and
southwest in October. The most significant precipitation increases of more than 40 mm
occurred in the north in June and east in July and August.

Figure 7. Difference in monthly average precipitation for 20 years by linear regression from 2000 to
2019 per month.



Remote Sens. 2022, 14, 1248 11 of 24

3.2. Trends of the Phenological Parameters
3.2.1. SOS

SOS in the study area varied from day 110 to 140 (Julian days), which spans early
April to early May (Figure 8a); SOS occurred gradually from the southeast to northwest
and from low-altitude areas to high-altitude areas. In the southeast and lowlands, SOS
occurred around day 120 (Julian days), from mid-March to early April. In high-altitude
mountain areas in the central and western regions of the study area, SOS was around day
150, late in May.

Figure 8. Spatial distribution of (a) average SOS for 20 years from 2000 to 2019 and (b) difference in
SOS for 20 years by linear regression from 2000 to 2019.

As shown in Figure 8b, the SOS in most areas, except for the northwest, occurred
earlier during the 20 years, with an advance of 5–20 days. The southeast region and those
around Qinghai Lake benefited the most in SOS, with an advance of more than 15 days.
The central and eastern part was 5–15 days ahead of schedule 20 years ago. However, SOS
in the northwest and a small part of the east showed a postponement trend.

3.2.2. EOS

As shown in Figure 9a, EOS in the study area was around day 280 to 320 (Julian
days), from middle October to middle November. EOS started in the high-altitude areas
in the central and western part, around day 280 to 300 in early October to late October. In
the east and the low-altitude areas, EOS was after day 300 in late October. Finally, EOS
occurred latest in the southeastern part of the study area after day 320, around the middle
of November.

As shown in Figure 9b, the EOS in the north and southwest of the study area showed
advanced trends of more than 10 days, and postponement trends in the southeast and
central parts of the study area of 5–20 days.

3.2.3. LOS

As shown in Figure 10a, LOS in the study area varied between 140 and 220 days.
LOS was more than 200 days in the southeast and northwest and less than 150 days in
high-altitude areas in the central and western parts of the study area, with the other areas
between the two ends.

As shown in Figure 10b, LOS elongated the most in the southeastern and central parts
of the study area and the northern shore of Qinghai Lake by about 20–40 days. In most of
the northwestern areas, LOS was shortened by 10–30 days.
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Figure 9. Spatial distribution of (a) average EOS for 20 years from 2000 to 2019 and (b) difference in
EOS for 20 years by linear regression from 2000 to 2019.

Figure 10. Spatial distribution of (a) average LOS for 20 years from 2000 to 2019 and (b) difference in
LOS for 20 years by linear regression from 2000 to 2019.

3.3. Interpretation of Changes in Phenological Parameters by Meteorological Elements

Table 1 shows the Q statistics when interpreting the spatial variations in the temporally
changing trends of phenological parameters by the spatially corresponding monthly tem-
perature and precipitation. A higher Q statistic value represents a stronger interpretation
of the elements, i.e., monthly temperature and precipitation, for the spatial variations in
SOS, EOS, and LOS temporal trends.

It can be seen from Table 1 that the changes in temperature in March, April, May, and
December and the changes in precipitation in August can interpret changes in SOS to a
relatively high degree (q > 0.200). The changes in temperature in April and July and the
changes in precipitation in July, October, and November had a relatively high degree of
interpretation effects for the changes in EOS (0.150 < q < 0.200). The temperature changes
in March and April and the precipitation changes in April, July, August, and October
(q > 0.200) were more efficient in interpreting trends of LOS than other elements.
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Table 1. Q statistics and the significance of phenological parameters when interpreting their trends
by monthly average temperature and precipitation with GeoDetector.

SOS EOS LOS

q Statistic p Value q Statistic p Value q Statistic p Value

Ta1 1 0.111 <0.001 0.113 <0.001 0.128 <0.001
Ta2 0.095 <0.001 0.092 <0.001 0.104 <0.001
Ta3 0.242 * <0.001 0.161 <0.001 0.205 * <0.001
Ta4 0.233 * <0.001 0.173 <0.001 0.236 * <0.001
Ta5 0.245 * <0.001 0.075 0.007 0.154 <0.001
Ta6 0.131 <0.001 0.137 <0.001 0.174 <0.001
Ta7 0.093 <0.001 0.177 <0.001 0.188 <0.001
Ta8 0.121 <0.001 0.110 <0.001 0.150 <0.001
Ta9 0.159 <0.001 0.103 <0.001 0.157 <0.001

Ta10 0.078 0.006 0.072 0.019 0.073 0.014
Ta11 0.140 0.094 0.078 <0.001 0.120 <0.001
Ta12 0.212 * <0.001 0.128 <0.001 0.182 <0.001

pre1 2 0.113 <0.001 0.123 <0.001 0.099 <0.001
pre2 0.113 <0.001 0.092 <0.001 0.128 <0.001
pre3 0.096 <0.001 0.050 0.245 0.079 0.005
pre4 0.197 <0.001 0.136 <0.001 0.205 * <0.001
pre5 0.065 0.045 0.084 <0.001 0.072 0.006
pre6 0.134 <0.001 0.137 <0.001 0.162 <0.001
pre7 0.117 <0.001 0.187 <0.001 0.201 * <0.001
pre8 0.208 * <0.001 0.161 <0.001 0.230 * <0.001
pre9 0.157 <0.001 0.129 <0.001 0.186 <0.001

pre10 0.170 <0.001 0.165 <0.001 0.201 * <0.001
pre11 0.078 0.094 0.190 <0.001 0.186 <0.001
pre12 0.119 <0.001 0.053 0.214 0.082 0.005

1 Ta1, 2, . . . , 12 averages the change in temperature from 2000 to 2019 in January, February, . . . , December (the
same below). 2 pre1, 2, . . . , 12 averages the change in precipitation from 2000 to 2019 in January, February, . . . ,
December (the same below). * Where q > 0.2.

The interpretation of phenological parameter changes by the interaction of monthly
temperature precipitation changes are shown in Tables A1–A3. It can be seen from
Tables A1–A3 that the interactions of the meteorological elements were more powerful
than each of the two elements alone (q(X1 ∩ X2) > Max(q(X1), q(X2)), where Ta5 ∩ pre3,
Ta12 ∩ pre1, Ta5 ∩ pre6, Ta12 ∩ pre3, Ta5 ∩ Ta7, Ta5 ∩ pre1, Ta6 ∩ pre12, Ta11 ∩ Ta12,
Ta5 ∩ pre12, and Ta4 ∩ pre1 had high interpretation degrees (q ≥ 0.6 > Max(q(Ta5) = 0.245)
for the change in SOS. Ta5 ∩ pre1 (q = 0.600) had high interpretation degrees for the change
in EOS. Ta6 ∩ pre3 (q = 0.609) and Ta5 ∩ pre1 (q = 0.603) had high interpretation degrees
for the change in LOS.

4. Discussion
4.1. The Response of Grassland Phenology to Climate Changes

Overall, the grassland phenology changes differed greatly both spatially and in terms
of phenological features in the Qilian Mountains from 2000 to 2019. This is consistent
with the conclusion of Ren et al. who found strong spatial heterogeneity in grassland
phenology in the mid-latitude regions of the northern hemisphere [13]. In most areas, SOS
showed advanced trends, but fewer areas showed advanced trends of EOS, and a certain
number of areas showed delayed EOS trends. As a result, in most areas, LOS was extended.
Additionally, there were also some areas where LOS was shortened. Qiao et al. [21] also
found that EOS showed a delayed trend in the Qilian mountains region. However, in
this study, with revised NDVI, we found that EOS was only delayed in some areas, and
in other areas, there were advances in EOS. The NDVI data used in this research were
revised by removing the effects of clouds and snow, and the extracted vegetation phenology
in the northwest of the mountainous areas was not presented in Qiao’s study, in which
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GIMMS NDVI was used. In this study, EOS in this area advanced significantly. Due to
the influence of terrain (high in the northwest and low in the southeast), the changes in
temperature and precipitation in the study area show spatial heterogeneity from northwest
to southeast. Chen et al. also found that EOS showed different trends under the influence
of different temperature changes [41]. Thus, the phenology changes in the northwestern
and southeastern regions are in opposite directions. It is clearly due to the existence of
these spatial heterogeneities that it provides a data basis for the better use of GeoDetector
to detect the coupling relationship between climate and phenology.

This study is the first to quantify the degree of interpretation of phenological changes
by the changes in different meteorological elements in different periods and their interac-
tions. In this study, the differences in the interpretation of each month’s temperature and
precipitation change on phenological parameters were revealed. Among them, the change
in spring (March, April, and May) temperature played a vital role in the change in SOS. At
the same time, it is notable that the change in December’s temperature also showed a higher
degree of interpretation for the change in SOS. The changes in EOS were less interpretable
than SOS, but the changes in precipitation in summer and autumn (July to November)
had a higher degree of interpretation for EOS than the meteorological elements in other
months (Table 1). LOS is the combined results of SOS and EOS. Except for the change in
October’s temperature and May’s precipitation, all the monthly temperature and precipita-
tion changes throughout the growing season had a significant degree of interpretation for
the change in LOS (p < 0.001).

Regarding the interpretation of phenological changes by the interaction of monthly
temperature and precipitation changes, the interpretation degrees significantly improved.
With a single element of SOS change, the highest degree of interpretation was for the
temperature in May (q = 0.245), while the interaction of May’s temperature and March’s
precipitation improved the q value by up to 0.646. For EOS, the highest degree of inter-
pretation was for the precipitation in November (q = 0.190), while the interaction of May’s
temperature and January’s precipitation had a q value of 0.600. For LOS, the highest degree
of interpretation was for the temperature in April (q = 0.236), and the interaction of June’s
temperature and March’s precipitation had a q value of 0.641. Through the GeoDetector,
the interpretation degree of phenological changes caused by the changes in different mete-
orological elements can be quantitatively described. Overall, the interaction of different
meteorological elements in different periods can significantly improve the interpretation of
phenological changes.

Through interaction of the changes in temperature and precipitation in different
months from 2000 to 2019, some interesting phenomena were found. Significantly, the
interaction between the changes in temperature in May and precipitation in January had a
high degree of explanation for both SOS and EOS. This finding is in line with Fu et al. [42].
Fu highlighted that the heat requirement, which is expressed in growing degree-days
(GDDs), was a widely used method to assess and predict the effect of temperature on plant
growth. Additionally, he found a positive correlation between the GDD requirement and
previous winter season precipitation. In Qilian Mountains, the heat requirement (GDD
requirement) was mainly from the temperature in May. Two hypotheses may explain this
phenomenon. On the one hand, the precipitation in winter accumulated sufficient water for
the early growth and development of vegetation, and the vegetation physiological function
at that period of the growing season may affect the dynamic change in vegetation in the
whole growing season. On the other hand, more precipitation in January results in thicker
snow cover that needs more GDDs (in May) to melt before the soil can initialize vegetation
growth, and more snow melting may cause the soil to be cooler, which needs more GDDs
to initialize vegetation growth. Therefore, the interaction between changes in precipitation
in January and temperature in May is of great significance to vegetation growth. Moreover,
the interaction between the changes in temperature in May and precipitation in March also
had a high degree of explanation for vegetation phenology. This is due to the hysteresis
effect of precipitation on vegetation, while the effect of temperature is in real time. Previous
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studies have also revealed the promoting effect of early spring precipitation on vegetation
phenology [43]. Additionally, it is well known that spring temperature has a positive
effect on SOS. The use of GeoDetector not only confirmed the above research, but also
quantified the interpretation degree of the interaction between temperature change in
May and precipitation change in March to vegetation phenology, and even confirmed
that the interpretation degree of this interaction is greater than the sum of two separate
interpretation degrees (qTa5∩pre3 = 0.646, qTa5 + qpre3 = 0.341). Of course, the mechanism
of interaction in phenology is complex. In any case, the results detected by GeoDetector
can provide direction for further study of the impact of climate change on phenology in
the future.

Although winter was not the season for vegetation growth, the changes in meteo-
rological elements in winter had unneglectable impacts on the changes in phenological
parameters (Tables A1–A3). The winter condition effects, however, are not notable in
single-element detection. For example, the interaction of changes in spring temperature
(from March to May) and winter (December to February of the following year) precipitation
had a high degree of interpretation for the changes in SOS, but not winter precipitation
alone. This finding is in line with Ji et al. [44], who, through observations at the Haibei
Alpine Grassland Ecosystem Research Station located in the Qilian Mountains, found
that asymmetric winter warming in temperature-sensitive ecosystems may delay spring
phenological events and symmetric warming can advance spring phenology. The reason
for this may be that the increase in temperature and precipitation in winter is conducive
to the accumulating conditions for vegetation growth, which in turn has an impact on
vegetation phenology. In China, there is an old saying: auspicious snow bodes well for a
good year.

To explore the relationship between the phenological parameters, we also used GeoDe-
tector to detect the influence of SOS and EOS on LOS. The results are shown in Table 2. The
influences of SOS and EOS on LOS were direct and more interpretively powerful than the
meteorological elements. The degree of interpretation to LOS by the interaction of SOS
and EOS reached a very high level. The purpose of this analysis was to explore why the
interaction of meteorological elements in some specific months had a higher degree of in-
terpretation for SOS/EOS changes, while the changes in and interactions of meteorological
elements throughout the year had higher degrees of interpretation for LOS.

Table 2. Interpretation of LOS change trend by SOS and EOS.

LOS

q Statistic p Value

SOS 0.589 <0.001
EOS 0.708 <0.001

SOS ∩ EOS 1 0.999 -
1 Interaction between SOS and EOS.

4.2. Limits in the Application of GeoDetector

Spatial data have three characteristics: spatial autocorrelation, spatial heterogeneity,
and the modified areal unit problem, which make the spatial analysis different from
classical statistics with the assumption of Independent Identical Distribution (I. I. D.). If one
spatial element (X) has an effect on another (Y), their spatial distribution patterns should
also tend to be consistent. Based on this theory, Wang et al. [26] developed GeoDetector,
which explains the X-Y relationship Here to Here; that is, the X in this place affects the Y in
this place.

However, in this study, we found that the spatial distribution of the climate element
changes was generally areal, but the spatial distribution of the phenological changes was
of a more linear pattern. Superimposing the river network with the SOS change trend
map (Figure 11), we found that the spatial distribution of SOS was coincident with linear
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geographic elements such as rivers, e.g., the Buha River and Heihe River, and the north-
ern shore of Qinghai Lake, where the trend of SOS advance was greatly distinguishable.
Considering the high altitude and more snow and ice coverage in the study area, we may
deduce that this is owing to the climate warming in the upper reaches of the river, which
has led to more ice and snow melting and an increase in precipitation in the area. Through
river flows, there has been more downstream water, which in turn affects the growth of
low-reach grasslands. This leads to a kind of Here to There spatial pattern; that is, the
element X occurs upstream, but the influence is downstream via the river as a transmitting
pipeline, leading to the occurrence of the downstream element Y.

Figure 11. River network and D-Value of SOS in the study area.

This spatial displacement of the relationship between geographical elements breaks
the premise of GeoDetector and dampens its detection capability. In this study, the location
of the stratification elements, i.e., temperature and precipitation, was no longer spatially
consistent with the location of the geographic phenomenon, i.e., phenological parameters.
In this case, more attention should be paid to the problems of using GeoDetector. If
GeoDetector does not detect that X presents an interpretation to Y, or the interpretation
degree is low, it is not definite that X bears no interpretation to Y. There is the possibility
of these pipeline effects. However, detecting the interpretation of Y by X in this situation
warrants further research. Specifically, in this study, the X that affects Y downstream should
be investigated upstream along the river, but the exact location of the X is yet to be targeted.

4.3. Comparison with the MODIS Land Cover Dynamics (MCD12Q2) Product

The MODIS Land Cover Dynamics (MCD12Q2) product is a widely used phenology
product. Based on NBAR-EVI2, MCD12Q2 fits the vegetation growth curve through
the Logistic fitting method with a window width of 5, and defines the threshold as 15%
to extract the SOS and EOS [45]. This is relatively suitable for the extraction of global
vegetation phenology. However, compared with the global vegetation, the vegetation in
Qilian Mountains has unique characteristics: alpine, short growing season, rapid start and
end of growth, and a large amount of snow.

The NDVI dataset used in this study is the MODIS-derived dataset, which is based on
MODIS-MOD09 data. Additionally, specifically, the detection of cloud, snow, and shadow
was carried out again for China. At the same time, the benchmark growth synthesis and
optimized interpolation algorithm were used to analyze and optimize each step of the
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NDVI products in detail (e.g., cloud, snow, and shadow were determined based on the
time series inflection point detection method, and the minimum NDVI was synthesized
based on the BVI index), so that the products can not only eliminate the interference of
noise, but also reflect the real growth process of vegetation perfectly [31–34]. Furthermore,
as an alpine grassland, the growing season is short, and SOS/EOS is rapid. There may not
be a large enough window width for Logistic fitting. Moreover, in this research, based on
the results of previous studies, the dynamic thresholds for the start and end of the growing
season were set to 10% of the difference between the maximum and minimum values of
the curve. The MODIS phenology threshold is 15%. We think that the threshold should be
as close as possible to the winter background value in regions with short growing seasons.

As shown in Figure 12, more phenological information was extracted by using these
NDVI data than MCD12Q2. The Pearson Correlation Coefficient of the two SOS and
EOS of grassland extracted from different data sources was analyzed. Both SOS and
EOS had low correlations (

∣∣∣rSOS_grassland_mean

∣∣∣ = 0.23;
∣∣∣rEOS_grassland_mean

∣∣∣ = 0.22). The
Pearson Correlation Coefficient of the two SOS and EOS of forests extracted from different
data sources was further analyzed. Both SOS and EOS had relatively high correlations
(
∣∣∣rSOS_ f orest_mean

∣∣∣ = 0.47;
∣∣∣rEOS_ f orest_mean

∣∣∣ = 0.49). Forests were distributed in the warm
and humid low-altitude areas of the study area. They had a longer growing season and
their conditions were similar to global conditions. Therefore, the forest phenology extracted
from the MODIS-derived dataset in this study was highly correlated with MCD12Q2. As
for grassland, more accurate phenology can be extracted using the data and methods in
this study, compared to MCD12Q2.

Figure 12. Comparison of phenology extracted from the MODIS-derived NDVI in this study and from
the MCD12Q2. (a) SOS extracted from the MODIS-derived NDVI in this study; (b) SOS extracted from
the MCD12Q2; (c) EOS extracted from the MODIS-derived NDVI in this study; (d) EOS extracted
from the MCD12Q2.
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4.4. Interpolation of Meteorological Data

Having reliable surface meteorological data was the basic requirement of this study.
At present, CLIMAT is the meteorological dataset with the largest number of stations and
the most complete records in China. As shown in Figure 3, there are many weather stations
near the study area, which provided basic and reliable meteorological data for this study.
However, it should be noted that the distribution of meteorological stations is not uniform—
it is dense in southeast and sparse in the mid-west. Therefore, a suitable interpolation
method for meteorological data is necessary. It is well known that as the altitude increases,
the temperature decreases. The influence of terrain on the interpolation of air temperature
data cannot be ignored. It is in the mid-west where there are few meteorological stations
that the altitude difference is larger. A new meteorological data interpolation method
developed by Liu and Zhang was used in this study [35]. This method takes into account
the effect of terrain on the interpolation of meteorological data. In this way, although there
are fewer weather stations in the mid-west, more accurate interpolation results can be
obtained. Moreover, we set the cutoff radius to 500 km, which could ensure that at least
four points could be included in the calculation, and, at the same time, the radius would
not be too large and affect the accuracy.

5. Conclusions

In this study, the MODIS NDVI produced by a revised algorithm was used as the data
source to extract the phenological parameters of the grassland in the Qilian Mountains
from 2000 to 2019. The temporal trends and spatial variations of three phenological
parameters of grassland (SOS, EOS, and LOS) and meteorological elements (temperature
and precipitation) in the Qilian Mountains were analyzed. With the derived temporal
trends of the meteorological elements and grass phenological parameters, GeoDetector was
used to detect the degree of interpretation to changes in phenological parameters by the
meteorological elements and their interactions. The conclusive results are as follows:

(1) From 2000 to 2019, significant changes occurred in temperature, precipitation, and grass-
land phenology in the Qilian Mountains. The temperature increased by 0.43 ◦C/10a and
the precipitation increased by 12.84 mm/10a. SOS in most areas, except the northwest-
ern mountain region, showed advancement by 5–20 days, with EOS being delayed in
the north and southeast by more than 10 days and advanced in the northwest and
central part of the study area by 5–20 days. The LOS in the southeast was elongated
by 20–40 days, and, in the northwest, shortened by 10–30 days.

(2) The interaction of the monthly average meteorological elements presented a more
powerful interpretation of grassland phenology changes in the Qilian Mountains than
any of the elements alone. For SOS, the highest interpretation degree by a single
monthly average meteorological element was from the temperature change in May
(q = 0.245), and the highest interpretation degree by multi-element interaction was
from the interaction of the temperature change in May and the precipitation change
in March (q = 0.646). For EOS, the highest interpretation degree for a single monthly
average meteorological element was from the precipitation change in November
(q = 0.190), and the highest interpretation degree for multi-element interactions was
from the interaction of the temperature change in May and the precipitation change
in January (q = 0.600). For LOS, the highest interpretation degree for a single monthly
average meteorological element was from the temperature change in April (q = 0.236),
and the highest interpretation degree for multi-element interactions was from the
interaction of the temperature change in June and the precipitation change in March
(q = 0.609). The interaction of the changes in meteorological elements in winter and
the changes in meteorological elements in other periods had unneglectable impacts
on the phenology of grassland in the Qilian Mountains.

(3) The response of grassland phenology to climate change in the Qilian Mountains
was not strictly local, and there were pipeline effects. The climate change in the
upper reaches of the river transferred its influence downstream via the runoff of
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the river, which thereafter affected the growth of the downstream vegetation and
the phenologies.
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Appendix A

Table A1. Interpretation of SOS changes by multi-element interaction.

Ta1 Ta2 Ta3 Ta4 Ta5 Ta6 Ta7 Ta8 Ta9 Ta10 Ta11 Ta12 pre1 pre2 pre3 pre4 pre5 pre6 pre7 pre8 pre9 pre10 pre11 pre12

Ta1 0.111
Ta2 0.495 0.095
Ta3 0.477 0.567 0.242
Ta4 0.469 0.540 0.535 0.233
Ta5 0.501 0.571 0.580 0.510 0.245
Ta6 0.451 0.534 0.592 0.544 0.582 0.131
Ta7 0.458 0.467 0.524 0.531 0.618 ** 0.535 0.093
Ta8 0.526 0.444 0.550 0.544 0.576 0.528 0.427 0.121
Ta9 0.465 0.528 0.570 0.524 0.595 0.552 0.547 0.493 0.159

Ta10 0.502 0.509 0.574 0.573 0.585 0.555 0.433 0.435 0.484 0.078
Ta11 0.451 0.346 0.559 0.528 0.527 0.508 0.465 0.458 0.513 0.492 0.140
Ta12 0.509 0.590 0.506 0.549 0.512 0.529 0.547 0.538 0.514 0.577 0.605 ** 0.212
pre1 0.520 0.513 0.590 0.602 ** 0.612 ** 0.541 0.538 0.531 0.574 0.494 0.490 0.629 ** 0.113
pre2 0.511 0.411 0.562 0.529 0.534 0.511 0.482 0.428 0.441 0.462 0.483 0.526 0.545 0.113
pre3 0.492 0.507 0.546 0.560 0.646 ** 0.582 0.542 0.562 0.528 0.528 0.468 0.619 ** 0.583 0.494 0.096
pre4 0.478 0.594 0.457 0.552 0.546 0.497 0.522 0.548 0.513 0.509 0.569 0.434 0.522 0.502 0.495 0.197
pre5 0.425 0.428 0.564 0.541 0.536 0.395 0.455 0.457 0.540 0.479 0.458 0.482 0.453 0.380 0.531 0.440 0.065
pre6 0.429 0.473 0.522 0.557 0.628 ** 0.553 0.488 0.516 0.516 0.443 0.478 0.592 0.462 0.502 0.488 0.447 0.485 0.134
pre7 0.449 0.428 0.446 0.488 0.571 0.473 0.372 0.438 0.516 0.413 0.418 0.487 0.470 0.456 0.433 0.408 0.459 0.376 0.117
pre8 0.423 0.563 0.403 0.482 0.520 0.509 0.505 0.506 0.481 0.477 0.532 0.456 0.502 0.467 0.453 0.406 0.496 0.437 0.402 0.208
pre9 0.413 0.564 0.481 0.517 0.572 0.527 0.504 0.464 0.432 0.447 0.528 0.567 0.469 0.472 0.499 0.454 0.496 0.388 0.489 0.385 0.157
pre10 0.451 0.457 0.452 0.467 0.485 0.469 0.431 0.434 0.452 0.448 0.450 0.429 0.461 0.473 0.453 0.444 0.422 0.476 0.431 0.404 0.444 0.170
pre11 0.506 0.459 0.533 0.544 0.590 0.465 0.406 0.475 0.520 0.464 0.463 0.571 0.467 0.474 0.429 0.462 0.429 0.408 0.373 0.450 0.494 0.405 0.078
pre12 0.515 0.505 0.530 0.539 0.604 ** 0.607 ** 0.556 0.505 0.537 0.515 0.532 0.581 0.562 0.544 0.550 0.507 0.510 0.471 0.411 0.441 0.492 0.458 0.473 0.119

** Top 10 interpretations.
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Table A2. Interpretation of EOS changes by multi-element interaction.

Ta1 Ta2 Ta3 Ta4 Ta5 Ta6 Ta7 Ta8 Ta9 Ta10 Ta11 Ta12 pre1 pre2 pre3 pre4 pre5 pre6 pre7 pre8 pre9 pre10 pre11 pre12

Ta1 0.113
Ta2 0.431 0.092
Ta3 0.405 0.525 0.161
Ta4 0.413 0.469 0.452 0.173
Ta5 0.389 0.523 0.456 0.422 0.075
Ta6 0.434 0.534 0.498 0.473 0.512 0.137
Ta7 0.474 0.457 0.459 0.456 0.521 0.559 ** 0.177
Ta8 0.453 0.366 0.476 0.480 0.467 0.516 0.476 0.110
Ta9 0.470 0.412 0.496 0.454 0.477 0.501 0.495 0.414 0.103

Ta10 0.460 0.454 0.516 0.540 0.518 0.532 0.476 0.417 0.435 0.072
Ta11 0.346 0.274 0.474 0.439 0.406 0.448 0.459 0.400 0.409 0.445 0.078
Ta12 0.386 0.504 0.345 0.424 0.364 0.424 0.465 0.459 0.417 0.528 0.467 0.128
pre1 0.467 0.475 0.521 0.545 0.600 ** 0.538 0.572 ** 0.507 0.551 ** 0.497 0.478 0.548 ** 0.123
pre2 0.418 0.434 0.459 0.515 0.425 0.477 0.498 0.458 0.442 0.452 0.425 0.462 0.485 0.092
pre3 0.411 0.447 0.438 0.477 0.551 ** 0.578 ** 0.535 0.498 0.479 0.519 0.402 0.480 0.540 0.454 0.050
pre4 0.407 0.483 0.386 0.442 0.449 0.426 0.492 0.459 0.432 0.466 0.502 0.333 0.514 0.462 0.428 0.136
pre5 0.433 0.449 0.446 0.450 0.446 0.440 0.511 0.456 0.419 0.458 0.434 0.350 0.438 0.434 0.479 0.396 0.084
pre6 0.428 0.406 0.431 0.497 0.544 0.541 0.500 0.498 0.477 0.465 0.380 0.451 0.423 0.437 0.405 0.426 0.434 0.137
pre7 0.441 0.441 0.393 0.495 0.545 ** 0.527 0.456 0.483 0.457 0.442 0.478 0.405 0.436 0.475 0.429 0.384 0.416 0.418 0.187
pre8 0.375 0.471 0.331 0.449 0.454 0.463 0.439 0.407 0.442 0.461 0.473 0.391 0.402 0.436 0.412 0.381 0.448 0.363 0.386 0.161
pre9 0.390 0.480 0.419 0.449 0.526 0.452 0.504 0.497 0.446 0.479 0.431 0.437 0.438 0.446 0.419 0.440 0.436 0.360 0.431 0.356 0.129
pre10 0.387 0.370 0.365 0.395 0.444 0.434 0.442 0.367 0.372 0.442 0.380 0.392 0.431 0.399 0.428 0.382 0.398 0.446 0.398 0.378 0.405 0.165
pre11 0.447 0.467 0.462 0.487 0.549 ** 0.541 0.412 0.500 0.484 0.461 0.457 0.488 0.454 0.469 0.404 0.463 0.424 0.367 0.365 0.418 0.442 0.392 0.190
pre12 0.496 0.464 0.466 0.491 0.477 0.543 0.535 0.548 ** 0.450 0.515 0.476 0.497 0.522 0.496 0.463 0.405 0.401 0.425 0.419 0.423 0.424 0.464 0.476 0.053

** Top 10 interpretations.
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Table A3. Interpretation of LOS changes by multi-element interaction.

Ta1 Ta2 Ta3 Ta4 Ta5 Ta6 Ta7 Ta8 Ta9 Ta10 Ta11 Ta12 pre1 pre2 pre3 pre4 pre5 pre6 pre7 pre8 pre9 pre10 pre11 pre12

Ta1 0.128
Ta2 0.474 0.104
Ta3 0.449 0.553 0.205
Ta4 0.462 0.520 0.470 0.236
Ta5 0.431 0.546 0.486 0.454 0.154
Ta6 0.504 0.574 ** 0.546 0.518 0.521 0.174
Ta7 0.467 0.480 0.493 0.498 0.568 0.554 0.188
Ta8 0.491 0.410 0.496 0.520 0.512 0.546 0.484 0.150
Ta9 0.511 0.482 0.551 0.508 0.550 0.552 0.539 0.455 0.157

Ta10 0.482 0.480 0.535 0.591 ** 0.552 0.555 0.470 0.442 0.477 0.073
Ta11 0.424 0.329 0.525 0.505 0.461 0.494 0.485 0.475 0.495 0.494 0.120
Ta12 0.466 0.554 0.406 0.483 0.405 0.478 0.500 0.522 0.493 0.569 0.562 0.182
pre1 0.496 0.496 0.561 0.570 0.603 ** 0.539 0.573 ** 0.557 0.553 0.492 0.525 0.597 ** 0.099
pre2 0.488 0.454 0.528 0.546 0.451 0.536 0.497 0.488 0.486 0.500 0.501 0.534 0.513 0.128
pre3 0.488 0.480 0.520 0.548 0.589 ** 0.609 ** 0.569 0.548 0.536 0.551 0.477 0.578 ** 0.585 ** 0.510 0.079
pre4 0.473 0.553 0.435 0.510 0.491 0.477 0.516 0.514 0.518 0.514 0.555 0.413 0.561 0.520 0.506 0.205
pre5 0.453 0.457 0.498 0.496 0.474 0.453 0.522 0.481 0.505 0.495 0.470 0.401 0.454 0.433 0.532 0.469 0.072
pre6 0.461 0.455 0.500 0.559 0.572 0.589 ** 0.500 0.524 0.532 0.470 0.456 0.542 0.471 0.523 0.472 0.472 0.499 0.162
pre7 0.463 0.466 0.429 0.525 0.571 0.548 0.447 0.483 0.527 0.457 0.489 0.473 0.490 0.498 0.466 0.408 0.451 0.432 0.201
pre8 0.451 0.541 0.397 0.470 0.473 0.494 0.482 0.465 0.508 0.497 0.535 0.449 0.460 0.515 0.464 0.436 0.494 0.432 0.415 0.230
pre9 0.453 0.540 0.468 0.525 0.534 0.516 0.520 0.506 0.477 0.466 0.494 0.522 0.461 0.493 0.498 0.488 0.498 0.434 0.494 0.391 0.186
pre10 0.450 0.433 0.425 0.446 0.460 0.471 0.481 0.418 0.441 0.467 0.475 0.421 0.479 0.467 0.486 0.441 0.438 0.516 0.454 0.441 0.470 0.201
pre11 0.498 0.497 0.498 0.542 0.549 0.557 0.432 0.529 0.541 0.482 0.499 0.558 0.502 0.502 0.447 0.497 0.476 0.417 0.413 0.475 0.508 0.445 0.186
pre12 0.529 0.493 0.493 0.512 0.536 0.566 0.543 0.524 0.519 0.523 0.512 0.536 0.512 0.520 0.485 0.461 0.440 0.456 0.423 0.457 0.466 0.488 0.493 0.082

** Top 10 interpretations.
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