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Part I

Sensitive Artificial Listeners





1
Virtual characters

1.1 Interacting with a computer

Humans have a very peculiar relationship with machines, and especially with comput-

ers. Designed to make our lives easier, and continuously changing in how we interact

with them. From command-line interfaces to mouse-based interfaces, but we still

have to learn how to interact with them. First we had to memorize commands, but

nowadays, with the mouse and graphical interfaces we have to learn how to split our

intention into smaller, clickable elements: which elements these are differs per task.

When facing a new task the user has to find out how to translate his or her intentions

into actions that the system understands. Because of this, researchers and designers

are focussing more and more on making interaction with a computer more natural.

Even though communication with a machine is inherently not ‘natural’, we prefer to

interact with them without learning new skills. This means we have to use types of

communication that we already know. An obvious choice would be how we commu-

nicate with other persons. We are social beings, and we learn to communicate with

other human beings from the day we are born, so why can we not use this method of

communication to make our intentions clear to a machine?

The most simple answer to this question is because it is really hard for a ma-

chine to understand language, and it takes time to understand human behaviour well

enough to teach a computer to understand human intentions. Human speech is highly

ambiguous, and intimately tied to the context. And non-verbal signals that are sent

along with the speech may also change the meaning in several ways. Also when hu-

mans communicate, misunderstandings arise regularly, which humans usually repair

swiftly. Computers have more difficulty with this.

Nevertheless, researchers have developed all kinds of dialogue systems, and usu-

ally simplified matters a lot to make them workable. For example, Matheson et al.

(2000) describe a dialogue system that only uses the speech modality, and from the

speech only uses the detected words. The authors use the dialogue move engine

toolkit TrindiKit (Traum et al. (1999)), which can be used for dialogue systems that

perform a certain task for a user. It uses natural language to ask questions in order to
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get the required information, and when the user answers the necessary information

is extracted. As an example, the authors provide a sample dialogue that should be

possible with their dialogue system. In this example, the user wants a route from

the dialogue system. The system then asks for all the information it needs: the start

location, the end location, departure time, and whether the user wants the quickest

or the shortest route. Also, when the system is not sure about an answer, it asks for

a clarification. For example, when the user specifies the location ‘Edwinstowe’, the

system asks ‘Edwinstowe in Nottingham?’.

Dialogue systems such as this make it possible to use natural language to interact

with a computer, but there are still some limitations. First of all, this particular system

does basically nothing more than ‘slot-filling’: it needs to fill in certain fields (slots),

and asks the user questions about each field until all fields are filled in. This way of

proceeding in a conversation is only ‘natural’ in very specific situations (for example,

when buying a train ticket) in which the computer needs specific information from

the user. Secondly, a lot of natural communication mechanisms are missing. For ex-

ample, the dialogue as presented by Matheson et al. is a sort of ping-pong, with a

turn for the user, a turn for the machine, etcetera. But what happens when the user

interrupts the system? And if the user is in the middle of a sentence and a misunder-

standing arises, why not interrupt the user quickly to ask for a clarification about the

first part, and then let him continue? Also, the system could improve the communica-

tion by occasionally signalling to the user that it is still following and understanding

him by giving a backchannel signal. Thirdly, even with speech only, a system can

detect and use a lot more than only the words (and with that the communicative in-

tentions) from the user. By detecting prosodic information and non-linguistic items

(for example backchannels, such as “uhuh”), a system could detect which words are

emphasized (and therefore more important), what the current emotional state of the

user is, whether the user shows understanding, and so on. Finally, the system in the

example only uses one modality (speech). By adding more modalities, for example by

adding a camera and a virtual character, the range of interaction possibilities increases

enormously. Suddenly, the user and the machine can look each other in the eyes, ges-

ture to each other, and show facial expressions. Detecting multi-modal behaviour also

increases the likelihood of detecting the correct intention from the user.

Of course, using more modalities than only the content of the user’s speech brings

its own set of problems and challenges. If the virtual agent becomes too humanlike,

people will expect the character to communicate as a human person too. This means

that everything the virtual character does influences how a user perceives that charac-

ter, and if the character makes a ‘communicative error’ the quality of the conversation

goes downhill fast. A communicative error can be almost anything: the wrong fa-

cial expression which changes the meaning of an utterance, starting to speak at the

wrong time, failing to give feedback or giving it too late, and saying something totally

unrelated and inappropriate as a reaction to what the user just said.

The context of this thesis is the development of a virtual character, or to be more

specific, a virtual listening agent. The complete system is called Sal, for Sensitive Ar-

tificial Listener, and consists of four different characters: Poppy, the optimistic charac-

ter, Obadiah, the depressed character, Spike, the aggressive character, and Prudence,
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the rational character. These characters try to motivate the user to speak for as long

as possible, and to get the user into the same emotional state as they themselves are

in. Occasionally, the listening agent should of course respond (you cannot expect the

user to keep talking for eternity to a virtual head that only nods and says ‘yeah’). This

response should focus on motivating the user to continue speaking, either by giving

feedback on what was just said (‘That sounds great’), asking for more information

(‘When will that happen?’), or changing the subject (‘Do you have any other plans?’).

The contribution of this thesis is the turn-taking behaviour of the different characters,

and the selection of an appropriate response that is mainly based on the non-verbal

behaviour of the user.

1.2 This thesis

In this section, we will describe the two topics of this thesis, namely the perception of

turn-taking, and response selection.

1.2.1 Turn-taking

Turn-taking behaviour in virtual agents is often a problematic aspect. When humans

interact with each other, turn switches seem fluent and without any problems (al-

though in reality humans are just good at fixing problems swiftly). Pauses between

turns are often short, and overlapping speech rarely causes a lot of problems. How-

ever, when trying to implement this fluent turn-taking behaviour in virtual agents it

gets clear that it is not as straightforward as it seems. Agents have to be capable of

detecting when users want the turn, when they start a turn, and when they finish a

turn or almost do so, and this is not always easy.

When looking at the turn-taking behaviour of virtual agents, it is remarkable that

a lot of systems do not describe this conversational aspect in detail. Sometimes this is

because the implemented modalities do not really support turn-taking. For example,

in the systems of Schulman and Bickmore (2009) and Bosch et al. (2009) users have

to click on the button that matches what they want to say to the agent. Naturally, turn-

taking is not an issue here anymore. And in the museum guide described by Satoh

(2008), users have to communicate with the agent by moving to a certain location

(or moving away to stop the conversation).

Several virtual agent systems use text as input, which also makes the turn-taking

aspect less interesting — when the user presses Enter or clicks on the ‘send’ button,

the text is sent to the system and is treated as a finished turn. Max (Kopp et al., 2005)

goes one step further: the system continuously monitors the keyboard, and typing is

considered the same as speaking. When Max is talking and the user starts typing, Max

immediately stops speaking.

Only when speech is added as an input modality, does turn-taking really become

an issue. Even determining when the user finishes the turn or offers it to the agent is

not as easy as humans sometimes make it seem. Only relying on pauses does not al-

ways work, since people often pause within their own turn too (Edlund et al. (2005)).

This means that the agent should either use the words of the user’s sentence or the de-

tected prosody to determine whether a turn is finished or not. De Ruiter et al. (2006)
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demonstrate that people can still recognize the end of a turn when prosodic informa-

tion is removed, but perform a lot worse when the words were removed and only the

prosodic information was audible. However, this means relying on (often inaccurate)

speech recognition and difficult natural language understanding. Therefore, usually

only prosodic information is used with end of turn detection, for example by Jons-

dottir et al. (2008). Unfortunately, very few papers about virtual agents with speech

input explain in detail how end of turn detection was implemented.

However, what is sometimes described is what the agents do when they detect

that the user is speaking while the agents are talking too. Remarkably, a lot of these

agents — for example Max (Kopp et al., 2005), the Virtual Guide from Theune et al.

(2007), and Rea (Cassell et al., 1999) — respond extremely politely by immediately

stopping their speech, no matter what they were saying and what the user is doing.

An erroneous detection of speech — for example, a little cough — could completely

stop an explanation, and stopping two or three words before the end of an utterance

hardly seems useful.

This brings us to one of the most important points about turn-taking in this thesis:

what about the user’s perception of the agent? The developers of the virtual agents

mentioned above make the agent stop speaking when it detects that both the agent

and the user are talking at the same time, with the intention to make it more polite.

But in doing so, they could change a lot more than just the perception of politeness.

For example, the agent could be seen as passive and weak. And when stopping its

utterance when it was not necessary, the agent could be perceived as shy or indecisive.

The question is whether this is desirable.

The first part of this thesis is about the perception of different turn-taking strate-

gies. We look at strategies for starting a turn — which can take place just before the

other person is finished, exactly at that moment, or after a small period of silence —

and strategies for how to behave when overlapping speech is detected — which can

be to stop speaking, to continue normally as if nothing has happened, or to continue

with a raised voice to stop the other person from speaking. We describe several ex-

periments in which we tried to find out how these strategies influence the perception

of the user on the receiving end.

1.2.2 Response selection

No matter how simplistic or complex a dialogue system is, it needs a method of deter-

mining what to say during interactions with the user. In a small domain, it is usually

sufficient to create a Finite State Machine (FSM), in which all possible interactions

are predefined. For example, for simple receptionists, an FSM is sufficient for most

of its tasks, as shown in the virtual receptionists Mack (Cassell et al. (2002)) and

Marve (Babu et al. (2006, 2005)). These agents have fairly straightforward tasks,

such as giving directions, answering questions about the environment, and delivering

messages to people interacting with it. This is exactly the kind of interaction that is

perfect for state machines: short topics, with clearly different states that the conver-

sation can be in, and simple transitions between these conversation states.

A similar method is writing out the complete dialogue tree, including all possible

deviations of the dialogue. This is especially useful if there only are a limited number
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of user dialogue moves. For example, in the dialogue system described by Schulman

and Bickmore (2009), during the interaction the user has to select a response from

a small list. This makes it possible to create the complete dialogue tree beforehand.

And in the museum guide from Satoh (2008) the user has to respond by standing on

a certain spot left or right of the agent. What this method boils down to is that the

agent tells a story and at some points offers the user the option of influencing the

direction of the story. And sometimes it is not even that, but the agent only responds

to the choice of the user with one or two sentences, and then continues its story.

However, a downside of these methods is the lack of flexibility and extensibility.

For example, the complete dialogue needs to be written out beforehand, which is only

feasible in small and very specific domains. Also, conversations could feel unnatural,

because everything is scripted and deterministic.

A method with more interaction is called slot filling, for example demonstrated by

Nijholt and Hulstijn (2000). With this method, the agent offers some kind of service

— for example giving directions — but in order to do this it needs information, in

the form of information fields, called slots, that need to be filled in. To fill these slots

the agent can ask questions of the user, either to get the required information or to

verify information that it already has, but is not sure of. This method is most useful

for service agents that need information from the user in order to provide a certain

service, for example giving directions, selling train tickets, etcetera.

A more general purpose method is used by Traum et al. (2007) and McCauley

and D’Mello (2006). Instead of specifying the complete dialogue and all transitions,

the system is fed all responses it can give to a user, and for each response a set of

user utterances that could lead to that response. When the agent receives input from

the user, it tries to find the stored user utterance that is statistically the most similar,

and then returns the corresponding response. This method is especially powerful for

question-answering systems, in which the agent does not need to keep track of the

flow of the conversation, but only has to answer the questions of the user.

If the developers want more control of the agent’s behaviour, using hand-crafted

templates might be a good alternative (see for example the work of Kopp et al.

(2005)). Hand crafting templates is manual labour and seems to suffer from the

same problem as state machines and dialogue trees, that it is a lot of work for a large

domain. But in contrast with these methods, it is not necessary to specify all possible

transitions when using templates, which makes adding new behaviour relatively easy

since the previous models do not need to be modified much.

In short, the most efficient and effective method of response selection depends

on the domain and the context. It depends on the number of topics, the modalities

of the user input, what is known beforehand about the dialogue structure, etcetera.

But what to do when the context and domain is unknown beforehand, or even worse,

unknown even during interaction? Simply said, is it possible to have an interaction

with a person without understanding him or her? Is it enough to have information

about the prosody, head movements and facial expressions to give appropriate and

relevant responses?

In the second part of this thesis, we discuss this in the context of the SEMAINE

project, in which we built a virtual listening agent, capable of giving appropriate
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responses without knowing anything about the actual content. We explain different

methods we tried to craft rules that select responses based on the user’s input, and

after that we explain how we used Wizard of Oz data to make the agent learn rules.



2
SEMAINE

The research that is described in this thesis was carried out in the SEMAINE project.

In order to better understand this research, why it was carried out this way, and

its consequences, the SEMAINE-context should be clear. This section explains the

SEMAINE system: why we want sensitive artificial listeners, the architecture of Sal

and its components, and a brief overview of the evaluation results.

2.1 Sensitive Artificial Listening agents

The concept of a Sensitive Artificial Listening agent (a SAL) was first proposed by

Balomenos et al. (2003) in the context of the ERMIS project. They explained that SAL

is a descendant of ELIZA (Weizenbaum, 1966), in the sense that it does not really

understand the user but uses tricks to pretend understanding. SAL analyses the user’s

voice and facial expressions, extracts signs of emotion and uses these to select a stock

response. The aim of Sal is to keep the user motivated to keep on talking.

ERMIS stands for Emotion-Rich Man-machine Interaction Systems, and aims to

systematically analyse speech and facial input signals, in order to “extract parameters

and features which can then provide MMI (Man-Machine Interaction) systems with

the ability to recognise the basic emotional states of their users and respond to them

in a more natural and user friendly way”. A SAL was built to serve as a testbed for

the techniques developed in the project. But besides being a testbed, the authors also

noted that such a system has other uses too. Like ELIZA, such systems are fun, and

perhaps mildly therapeutic. And a more serious use is that they provide an environ-

ment in which emotions can occur in a natural conversation setting.

In the HUMAINE Network of Excellence1, this approach was also used extensively.

HUMAINE aimed to get a better understanding of emotions and issues that are in-

volved with using emotions with virtual characters. It addressed issues such as the

theory of emotional processes, automatic detection and synthesis of emotions, how

emotion affects cognition, and the gathering of emotional data (Schröder and Cowie,

2005). For this last issue, part of the emotional data that was collected was created

1http://emotion-research.net/



10 | Chapter 2

with the SAL scenario (McKeown et al., 2010). They created four different characters,

each with a different ‘personality’ and a corresponding set of responses. These four

characters are:

• Poppy – Optimistic and outgoing

• Prudence – Pragmatic and practical

• Obadiah – Depressed and gloomy

• Spike – Confrontational and argumentative

Besides motivating the user to continue speaking, these characters have the addi-

tional goal to draw the user to their emotional state. Thus, Poppy is constantly trying

to make the user happy and optimistic, while Spike tries to get the user in an angry

state of mind. These characters are played in a Wizard of Oz (WOz) setting, in which

the user talks with a computer system, which is controlled by a human (the wizard)

behind the scenes. This wizard has a set of scripts, based on the current character

and the emotional state of the user: positive-active, positive-passive, negative-active

or negative-passive. The wizard also has some scripts for different states of the con-

versation, such as the start of the conversation. During the conversations, the wizard

watches and listens to the user and, based on the current script, determines which sen-

tence of that script the system should say. Even with a fixed set of possible responses,

this setup turned out to be capable of maintaining a conversation, sometimes for even

up to half an hour.

In the HUMAINE project (Schröder et al., 2008), the SAL setup was used as a

means to gather emotional data, and the agent was controlled by a human. However,

the succeeding project SEMAINE aimed to build a fully automatic version of a SAL: a

multi-modal dialogue system which focusses on non-verbal skills. It contains the same

four characters as in HUMAINE, and aims to automatically detect emotional features

from the voice and the face and respond to these, while also showing understanding

by giving backchannels.

So, in total, at least three projects have worked with the SAL concept. One might

wonder if it is possible to sustain a conversation with a virtual agent that does not

really understand what the conversation is about. But humans can do it too, so why

not virtual agents? It is possible for two humans to have a conversation, while one

participant pays little or no attention to what the other person is really saying. This is

demonstrated by ELIZA (Weizenbaum, 1966), which can keep a conversation going

by incorporating the user’s input into its output with a set of generic patterns. For

example, the sentence ‘I like to X’, in which X can be anything, could lead to the

response ‘Tell me, why do you like to X?’. In most situations, this suggests that ELIZA

understands the user. The SAL concept uses emotions instead of words or phrases to

determine what to say. And McKeown et al. (2010) show that with these limited set

of responses it is possible to sustain a conversation.

A second issue could be: why would we want this? A first reason was already

mentioned earlier in this section, namely that it serves as a setting that allows natural

conversations which could induce emotions from the user. A second, more technical
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reason is that it serves as a testbed and a demonstrator of techniques that have been

developed that deal with emotions and affect. These techniques could later be applied

in other virtual agents, for example to provide them with the possibility to detect

emotions. But even the SAL concept itself could be useful for other virtual characters.

It gives us the opportunity to learn how agents should react to detected emotions. And

finally, it can serve as some kind of fallback mechanism when the actual content of

the user’s sentence is not understood or out of the agent’s scope. When this happens,

it can fall back on responses that are still appropriate to the user’s emotional state,

even though the actual content is unknown.

2.2 The SEMAINE virtual agent

The SEMAINE virtual agent uses the SAL concept: its main focus is listening behaviour

and motivating the user to speak for as long as possible. Additionally, there are four

versions of the agent, and each version has a different character with a different

emotional state. The characters have been described in the previous section, and

from now on, we will refer to the complete system as Sal. In this section we explain

how Sal works, which components it consists of and how they communicate with each

other.

2.2.1 Global architecture

Sal consists of six main components, which are all shown in Figure 2.1: audio input,

video input, dialogue management, the virtual agent, the audio synthesis, and the

API that connects all modules together (the arrows).

The audio and video input function as the eyes and ears of Sal; they capture what

the user says and does. The audio input uses a microphone to capture every sound

the user makes: speaking, laughing, coughing, etcetera. With this data, it extracts

low-level features such as the F0-frequency and the energy, affective features such as

valence, arousal and interest, and non-verbal features such as laughs and sighs. The

video input component records the user from the shoulders up, and extracts features

such as head position, rotation, movement, gestures (nods and shakes), and facial

expressions.

These extracted features are sent to the dialogue management component. The

first task of this component is to interpret the detected behaviour given the current

context. For example, a head nod could be an agreement after a question, but during a

response of the agent it is probably a backchannel signal. After the interpretation, the

dialogue management component uses these interpretations to update the current

state of the conversation and its participants. With the updated state, it can then

decide what behaviour to perform.

If the dialogue management component decides to perform some behaviour, it

sends this to the output components. The avatar shows the head movements and fa-

cial expressions of the virtual agent. The behaviour is also sent to the audio synthesis

component, which generates the speech of the agent with the text that it has to say.



12 | Chapter 2

Figure 2.1: An overview of the main components of Sal.

Data is sent between components using the middleware ActiveMQ2, and a custom-

made API that enables all components to easily send and receive data to and from

other components. A more detailed image of the architecture can be found in Figure

2.2. In the architecture, features are extracted, analysed and fused from the audio

and video input and sent to interpreters. These modules put the interpretations of the

user’s behaviour and their effects on the agent into corresponding states. The action

proposers use these states to suggest agent actions to perform, and send these to the

output component. This component selects the actual action to perform (in case there

are conflicting actions), generates the corresponding behaviour and sends this to the

player which performs it with the avatar.

2.2.2 Component: Audio Input

For the audio input, the tool openSMILE3 (Eyben et al., 2010), the core component

of openEAR (Eyben et al., 2009), is used. SMILE stands for Speech & Music In-

terpretation by Large-space Extraction, and unites features from speech and music

domains. OpenSMILE is open-source, real-time and provides incremental processing,

which means that features that take longer to process — for example speech recogni-

tion — are continuously calculated and updated. In the speech recognition example,

this means that openSMILE sends its current best guess of what is said continuously

while the user is still speaking.

At the lowest level, openSMILE can detect a lot of musical and speech features

2http://activemq.apache.org/
3opensmile.sourceforge.net
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Figure 2.2: A more detailed overview of the architecture of Sal. (Schröder et al., 2010)

such as the energy of the signal, the pitch, FFT spectrum features, voice quality, and

CHROMA-based features. In Sal, the low-level features that are sent to other (non

audio-input) components are the fundamental frequency (F0), the probability that

the current frame is voiced, and the energy of the current frame. These features are

extracted and sent after each frame, which is every 10ms.

Using the features that are extracted from each frame (which are more than just

F0, the voice probability and the energy), higher-level features — such as arousal,

interest and whether the user thinks he has the turn or not — are calculated. These

features are event-based, which means they are sent whenever they are detected with

a high enough confidence. In the affective domain, the features valence, arousal,

potency, and interest are calculated (Schuller et al., 2009). In the non-verbal (actu-

ally non-linguistic) domain, the features user-speaking, pitch direction, gender, and

non-verbal vocalizations are calculated. The user-speaking feature sends a message

whenever openSMILE thinks the user starts or stops speaking. The pitch direction is

sent when there is a certain slope in the pitch, and can have the values rise, fall, rise-

fall, fall-rise, high, mid, or low. The non-verbal vocalizations are either laughs or sighs

of the user. Finally, openSMILE performs large vocabulary (4800 words) Automatic

Speech Recognition (ASR) in an incremental way, sending updates of the recognized

words each time this list changes. In earlier versions, instead of a complete ASR com-

ponent a keyword spotter was used (Wollmer et al., 2009), which would detect about

150 words. The speech recognition is, amongst other things, trained on the SEMAINE

Solid-Sal corpus.
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2.2.3 Component: Video Input

The VideoFeatureExtractor processes the data from the video camera that records the

user from the shoulders up. It sends six types of messages to other components:

face presence, face location, head movement, head pose, detected Action Units, and

affective features. The face presence component is straightforward: if it has detected

a face in the last second it sends a message that a face is present in front of the

camera. If a face is detected, the face location provides coordinates of the top-left

corner of the bounding box around the face and the width and height of that box.

Based on this information, it also calculates head movements: the direction of the

movement and its magnitude. This data is used to detect the head nod and head

shake gestures (Pantic et al., 2009). It is then possible to extract affective features

from the properties of these gestures (such as direction and magnitude), as explained

by Gunes and Pantic (2010b) and Gunes and Pantic (2010a).

Finally, the VideoFeatureExtractor extracts Action Units (Jiang et al., 2011). Ac-

tion Units (AUs), from the Facial Action Coding System (Ekman and Friesen, 1978),

specify individual or groups of facial muscles. For example, AU2 is the outer brow

raiser, and AU10 is the upper lip raiser. With these Action Units, one can describe any

facial expression. For example, the basic emotion happiness can be described with

AU6 (cheek raiser) and AU12 (lip corner puller). This information can be used to

extract useful features from the face, such as whether the user is smiling, whether

the mouth is opened or not, and whether the eyebrows are raised or lowered. Also,

they can be used to detect affective features. The VideoFeatureExtractor also uses the

SEMAINE Solid-Sal corpus as training material.

2.2.4 Component: Avatar

The virtual agent Greta (Hartmann et al., 2002) was used to display and control the

avatar. Greta consists of five major modules that form a pipeline, namely the Listener

intent planner, the Listener action selector, the Behaviour planner, the Behaviour re-

alizer, and the Player. The Listener intent planner analyses the user’s behaviour when

the agent is listening, and based on what the user is doing decides when the agent

should show a backchannel signal. It accompanies this request with the communica-

tive intention of the backchannel signal, such as whether it should show agreement

or not. The Listener action selector (De Sevin and Pelachaud, 2009) receives action

candidates from the Listener intent planner and from the dialogue management com-

ponents. Based on the current state of the agent and the conversation, it decides

which action the agent should perform. If the agent is already performing some kind

of behaviour, it puts the selected behaviour in a queue, ready to start as soon as the

agent has finished.

When a certain behaviour is selected to be performed by the avatar, it is sent to

the Behaviour planner in a variant of FML (Function Markup Language). This compo-

nent takes the characteristics of the current character and uses these to convert the re-

ceived high-level behaviour to more concrete behaviour, described in BML (Behaviour

Markup Language). For example, it receives the behaviour to show agreement, and

using a lexicon with all communicative intentions and possible behaviours it converts
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this to a head nod. This BML message is sent to the Behaviour realizer, which converts

BML to animation elements, whilst also incorporating lip synchronization using the

speech timings of all syllables it receives from the audio synthesis. These animation

elements are sent to the player, which plays them with the avatar.

Four different avatars were developed, to make the difference between the four

characters very clear. They are shown in Figure 2.3.

Figure 2.3: The four Sal characters as used in SEMAINE. Clockwise, starting in the top left are

Poppy, Prudence, Spike, and Obadiah.

2.2.5 Component: Audio synthesis

For the audio synthesis, the open-source text-to-speech platform MARY ((Modular

Architecture for Research on speech sYnthesis) was used (Schröder and Trouvain,

2003). MARY is responsible for converting the text of the agent’s next utterance to

sound, including speech timings for the avatar to get the lip synchronization correct.

If necessary, the created voice can be manipulated by specifying accents and pitch

curves.

The four characters also have different voices that match their character. For this,

four professional actors were hired, based on how well their voice suited a certain

character. The actors then read about 150 sentences from the respective character’s

script, and 500 to 2000 random sentences from Wikipedia to optimize phonetic and

prosodic coverage. When generating speech, MARY works with unit-selection: it tries

to find the largest matching fragment of the target-text in its database. For example,

if it can find a speech element for the complete sentence in its database it will use

this, but if it cannot it will try smaller and smaller blocks such as several words, single
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words, or even syllables. However, the smaller the fragments, the lower the quality

of the generated speech. This results in voices that work well when the sentences are

inside the Sal-domain, but produces sentences with a reduced quality (although still

reasonable) if the text is out-of-domain.

Additionally, 30 minutes of free dialogue was also recorded with each actor, in

order to extract listener vocalization (Pammi and Schröder, 2009). During these free

dialogues, the actors were encouraged to be the listener as often as possible, and to

use mostly “small sounds that are not words”. The recorded data was used to get

character-specific backchannel voices.

2.2.6 Component: SEMAINE API

All components in the SEMAINE system are coupled by means of the middleware Ac-

tiveMQ. This is a messaging server that enables components to connect to it and join

Topics. If a message is sent to the server on a certain Topic, then the server broadcasts

this message to all clients that have joined that same topic. This has multiple ad-

vantages: the sender of the message does not care whether a component is listening

or not, it just sends its message, which makes the components more modular. Also,

it is very easy to add a new component to the system: it only has to listen to the

Topics it wants data from. Another big advantage is that it is easy to distribute all

components across multiple computers, as long as they can connect to the ActiveMQ

server. This was actually the main reason to use such a system, because at that time

all components could not run smoothly together on one computer.

The next question is: what kind of messages should be sent? The messages should

be easily readable by the computers, non-ambiguous, but also easily extendible and

contain all information that is needed. To meet these requirements, Sal uses several

standard data-formats for different parts of the system. For example, it uses EMMA

(Johnston, 2009) to describe the interpretations of the user’s input, EmotionML (Bag-

gia et al., 2009) to describe emotional information, BML (Kopp et al., 2006) to de-

scribe behaviour elements, and SSML (Burnett et al., 2004) to describe details for the

audio synthesis.

Unfortunately, creating an XML-message from scratch is quite a hassle, and with

a system such as Sal other functionalities are also needed. To accommodate for this,

the SEMAINE API was created: a meta-component that is responsible for all other

components and their communication. It monitors the state of all components and

notices whether one is stalled or has crashed. Using a GUI, it can show all compo-

nents, their current state and via which Topics they are connected. The API also takes

care of easier communication using namespace-aware XML and provides methods to

send and receive certain information without using XML directly — the API automati-

cally converts the data to XML and vice-versa. The API also takes care of a centralized

time, to provide each component with the same time stamp, and centralized logging.

2.3 Dialogue Management

The dialogue management component (from now on called the DM) is a complex

component, responsible for interpreting the detected behaviour, keeping track of the
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agent’s states and generating new behaviour for the agent. In this section, we elab-

orate on these aspects, starting with the agent’s states. We continue with the inter-

pretations that are made, the turn-taking module that decides when the agent should

start speaking, and the action proposer that generates new behaviour for the agent.

2.3.1 The agent’s states

The DM stores its knowledge about the user, the conversation and about itself in states,

to be precise the UserState, the AgentState and the DialogueState. The UserState

contains the ‘current best guess’ of the user’s behaviour: the interpretation that, given

the current evidence, is most likely true at this point in time. The state is filled by

different interpreters, which analyse the detected behaviour of the user and decide

whether there is enough evidence to make a certain interpretation. For example, if the

detected gender ‘Female’ has a confidence value greater than 0.8, then an interpreter

could add to the UserState the current best guess that the user is female.

The DialogueState contains information about the conversation itself. In systems

that focus more on the content of the conversation, this could include the phase of

the conversation, the current topic, etcetera. However, in Sal it only contains several

variables, of which two keep track of the current turn-state. There are systems that

only use one variable with two possible states to keep track of the turn, which means

that either the user or the agent has the turn. However, turn is not an objective item

one can possess, there is no regulating object that says that now the user or the agent

has the turn. Instead, the user can think he or she has the turn or not, and the agent

can think it has the turn or not. This makes it possible that both participants think

they have the turn — resulting in a clash — or that both think they do not have the

turn — resulting in silence. For this reason, both the user’s turn-state and the agent’s

turn-state are stored.

The AgentState stores information about the agent, such as its emotional state,

a history of performed behaviour, and its eagerness to start speaking. Modules like

interpreters analyse the user’s behaviour and decide how this affects the user’s state.

For example, a long silence might increase the agent’s eagerness to start speaking,

and a smiling user could increase Poppy’s happiness value.

2.3.2 Interpreters

The interpretation modules are responsible for analysing the user’s behaviour, decide

how this could be interpreted and how it affects the different states. Sal contains the

following interpreters:

• Emotion interpreter Responsible for putting detected user-emotions into the

UserState. First, a Fusion module combines the detected emotions from the

audio and the video, and if the confidence of the consolidated emotion exceeds

a certain threshold, then it is put into the UserState.

• Non-verbal interpreter Responsible for putting detected non-verbal behaviour

— such as head movements, laughter, etcetera — into the UserState, using a

similar approach as the emotion interpreter. First, a Fusion module combines
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detected behaviour from the audio and video input components into a single

event, and if the confidence of this event exceeds a certain threshold it puts it

into the UserState.

• Agent mental state interpreter The mental state of the agent is a set of twelve

communicative intentions (see Bevacqua et al. (2008)) — such as agreement,

belief, interest and understanding — which are mainly used to select the type of

backchannel signal to be used. In Sal, each character has a baseline: a default

value for each intention. For example, by default Poppy is more agreeing and

interested than Spike. When an affective state (for example valence or arousal)

is detected, this affects the agent’s mental state, based on the emotional state of

the current character. If the detected affective state is congruent with the agent’s

emotional state, then intentions such as agreement and liking will increase, and

vice versa. For example, if Poppy detects a high valence or arousal with the

user (which matches its own emotional state), then its mental state changes in

favour of the user, and after that Poppy will be more agreeing and liking.

• Turn-taking interpreter The turn-taking interpreter is responsible for deciding

when the agent should take the turn, based on the user’s behaviour. We will

discuss this module more extensively in the next section.

2.3.3 Turn-taking

The turn-taking module of Sal is responsible for deciding when the Agent should start

speaking, based on the user’s behaviour. In earlier versions of Sal, only the speaking

behaviour of the user was considered; whenever the user was silent for more than

two seconds, the agent would take the turn. This value was chosen to make sure that

the agent’s response would not overlap with the user’s turn. However, this is very

reactive behaviour, and for fluent conversations this is just not acceptable.

In Sal, the turn-taking is not only reactive, but also proactive, by keeping track of

its own intention to speak (how eager it is to take the turn). This intention changes

according to the user’s behaviour, but also to other factors such as time. If the inten-

tion to speak gets high enough, then the agent starts speaking. The observation that

the user has finished a turn contributes to this intention, but this is not compulsory;

if other factors increase the intention to speak enough, then the agent will also start

speaking if the user has not yet finished.

To calculate the intention to speak, the following aspects are used:

• User silence time A value between 0 and 100 which increases over time when

the user is silent. When the user starts speaking again this value drops back to

0.

• User’s emotion A value between 0 and 80 with 10 points for each detected

emotional event (for example a peak in the arousal). This encourages the agent

to respond faster if the user shows more emotion, because this also means the

agent has more to respond to.
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• User speaking time A value between 0 and 30 that increases over time when

the user is speaking (reaches its max after 30 seconds). This is to stimulate the

agent to take the turn if the user has already been speaking for a longer period.

• Agent turn-end wait time A value between -100 and 0 that starts at -100 after

the agent finishes its turn, and for the next two seconds rises to 0. This makes

sure that the agent does not start too soon after its own utterance.

• User not responding A value between 0 and 100 that starts rising if the user

does not start talking after the agent finishes its turn. It starts after 2 seconds

and rises to 100 in 4 seconds unless the user starts speaking. This makes sure

that the agent takes the turn if the user does not start his or her turn.

The intention to speak is calculated by adding these values together, resulting

in a value somewhere between 0 and 100. For each character, a certain threshold

determines when that character takes the turn. Based on the results of this thesis (see

Chapter 3 to 6) we gave the characters different thresholds. For example, Poppy’s and

Spike’s thresholds are fairly low, and Obadiah’s threshold is high, which means that

Poppy and Spike react much faster than Obadiah. This is in line with their emotional

characteristics, since Poppy and Spike are meant to be more aroused than Obadiah.

2.3.4 Action proposer

The action proposer is responsible for selecting what to say when the turn-taking

module decides the agent should say something. Chapter 7 and 8 explain in more

detail how a response is selected, but this section roughly explains the process.

The action proposer uses a set of templates to select a response, based on the

current phase of the conversation and the user’s behaviour. It uses features such as

detected affective states (e.g. valence and arousal), non-verbal behaviour (e.g. head

nods, laughs), and low-level audio features (e.g. pitch and energy). It continuously

processes these features to determine what is the best response at that moment. If the

agent wants the turn, then this response is selected to be performed, but if the agent

is still listening, then the best response is prepared in case the agent takes the turn

soon.

When determining what to say, the action proposer uses several strategies. At the

start of the conversation it uses a predetermined script of three responses, in which the

agent introduces itself and asks how the user is today. If the user or the agent wants

to change the character, then it follows a script too, in which it tries to determine

with the user which character it should change to. In between these phases, it uses

templates to determine which response or what type of response it should give. Such

a response type could be, for example, the introduction of a new topic, to cheer the

user up, to insult the user, or to ask for more information. If no template matches,

and no good response can be found, it falls back to a generic response that fits most

situations, such as ‘Tell me more’.

The templates are implemented using Flipper4, a specification language and in-

terpreter for Information-State update rules (Ter Maat and Heylen, 2011). Such an

4http://sourceforge.net/projects/hmiflipper/
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update rule describes the behaviour to be performed when the rule is fired, the ef-

fects it has on the state of the conversation, and the current conversation state that is

required to fire the rule. An example of such a template is this:

<template id="RespondToSmile1" name="A response to a smile">

<preconditions>

<compare value1="$face.nrOfSmiles" comparator="greater_than" value2="1" />

<compare value1="$speakingIntention" value2="want_turn" />

</preconditions>

<effects>

<update name="$nrResponses" value="$Agent.totalResponses + 1" />

<update name="$responses._addlast" value="#Response129" />

</effects>

<behaviour class="ActionProposer" quality="0.5" />

<argument name="response_id" value="#Response129" />

</behaviour>

</template>

This template checks if there was a smile and if the agent wants the turn. If so,

then the total number of the agent’s responses is incremented by one, the agent’s

response (#129) is put in a list of performed responses and the selected behaviour is

executed.

2.4 Sal Evalution

An important aspect of designing a system such as Sal is the evaluation afterwards.

Most components were tested during their development, but evaluating the complete

system is a challenge. This section explains roughly how Sal was evaluated and with

what results, and more details can be found in Schröder et al. (2011).

2.4.1 Evaluation methods

Evaluating Sal as a complete system was a challenge, mainly because it is not a usual

system. For example, there are no tasks to be achieved, which means that measure-

ments such as effectiveness and efficiency could not really be used. Also, negative

affective states such as frustration are sometimes good; if users get frustrated by Oba-

diah’s eternal depression it actually means that they are engaged in the conversation,

which is precisely what we wanted: to measure the user’s engagement.

In order to evaluate Sal, three methods were used:

1. Questionnaire A simple way to measure engagement is to ask the user. How-

ever, asking things during the conversation disrupts the flow the user might

have with the agent, and asking afterwards causes the user to rationalize things.

Therefore, we implemented a small questionnaire in the system itself, as a neu-

tral fifth character. This character appears each time the character is changed,

and asks the following three questions of the user:

(a) How often did you feel the avatar said things completely out of place?

(appropriateness)

(b) How much did you feel that you were involved in the conversation? (felt

engagement)
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(c) How naturally do you feel the conversation flowed? (flow)

These questions focus on the three most important elements: the agent, the

user, and the conversation.

2. Yuk button In order to get more detailed feedback during the conversations,

we asked the users to hold a button and press it every time they felt that the

simulation was not working well. This provided a non-verbal measure of how

well the system was working, but also details about problem areas.

3. Annotated engagement As a final measure, an annotator watched the conver-

sations as they took place, and annotated the user’s apparent engagement using

a trace-like technique.

2.4.2 Evaluation results

When evaluating a system, you need a baseline to compare it with. However, there

is no system like Sal, which means there is no baseline either. Therefore, the final

system was compared with a version of the system in which affective features of the

output were disabled; the voices and faces were expressionless and the agents did

not produce backchannel signals. In total, 30 users took part in the evaluation, of

which 24 female and 6 male. The users talked with both versions of the system (in

counter-balanced order), and with each version they talked with all characters in a

random order.

Figure 2.4: Mean values for self-reported Flow and Felt engagement.

Figure 2.4 shows the mean values for self-reported flow and felt engagement.

This graph shows that the full system scores significantly (F (1, 29) = 9.25, p = 0.005)

higher than the control system. Figure 2.5 shows that in the full system the users

were perceived as significantly (F (1, 29) = 23.3, p < 0.001) more engaged than in the

control system.

To give a feeling of how well the automatic system worked compared with the

semi-automatic version — in which the users thought they were talking with the real

system, but a wizard controlled the response selection — Figure 2.6 shows the mean
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Figure 2.5: Mean values for annotated engagement.

Figure 2.6: A comparison of the Full version and the semi-automatic version of Sal for Flow and

Felt engagement.

flow and felt engagement of both tests. It shows that the automatic system works

well for Obadiah and Prudence, but not at all for Poppy and Spike. It also shows that

some characters are evaluated better in the full system, and this is a key point in the

evaluation: the character has a big effect on the results.

2.5 Conclusion

In this section, we explained the context of this thesis, namely the SEMAINE project.

We explained several reasons why we need sensitive artificial listeners, for example

to have a system that can induce emotions in a natural conversation setting. We

explained that the system we created in SEMAINE, a virtual listening agent system

called Sal, consists of video and audio input, dialogue management, and an avatar
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with speech. We elaborated on these components, especially on the dialogue man-

agement, and finally we briefly explained how Sal was evaluated.

The remainder of this thesis is divided into two parts. The first part is about how

we can use turn-taking behaviour as a tool to amplify the differences between the

different characters. We will present two studies in which we tried to find out how

people perceive different turn-taking strategies, and we think about how we can use

these results to create different impressions. In the second part of this thesis, we will

describe our work on response selection. We will explain which methods we used to

select an appropriate response from the fixed list of responses, using only the detected

non-verbal behaviour.
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Part II

Turn-Taking





3
Turn-taking and perception

This part of this thesis is about how people perceive different turn-taking strategies.

The aim is to use this knowledge in virtual agents, to use turn-taking as a tool to

change the impression that people have of the agent. In this chapter, we will provide

an overview of turn-taking in the literature, social signals that can be found in turn-

taking behaviour, and why we should use turn-taking as a tool. In Chapter 4, we

will present our first study, in which we had people rate unintelligible conversations

in which one participant uses different turn-taking strategies. In Chapter 5, we will

present our second study, in which the rater actively participated in a conversation

with a wizard-controlled agent that used different turn-taking behaviour. Finally, in

Chapter 6 we will provide the conclusions and a reflection about these two studies.

3.1 Turn-taking in the literature

How can something that seems so simple and natural to humans be so complex? For

humans, turn-taking is something we do without thinking. To quote Yngve (1970):

When two people are engaged in conversation, they generally take turns.

First one person holds the floor, then the other. The passing of the turn

from one party to another is nearly the most obvious aspect of conversa-

tion.

However, even after more than 40 years of research on this phenomenon, we

are still unable to build a virtual character that has the same smooth turn-taking

capabilities as humans.

Yngve (1970) notes that although the turn passes from one party to another, hav-

ing the turn or not is not the same as being the speaker or the listener. He argues that

it is possible to speak out of turn, which even happens reasonably frequently. Accord-

ing to Yngve, “...both the person who has the turn and his partner are simultaneously

engaged in both speaking and listening”. He does not mean that both interlocutors si-

multaneously have the turn, but that the person who does not have the turn can send

messages on what Yngve calls the back channel. On this channel, the person who has
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the turn receives short feedback messages. These messages can be small comments or

nods, but also longer comments such as “Oh, I can believe it” or even questions such

as “You’ve started writing it then — your dissertation?”.

Sacks et al. (1974) followed with their famous paper, in which they explain three

simple turn-taking rules that are followed after each turn, while trying to minimize

the duration of silence between turns and the duration of any overlapping speech. At

the end of a turn, the following three rules are used:

1. If the current speaker selected the next speaker, then the selected speaker has

the right and is obliged to take the turn, and the other participants do not.

2. If the current speaker did not select the next speaker, then a participant may

select him or herself as the next speaker, and the person who starts first acquires

the turn.

3. If no participant self-selects him or herself as the next speaker, then the current

speaker may continue to speak.

Simple rules, but unfortunately, there are some problems with them. A lot of these

problems are explained by O’Connell et al. (1990), who criticize the assumptions,

concepts, and methods of the paper by Sacks et al. (1974). For example, they have

a lot of criticism on the fact that Sacks et al. only provide anecdotal evidence. This

makes the conclusions weak, and easy to oppose by offering counter examples. This

is amplified by the fact that, in general, time (for example durations of silence or

overlapping speech) is often treated intuitively and perceptually instead of objectively

by measuring it. Also, they contest the assumption “Someone’s turn must always and

exclusively be in progress.” Instead, they argue, at any time in a conversation the

turn belongs to all participants. Turns may remain unclaimed, and the fact that a user

interrupts someone else does not by itself make the conversation faulty.

Something to keep in mind with the rules of Sacks et al. is that it is a descriptive

model of turn-taking: it tries to create a model for turn-taking that explains the turn-

taking behaviour that is perceived in recorded conversations. Another example of

a descriptive model is provided by Padilha and Carletta (2003). In this paper the

authors describe a multi-agent system that simulates a discussion, and they want

these discussions to statistically approximate human-human discussions. Their turn-

taking model uses additional non-verbal behaviour such as gaze, gestures, posture

shifts, and head and facial expressions to decide what to do.

However, for a virtual agent that uses a turn-taking model to determine how to

behave, we do not need a descriptive model, but a generative model. A model that

does not try to explain perceived behaviour, but can predict and generate turn-taking

behaviour. A model that analyses the user’s behaviour, and can tell whether a small

silence is just a pause or the end of a turn, and whether a user’s ‘hmm’ is just a

backchannel signal or an attempt to take the turn.

Most studies on generative models focus on predicting (or detecting) when a user

finishes his or her turn. For example, Sato et al. (2002) describe how they created

a decision tree that, given a silence longer than 750 ms, determines whether it is

only a pause of the user or a possibility for an agent to take the turn. The classifier
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was tested by comparing its behaviour to a baseline system which would take the turn

after each silence that was longer than 750 ms. To be able to respond faster, Raux and

Eskenazi (2008) developed a system that dynamically changes the time it waits after

a user silence before it takes the turn, based on automatically extracted features of

the audio. These algorithms focus on determining when the end of a turn is reached

as fast as possible .

However, being able to predict or detect when a user has finished his or her turn

is not enough, something needs to be done with this information. A great example of

this is the Ymir Turn-taking Model (YTTM) of Thórisson (2002): a turn-taking model

that addresses all aspects of turn-taking, namely multi-modal perception, knowledge

representation, decision making and action generation. In this model, multi-modal

input detected from the user flows into three different layers, which all operate at

a different frequency: the reactive layer, the process control layer, and the content

layer. For example, the fastest layer — the REACTIVE LAYER — has a perception-

action loop of two to ten times per second, and is responsible for highly reactive

behaviour, such as gazing at mentioned objects. During each perception-action loop

(which runs at a different speed for each layer), each layer passes its input through

a set of perceptors to interpret the input. These interpretations are then fed through

a finite state machine that keeps track of the current Turn status (who has the turn

and who wants, takes or gives it). Changes in this state machine can affect decision

rules, which can fire certain behaviour of the agent. For an overview of the layers of

the YTTM, see Figure 3.1.

Figure 3.1: The three layers of the YTTM, image taken from Thórisson (2002). The loop times are

the frequencies of the full perception-action loop. [a] and [b] are partially processed

data.

The YTTM system uses a single notion of TURN: either the user or the agent has

the turn. This implies that the TURN is a property of the conversation. But Yngve

(1970) already noted that “each person in a conversation acts according to his own
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concept of who has the turn”. With a single notion of turn, situations where both or

neither participants think they have the turn cannot be modelled.

3.2 Optimal Turn-taking

Something that Thórisson (2002), Raux and Eskenazi (2008) and Sato et al. (2002)

all tried to achieve, whether implicitly or explicitly, is optimal turn-taking behaviour.

They all wanted turn-taking to be as smooth as possible, with as little overlap as

possible and the silences between turns as short as possible. Another clear example of

this is the work of Jonsdottir et al. (2008), in which the authors used machine learning

techniques to have an agent learn ‘proper’ turn-taking behaviour. They did this by

creating a classifier that uses the prosody of the other person’s speech to determine

how long to wait before taking the turn. They defined ‘proper’ behaviour as turn-

switches with no overlap and as short a gap between the turns as possible, and they

evaluated the system on these properties. When prosodic information is not enough

to determine whether a pause is the end of a turn, other non-verbal signals might

help (as shown by Barkhuysen et al. (2008)). For example, Novick et al. (1996) show

how gaze behaviour is used by humans when managing turn-taking.

The reason that people are so focussed on smooth turn-taking can probably be

traced back to the paper by Sacks et al. (1974). In this paper, the authors specifically

provide rules for turn-taking in order to “minimize gap and overlap”, where a gap is

defined as the silence period between two consecutive turns. This view is strength-

ened by studies such as De Ruiter et al. (2006), who show that 45% of the speaker

transitions in their recordings of telephone conversations had a floor transfer offset —

the start time of the next turn minus the end time of the previous turn — of between

-250 and 250 milliseconds, and 85% between -750 and 750 milliseconds.

But why focus on smooth turn-taking? O’Connell et al. (1990) argues that the

turn-taking rules of Sacks et al. (1974) are entirely focussed on the ‘smooth transi-

tions’, but they do not provide sufficient evidence that ‘the vast majority of transitions’

is smooth. Also, according to Orestrom (1983), evidence indicates that “speaker-shift

is seldom, if ever, an entirely smooth process”. And O’Connell et al. continue with

“There is no evidence that there is only one best way or any ideal way to carry on [a]

conversation, either in terms of mandatory turn allocation or in terms of mandatory

time allocation”. As an example, look at the graphical representation of a telephone

conversation in Figure 3.2 (image taken from Campbell (2009)). This figure shows

the speech on/off behaviour of two people talking to each other using a telephone.

Observe that the figure shows high degrees of overlapping speech, and the concepts

of ‘turn’ and ‘utterance’ are hard to find.

There is nothing intrinsically wrong with overlapping speech. Schegloff (2000)

provides an insightful overview of overlapping speech in conversations. In his paper,

he gives a lot of examples of conversations in which overlapping speech occurs, and

he summarizes the methods that are used to resolve the situation. Many overlaps are

resolved after a single syllable, when one of the two participants withdraws. Longer

overlaps are usually stopped within one beat after one of the speakers switches to

COMPETITIVE SPEECH, that is, talking louder to keep the turn.
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Figure 3.2: An example conversation, taken from Campbell (2009)

The overlapping speech gets resolved, which indicates that in those cases it was

unwanted. But interestingly, in his analysis Schegloff excludes four types of overlaps

which occur regularly in conversations, “primarily those types in which the simulta-

neous speakers do not appear to be contesting or even alternative claimants for a turn

space. In these cases, the conduct of the participants does not show these occurrences

to be taken as problematic by them”. Basically, these are types of overlaps that are

non-problematic and acceptable. These are the four cases:

1. Terminal overlaps – The next speaker starts just before the prior speaker fin-

ishes, usually because the end of that turn is noticeably getting near. Note that

this is exactly the type of overlapping speech that a lot of researchers try to avoid

at all costs, but Schegloff argues that this case of overlap is not problematic.

2. Continuers – These are the same as what Yngve (1970) calls backchannel sig-

nals: short signals to indicate that you are still following the speaker, such as

‘uh huh’, ‘hmm’, and ‘yeah’.

3. Invited overlapping speech – Cases in which the speaker invites another par-

ticipant to speak, without yielding the turn. For example, inviting the other

participant to find a word that the current speaker cannot retrieve at that mo-

ment, or collaborative utterance construction in which the other participant is

invited to finish it.
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4. Choral talk – Forms of talk that all participants are required to do simultane-

ously, for example laughing, greeting, and congratulating.

In short, Schegloff shows that if a (potentially undesirable) overlap occurs, this is

usually resolved very swiftly, without hampering the conversation too much. Also, he

argues that a lot of cases of overlapping speech are not problematic at all.

Ten Bosch et al. (2004) also show that overlapping speech is indeed very com-

mon. They define different types of turn changes, and extracted these types from

two corpora: one containing face-to-face conversations and one containing telephone

conversations. In total, almost 20,000 turn changes where analysed. In face-to-face

conversations, 80% of the turn transitions appear after a small pause after the end of

the previous turn, but in 20% of the cases the next turn starts while the previous turn

was not finished yet. In telephone conversations, the percentage of early turn starts

(which overlap the previous turn) increases to 26%.

Ten Bosch and Oostdijk (2004) show that longer pauses are also not uncommon.

In their paper, the authors analysed 93 telephone conversations of two people who

knew each other well and could talk about anything they wanted. The conversations

lasted about nine minutes on average. In 15 of these conversations at least one of the

interlocutors had an average pause-duration (between and within turns) of at least 0.5

seconds. In seven of these 15 conversations, both participants had an average pause-

duration of at least 0.5 seconds. This shows that, short (less than 0.5 seconds) pauses

are most common, but longer pauses (within and between turns) happen regularly

too.

These sources and examples show that ‘smooth’ turn-taking is not always as com-

mon as some people believe. Turn changes with overlapping speech occur regularly,

and often without causing any problems to the conversation. This does not mean that

one should not focus on turn-taking without overlapping speech and with short gaps,

but one should realize that this is not the only turn-taking behaviour that occurs in

the real world, and that there are cases in which an overlap or a long gap is acceptable

and that should also be modeled to create realistic virtual humans.

3.3 Social signals in turn-taking

Now that we have established that turn-taking does not have to be smooth per se, it

is time to go one step further: what does a speaker’s turn-taking behaviour tell us

about his or her social or affective attitude or state? Turn-taking behaviour can be

very informative, and different situations — for example, type of conversation, phase

of the conversation, status of the participants, and emotional state of the participants

— can result in different turn-taking behaviour. For example, Trimboli and Walker

(1984) look at differences in turn-taking behaviour in cooperative and competitive

conversations. In the cooperative scenario, the participants held a friendly conversa-

tion, and in the competitive scenario, the participants had to hold an argument on

a topic they chose themselves. They found that the cooperative conversations had

significantly less interruptions than competitive conversations. Orestrom (1983) also

noticed that “A clash of opinions also means a clash of turn-taking”.



Turn-taking and perception | 33

Goldberg (1990) extensively describes interruptions in conversations. She ex-

plains that interruptions are often linked to displays of power and control, and are

generally viewed as rude and disrespectful. However, she also lists studies that

show that this correlation between interruptions and displays of power and control

is weaker than previously presumed. She argues that interruptions may also convey

rapport or cooperation, and can be triggered by the participant’s enthusiastic interest

and active involvement. Some studies found that interruption frequency varies with

respect to the current phase of the conversation, and the ‘meaning’ of that interrup-

tion changes with it. This means that assigning personal or relational attributes to

a participant based only on the number of interruptions is unsound; the context of

the conversation needs to be taken into account too. Although, Rienks and Heylen

(2006) show that the number of interruptions can help when determining dominance

in a conversation. They show that the number of successful interruptions is one of the

top discriminative features for dominance in meetings.

Goldberg studied interruptions, and tried to differentiate between power and non-

power (rapport) interruptions. Power interruptions are generally perceived as more

rude, impolite, intrusive and inappropriate, while rapport interruptions are generally

understood as expressions of open empathy, affection, solidarity, interest, etcetera.

She found that power-interruptions are usually off-topic, introduce new topics, or

contain little relevance to the previous subject. Rapport interruptions have a greater

degree of ‘fit’ (as she calls it) with the interrupted utterance.

Goldberg’s literature review is mostly about what interruptions tell about some-

one’s personality. Instead, Robinson and Reis (1989) look at how interruptions change

the perception of a listener. They let subjects listen to a four-minute audiotape of a

discussion between two interlocutors. The subjects had to rate these interlocutors

on masculinity, femininity, competence, sociability, attractiveness, and traditionality.

They varied the sex of the interrupted interlocutor, the style of the interruption (state-

ment, question, or no interruption), and the status of the conversational interlocutor.

They found that interrupters were perceived as more assertive, more masculine, and

less sociable. In contrast, interlocutors who were interrupted were seen as more

passive and submissive. They did not find differences between interrupting with a

statement or a question.

Beattie (1981) studied differences between interruption behaviour and status. He

analysed videos of tutorial groups —containing discussions of a tutor and several

students — for interruption behaviour of the participants. He found that high-status

participants (the tutors) were interrupted significantly more often than low-status

participants (the students). At first sight, this seemed the opposite of what the author

expected, but he argues that this is because the students are trying to make a good

impression on the tutor, which causes them to interrupt more often to state their view.

The author also shows that students’ interruptions are significantly more often barge-

in interruptions, in which the current speaker has not reached a possible completion

point yet. Mostly likely, this was caused by the competitiveness between the students.

When tutors interrupt, they generally use overlapping interruptions just before the

end of a turn is reached.
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Trimboli and Walker (1984) compared turn-taking styles of cooperative and com-

petitive conversations. They found that in cooperative conversations there were sig-

nificantly less interruptions. However, they also looked at another interesting feature

of turn-taking: silences. They found that in cooperative conversations there were

significantly longer pauses within each turn. But that is just one example of how

informative silences can be. According to Clark (1996), cessations and pauses are

signals, and are powerful cues for what is happening in a conversation. Pauses can

be politeness markers (Brown and Levinson, 1987) and can be used to indicate cog-

nitive processing, for control mechanisms (to control the flow of the conversation), to

indicate acceptance and refusal, and for turn-taking (Endrass et al., 2008).

These examples make clear that specific turn-taking behaviour — for example

starting while the other person is still talking, or leaving longer periods of silence

between the turns — can be very informative, for example about personality, mental

state, politeness, and other social factors, and therefore can be used in the design of

virtual agents to create a distinct persona.

3.4 Virtual Agents and Personality

In the previous sections we discussed personality and emotions of people. Whether

explicitly designed or not, virtual characters also have a certain ‘personality’ and they

convey a certain emotional state. For most characters this is the ‘extremely polite’

personality, and in most cases this is a very appropriate attitude. For example, for

agents that function as a virtual receptionist (e.g. Mack (Cassell et al., 2002) or MIKI

(McCauley and D’Mello, 2006)) or a museum guide (e.g. Max (Kopp et al., 2005)),

it is their responsibility to address visitors as politely as possible. However, as already

stated in Chapter 2, there are sometimes good reasons to change this personality. For

example, virtual actors playing a certain role, personal virtual agents that can become

angry or sad based on what you say, etcetera. An important question is how to make

the agent’s behaviour, looks and speech match its personality and emotional state.

To have a virtual agent show its emotional state, changing its facial expression is

an obvious choice (Arya et al., 2009; Mancini et al., 2007). But besides facial expres-

sions, the human face has other options to display a certain emotion. For example,

crying is a very powerful cue to the emotional state, and Van Tol and Egges (2009)

explain how virtual agents can cry too. De Melo and Gratch (2009) describe even

more facial signals that a virtual character can show besides moving muscles, namely

wrinkling the forehead, blushing, and sweating.

Another modality that can be used to show a certain personality or emotion is

speech. Without now considering what the agent is saying, how the agent says it is

very important. Türk and Schröder (2008) study three different methods to trans-

form neutral speech — generated with unit selection from a large neutral database —

into emotional speech, in this case cheerful, aggressive, or depressed. These methods

modify the prosody of the neutral speech that is generated first. Theune et al. (2006)

define rules to modify neutral speech to a ‘storytelling’ speech style by changing the

pitch, the intensity, the speaking tempo, durations of vowels, and pause lengths.

Mozziconacci (1998) shows that pitch level, pitch range and speech rate can be used
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to convey different emotions too.

Changing the agent’s bachchannel behaviour is also a great way to show different

emotional states or personalities. For example, the different characters of Sal use dif-

ferent types of backchannels, and these types are changed by the current emotional

state of the agent too (Bevacqua et al., 2010). The method used is explained in more

detail by De Sevin et al. (2010). In their paper the authors explain how personality

influences the type and the frequency of the agent’s backchannels and mimicry. In

the ECA developed in the Companions project (Smith et al., 2010), the agent modi-

fies its backchannels based on the detected emotional state of the user instead of its

own state. But this method can be used to change the perception of the agent too,

for example by making the agent seem more empathic by performing more affective

backchannels.

Finally, another modality that can be varied is gestures. Von der Pütten et al.

(2010) show that differences in gesture rate and gesture performance parameters

significantly change the perception of extraversion.

3.5 Turn-taking as a tool

In the previous section, we showed that there are numerous ways to give a virtual

agent a certain ‘personality’ or appearance. In section 3.3 we showed how aspects

such as personality, status, perception, and other social aspects are related to different

types of turn-taking behaviour. So, why not combine these two elements, and use

turn-taking as a tool to adjust these aspects? For example, say, you want a more

assertive virtual character. This could be achieved by interrupting the user more often

(Robinson and Reis, 1989). And enthusiasm could be augmented with faster turn-

taking behaviour (Goldberg, 1990).

However, most of these examples are taken from studies which have looked at

the correlation between emotion, personality and other social factors, and measured

turn-taking behaviour. For example, this means that in a competitive conversation

more interruptions are observed. But this does not automatically mean that more

interruptions make the conversation more competitive.

What we need to know is how different turn-taking behaviour influences the con-

versation or, more specifically, influences the perception of the participants. How do

the participants perceive the agent when it uses different types of turn-taking?

In this part of the thesis we will study this. In Chapter 4 we will describe the

PASSIVE experiment, in which we automatically generated incomprehensible conver-

sations in which one participant varied the start time of its utterances, and its be-

haviour when overlapping speech is detected. Using a questionnaire we studied how

humans perceived this participant on scales concerning personality, emotion and in-

terpersonal stance.

In Chapter 5 we will describe the ACTIVE study, in which we let the user actively

participate in the conversation, instead of being a bystander. Using a Wizard of Oz

setup, the agent acted as an interviewer and asked the user a number of questions.

The wizard controlled the start time of the questions, and based on the strategy

started it early, directly when the user finisheed his or her answer, or late. After



36 | Chapter 3

each interview, the user completed a questionnaire about how he or she perceived the

agent, again on different scales concerning personality, emotion and interpersonal

stance.

In Chapter 6 we will summarize and discuss the results of the two studies. We

will look at differences and similarities in the results, and how the results match with

the literature. We will also discuss how the results can be used practically in virtual

agents, and we will conclude with possible directions for future work.



4
Turn-taking perception when listening to

unintelligible conversations

This chapter is about the first study we performed to find out how turn-taking affects

perception (Ter Maat and Heylen, 2009). More precisely, we wanted to find out

how variations in turn management strategies affect how people perceive aspects of

personality, emotional state and interpersonal stance of the person (or agent) that

uses said strategy. This means we needed to show, in some form, these different turn-

taking strategies to human participants, and give them the opportunity to write down

their perceptions.

However, a problem with measuring perception is that a lot of factors are involved.

In order to compare various turn-taking strategies, in the ideal situation all other as-

pects remain the same. Therefore, in the first study, called the PASSIVE STUDY, we

decided to let the participants listen to prerecorded conversations. To maximise our

control on the conversations and the start-times of the turns, we used a computer sys-

tem to generate several conversations where one agent talked to another, varying the

ways in which one agent dealt with overlap and when it started speaking. These con-

versations were presented to human raters who judged the agent on various semantic

differential scales. To generate the conversations we built a conversation simulator

that allowed one to define different turn management rules. Before we specify the

turn management strategies and the impression measures that we examined, we will

first present the conversation simulator.

4.1 Conversation Simulator

The conversation simulator (Ter Maat and Heylen, 2010) allows one to program the

behaviour of two agents that can communicate with one another by sending each

other information on their communicative actions. They indicate whether they are

silent, speaking normally or using elevated speech. These actions, however, are sub-

ject to a small delay of 200 ms before they are recognized by the other agent, to

simulate the fact that humans need a bit of processing time as well before they inter-

pret what they see or hear.
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Furthermore, to be able to define more refined rules for regulating turns, the

agents can also send certain signals that indicate what they are about to do. The

agents can send a signal that indicates that the end of an utterance or a turn is near,

that the agent will start a turn soon, or a signal that the agent wants to keep the turn.

These signals are sent by humans as well, for example as described by Duncan and

Niederehe (1974). These signals are sent directly to the other agent, without any

delay and without any interpretation-steps. However, to simulate that turn-taking

signals can be ambiguous and misinterpreted by the recipient, a certain error margin

has been introduced. There is a 10% chance that signals are removed before reaching

the other agent, and there is a 20% chance that the meaning of the signal is changed.

This should add enough noise to the conversations to make them more interesting,

because without noise the conversations will go entirely as planned. With the added

noise, agents might receive the wrong signal or no signal at all, which increases the

likelihood of overlapping speech and longer silences. Figure 4.1 shows an example

fragment of a conversation that was generated with the Conversation Simulator, in-

cluding the signals that were sent.

Figure 4.1: An example fragment of a conversation as generated by the Conversation Simulator.

The image was taken from Ter Maat and Heylen (2010).

The behaviour of the two agents can be scripted. In these scripts one can define

how an agent reacts to different situations. The core conversation simulator runs the

scripts of the agents in parallel and takes care that the rules are executed and the

variables are updated accordingly. An example could be:

1 <rule name="start__after_detect_endOfTurn">

2 <precondition name="own_state" value="silence" />

3 <precondition name="compare" value1="time_in_own_state"

comparator="greater_than" value2="200" />

4 <precondition name="detected_signal" value="end_of_turn" />

5 <reaction action="change_parameter" name="#want_start" value="1" />

6 </rule>
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The agent that has this rule first checks if it has currently been silent for longer than

200 ms (line 2 and 3), and if it was just received an END OF TURN signal (line 4). If

these preconditions are fulfilled then the parameter #WANT START is set to one (line

5), which causes the agent to start speaking.

The conversations of the agents can be visualized (Figure 4.1) and made audi-

ble. The visualization is drawn real-time and saved as an image at the end of the

conversation. For the speech rendition, we wanted to output natural but incompre-

hensible speech, for two reasons. First, for an automatically generated conversation

it is easier to take incomprehensible speech, instead of saying something meaningful.

The latter obliges the system to pay attention to the coherence of the conversation’s

content, which is a lot harder and not the focus of this study. Secondly, we wanted to

study how different turn-taking strategies affect the perception of the agents. Having

comprehensible speech adds a lot of variables to the study, because the content of the

speech can severely influence this perception. To create this incomprehensible speech,

we extracted several sentences with a clear start and end point from the AMI corpus1.

These sentences were fed through a Pass Hann Band Filter, from 0Hz to 500Hz with a

smoothing of 100Hz. With this method the sentences kept their prosodic information

but lost their content. When an agent starts to say something in the simulation, a

random sentence is selected and played until the end or until interrupted.

4.2 Turn-taking strategies

The procedures for turn management that we considered in this study consisted of

start-up strategies and overlap resolution strategies. For each group we defined three

possible strategies, yielding nine different turn-taking strategies in total by crossing

them.

The start-up strategy determined when to start a new utterance — that is, a speech

turn. We considered the following three strategies:

1. EARLY: a speaker will start their turn just before the end of the interlocutor’s

turn

2. DIRECT: a speaker will start their turn immediately after the interlocutor’s turn

has finished

3. LATE: a speaker will leave a pause (of a few seconds) before he or she starts

their turn after the interlocutor’s turn has finished.

The overlap resolution strategy determines how to behave when there is over-

lapping speech — that is, when two persons are speaking at the same time. We

considered the following three strategies:

1. STOP: a speaker will decide to stop speaking

2. NORMAL: a speaker will decide to continue speaking normally

3. RAISED: a speaker will decide to continue speaking with a raised voice



40 | Chapter 4

Figure 4.2: A graphical representation of the turn-taking strategies that were used. The dark

section represents a raised voice.

Figure 4.2 shows a graphical representation of the different turn-taking strategies.

Of course in everyday conversations, people use a mixture of these strategies for

different circumstances, but since the goal is to study the effects of a single turn-

taking strategy, only a single strategy was used in each conversation. The strategies

that were selected were based on a study by Schegloff (2000).

Using the conversation simulator, eight different agents were scripted using the

turn-taking strategies described, namely all combinations of start-up strategy and

overlap resolution strategy, minus the strategy EARLY+STOP. This strategy was dis-

carded because it would start while the other person was speaking and immediately

stop again, resulting in very awkward conversations. The other eight scripts resulted

in very different conversations. In Figure 4.3, two examples of different conversa-

tions are shown. The contributions of the agent that varies its start-up and overlap

resolution strategy (which we will refer to as the scripted agent) are shown on the

lower tier. The fixed system-agent (which we will refer to as the system) was pro-

grammed to use different strategies based on chance and is shown on the top tier

in each case. As the system-agent uses a random turn-taking strategy each turn, all

scripted agents encounter all possible turn-taking strategies during a conversation,

which makes the comparison of the agents more fair. Note that the conversations in

Figure 4.3 are quite different. The question now is whether these interactions lead to

different perceptions.

4.3 Experimental Setup

The variation in the turn management scripts results in different interaction patterns

which might change the impression of how the agents relate to each other on an

interpersonal scale, or they it change the impression of the personality of the agent.

In our study we invited ten people to rate the eight conversations on 13 dimen-

1http://www.amiproject.org
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Figure 4.3: Example conversations with different turn-taking strategies. Top pane: DI-

RECT+RAISED, bottom pane: LATE+CONTINUE.

sions. The raters were all between 20 and 30 years old, mainly students, 6 male

and 4 female. We asked them to rate the agent on semantic differential scales: pairs

of bipolar adjectives places at the extremes of 5-point Likert scales. The adjectives

were taken from Fukayama et al. (2002) and Goldberg (1993), and because of the

nature of the various SEMAINE characters (Mcrorie et al., 2009) we also added some

adjectives that are related to the different characters. Table 4.1 shows all semantic

adjectives that were used and their sources. The reason we selected these adjectives is

because they are useful for the SEMAINE characters or because we think turn-taking

affects them.

Unfriendly - Friendlya Disagreeable - Agreeableb

Cold - Warma Passive - Activec

Undependable - Responsiblea Negative - Positivec

Rude - Respectfula Not aroused - Arousedc

Distant - Pleasanta Unattentive - Attentivec

Unpredictable - Stableb Submissive - Dominantc

Negligent - Conscientiousb

Table 4.1: Semantic differential adjectives used in questionnaire. The superscripts indicate that

the adjectives were selected based on (a) Fukayama et al. (2002), (b) Goldberg (1993),

or (c) the SEMAINE characters.

The raters were seated in front of a PC which ran a Powerpoint presentation.

On each slide they could click on an audio file that would then play. The audio of

the system agent came from the left loudspeaker and the audio from the scripted

agent which they had to rate from the right loudspeaker. We made sure that each

rater knew which speaker they had to rate. To make the difference even clearer, the

scripted agent’s speech was somewhat higher in pitch than that of the system agent.

It could be that a higher pitch leads to changes in the perception, but as in every

recording the agent’s voice had the same (higher) pitch the effects were the same for

each recording, and therefore the same for each turn-taking strategy.

The conversations were ordered such that conversations in which the system was

more talkative than the scripted agent alternated with conversations in which the

scripted agent was more talkative. We had five raters listen to this order (A) and five

raters listened to an order in which the first four conversations of A changed position

with the last four conversations of A. After each conversation the raters were asked
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to complete the questionnaire on how they perceived the agent whose speech came

from the right loudspeaker.

4.4 Results

In this section, we will show the results of the PASSIVE experiments. We show the

average ratings of the dimensions of the different turn-taking strategies and their

significant differences. After that, we will try to reduce the number of dimensions by

performing a factor analysis.

4.4.1 Rating results

The mean ratings and their standard deviations of the different strategy-combinations

for each dimension can be found in Table 4.2. Using boldface we have marked the

conversation that received the highest mean rate for a scale and using underlinings

we have marked the conversation with the lowest mean rate for the scale.

Dimension E
a
rl

y
+

N
o
rm

a
l

L
a
te

+
S
to

p

E
a
rl

y
+

R
a
is

e
d

D
ir

e
ct

+
S
to

p

D
ir

e
ct

+
N

o
rm

a
l

L
a
te

+
R

a
is

e
d

D
ir

e
ct

+
R

a
is

e
d

L
a
te

+
N

o
rm

a
l

Avg Sd Avg Sd Avg Sd Avg Sd Avg Sd Avg Sd Avg Sd Avg Sd

Negative - Positive 2,6 1,1 2,6 0,5 2,1 0,9 3,7 0,7 2,8 0,9 2,4 0,5 2,3 0,7 3,1 0,9

Not aroused - Aroused 3,0 1,2 3,1 1,1 4,8 0,4 3,3 0,9 3,9 0,6 3,7 1,1 4,1 0,7 3,0 1,1

Unfriendly - Friendly 3,3 1,1 3,0 0,0 2,2 0,9 3,8 0,8 3,5 1,0 3,4 0,5 3,1 1,3 3,7 0,7

Disagreeable - Agreeable 2,4 1,2 3,1 1,5 1,7 0,8 3,5 1,1 2,3 0,7 2,2 0,6 2,4 1,1 3,3 0,8

Negligent - Conscientious 3,9 1,2 3,0 1,2 3,2 1,2 3,7 0,8 3,7 1,1 3,1 0,9 4,0 0,7 3,4 0,5

Rude - Respectful 3,2 1,2 3,7 0,8 2,0 1,2 4,2 0,8 3,0 1,1 2,9 0,7 2,9 0,9 4,1 0,6

Distant - Pleasant 2,6 0,8 2,5 0,7 2,5 0,8 4,2 0,8 2,7 0,8 2,6 1,0 3,0 1,1 3,1 1,0

Unpredictable - Stable 3,7 0,8 3,3 1,2 2,0 0,7 3,6 1,1 3,4 1,0 2,7 1,3 2,8 1,0 3,9 0,7

Unattentive - Attentive 3,4 1,2 3,3 0,5 3,0 1,3 4,3 0,5 3,5 1,1 3,5 0,7 3,7 0,9 3,6 0,5

Cold - Warm 2,5 1,2 2,9 0,6 2,4 0,5 3,9 0,6 2,9 0,9 2,7 0,7 2,7 0,9 3,2 0,8

Passive - Active 4,4 0,5 2,6 1,5 4,7 0,5 3,5 0,5 4,8 0,4 3,5 1,0 4,0 0,7 2,8 0,8

Submissive - Dominant 4,4 1,3 1,1 0,3 4,3 0,8 3,3 0,8 4,5 0,7 3,3 1,1 3,7 1,3 2,7 0,5

Undependable - Responsible 3,2 1,0 2,9 0,7 2,7 1,2 3,7 0,8 3,4 0,7 2,4 0,8 3,3 0,9 3,3 0,7

Table 4.2: Results passive experiment: average scores of 5-point semantic differential scales.

Underlined values are the lowest of that row, and bold values are the highest.

First, when one looks at the bold face figures it is immediately obvious that the

DIRECT+STOP column — in which the agent starts speaking immediately when the

system stops and stops speaking when overlap is detected — attracts most of the

high scores. It is the top highest rated version on positivity, friendliness, agreeability,

respect, pleasantness, attentiveness, warmth and responsibility. On the other hand,

EARLY+RAISED — where the agent starts before the system has ended and raises its

voice in the case of an overlap — is the highest rated version on negativity, unfriend-

liness, disagreeability, rudeness, distance, unpredictability, unattentiveness, and cold-

ness. It was also rated as the most “aroused” agent. These two strategies appear to

be the most extreme.

What to think about the other highest and lowest scores? The EARLY+NORMAL

and LATE+RAISED agents show the lowest scores on the arousal and responsibility di-
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mensions respectively. Interestingly though, the lowest score on arousal is 3.0 (which

is shared between EARLY+CONTINUE and LATER+NORMAL), which means that there

is no agent that effectively performs low on arousal. Similarly, the current strategies

do not yield an agent that is extremely negligent. The opposite, conscientiousness

was rated highest when an agent did not wait (long) before the turn of the system

has finished and continues (possibly speaking louder) when overlap was detected;

that is, the EARLY+NORMAL and DIRECT+RAISED strategies scored highest on consci-

entiousness. The impression of highest stability is reserved for the agent that started

speaking only after the system had finished but did not mind continuing when inter-

rupted (without raising its voice), LATE+NORMAL. An agent that waited before the

other had finished but raised its voice when interrupted, LATE+RAISED, on the other

hand, was not considered to be dependable.

Dimension Start-up Strategy Overlap Resolution Strategy

Early Direct Late Stop Normal Raised

Avg Sd Avg Sd Avg Sd Avg Sd Avg Sd Avg Sd

Negative - Positive 2,4 1,0 2,9 0,9 2,7 0,7 3,1 0,8 2,8 0,9 2,3* 0,7

Not aroused - Aroused 3,9 1,3 3,8 0,8 3,3 1,1 3,2 1,0 3,3 1,0 4,2*** 0,9

Unfriendly - Friendly 2,8* 1,1 3,5 1,0 3,4 0,6 3,4 0,7 3,5 0,9 2,9* 1,1

Disagreeable - Agreeable 2,1* 1,1 2,7 1,1 2,9 1,1 3,3 1,3 2,7 1,0 2,1* 0,9

Negligent - Conscientious 3,6 1,2 3,8 0,9 3,2 0,9 3,4 1,1 3,7 1,0 3,4 1,0

Rude - Respectful 2,6* 1,3 3,4 1,1 3,6 0,9 4,0 0,8 3,4 1,1 2,6* 1,0

Distant - Pleasant 2,6 0,8 3,3 1,1 2,7 0,9 3,4 1,1 2,8 0,9 2,7 1,0

Unpredictable - Stable 2,9 1,1 3,3 1,0 3,3 1,1 3,5 1,1 3,7 0,8 2,5* 1,0

Unattentive - Attentive 3,2 1,2 3,8 0,9 3,5 0,6 3,8 0,7 3,5 0,9 3,4 1,0

Cold - Warm 2,5* 0,9 3,2 0,9 2,9 0,7 3,4* 0,8 2,9 1,0 2,6 0,7

Passive - Active 4,6* 0,5 4,1*** 0,8 3,0* 1,2 3,1** 1,2 4,0 1,1 4,1 0,9

Submissive - Dominant 4,4 1,0 3,8 1,1 2,4*** 1,2 2,2*** 1,3 3,9 1,2 3,8 1,1

Undependable - Responsible 3,0 1,1 3,5 0,8 2,9 0,8 3,3 0,9 3,3 0,8 2,8 1,0

Table 4.3: Results passive experiment: average scores of 5-point semantic differential scales, * =

p <0.05, ** = p <0.01, *** = p <0.001

Table 4.3 contains the fragments grouped by start-up strategy and overlap resolu-

tion strategy, with their mean and standard deviation. The significance was calculated

for every dimension scale by performing a two-paired t-test for all combinations (1+2,

2+3, 1+3). The type of t-test (equal variance or unequal variance) was determined

by performing an f-test first. A strategy was said to be significantly different when

both t-tests with the other strategies scored a p < 0.05. So, for example, the value

of the dimension ‘negative’ for raising the voice was significantly different because

both the t-test with stop and the t-test with continue resulted in a p < 0.05. The left

part of figure 4.3 shows that, for the start-up strategy, most significant differences

occurred with the situation in which the agent started before the system was finished.

Starting EARLY was seen as more unfriendly, disagreeable, rude, cold and more active,

compared to starting DIRECTLY or starting LATE. The most pleasant person would be

a speaker who started directly at the end of the other person’s speech, not sooner

or later. Also, the sooner a person started to talk the more active he or she was

perceived: the EARLY strategy was perceived significantly most active, and the LATE

strategy was perceived significantly most passive. A final (highly) significant result is

that the agent with the LATE strategy was perceived as most submissive.

The right-hand part of Table 4.3 shows the mean ratings and standard deviations

of the results grouped by overlap resolution strategy. It shows that especially the
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STOP and RAISED strategy were significantly different on several dimensions. STOP-

PING when the agent detects an overlap was perceived as warmer, more passive and

more submissive than continuing (whether NORMAL or with a RAISED voice). Contin-

uing with a RAISED voice was perceived as more negative, more aroused, less friendly,

less agreeable, more rude and more unpredictable than STOPPING or continuing NOR-

MALLY.

4.4.2 Grouping results

Because we suspected that certain dimensions correlated with each other, we decided

to create a better overview of the results by reducing the number of scales. Using

a factor analysis (Principal Component Analysis with a Varimax rotation with Kaiser

normalization), we grouped the items with a correlation > 0.5 and created four fac-

tors (see Table 4.4).

Factor Low value High value Correlation

1. agreeableness

α = 0.886

Distant - Pleasant 0.85

Cold - Warm 0.81

Negative - Positive 0.78

Unfriendly - Friendly 0.76

Disagreeable - Agreeable 0.63

Rude - Respectful 0.58

2. assertiveness

α = 0.766

Submissive - Dominant 0.90

Passive - Active 0.84

3. neuroticism

α = 0.703

AROUSED - NOT AROUSED 0.81

UNPREDICTABLE - STABLE 0.78

4. conversational

skill

α = 0.679

NEGLIGENT - CONSCIENTIOUS 0.87

UNATTENTIVE - ATTENTIVE 0.72

UNDEPENDABLE - RESPONSIBLE 0.63

Table 4.4: Results of the factor analysis applied to all scores of the scales (factors and scales

ordered by Cronbachs alpha value and correlation strength)

The five main personality traits, such as reported by Goldberg (1993), can be used

to describe the first three factors. Factor 1 can be described by agreeableness, with high

values corresponding with someone who is cooperative, compassionate, friendly and

optimistic. Factor 2 is similar to the trait assertiveness (previously used by Robinson

and Reis (1989)), and is associated with someone who is extravert, strong, and pushy.

Factor 3 is best covered with the trait neuroticism, and is associated with people who

are more calm and emotionally stable. Factor 4 can best be described with the term

conversational skill, meaning how adept a person is in a conversation.

Now we can calculate the average values for the different turn-taking strategies

and significances. Figure 4.4 shows the values of the four factors for the three start-up
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strategies, and Figure 4.5 shows the values of the four factors for the three overlap

resolution strategies.

Figure 4.4: The results of different start-up strategies. * = p <0.05, ** = p <0.01, *** = p <0.001

Figure 4.5: The results of different overlap resolution strategies. * = p <0.05, ** = p <0.01, *** =

p <0.001

These figures show that for start-up strategy, starting EARLY is seen as significantly

less agreeable and more assertive, and starting LATE the opposite. Interestingly, start-

ing DIRECT is perceived as having more conversational skill. For the overlap resolu-

tion strategy, STOPPING is perceived as significantly more agreeable and less extravert.

In contrast, continuing with a RAISED voice is perceived as less agreeable, more ex-

travert, and less neurotic (more active and unpredictable).

4.5 Summary

In this chapter, we described our first study on the perception of turn-taking strategies.

We studied three different start-up strategies — in which the participants started just
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before the other person’s turn-end, directly when that turn ends, or after a certain

pause — and three different overlap resolution strategies — in which the participant

stops speaking, continues normally or continues with a raised voice after overlapping

speech is detected. Using a program that can simulate conversations, we programmed

one of the agents to follow the studied turn-taking strategies and let it ‘talk’ with

another agent that used random turn-taking behaviour. This resulted in conversations

containing non-intelligible speech, which were given to human raters. These raters

had to write down how they perceived the agent that followed the studied turn-taking

strategies using 13 semantic differential scales.

We found that starting before the end of the other person’s turn was perceived as

more extrovert and less agreeable, while starting after a small pause was perceived

as more introvert and less agreeable. Stopping when overlapping speech is detected

was perceived as more agreeable and introvert, while continuing with a raised voice

was perceived as less agreeable, more extrovert and neurotic.

In the next chapter, we will present our second study, in which humans actively

participated in a conversation in which the interviewing agent (controlled by a wiz-

ard) used different turn-taking strategies to start its questions.



5
Turn-taking perception when interacting with an

interviewer

In the previous chapter, the perception of different turn-taking strategies was stud-

ied by generating incomprehensible conversations, in which one interlocutor used

different turn-taking strategies. Human raters had to listen to these conversations

and, using a questionnaire, write down how they perceived that interlocutor. This

meant that the rater was an observer of the conversation, merely a bystander who

did not actively participate. By actively involving the participant in the conversation,

we think that the perception of the agent’s behaviour would be much stronger, if not

different. For example, one can imagine that hearing person A interrupting person

B would be perceived differently from being interrupted oneself, because it is much

more annoying if you are the one who is not allowed to finish your turn.

In this chapter we present a second experiment in which, in contrast to the PAS-

SIVE experiment in the previous chapter, the subjects were not passive bystanders

anymore (Ter Maat et al., 2010). In the ACTIVE Wizard of Oz experiment, the sub-

jects themselves participated in the human-agent interaction, acting as interviewees.

The interviewer was an agent controlled by a human wizard who determined which

turn-taking strategy was applied by the agent. Participants conversed with this in-

terviewing agent and completed a questionnaire afterwards. Similar to the PASSIVE

experiment, we aimed to investigate how agents’ turn-taking strategies influenced

users’ impressions of these agents. Additionally, we wanted to know how these turn-

taking strategies influenced the users’ response behaviour.

We adopted the interviewing domain for several reasons. The first reason is that it

allows for some control over turn-taking behaviour and conversations. In this setting,

the responses of the agent are known beforehand (as a list of questions) and are not

changed during the conversation. During the conversation, the agent knows what

its next question is, and the only thing that has to be determined is when to start

asking it — independent of what the answer of the participant is. The second reason

is that interviews have a conversational style similar to that of Sal: both conversations

are unbalanced, that is, one person is more important and speaking more often than

the other person. The goal is to have one person (the speaker in SEMAINE or the
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interviewee) keep on talking. In the SAL domain, this goal is reached by asking for

more information or changing the topic by asking a question about another subject.

In the interviewing domain, this goal is reached by continuously asking questions.

Of course there are also some downsides to using the interview domain. First of

all, limiting the study to only one domain might cause problems with the generaliz-

ability of the results. Behaviours can have different impacts and meanings in different

types of conversations. Secondly, following this point, the choice of the interviewing

domain influences the results. Interviews are, in general, more polite and have more

social rules than say a conversation between two friends. This means, for example,

that interrupting the interviewee is probably perceived as more rude, while letting

the interviewee finish their story is perceived as more polite. We argue, because in-

terviews are polite by nature, that the results of this study can at least be generalized

to other polite conversations and settings, such as a virtual receptionist or guide. We

have to mention though that we do not have any evidence for this claim, and leave

this question open for further research.

The turn-taking strategies that we used in the ACTIVE experiment are almost sim-

ilar to the start-up strategies EARLY, DIRECT, and LATE, described in section 4.2. In

this case, however, the overlap resolution strategies were not taken into consideration

because during a pilot test, we noticed that overlapping speech was always avoided

by the human participant. This means that the overlap resolution strategies could

only marginally come into effect. Note that this does not say anything about whether

the overlapping speech was ‘correct’ or not, because the human subject could also

stop speaking because he or she was almost finished. Another important difference

with the PASSIVE experiment is that in the ACTIVE study, the strategies were applied

by a human wizard rather than by a computer agent that was programmed to start

EARLY, LATE, or DIRECT. As humans are not machines this meant, in practice, that the

human wizard would start its turns (i.e., questions) at variable time intervals before

or after the user’s turn, and that not all turns were started at the exact same times

with respect to the strategy. Hence, prior to the analysis of the subjects’ ratings, we

analysed the speech recordings of the experiment and verified that the timing of the

questions was in accordance with the intended strategy.

Because of the polite nature of interviews, we expected that an interviewee would

rate an agent more polite and positive if he or she had more time to answer.

5.1 Experimental Set-Up

In this section we describe how the interview sessions were set up and arranged, and

what type of topics and questions were used for the interviews. Furthermore, we

describe the semantic differential scales used in the questionnaire.

5.1.1 Participants

Twenty-two people participated in the experiment, most of them were PhD students.

There were sixteen male and six female subjects with an average age of 27.55 (stan-

dard deviation of 3.41). Each of them signed a form, giving consent to the use of

recordings of their speech for research purposes.
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5.1.2 Stimuli: scenarios of interviews

In contrast to the PASSIVE study, in this study the conversations did have a certain

content and context. It should be noted that the interview setting with the agent in

the role of an interviewer constrains the flow of the conversation as the initiative lies

mainly with the agent. This allows us to limit the number of utterances the agent

should be able to say. The agent asks a question, and independent of the actual

answer of the user, the agent (or Wizard rather) anticipates the user’s turn-end and

then asks the next question using one of the three start-up strategies.

In such a setup, the agent’s questions are very important. We designed the ques-

tions such that they would be easy to answer since a complex question, which requires

more thinking, can disrupt the flow of the conversation. Also, the questions asked by

the agent were designed so as not to be answerable with one or two words only, since

it is hard to apply a certain start-up strategy when the user only says ‘Yes’. Exam-

ples of the questions used are “Can you tell me what movies you like?”, and “Which

restaurants do you recommend and why?”.

Another possible problem is that certain questions can influence the results be-

cause each question has certain connotations that are perceived differently by each

user. For example, person A could really like a certain topic, while person B absolutely

hates it. Therefore, to improve the generalizability, we decided to create three sets of

questions, each on a different topic, namely ‘food and drinks’, ‘media’ and ‘school and

study’. By making three different groups it was possible to interchange the questions

used in each session (a single conversation of a user with the system). This decreases

the influence of the questions on the results. Also, by making three sets of related

questions, the questions fit in the same context and do not disrupt the flow of the

conversation.

Another factor to consider is the voice to use. The difference between a male or

a female voice can greatly influence the perception of the user. One voice may sound

more friendly than another, or male and female participants may listen differently

to male and female voices. To control for this variable we introduced two agents:

one with a male and another with a female voice. These voices were changed each

session to decrease the influence of the voice on the results. The spoken questions

were synthezised with the Loquendo TTS software1.

Each session (i.e., a single conversation of the user with the agent) therefore

followed a scenario that consisted of a certain start-up strategy (EARLY, DIRECT, or

LATE), a certain voice (MALE or FEMALE), and a certain topic (‘food and drinks’, ‘me-

dia’, and ‘school and study’). The exact properties — start-up strategy, voice and topic

— of each session were randomized and counterbalanced.

5.1.3 Recordings

Speech recordings (mono, 44.1 kHz) were made of each session with a microphone

that was placed on a desk near the subject. The microphone captured both the voices

of the interviewing agent and the subject. The speech recordings were made to 1)

1http://www.loquendo.com
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validate the wizard-enforced turn-taking strategies, and 2) to investigate the effects

of turn-taking strategies on the subject’s speech behaviour.

5.1.4 Procedure

The participants were told that they would talk with a speech-to-speech dialogue

system, with the agent in the role of an interviewer. They were told that we had

implemented different personalities in different parts of the dialogue system, and

that their role was to write down, in a questionnaire, how they perceived each agent.

After this introduction they talked with the agent three times (three sessions), each

session with a different scenario. These scenarios were created in such a way that

every possible combination and order was used at least once.

During each session the participant sat in front of a microphone and a set of

loudspeakers. The wizard sat behind the participant, out of sight but in the same

room. During the interview, the wizard would follow the current start-up strategy by

clicking on the button to start the next question at the right time (as intended by the

strategy).

Although the wizard in this study was not blind — that is, he was aware of the

aims of the study — we expected and presumed this would not affect the results of

this study. The only aspect that the wizard could control was the start time of the next

question, and a manipulation check (see section 5.2) showed that the human wizard

was able to apply the strategies correctly. Our analyses were carried out on the users’

responses which were only influenced by the starting times of the questions.

5.1.5 Measures: questionnaire design

After the interview, the subjects completed a questionnaire about how they perceived

the interviewer using 7-point Likert scales (see section 4.3 and Table 5.1) to capture

the perceived impressions of the users.

Disengaged - Engaged Competitive - Cooperative

Aggressive - Calm Impolite - Polite

Closed - Open Introvert - Extravert

Weak - Strong Inexperienced - Experienced

Pushy - Laidback Shy - Bold

Arrogant - Modest Insecure - Confident

Not socially skilled - Socially skilled Tensed - Relaxed

Distant - Close2 Careless3 - Responsible

Table 5.1: Semantic differential adjectives used in the ACTIVE experiment, as an addition to the orig-

inal set in section 4.3 that was used as well.

2This was called ‘Pleasant’ in the PASSIVE experiment.
3This was called ‘Undependable’ in the PASSIVE experiment.



Turn-taking perception when interacting with an interviewer | 51

We started with the same semantic differential scales as presented in section 4.3,

and extended these with new scales that were tuned to the specific interviewing set-

ting, to capture more social-skills-related attributes and the interviewer’ interviewing

capabilities. Table 5.1 shows the additional dimensions. For two scales that were

adopted from the PASSIVE experiment, the adjectives were changed because we felt

that these adjectives would better describe the interpersonal attitude that we intended

to measure.

5.2 Manipulation Check

Since applying the correct strategy by a human wizard is error-prone, one requires

an objective measure to see how consistently each start-up strategy was applied. We

therefore annotated the speech recordings of the interviews on who was speaking

when and we looked at the two objective measures gap length and number of overlaps.

The gap length is the duration of silence between the end of the user’s turn and the

start of the agent’s next question, see Fig. 5.1. The gap length should be shortest

for the EARLY strategy and longest for the LATE strategy, and should be significantly

different from each other for each strategy. The number of overlaps is the average

number of overlaps per session: an overlap occurs when the agent starts the next

question while the user is still speaking, see Fig. 5.2. The number of overlaps should

be highest for the Early strategy, and lowest for the Late strategy.

400 ms

Agent

User Answer

Question

Figure 5.1: An example of a gap with

a duration of 400 ms

Agent

User Answer

Question

Figure 5.2: An example of an

instance of overlap

Table 5.2 shows the average gap length between the user’s current turn and the

following interviewer’s question, grouped by the start-up strategy that was used. As

we can observe, the gap length is shortest for the EARLY strategy and longest for the

LATE strategy. The differences between the gap lengths of the 3 strategies are highly

significant (p < 0.001).

One might expect at first that the EARLY strategy would not result in silences

between the turns, since the goal of this strategy was to respond before the other

person was finished speaking. However, sometimes the wizard’s predictions of the

end-of-turn were off, and the wizard responds too late, leaving a small gap between

the turns. This is acceptable as long as the average duration of the silence is shorter

than for the other two strategies, and the total number of overlaps is larger than for

the other two strategies. These requirements were both met, as shown by table 5.2

and Figure 5.3.

Figure 5.3 shows the average number of overlaps grouped by the start-up strategy

that was used. As shown, the number of overlaps is highest in the EARLY strategy and

lowest in the LATE strategy. The difference between the EARLY strategy and the other

two strategies is highly significant (p < 0.001), but the difference between the DIRECT
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Strategy Gap length

Mean Sd

EARLY 0.72 0.69

DIRECT 1.07 0.58

LATE 1.97 0.57

Table 5.2: Gap lengths between the user’s turn and the following interviewer’s question

Figure 5.3: Number of overlaps (user and interviewer speaking at the same time. * = p < 0.05

and the LATE strategy is not. Because both the direct and the late strategy wait for

the end of the user’s turn, we did not expect any significant difference between these

two strategies for overlaps.

These results show that there was indeed a significant difference between the

start-up strategies in accordance with the desired effect, which means that the turn-

taking strategies were correctly applied.

5.3 Results

Here, we present the results of the ACTIVE experiment. First, the number of semantic

differential scales used in the questionnaire is reduced by applying a factor analysis

that groups scales into a smaller number of so-called factors. Subsequently, using

these factors, we will analyse the users’ ratings with respect to the various turn-taking

strategies to see the effect of the turn-taking strategy on the user’s impressions. In

addition, we will look at how the turn-taking strategies influence the user’s response

behaviour by analysing the user’s speech from the recordings.
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Factor Low value High value Correlation

Factor 1

(agreeable-

ness)

α = 0.885

Cold - Warm 0.86

Unfriendly - Friendly 0.78

Tensed - Relaxed 0.72

Disagreeable - Agreeable 0.70

Aggressive - Calm 0.63

Competitive - Cooperative 0.60

Negative - Positive 0.60

Impolite - Polite 0.52

Factor 2

(assertiveness)

α = 0.878

Strong - Weak 0.85

Dominant - Submissive 0.79

Extravert - Introvert 0.76

Bold - Shy 0.73

Arrogant - Modest 0.57

Pushy - Laid back 0.53

Factor 3

(conversational

skill)

α = 0.849

Inexperienced - Experienced 0.72

Not socially skilled - Socially skilled 0.72

Unpredictable - Stable 0.69

Careless - Responsible 0.60

Unattentive - Attentive 0.50

Factor 4

(rapport)

α = 0.833

Closed - Open 0.82

Disengaged - Engaged 0.71

Distant - Close 0.62

Negligent - Conscientious 0.58

Table 5.3: Results of the factor analysis applied to all scores of the scales (factors and scales

ordered by Cronbachs alpha value and correlation strength)

5.3.1 Grouping scales in the questionnaire by factor analysis

As a way to reduce the number of scales (we used 27 scales, see section 4.3 and 5.1),

a factor analysis was performed to see whether some of the scales could be grouped

together. We used a Principal Component Analysis with a Varimax rotation with Kaiser

normalization. From the results we grouped the items with a correlation > 0.5, which

resulted in four different factors. These four factors, the corresponding scales and the

corresponding correlations can be found in Table 5.3.

Intuitively, the grouping of the scales makes sense. Factor 1 can be described as

agreeableness, one of the five main personality traits as reported by Goldberg (1993).

A high level of agreeableness corresponds to someone who is cooperative, compas-

sionate, friendly, and optimistic. Next, the adjectives strong, dominant, extravert,

bold, arrogant, and pushy, can be covered under the term assertiveness (which has

previously been used by Robinson and Reis (1989) in a similar context). The third

factor contains scales that have more to do with conversational skills of the agent (the
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interviewer). The last factor seems to be related to rapport (Gratch et al., 2006).

High rapport means that the participants are ‘in sync’ or ‘on the same wavelength’,

which in turn means that the participants are very close and engaged during the in-

teraction. There are four scales which show too low correlations with any of the

factors, namely: RUDE-RESPECTFUL, NOT AROUSED-AROUSED, INSECURE-CONFIDENT,

and PASSIVE-ACTIVE.

5.3.2 Analysis of subjects’ ratings

In order to see the effects of the strategies on the ratings in the factors and scales,

an ANOVA test was performed on the data with Bonferroni correction. We used the

ratings from the four factors found in the previous section, and the ratings from the

four scales that did not fit in these factors.

0 
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7 

Factor 1 
(agreeableness) 

Factor 2 
(assertiveness) 

Factor 3 
(conversational 

skill) 

Factor 4 (rapport) rude-respectful 

Early 

Direct 

Late 

** *

***

**

***

*

** ** *

Figure 5.4: The results of the different start-up strategies. * = p <0.05, ** = p <0.01, *** =

p <0.005

Figure 5.4 shows the results of the four factors and the rude-respectful scale (the

other three scales that did not fit the factor analysis did not provide any significant

results). All factors indicate a significant difference between the EARLY and LATE

strategy. The strongest factor is Factor 1, agreeableness, where the ratings for all three

strategies are significantly different (F (2, 66) = 17.06, p < 0.001). Starting EARLY was

seen as more unfriendly, tensed, aggressive, competitive and negative, and starting

LATE was perceived as more friendly, relaxed, agreeable, cooperative and positive.

For the factor assertiveness, the EARLY strategy differs significantly from the DIRECT

and LATE strategy (F (2, 66) = 12.48, p < 0.001), but there is no significant differ-

ence between DIRECT and LATE. Starting EARLY was rated as more strong, dominant,

extravert and bold. Similarly, for conversational skill, the DIRECT and LATE strate-

gies do not differ significantly from each other, but the EARLY and LATE strategy do

(F (2, 66) = 6.24, p = 0.003). People perceived agents starting EARLY as more inexpe-

rienced, less socially skilled, more unpredictable, more careless and unattentive than
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agents who start LATE. Rapport was significantly differently perceived in the EARLY

and LATE strategy (F (2, 66) = 6.52, p = 0.003), with starting LATE having significantly

more perceived rapport than starting EARLY. Finally, starting late was perceived sig-

nificantly more respectful than starting early (F (2, 66) = 4.33, p = 0.18).

5.3.3 Analysis of the subjects’ speech behaviour

The previous section shows that different turn-taking strategies change the percep-

tion that the user has about the agent. In this section we will try to find out whether

these different turn-taking strategies affected the behaviour of the user as well. Under

the assumption that people, in general, accommodate their speech behaviour to the

speech behaviour of their conversational partner (Giles et al., 1973; Staum Casasanto

et al., 2010), it makes sense to expect that certain turn-taking strategies will influ-

ence the subjects’ speech behaviour. Listening to the recordings of the interviews,

we observed that some of the subjects started to speak faster and make shorter turns

when the EARLY strategy was applied. Intuitively, this observation makes sense, in

that people may try to avoid interruptions by speaking faster and by making shorter

turns in order to finish those turns earlier. Hence, we measured speech rate and the

lengths of the subjects’ turns (i.e., their answers) and analysed these with respect to

the turn-taking strategy applied.

Speech rate In order to measure speech rate, we first extracted all the user turns

from the recordings. Using Praat (Boersma and Weenink, 2001) and a script that

automatically detects syllable nuclei (De Jong and Wempe, 2009) we extracted the

speech rates of all turns, where we define speech rate as the number of syllables per

second. To compensate for people having different speech rates, we normalized the

speech rates for each user by subtracting the average speech rate of that user and

dividing the result with the standard deviation of that user’s speech rates.

Using these speech rates, we want to verify whether people (consciously or un-

consciously) changed their behaviour when they noticed that the agent used a certain

turn-taking strategy. We assume that it took some time for people to adjust to the

interviewer’s behaviour so we split all the conversations into two parts, and com-

pared the normalized speech rates of the first half with the speech rates of the second

half to see whether accommodation took place. Table 5.4 contains the results of this

comparison.

Table 5.4 shows that especially in the EARLY strategy people changed their speech

rates. In the second half of the conversations with an agent using the EARLY strategy,

users increased their speech rate compared to the first half, probably because they

wanted to finish their sentence before the agent could interrupt them. So, only in

the EARLY strategy did the subjects accommodate to the interviewer’s behaviour by

speaking faster.

Next, we compared the speech rates found in the different strategies with each

other to find out whether a subject spoke faster in one strategy than another. The

results of this can be found in Table 5.5.

Table 5.5 shows that in the first part of the EARLY strategy, people talked slower

than in the first part of the LATE strategy (almost significant, p =0.052). However,
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Strategy Mean SD Significance

Early half 1 3.05 0.89
0.011*

Early half 2 3.33 0.95

Direct half 1 3.18 0.86
0.169

Direct half 2 3.28 0.90

Late half 1 3.35 0.64
0.202

Late half 2 3.18 0.75

Table 5.4: Comparison of speech rates within a strategy. * = p <0.05

Strategy 1 Mean Strategy 2 Significance

Early half 1 < Direct half 1 0.578

Direct half 1 < Late half 1 0.200

Early half 1 < Late half 1 0.052

Early half 2 > Direct half 2 0.413

Direct half 2 > Late half 2 0.154

Early half 2 > Late half 2 0.045*

Table 5.5: Speech rate comparisons across strategies. * = p <0.05

in the second part of the EARLY strategy people talked faster than in the second part

of the LATE strategy (p <0.05). It is no surprise that the speech rates in the first

halves of the different strategies are not significantly different from each other since

speakers need some time to adapt to the interlocutor’s behaviour. So, when people

were adapted to a certain strategy, they talked faster when they were interrupted

than when the agent left silences between the turns. Table 5.4 and 5.5 show that

users increased their speech rate when the EARLY strategy was applied (Table 5.4,

t(18 = −2.84, p = 0.11) and after doing so, they spoke significantly faster than when

the LATE strategy was applied (Table 5.5, t(18) = 2.16, p = 0.045). Interestingly,

Table 5.4 also shows that in the first half of the conversations, people spoke slower

when the interviewer used the EARLY strategy than when it used the LATE strategy. A

possible cause for this is that the interviewees were surprised when the interviewer

started early and did not know how to handle the situation until the second half of

the conversation.

Turn durations We also observed that when people were often interrupted, they not

only spoke faster, they also had shorter speech turns. To verify this observation, we

extracted all user turns that were not interrupted by the agent, and assumed that

those turns were finished. After measuring the duration of these turns we compared

them to each other. The results are shown in Figure 5.5.

This figure shows that the durations of the user turns in the different scenarios are
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Figure 5.5: Non-interrupted turn durations. * = p <0.05, ** = p <0.01, *** = p <0.005

all significantly different. When interrupted often (in the early strategy) people made

much shorter turns, and when the agent was very slow in taking the turn the users

made much longer turns.

5.3.4 Agent gender

We observed that the voice that was used – male or female – made a big difference in

the perception of the user. In the analysis of start-up strategy this effect was filtered

out by using an equal number of male and female voices. However, the differences

between the voices are still interesting, which is why we analysed the differences

between these voices as well. Figure 5.6 shows the results.

This figure shows that the male voice was rated higher in Factor 1 (agreeableness),

lower in Factor 2 (assertiveness) and lower in the arousal scale. This means the male

voice was perceived, among other things, as more friendly, positive, polite, submis-

sive, shy, and less aroused. The female voice was perceived, among other things,

as more cold, aggressive, negative, dominant, bold, and aroused. This may appear

strange, but the results probably say more about the voices used than about gender

in general.

5.3.5 Further analysis

We also did some further comparisons involving the gender of both participants and

the turn-taking strategy, but we only found some minor differences. More data is

needed to verify the results, but some trends are already visible. We will mention the

results here for the interested reader, but will not elaborate on them any more.

We also performed some other gender comparisons in the data which showed only

minor differences. Robinson and Reis (1989) explain that an important factor could

be the difference between the genders of the conversation participants – same-sex

or opposite-sex. To study this we compared the gender of the user with the gender

of the agent. However, only two minor results were found. Male users rated male
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Figure 5.6: The results of the different genders. * = p <0.05, ** = p <0.01, *** = p <0.005

agents significantly lower (p < 0.05) in the notaroused-aroused scale than they rated

female agents. Also, female agents were rated significantly lower (p < 0.05) in Factor

4 (rapport) by male users than they were rated by female users.

We were also interested in the combination of the start-up strategy and the gender

of the user. For example, to check whether a male user perceived an agent using the

EARLY strategy differently than a female user. However, no significant results were

found. Another interesting combination is the start-up strategy and the gender of

the agent. A male agent using the EARLY strategy might be perceived differently

than a female agent using the same strategy. Only one result came out of this. A

male agent using the DIRECT strategy was perceived significantly higher in Factor 1

(agreeableness) than a female agent using the same strategy.

The final thing we checked was the combination of user gender, agent gender and

start-up strategy, but we only found one significant result here. A male user rated a

male agent using the LATE strategy significantly lower (p < 0.05) in the notaroused-

aroused scale than a female agent using the same strategy.

5.4 Summary

In this chapter, we presented our second study about the perception of different turn-

taking behaviour. However, in contrast to the study in the previous chapter, the partic-

ipants were actively engaged in the conversation. They talked with a computer in the

role of an interviewer asking questions to the participants. The turn-taking behaviour

of the computer was controlled by a human wizard, who chose whether each next

question started before the participants finished their answer, directly afterwards, or

after a small pause; these are, respectively, the strategies EARLY, DIRECT and LATE.
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Each participant talked three times with the system, varying (counterbalanced)

the topic of the questions, the gender of the system’s voice, and the turn-taking strat-

egy used. Afterwards, the participants completed a questionnaire containing 27 se-

mantic differential scales. A manipulation check was performed to verify whether the

human wizard performed the three turn-taking strategies correctly. We verified that

in the resulting conversations, the EARLY strategy resulted in the lowest mean dura-

tion of silence between the turns and the highest number of overlaps, while the LATE

strategy resulted in the highest mean duration of silence and the lowest number of

overlaps.

Analysing the final results, we found that the three turn-taking strategies were

indeed perceived differently. The interviewing agent using the EARLY strategy was

perceived as most assertive and rude and least agreeable, and having the least con-

versational skill and rapport. Also, the agent using the LATE strategy was perceived

as least assertive and most agreeable and respectful, and having the most conversa-

tional skill and rapport. We also found that different turn-taking strategies affected

the speech behaviour of the user. Participants talking with an agent using the EARLY

strategy increased their speech rates during the conversation and produced the short-

est (finished) turns.

In the next chapter, we will present the conclusions and discussion of our two

studies.
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6
Conclusion and Reflection

In the previous chapters we explained that turn-taking could be used in different

ways, and that each way has a certain effect on the perception that the other person

has. In this chapter, we summarize and discuss the studies and their results. We also

provide some thoughts on how the results can be used, and how they compare with

the literature. Finally, we will discuss possible directions for future work.

6.1 Turn-taking

In Chapter 3, we tried to make clear that there is no ‘best’ strategy for turn-taking

that can be used all the time. Researchers who develop dialogue agents often make

them start as soon as possible after the end of the previous user turn, with as little

overlapping speech as possible. But in human-human conversations, a non-trivial

number of turn changes do not follow this pattern. Especially if the two interlocutors

know each other, a lot of turns start while the other person is still talking, and silence

gaps between turns are not always extremely short. This indicates that starting too

early or too late happens in human conversations too, and is not always bad per se. Of

course the default turn-taking behaviour of the virtual agent should be to start talking

when the user is not speaking anymore without letting him or her wait too long for a

reply, but deviations in this behaviour are a natural phenomenon and should not be

avoided at all costs. They could even be used to the advantage of the agent.

We explained that differences in turn-taking behaviour can be very informative

about the person using them and about the conversation itself. We showed that in

certain types of conversations particular turn-taking behaviour occurs more or less

frequently, and that different turn-taking behaviour is also perceived differently. In

the context of the SEMAINE project — where we aimed to build four different virtual

agents with different ‘personalities’ — we could use these differences in turn-taking

behaviour to convey different impressions to the user. By using different turn-taking

strategies we could influence how the agent was perceived by the user. But in order

to use that, we needed to know how differences in turn-taking behaviour change the

user’s perception of the agent.
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6.2 Passive Study

In Chapter 4 we described a basic conversation simulator that can generate artificial

conversations that closely resemble human face-to-face conversations. The speech of

the artificial participants is vocalized with unintelligible fragments of sentences from

a real conversation, edited to filter out the content while keeping the prosody. We

used this simulator to generate a number of conversations in which strategies for

timing the beginning of a turn and strategies to deal with overlapping speech were

varied. We showed, through an ‘agent perception study’, how these variations in

turn-management changed the impressions that people gained of the agent as they

listened to the various conversations. The study shows that the manipulation of turn-

taking strategies can lead to different perceptions of an agent on personality scales,

interpersonal scales and emotional scales.

The turn-taking strategies that were varied were the start time of a turn and how

to deal with overlapping speech, that is, when both agents talk at the same time. The

start time of a turn, in relation to the end of the other agent’s turn, can be EARLY,

DIRECT or LATE, which consecutively means that the next turn starts before the end of

the other agent’s turn, directly when it finishes, or after a small pause. The strategy to

deal with overlapping speech can be either to STOP speaking, to CONTINUE normally,

or to continue with a RAISED voice. When varying these turn-taking strategies, we

gave each agent one start-up strategy and one overlap strategy.

We found that the EARLY+RAISED strategy received most negative ratings: it was

perceived as most negative, unfriendly, rude, distant, cold and aroused. On the other

end of the spectrum, the DIRECT+STOP strategy received most positive ratings: it was

perceived as most positive, friendly, respectful, pleasant and warm. The most polite

strategy (LATE+STOP) was perceived as most passive and submissive.

When looking at the individual strategies, we found that starting EARLY was seen

as significantly more unfriendly, disagreeable, rude, cold, and active. Starting LATE

was perceived as significantly more submissive and passive. For the overlap reso-

lution strategy, STOPPING when overlap was detected was perceived as significantly

more warm, passive, and submissive, and continuing with a RAISED voice was seen

as significantly more negative, aroused, unfriendly, disagreeable, rude and unpre-

dictable.

When looking at which start-up strategy was most pleasant, positive or friendly,

unfortunately no strategy had significantly better ratings than the others. However,

the DIRECT strategy does score highest for all three dimensions. Even though this

result was not significant, it does indicate that in this setting the DIRECT strategy was

preferred.

Most results are not really unexpected. It is a kind of social rule that you should

let someone finish his or her turn before you start speaking, which means that it is

very likely that an interruption is perceived as rude and unfriendly. And trying to

keep the turn by speaking louder is also not very social. However, we should point

out the shortcomings of this method. In our recordings, the raising of the voice was

very apparent, but chances are that in a real conversation raising your voice is done in

a more subtle way. Little research has been done on exactly how people behave when



Conclusion and Reflection | 63

raising their voice when they want to keep the turn. Also, for interruptions, the fact

that content was stripped from the recordings is also a downside. By not providing

the context of the conversation and details of the content of the interruption, the

rater was forced to treat the speech that start too early as an interruption. Factors

that can make an interruption acceptable — for example, answering a question that

is almost finished, an enthusiastic response, a warning for an angry dog, or finishing

the sentence for the current speaker followed by a takeover of the turn — are no

longer present in the recordings.

But if unintelligible speech strips away elements that can make an interruption

acceptable, why make the speech unintelligible? One could argue that removing the

content of the speech also removes an important source of information people use to

formulate their impression. But this is actually precisely why we removed it. By taking

away the actual content, we forced the raters to focus on the timing and prosody of the

speech. As a result, our results describe how users perceive the different turn-taking

strategies in a context-less setting. Of course, context can change the perception, and

the same turn-taking behaviour can be perceived completely differently in different

contexts, but this study functions as a starting point with as little context as possible.

Additionally, another important, although not the main, reason is that it makes the

conversation simulator and the study much simpler. When the content is not stripped

away, the simulator has to take care that the generated conversations ‘make sense’,

which is potentially a lot becomes complex. Also, with the content intact, the study

itself gets more complex; the topic and the sentences affect the user’s perception,

which means that it has to be varied and counterbalanced. For all these reasons, we

argue that using unintelligible speech was a viable choice which still produces useful

and valid results.

Another tricky element in this study was the behaviour of the system-agent. This

is the agent that all scripted agents talked with, and that used random turn-taking be-

haviour each turn. One can argue that the randomness of the system-agent affected

the perception of the scripted-agent, because the behaviour of the scripted-agent de-

pends on the turn-taking behaviour of the system-agent. However, we argue that,

since the system-agent used random behaviour each turn, each scripted-agent en-

countered all possible turn-taking strategies during a conversation. This is the most

fair solution and gave all scripted-agents similar conditions.

It should be noted though that unfortunately only 10 participants joined the study.

This makes the results a bit less reliable, which is also why the ACTIVE experiment was

conducted: to improve the reliability of the results.

6.3 Active Study

In Chapter 5, instead of a study in which the human rater was a bystander of the

conversation, we let the rater actively participate in the conversation. With a Wizard-

of-Oz setup, we simulated a conversational interviewing agent, and the start-time of

the next question of the agent, which was controlled by the wizard, was determined

by the turn-taking strategies we were testing: EARLY, DIRECT or LATE. In the study,

we varied the start-up turn-taking strategy, the topic of the questions, and the gender
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of the system’s voice. Although it is not easy to guarantee that a Wizard uses a certain

strategy consistently, the analysis of the recordings revealed that the three different

strategies were applied accordingly in this experiment. After each conversation, the

participants had to complete a questionnaire about how they perceived the system,

containing 27 semantic differential scales that captured not only interpersonal and

affective dimensions, but also dimensions that were more social-skills related and

concerned interviewing capabilities.

Based on the results we found, we can conclude that an agent that used a certain

turn-taking strategy could indeed influence the impression that a user had of this

agent. Starting too early (that is, interrupting the user) was mostly associated with

negative and strong personality attributes: agents were perceived as less agreeable

and more assertive. Leaving pauses between turns had contrary associations: it was

perceived as more agreeable, less assertive, and created the feeling of having more

rapport. The agent’s voice played a role in the results too. In general, we can say that

the male voice was perceived as more agreeable and less aroused than the female

voice. However, this effect could be more related to the quality of the synthesized

voices than to the gender of the agent. Since we only used two different voices for

each gender (one Dutch and one English) it is very hard to generalize these results

to gender. Previous studies also report on relations between gender and interruptions

and interpersonal perceptions of interlocutors — for example, females who interrupt

would be penalized more than male interrupters — but we did not find such effects

in our data. This was mainly because our prime interest was the turn-taking strategy.

Finally, an analysis of the user’s turns in interaction with the interviewing agent

showed that turn management not only influences the impression one has of an agent,

but it also influences the response behaviour of the user. The user seems to ‘adapt’ to

the interviewing agent’s turn-taking strategy. For example, users spoke significantly

faster when the EARLY strategy was applied than when the LATE strategy was applied.

Furthermore, the results showed significant differences in turn lengths between all

strategies: the EARLY strategy was associated with short turn lengths while the LATE

strategy was associated with long turn lengths.

We have to keep in mind though that the results were obtained in the interviewing

domain, and that some findings might not generalize to a ‘free-talk’ conversation in

which dialogue partners can talk about anything they like, or in a setting in which

both dialogue partners can ask questions to each other.

This leads to an important question, namely how the interview setting influences

the results, and how specific these results are for this domain. As stated before (see

Chapter 5), interviews are usually governed by very strict rules. The most important

aspect of the interview is the story of the interviewee. The interviewer wants as much

of this story as possible, and the interviewee wants to tell as much as he or she can.

This creates a certain imbalance in the conversation, where the interviewee is more

important than the interviewer. Because of this, the interviewee’s behaviour — for

example interrupting the interviewer or ignoring attempts to take the turn — is more

easily accepted than the interviewer’s behaviour. And vice versa, the interviewer’s be-

haviour is much more strict, and unwanted behaviour is far less acceptable. In short,

a rude interviewee does not break down the conversation that easily (the interviewer
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still wants the story), while a rude interviewer has a much higher chance of breaking

down, probably with the interviewee walking away.

So, the interviewer is socially required to behave very politely, and impolite be-

haviour is punished much harsher. The results of the ACTIVE experiment show this

as well: interrupting the interviewee was perceived as more rude, less agreeable and

shows less conversational skill than giving the interviewee more time to finish by start-

ing late. This means that this setting is an extreme case, and we argue that the results

of this study can at least be generalized to other polite conversations or settings, such

as a virtual receptionist or guide. We have to mention though that we do not have

any evidence for this claim, and leave this question open for further research.

Another debatable aspect of the study is the influence of the wizard. Since we

did not use a blind wizard, he knew the aims of the study, and could therefore poten-

tially influence the outcomes of the study. Also, since we only used one wizard, the

outcomes of this study are influenced by the wizard’s interpretation of the intended

behaviour of the turn-taking strategies. This could be a potential problem, but in our

study the only aspect of the conversation that the wizard could control was the start-

time of the next question; there was nothing else he could influence. And with the

manipulation check (see section 5.2), we made sure that the performed behaviour of

the wizard was as intended.

6.4 Discussion

We have performed two studies to try to find out how different turn-taking strate-

gies change the user’s perception. But studying changes in perception is hard to do

well, with the result that both studies have their shortcomings. The PASSIVE study

was conducted with only 10 participants, the speech was incomprehensible, and the

participants were bystanders in the conversation. The ACTIVE study was conducted in

the interview domain, arguably limiting the generalizability to this domain only. How-

ever, both studies were looking for the same effects, but with different approaches.

Limitations in one study do not exist in the other, and each study has a unique ap-

proach. As a result, combining the two studies together strengthens the validity of

our findings.

When comparing the results of the PASSIVE and the ACTIVE study, we can see that

the impression one has of an agent does not radically change when a situational

context (i.e., topics to talk about in an interview setting) is provided and when one is

an active conversationalist in the experiment, as opposed to being a passive bystander

listening to unintelligible conversations. In general, the results from the PASSIVE study

can be transferred to the ACTIVE study. A noticeable difference is that the ratings in

general in the ACTIVE experiments are more extreme; users rated the ACTIVE system

lower in the EARLY strategy and higher in the LATE strategy. Here, lower ratings

correspond with a lower perceived level of assertiveness, less conversational skill,

and less rapport. A possible explanation for these more extreme ratings is that the

subjects who were in interaction with the interviewing agent were more engaged.

They punished and rewarded the agent more because they underwent the effects of

the strategies themselves, rather than observing these.
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Another notable difference between the results of both studies is that in the AC-

TIVE study the lowest rating and the highest rating were always given to the EARLY

or the LATE strategy. However, in the PASSIVE study, some ratings have the highest

or the lowest value with the DIRECT strategy. Unfortunately, these values are not

significantly higher or lower, but they do indicate subtle differences. In the PASSIVE

study, the DIRECT strategy was perceived as more positive, friendly, pleasant, atten-

tive, warm, and responsible than the other two strategies. In contrast, in the active

study, the highest values of the corresponding factors — agreeableness and conversa-

tional skill — are perceived with the LATE strategy.

The same can be seen when comparing the results of the Agreeableness-factor

(see Figure 4.4 and Figure 5.4). The factors of the PASSIVE and the ACTIVE study

are grouping similar semantic scales, and four of these scales appear in both fac-

tors: disagreeable–agreeable, unfriendly–friendly, negative–positive and cold–warm.

When comparing the results, in the ACTIVE study the lowest value was perceived with

the EARLY strategy, and the highest value with the LATE strategy. However, in the

PASSIVE study, the highest value was perceived with the DIRECT strategy, while the

LATE strategy had a slightly lower value (though not significantly). This is probably

explained by the difference in context. Since the interviewing setting was very po-

lite, users were less lenient and wanted more time to finish their turn. This probably

means that the ‘best’ time to start speaking (when it is perceived as most positive,

friendly, pleasant, and so forth) shifts to a later time. Although very interesting, it

was out of the scope of this study. The other factors cannot be compared, since the

semantic scales that they consist of are not similar enough.

An important aspect of our two studies is that they looked at global perception:

the holistic impression that participants have at the end of the conversation. How-

ever, different turn-taking strategies can also have more local perception changes, for

example a person who looks very enthusiastic because he starts his turn early. In con-

trast with global perception, local perception changes are much harder to measure

and are affected by many more factors, for example the context of the conversation,

the environment, the content of the speech, and other signals that the interlocutors

use while performing turn-taking behaviour.

6.5 Applying the results

We started these studies because we wanted to know how we could use turn-taking

as a tool to change the perception that people have of a virtual agent. We have shown

that different turn-taking strategies can indeed change this perception, and can even

change the behaviour of the user. But an obvious follow-up question is: how can we

use this knowledge?

For Sal, the differences between the four characters are very clear. Spike, the ag-

gressive character, is supposed to be active and negative. He would therefore start

speaking early, and will probably raise his voice when overlapping speech is detected.

This behaviour will make the user perceive Spike as more rude, assertive, cold, un-

friendly, dominant, and active, and less agreeable: exactly what we want. Obadiah,

the depressed, negative and passive character, is on the other end of the spectrum.
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His turn-taking behaviour will be very late, and when overlapping speech is detected

he will simply stop speaking. Users will then perceive him as more submissive and

passive. Unfortunately, it could also make him seem more agreeable and respectful,

which is not what we want. Perhaps if we increase the pause duration even further

the positive traits will disappear, but this is something for future research. Poppy —

the happy, active and positive character — and Prudence — the pragmatic and pos-

itive character — will use a turn-taking strategy that is somewhere between Spike’s

and Obadiah’s. By starting directly, users will get a friendly and warm perception of

the agent, without noticing the negative traits that appear when using a more ex-

treme strategy (starting early or late). Differences between Poppy and Prudence are

probably very small.

Applying the results on these four characters is pretty straightforward, but that is

mainly because their ‘personalities’ are very clear-cut. But a lot of virtual agents are

not angry or depressed by default, so how can we use the results for virtual agents

that have a less obvious personality?

In a formal setting — for example, where the virtual agent performs some kind

of social service to the public, such as a virtual guide or receptionist — people expect

the virtual agent to behave in a very polite way. This means that interruptions are not

acceptable, and it would be better to wait just a bit longer to avoid interruption. This

also improves the perception of conversational skill of the agent. There is of course

an optimal time to wait, and waiting too long after the user’s end of turn will only

make the agent seem unresponsive.

In a more general setting, the results of these studies can be useful too. For exam-

ple, when the agent notices that the user is getting too dominant in the conversation,

it could make itself more dominant to restore the balance, for example by interrupt-

ing the user or raising its voice when it is interrupted by the user. Or perhaps the

agent wants to increase the user’s perception of how attentive it is, for example when

the user tells something interesting. By reacting more directly to the user the agent

increases the perception of attentiveness.

Instead of using the different turn-taking strategies to change the user’s perception

of the agent, it can be used to strengthen the effect of another behaviour. For example,

when disagreeing with the user, this can be augmented with starting to speak early,

amplifying the disagreement. And when the agent wants to respond enthusiastically

to the user, responding just before the user’s turn is finished boosts the effect by

increasing the perception of arousal.

This shows that there are numerous examples of how the results of these studies

can be used as a useful tool to play with the perception that the user has of the virtual

agent.

6.6 Comparing the results with the literature

In Chapter 3 we showed summarized several studies from the literature that look

at the perception of turn-taking, especially interruptions. But how do their results

compare to ours?
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Trimboli and Walker (1984) studied the difference between cooperative and com-

petitive conversations, and found that competitive conversations contained signifi-

cantly more interruptions. In competitive conversations, it is likely that the partici-

pants do not agree with each other, but are constantly trying to get their point across.

This means that the participants have a low agreeableness and a high assertiveness.

Our results show that agents that use the EARLY strategy, which leads to more inter-

ruptions, are also perceived as having a lower agreeableness and a higher assertive-

ness.

Goldberg (1990) explained that interruptions were originally linked to displays

of power and control, but she argues that they are also linked to a higher rapport,

cooperation, and enthusiasm. Our results partially show this too: agents using the

EARLY strategy were perceived as having a higher assertiveness — which contributes

to the displays of power and control — and also as being more active and aroused

— which contributes to the enthusiasm aspect. However, in our study we can only

confirm that the EARLY strategy was perceived as showing low rapport.

Robinson and Reis (1989) show that interrupters in a conversation are perceived

as more assertive, more masculine and less sociable. Our results also show that the

EARLY strategy was perceived as more assertive and with having less conversational

skill. Interestingly, when looking at the gender, we perceive something different. We

did not directly study perceived masculinity, but our second study did contain male

and female voices. In this study, the EARLY strategy was perceived as less agreeable

and more assertive. However, when looking at the differences between the voices,

the male voice was perceived as significantly more agreeable and less assertive, which

is contrary to the EARLY strategy. However, this is not a direct comparison between

perceived masculinity and turn-taking strategy, and it is also a possibility that these

results are more related to the specific voices instead of the gender.

6.7 Future work

We can make several recommendations for future work.

• It would be interesting to look at more subtle differences between turn-taking

styles and to apply these as strategies. In our experiments, each strategy was

uniformly applied to all turn starts, that is, in the EARLY strategy all turns start

too early, and in the LATE strategy all turns start too late. It would be interesting

to identify more turn-taking styles, for example by mixing several strategies.

One could think of a strategy that alternately starts directly or late, or one that

interrupts only once in a conversation.

• As already mentioned in section 6.4 we only looked at the global perception of

the user. It would be very interesting to look at more local perception changes.

For example, what changes in the user’s perception when the agent interrupts

the user one time, or when the agent waits for a long time once?

• The role of context and type of conversation in turn management deserves more

attention. Although we have identified some results that are transferable be-

tween the PASSIVE and the ACTIVE experiment, it still remains an open issue
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how large the influence of context and type of conversation — for example a

work discussion, a conversation between friends, or someone asking for direc-

tions — is in these types of perception studies. Does the perception change in

different contexts? Do people tolerate more or less? And does the timing of the

highest and the lowest rated strategy change? For example, is the best pause

duration between turns different in formal or informal conversations?

• Finally, the turn-taking strategies should be implemented through a state-of-the-

art real-time end-of-turn detector and evaluate the ‘real’ effects of the strategies

on perception through interactive experiments. One of the challenges in this will

lie in developing an real-time end-of-turn detector that can adopt the EARLY and

DIRECT strategies.
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Part III

Response selection





7
Response selection in Sal

This part of this thesis is about the methods we use to select appropriate responses in

Sal. In this chapter, we will first introduce common techniques that are often used for

response selection, and we will explain when these methods are usually used. After

that, we will describe the response requirements of Sal, how this affects the response

selection and which techniques we can use. Finally, we will explain our first iteration

of creating selection rules, in which we hand-crafted the rules ourselves.

In the next chapter, we will explain a more data-driven approach, in which we use

Wizard-of-Oz data to make the agent learn the response selection rules.

7.1 Response selection methods

In this section we will describe some common techniques for response selection that

are often used in virtual agents or other dialogue systems.

7.1.1 Finite state machines

The simplest method to model when to say what is the finite state model, and is

described in more detail by Bui (2006). This model contains every possible state of

the conversation, the response that the agent gives in that state, and the transitions

between all states. An example of such a model is shown in Figure 7.1. A train

information agent using this model starts in state 1 and asks “Can I help you?”. If the

user confirms this, but does not specify any details about the trip, it will go to state

2 and ask the departure place of the user. If the user initially responded with “Yes, I

want to travel from Utrecht to Groningen”, then the system changes its state to state

4 and continues by asking when the user wants to travel.

However, there are some downsides to this approach. Every possible state in the

conversation should be predetermined, and the responses of the agent as well. This

makes the system inflexible: it takes time to extend the model, and changing the con-

versational structure means that numerous, if not all, models should be redesigned.
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Figure 7.1: Example fragment of a finite state model of a conversation.

7.1.2 Frame based

A more flexible method is the frame-based approach (see Bui (2006)). The agent uses

forms or slots to keep track of the information it needs in order to perform its task,

and tries to fill these slots by asking the user for the information. For example, for the

train ticket agent, the slots could look like this:

[Travel:

Origin = Utrecht

Destination = .

Date = today

Time = .

]

When it deduces information from the user’s response the agent fills in a slot (for

example the destination). Using the current state it decides what to ask the user next,

for example at what time the user wants to travel, or perhaps a confirmation if the

agent is not sure (“You said you want to go to Groningen?”).

An important aspect of response selection with frame-based models is understand-

ing the user’s input. With a 100% correct understanding, the only thing the agent has

to do is ask the user for the information it could not deduce itself. Unfortunately,

perfectly understanding the user is difficult, which means that agents typically have

to verify their understanding, either explicitly (“Did you mean ‘Groningen’?”) or im-

plicitly (“And when do you want to travel to Groningen?”). Too many verifications

disrupt the flow of the conversation and make it awkward to talk to the agent.

7.1.3 Information state based

A method that makes it easier to use contextual and multi-modal information is the

information state based approach (Larsson and Traum, 2000). This approach tries

to overcome the limitations of the finite-state and frame-based models. According

to Traum and Larsson (2003), the information state approach consists of five main

components: the components in the Information State (IS) — beliefs, intentions,
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conversational structure, etc — and their formal representation, rules that update the

data in the information state, dialogue moves that trigger these update rules, and an

update strategy that decides which rule to apply when.

The finite state approach provides a framework to store contextual information

in a structured way and create update rules that modify this information. The orig-

inal information state approach was extended by Traum and Rickel (2002). In their

approach, the authors use a multi-layer dialogue model with an information state in

each layer to store its current status.

However, specifying the actual rules (how to respond on the content of the IS)

is more time-consuming than in the finite-state and frame-based models. A popu-

lar solution is to use corpora to learn how to respond to changes in the informa-

tion states, for example by using Markov Decision Processes (Levin et al., 2000), Q-

learning (Scheffler and Young, 2002), or with Bayesian Networks (Wai et al., 2001).

But even when learning dialogue strategies from data, when the domain gets too ex-

tensive the amount of required work quickly increases. The system will always need

domain-knowledge to understand the user before it can perform its tasks.

7.1.4 Information retrieval approach

This approach views the problem of response selection as an information retrieval

problem, in which the user’s utterance is the query, and the appropriate response is

the most fitting result. The approach is often used in question-answer systems. For

simple fact-based questions, it is sufficient to convert the user’s question to a database

query, run that query on a database that contains all the facts and create a response

with the results. But this approach can also be used for non fact-based questions,

as demonstrated by McCauley and D’Mello (2006). They store all possible answers

of their agent MIKI in the database, and for each answer a list of possible questions.

Using Latent Semantic Analysis (Landauer and Dumais, 1997) they find the stored

question that is most similar to the user’s question, and they return the corresponding

answer.

7.2 When to use which response selection method

In the previous section we described some common approaches of response selection.

However, when to use which approach depends mostly on the context of the system

If the domain contains a lot of small and structured sub-dialogues, then finite

state machines (FSMs) are a good choice. FSMs are easy to create, but the time

this requires increases quickly when the conversation gets more complex. Also, it

requires the developers to flesh out all possible conversations beforehand. This means

that finite state machines are mostly suitable for small and very structured domains.

For example, MACK (Cassell et al., 2002) is a virtual receptionist that can answer

questions about the departments, its projects and people, and it can give directions.

Each task is straightforward and small, and the number of tasks is also not that great.

The same holds for Marve (Babu et al., 2005), who can also take and deliver messages

to people it knows. These tasks always follow the same structured dialogue, and finite

state machines are therefore the ideal approach to model these sub-dialogues.
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Task oriented dialogue systems are, as the name implies, systems that have to per-

form some kind of task for the user, such as selling a train ticket or giving restaurant

suggestions. Conversations in these domains are usually characterized by an informa-

tion gathering phase, in which the system gathers all necessary information from the

user, and a result phase, in which it performs its task. An obvious approach would be

to use the frame-based method, in which the necessary information is stored inside

slots. As long as there are empty slots, the agent can ask this information of the user.

When all slots are filled in, it can use the gathered data to perform its task. A good

example of a frame-based task oriented dialogue system is Karen (Nijholt and Hul-

stijn, 2000), a virtual receptionist of a music center. Karen can provide information

about performances and sells tickets to visitors. Another example is the public trans-

port information system described by Van Zanten (1996), which provides timetable

information. If the task is simple enough, a finite state machine is feasible too.

Question-answer systems are meant to answer the user’s questions. Often these

systems are only required to give an appropriate answer and not to maintain a com-

plete coherent conversation. It is possible to use a finite state machine to model the

question-answer pairs, but there are some reasons against this. First of all, it requires

one new state for each question-answer pair, so the more questions a system can

recognize and possible answers it can give, the more states (and work) are needed.

Secondly, the biggest problem in question-answering is understanding which question

is being asked. However, Cassell et al. (2002) show with MACK that if the domain,

and thereby the number of questions and answers, is small enough, then finite state

machines can work.

Information state based methods work well in more complex situations, since all

information about the user’s question can be put in one information state. The sys-

tem then needs rules that specify, based on the data in the information state, which

answer to give. An example of such a system is IMIX (Op den Akker et al., 2005),

a dialogue system that answers questions in the medical domain. Another approach

is more database-driven, for example as used in Sergeant Blackwell (Leuski et al.,

2006). This agent uses statistical techniques to find the best response, based on a

database with possible question-answer pairs. An even more clear example of how

information retrieval is used in question-answer systems is the system YourQA (Quar-

teroni and Manandhar, 2009). This system uses the internet to answer the user’s

questions, and uses information retrieval techniques to assess the quality of the found

documents. The advantage over a database-driven method is that the developer only

has to add more questions and answers to the database when extending the system,

while the information state approach needs more hand-crafted rules. However, with

the database-driven system it is more work to get more coherent conversations, since

this method is designed to focus on coherent question-answer pairs.

When the type of system is not as straightforward as a question-answer system

or a task-oriented system, then there are multiple solutions. The information state

approach works well with multi-modal data and in complex situations, since one

of its main strengths is combining data from different sources. Kopp et al. (2005)

show with their museum agent Max that this approach is feasible in more complex

situations, even though a lot of work was needed to create all the response selection
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rules. Therefore, a second solution might work better, namely using a mixture of

approaches. A great example of this is the virtual agent H.C. Andersen, as described

by Bernsen et al. (2004) and Bernsen and Dybkjær (2004). It uses templates when

telling fairy tales, and finite state machines when going into structured, in-depth sub-

dialogues. Using a mixture of approaches can combine the advantages of different

methods while minimizing their shortcomings.

7.3 Which method for Sal

In order to determine which response selection approach is most suitable for Sal, we

need the requirements of Sal. Remember from Chapter 1 that Sal consists of four

different characters with different emotional states, and that Sal’s goal is to motivate

the user to keep talking for as long as possible, and also try to get him in the same

emotional state as the current character. We decided on the following requirements

for Sal:

• No content – The first requirement of Sal is that it uses none or as little as possi-

ble of the content of the user’s speech. Instead of this content, Sal uses other in-

formation sources, such as prosodic information, facial expressions, head move-

ments, and so on. This also means that, since the content of the user’s speech

is not taken into account, the domain in which the agent operates is completely

open. Sal responds to how the user feels about what was said, independent

of the actual topic. As a simple example, imagine that the user tells something

while being very sad about it (they show depressed facial expressions and talk in

a sad tone of voice). Without knowing what the user is talking about, Sal could

know that he is not happy about it and could try to comfort him. This also

means that Sal cannot answer questions, since then the content of the question

should be known.

• Being a listener – It has to take the role of the listener. This means that it only

occasionally says something, but keeps the other person speaking for as long as

possible. When it does respond, it has to motivate the user to continue speaking,

to react to what the user just said, or to introduce a new topic.

• Affect user’s emotional state – When responding to the user, Sal tries to get the

user’s emotional state in the same state as the current character. For example,

this can be achieved with its response (e.g. Obadiah saying “But just think of

everything that can go wrong.”) and its backchannel behaviour (e.g. Poppy

giving a smile when the user tells that his vacation was amazing).

• Limited number of responses – Sal can only select a response from a finite

list of responses, with about 140 responses for each character. In the HUMAINE

project it was shown with a Wizard-of-Oz experiment, in which users had to

talk to a wizard-controlled ‘system’ (Douglas-Cowie et al., 2008), that this list

of responses was sufficient to sustain a conversation for some time, sometimes

even in the order of half an hour. Therefore, we decided that Sal had to use the
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same responses. Some example responses for the four different characters (see

Chapter 2) are shown in table 7.1.

Character Response

Poppy

•It’ll all be better tomorrow.

•It’s great to hear someone sound happy.

•Well done!

•What other good news do you have?

•Give me just one happy thought and you’ll feel better.

Prudence

•I’m sure that you can solve the problem, whatever it is.

•It can’t be that bad, don’t you think you’re over-reacting?

•Don’t get carried away!

•Why should I think that’s so good?

•That sounds like a sensible attitude.

Obadiah

•There’s not much you can do about it.

•Tell me all the awful details again.

•Well I suppose you have to make the best of it while you can.

•Tell me about the last time you were really hurt.

•It wears you down, doesn’t it?

Spike

•It’s a bloody disgrace.

•I don’t see why you’re in such a good mood.

•I suppose you really think you’re something.

•You’ve got to show people who’s boss!

•When was the last time you got angry at something?

Table 7.1: Example responses of the four Sal characters.

Sal is clearly not a task-oriented system; it does not perform a certain task for the

user and it does not require particular information from the user. For this reason, a

frame-based approach for response selection would not be useful for Sal. Finite state

machines work best in structured and small domains, which is not really the case

for Sal’s conversations. However, there are some small phases during the interaction

with Sal that are more structured, namely the start of the conversation and when

changing characters. These phases always take the same ‘routes’ and would be perfect

candidates to be modeled with finite state machines.

The information retrieval approach is more tricky. Sal is not a question-answer

system in the most strict definition, but it does work with the same principles. Based

on what the user has just said, Sal has to find the most appropriate response. Also,

since Sal does not take content into account, it is very hard to achieve coherency that

spans multiple responses. This means that, just as in a lot of question-answer systems,

Sal only looks at the previous turn of the user when determining what to say, and the

global context is less important. However, with this method it can be problematic
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to fill the database with the required information. All possible responses are known

beforehand, but since Sal operates in an open domain, it would be impossible to list

all possible ‘questions’ that lead to these responses. It would be possible to generalize

the user’s behaviour to more abstract features and store these.

However, we decided to use the information state approach. This approach is

known for its flexibility and it works very well with data from multiple sources, such

as different modalities. The problem then remains to create good rules that specify

when to select which response.

In the next section we describe the models we handcrafted, which was our first

attempt to model the agent’s responses. These simple models worked occasionally,

but not as well as we hoped. Therefore, we decided to let the computer learn the

models using training data. We explain this approach in the next chapter.

7.4 Handcrafted models

In this section we explain the first attempt to model the dialogues for Sal. We did this

by handcrafting dialogue rules using Flipper, an Information State based dialogue

system (Ter Maat and Heylen, 2011). With this system, rules are written down in

templates, which specify the preconditions and the effects of the rules. The rules were

based on different aspects of the conversation that Sal could respond to, for example

the arousal of the user, a long period of silence, and non-verbal behaviour. We will

now describe the different models.

7.4.1 Start-up and character change models

Two parts of a conversation with Sal are more structured: the start of the conversa-

tion, and the switching of characters. At the start of the conversation, Sal greets the

user, asks how he or she is today, and asks the user to tell more about it. When Sal

detects that the user wants to change the character, or when Sal determines it is time

to change the character, it can ask the user whether he or she wants to change, and to

which character. If the user does not care, Sal can make a suggestion, which can be

accepted or rejected. Because of the structured nature of these mini dialogues, they

are implemented as state machines.

7.4.2 Arousal models

Arousal is one emotional feature that can be fairly reliably detected from the user’s

speech. Using the arousal values, we created rules for Sal to respond to high or low

values of arousal. Of course, the different characters respond differently to the arousal

values.

Some example rules:

Prudence

Arousal = Low -> ‘You seem a bit flat.’

Arousal = High -> ‘Don’t get too excited!’
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Obadiah

Arousal = low -> ‘Don’t get too carried away!’

Arousal = high -> ‘You’re a bit of a cold fish, aren’t you?’

7.4.3 Silence models

It often happens that the user does not know how to deal with Sal, which causes the

user to not start talking after Sal makes a response. There are several ways in which

we deal with this.

First of all, there is a chance that the user does not have anything more to tell

about the current (unknown) subject. If Sal did not recently introduce a new topic,

it will introduce one after the silence. Another possibility is that the user does not

know how to respond to a question from Sal. To improve this, some questions have

elaborations that can be presented after a silence. Two examples:

Poppy

‘I think you should feel really happy today.’

(after a silence)

‘Tell me what makes you feel really happy.’

Spike

‘When was the last time you got angry at something?’

(after a silence)

‘Don’t you ever get angry at the world?’

If these two approaches cannot be applied — that is, there is no elaboration on

the last response and Sal recently introduced a new subject — then Sal will try to

motivate the user to continue speaking. Again, two examples:

Poppy -> ‘Come on, tell me more.’

Poppy -> ‘Well?’

Spike -> ‘‘Go on, tell me your news!’’

7.4.4 Laughter models

Another detected feature that can be easily used for response selection is laughs. If

laughter is detected, either detected in the audio or in the facial expression of the

user, characters can respond differently to this behaviour:

Poppy -> ‘It’s great to hear someone sound happy.’

Prudence -> ‘Why should I think that’s so good?’

Obadiah -> ‘If you’re laughing, people won’t take you seriously.’

Spike -> ‘Stop laughing!’

7.4.5 Linked response models

In order to get more structured conversations that take some more context into ac-

count than only the previous user utterance, models were created that link a response
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of an agent to a previous response. Based on the previous response of the agent and

some features of the user’s utterance, a more coherent response can be selected. This

kind of linking is an easy way to create a more structured conversation, without spec-

ifying much about the content. Several features of the user’s turn are used to decide

on the response. Currently, the features that can be detected are the length of the

turn (short, normal or long) and an agreement or disagreement (basically, if the user

says yes or no). With these features, all agent utterances that are questions and that

could be answered with yes or no have been extended with proper responses. Some

examples can be found in Table 7.2.

Character Previous response Features of user’s

utterance

Response

Poppy Did things get better? short disagreement Cheer up!

Prudence Would you say you

have everything un-

der control?

short agreement Good. You obvi-

ously have your head

screwed on.

Spike Don’t you ever get

angry at the world?

short disagreement You’ve got to show

people who’s boss!

Table 7.2: Example linked responses.

7.4.6 Last resort model

If all else fails, and if no model triggers any rule, then this model has to supply a

response. These are mostly generic responses that fit in almost any context, such as

‘Tell me more’ and ‘Go on’.

7.5 Conclusion

In this chapter we described several common response selection techniques, and we

explained that we use a combination of the information state approach and finite

state machines. Then we described the different handcrafted rules that we used in a

first version of Sal. In the next chapter we will present a more data-driven approach,

in which the computer uses data to learn selection rules.
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8
Data-driven response selection

In the previous chapter we explained how handcrafted rules can be used to model the

response behaviour of Sal. However, these rules were based on our ideas of appropri-

ate responses, but these ideas might be wrong or insufficient. In this chapter we will

explain the next step, in which we use a data-driven approach to create response mod-

els for Sal. We explain how we use videos to collect data of appropriate responses,

and use these to train classifiers that learn how to give appropriate responses.

Figure 8.1: The structure of creating the classifiers. The video data is used to extract features and

to get annotated responses. These suggested responses are grouped and outputted

to the classifier.

Figure 8.1 shows the structure that we used in creating the classifiers. Using a cor-

pus of human-human conversations in a similar setting as Sal (McKeown et al., 2010),
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we extracted features of the user’s turn and appropriate responses that follow these

turns, and used this as training data for the classifiers. However, in these conversa-

tions neither participants were restricted in what they said, while Sal is restricted to a

finite list of responses. And since the classifiers need to produce responses from that

list, the training data that was extracted from the corpus needs to contain the same

responses. This was solved by having several annotators go through the data and

select 3 appropriate Sal responses (response suggestions) to each turn in the data.

However, each Sal character has over 100 responses in its repertoire. Having the

classifier learn to differentiate between them all requires a lot of data. Therefore,

we clustered the responses in groups of responses that tried to say the same thing.

We sent the extracted features from the users’ turns and the groups of the suggested

responses to different classifiers in different formats, because we did not know which

classifier or format worked best.

In this chapter, we will first provide more details about the corpus we used and the

features we extracted. We will then describe the annotation process and the different

grouping approaches we tried. We will explain which classifiers we used and present

the results. However, the performance of the classifiers is hard to measure, because

responses that were not annotated could still be appropriate. Therefore, in section 8.6

we will explain the subjective evaluation in which we presented the results to human

raters.

8.1 The corpus and its features

In this section, we will elaborate on the corpus and its features that we used in the

classifiers. We used two types of features: the SEMAINE annotations that were man-

ually added to the recordings, and automatically extracted features. The annotations

would not be useful in a real system, because they are hard to acquire automatically

by machines and therefore, a real state-of-the-art system would not be able to recover

them. However, they could give insight into which annotations are useful to detect.

For the automatically extracted features we only extracted audio features, because the

video component that is used in Sal is only capable of processing live camera data.

8.1.1 The SEMAINE Corpus

In the data-driven approach, we used the SEMAINE corpus (McKeown et al., 2010).

This corpus contains recordings of human to human conversations in the SAL-scenario,

which means that one participant (the operator) takes the role of the listener. His or

her goal is to keep the other participant (the user) talking for as long as possible and

to try to draw the user to the emotional state of the current character that the operator

is playing. These characters are the same as the ones described in Chapter 2, namely

optimistic Poppy, pragmatic Prudence, depressed Obadiah, and aggressive Spike.

For the SEMAINE corpus, 20 conversations were recorded, in which a user talked

with an operator for an average duration of 20 minutes. During these conversations,

the operator played out all four characters. The participants were sitting in different

rooms and saw each other through teleprompter screens. Four cameras were placed

behind semi-reflective mirrors to record the user and the operator frontally: one color
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Figure 8.2: A detailed diagram of the data-driven response selection. 1. All predetermined re-

sponses that are available in the Sal system (section 7.3).

2. All responses of the Sal system are ordered using different groups (section 8.3). In

each group, the responses are divided into categories.

3. The Semaine corpus that was used as training and evaluation data (section 8.1.1).

4. Fragments that contain user turns are extracted from the corpus.

5. Raters use these fragments to suggest up to three appropriate responses for each

user turn (section 8.2).

6. Using the different groupings, the response suggestions are changed to the cor-

responding categories, which results in a list of suggested categories for each user

turn.

7. Using openSMILE, audio features are extracted from the user turns (section 8.1.3).

8. Using different Trainers (section 8.4.1), the features and the suggested categories

are converted to a training data set that the classifier can use.

9. Using different Evaluators (section 8.4.2), the features and the suggested cate-

gories are converted into an evaluation data set.

10. The training data is used to train classifiers (section 8.4.3), and then the evalua-

tion data is fed to these classifiers.

11. The classifiers predict categories for the user turns in the evaluation data set.

12. Using the same Evaluators (section 8.4.2), the predicted categories are compared

with the suggested categories to calculate the performance (section 8.5).
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and one grey-scale camera for each participant. There was a grey-scale camera aimed

at the side of the user too. As the cameras were placed behind the semi-reflective mir-

rors, the participants could look each other in the eyes during the conversations. Two

microphones were placed in each room, one on the table in front of the user or op-

erator, and one on the head of the participant. The recorded data was synchronized,

and the videos were compressed.

The operators were instructed to play each character as naturally as possible, with-

out being tied to a fixed script. Users were not allowed to ask questions. Changing

the character could be requested by the user, for example when they got bored or

annoyed. Also the operator could also request a character change when enough time

had been spent with the current character.

8.1.2 SEMAINE Annotations

The SEMAINE data contains trace-style continuous annotations — in which the value

of the annotation is continuously determined by ‘tracing’ the current value with a

slider while watching the video — in 31 different dimensions related to emotions,

epistemic states and dialogue intentions. Every recording is annotated on five core di-

mensions: Valence, Activation, Power, Anticipation/Expectation, and Overall Emotion

Intensity. Fontaine et al. (2007) argue that the first four dimensions are best suited to

capture affective colouring in general, although they name the dimensions evaluation-

pleasantness, activation-arousal, potency-control, and unpredictability. Valence and

activation form the basis of the different characters, where valence specifies whether

the participant is positive or negative, and activation how aroused the participant

is. We designed the four characters of Sal to fit these descriptions, so Poppy is de-

signed to be positive-active and Obadiah to be negative-passive. Power is character-

ized by appraisals of control, leading to feelings of power or weakness, and anticipa-

tion/expectation is characterized by appraisals of novelty and unpredictability. The

final core dimension is that of Overall Emotion Intensity, to measure the overall level

of the emotional intensity of the participant.

Besides these five core dimensions, each annotator annotated an additional four

(at least) out of 26 possible dimensions, depending on which dimensions had at least

one obvious case in the recording. The 26 possible dimensions are divided into four

categories, as shown in Table 8.1: basic emotions, epistemic states, interaction pro-

cess analysis, and validity. The validity category tries to highlight problems in the

conversations, for example a breakdown of the engagement or when the user is con-

cealing his or her emotion. However, the items of this category were not annotated

often, and we decided not to use this category.

The category ‘basic emotions’ contains Ekman’s “big six emotions” (see Ekman

(1984)), with the exception of fear (unlikely in these conversations), and with the

added emotion ‘amusement’, which would otherwise not be represented. These emo-

tions are also represented as continuous trace annotations, which means they measure

the intensity of the emotion at a given time. Epistemic states (explained by Baron-

Cohen et al. (2004)) measure aspects such as how certain, agreeing, or interested the

user is at a certain point of time. The category Interaction Process Analysis is a subset

from the categories used by Bales (1950). Bales used these categories to classify dif-
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Basic Emotions Epistemic States Interaction Process Analysis

Anger 10 (not) certain 23 Shows solidarity 9

Disgust 2 (dis) agreement 79 Shows Antagonism 15

Amusement 82 (un) interested 22 Shows tension 12

Happiness 27 (not) at ease 39 Releases tension 14

Sadness 21 (not) thoughtful 41 Makes suggestion 6

Contempt 10 (not) concentrating 9 Asks for suggestion 2

Gives Opinion 42

Asks for opinion 3

Gives information 72

Asks for information 3

Table 8.1: Additional annotations dimensions (except Validity). The numbers indicate the total

number of annotations for each dimension.

ferent aspects of a conversation, such as types of questions and answers, and positive

or negative reactions.

All these dimensions are recorded as trace-style continuous annotations. This

means that, while running a recording, the annotator can continuously move the

cursor to a value between -1 and 1 to indicate the current value. For each annotation,

this results in a graph with the value over time, and extracting binary labels is a matter

of setting a certain threshold.

8.1.3 Automatically extracted features

We used openSMILE, the core component of OpenEAR (Eyben et al., 2009), to auto-

matically extract features from the recordings. With openSMILE, the following low-

level audio features are extracted every 10 milliseconds:

• F0, also called F0, is the fundamental frequency, the lowest detected frequency

in the audio.

• Intensity is an acoustic, non-linear measure of the power of the sound.

• Loudness is defined as log(intensity).

• RMS-Energy is defined as
√
∑

time
(intensity2).

• LOG-Energy is defined as log
∑

time
(intensity2)

However, a classifier needs its input in the form of a feature array with a fixed

length. To create this feature array for a user’s turn, the minimum, maximum, mean

and standard deviation for each feature in that turn was calculated. These numbers

summarize the detected features of that turn.

Besides these low-level audio features, openSMILE also detects affective and emo-

tional states. We used the detection of valence, arousal (called activation in the an-

notations), potency (called power in the annotations), unpredictability (called an-

ticipation/expectation in the annotations), intensity, and interest. These states are
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event-based, and are only outputted if the corresponding classifier has a result which

it is confident enough about. This information is summarized by calculating the num-

ber of low (value <0), number of high (value >0), the minimum, maximum, mean

and standard deviation are calculated and put into the feature set.

8.2 Sal response suggestions

The SEMAINE corpus contains 6.5 hours of human-human conversations in the same

setting as the Sal, with one participant in the role of the listener. In order to use

the corpus as training material to select responses for our virtual agent, we needed

to map the operator utterances — which were unconstrained — to the limited list of

responses that constitute the repertoire of the characters.

We took a subset of the corpus (recordings 4, 6, 9, 10, 11, 13, 15, and 16) and

extracted all (893) user turns from them: that is, fragments between two operator

responses where the user talks. The next step was to show these turns to human

annotators, and we divided the user turns into four annotation sets. The first set

contained turns 1, 5, 9 and 13, the second contained turns 2, 6, 10 and 14, and so

on. With this method, the user turns had little relation to each other, which forced the

annotator to look at each turn individually, without taking the context of the previous

turns into account. This is similar to how we want the classifiers to work: they only

take the previous user turn into account for simplicity reasons.

Each of the four annotation sets was given to three annotators. The annotators

were also given the set of responses that the characters can give in the system. For

each user turn in the annotation set, the annotators were instructed to select three

responses in the character set that they would rate as an appropriate response to

the user’s utterance. Note that they were not told to select the three best responses,

because this would result in looking through all (more than 100 per character) re-

sponses for each user turn to find the best ones. Instead, since many responses are

appropriate after a user turn, the annotators were asked only to select three appropri-

ate ones. This also increased the annotation speed, which gave them time to do more

annotations.

To make the selection easier for the annotators, we grouped the responses into

simple categories, such as ‘starting a new topic’, ‘Cheering up’, and ‘Insults’. We

told the annotators that these categories were only there to simplify the annotation

process, and that it did not matter whether all three responses came from the same

category or from three different ones. Also, if there were only one or two appropriate

responses, that was alright too. In the end, all 893 user turns were annotated, and

Table 8.2 shows details of how many user response suggestions and user turns we

have.

8.3 Grouping responses

In the previous sections, we explained which features we extracted from the data and

how we gathered appropriate responses. The next step was to reduce the number of

classes for the classifiers by grouping the responses into categories. There are about
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Number of response suggestions Number of user turns

1 10

2 61

3 361

4 39

5 166

6 256

Table 8.2: Number of user turns that received a number (1-6) of response suggestions

480 possible responses, and we extracted only 893 user turns, with a total of 3737

response suggestions. Assuming that each response was selected an equal number of

times, that means that each response was suggested about 7.8 times, which means

that the classifier has on average only 7.8 training instances for each response. This

is not enough to get good results.

We decided to decrease the number of classes for the classifiers by grouping the

responses into categories, mainly because a lot of responses say the same thing. For

the classifier this means that it only has to learn when to give a certain response

category, while the exact response from that category can be selected randomly. Of

course, the way the utterances are grouped into categories has a significant influence

on the result. Assuming that similar responses occur in similar situations, grouping

different responses together means that the training-situations (the features) will be

different too. The classifier will then not be able to find a good pattern in the features

and will not be able to make good predictions. Therefore, making good groups is

essential for the quality of the results.

Responses can be grouped in many ways, there are a lot of potential methods, and

since it is not clear which method is best we tried several at the same time.

• Intuition This grouping method was based on our own intuition of which ut-

terances look similar, for example responses that start a new topic, try to cheer

the user up or insult the user. This is the most simple way of grouping, but not

necessarily the best method since it is subjective.

• Questionnaire-based In an attempt to remove some of the subjectivity of the

previous method, we decided to group responses based on the intuition of more

than one person. Using an online card-sorting study1 we asked 12 people —

three for each character — to sort the responses of that character into categories

that made sense to them. After this we merged the results by grouping the

responses that were often put into the same category.

• PCA Instead of using groups that were defined by other people (as in the pre-

vious two methods), we also grouped the responses based on the annotator’s

suggestions. Using a Principal Component Analysis on the suggested responses

we grouped the responses that were often suggested together. We created three

versions of this group, using the best 5, 10 or 20 categories.

1www.websort.net



90 | Chapter 8

• Cluster-based This approach bases its grouping on responses that were sug-

gested after similar user turns. It assumes that similar user turns are followed

by similar kinds of responses. From the audio fragments, the automatically

extracted audio features were taken and clustered using the EM (Expectation-

Maximization) or the K-Means clustering algorithms. The created clusters con-

tain similar user turns (with similar audio features), and by grouping the sug-

gested responses of these user turns we created the cluster-based groups.

• Mixed This group was created during the evaluation, by taking the best per-

forming categories (with the highest F-score, see section 8.5.1) from the other

groups, and mixing them into a new group.

• Random We created several random groups for comparison. In total four ver-

sions were created, two with all responses divided in three categories, and two

versions with five categories. We created groups with three and five categories

to verify what the effect of the number of categories is, and we created two

versions of each group for better comparison (because one version could be

accidentally better or worse).

8.4 Classification

This section explains which classifiers we used, and how we used them. The classi-

fiers require data to train the models, and data to evaluate how well they perform.

Therefore, we will first explain how we created the training and evaluation data.

8.4.1 Training data

To train their models, our classifiers need data, namely user turns containing features

and correct responses — or in our case, response categories. Using this data the clas-

sifier tries to find patterns in the features to base its selected response on. However,

there are some issues with the type of data we have. Note that we use the term data

point for the list of features of a user turn.

One of the issues is that each user turn has at least three response suggestions.

The most straightforward method to deal with this is to take multiple copies of each

data point, one for each response suggestion. We will call this the Full dataset. How-

ever, there are some problems with this approach. For example, there are multiple

instances of the same data point (the exact same set of features), but potentially with

different response categories, which can confuse the classifier. To solve this, we cre-

ated the training data using a second method, in which only one instance of each data

point and the category that was chosen most often. If more than one category was

chosen most often, one of these was selected randomly. This method would ensure

that each data point only occurred once, with the most common response category.

This data set is called the Single dataset.

However, this last method does not use all available data. For example, if a user

turn is followed by two response categories, the previous method only gives the clas-

sifier one category. But if a data point has multiple response suggestions, perhaps

all categories are correct. Also, a problem with the first method is that the data is
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potentially unbalanced: a data point could have two suggestions from category A

and one suggestion from category B. When this kind of data is fed to the classifier, it

probably focusses more on category A, while this is not necessarily the best approach.

Therefore, a third method was used to create training data which takes all data, but

removes similar categories in the same user turn. The resulting data set is called the

Unique dataset.

To exemplify the different methods, assume that a user turn has three response

suggestions, two in category A and one in category B. The Full dataset uses all cate-

gories. The Unique dataset removes the double appearance of category A, and uses

one user turn with category A and one user turn with Category B. The Single dataset

only uses a user turn with Category A, since this is the category that contains the most

suggested responses.

8.4.2 Evaluation data

The normal method of evaluation is to make an evaluation set with data points and

‘correct’ answers (in our case, response categories), feed this data into the trained

classifier, and match the output with the ‘correct’ answer. However, just as with the

creation of the training data, we have the problem that one data point can have up

to six possible responses. If these are all from different categories, how can we verify

whether the produced response category of the classifier is correct or not? Should

we match this produced category with all six suggested categories one by one? If the

produced category is suggested once, this results in five incorrect matches and one

correct match.

For example, say we have a user turn with three suggested responses, two from

category A and one from category B. We feed this data point to the classifier, which

produces category A. If we compare this answer with all three suggested categories,

then it will be correct twice and incorrect once. But one could argue that a response

from a good category was chosen, so the answers should be correct (or at least par-

tially correct) each time.

We implemented several methods for this evaluation:

• Fraction full This evaluator feeds each user turn to the classifier once, and

evaluates the classifier’s result with the fractions of the possible categories. For

example, a user turn has three suggestions, two from category A and one from

category B. If the classifier returns category A, this is evaluated as 2

3
correct, and

1

3
incorrect. This is basically the same as a binary evaluator, since evaluating the

data point three times results in exactly the same proportion (two correct, one

incorrect).

• Fraction single A problem with the previous method is that it still evaluates a

predicted category as partially incorrect if there are multiple possible categories.

For example, in the given example, even though category A was suggested twice

by an annotator and also predicted by the classifier, it is still evaluated as 1

3

incorrect. To rectify this issue, the fraction single evaluator does not evaluate

a predicted category as incorrect if it is partially correct. So, in the previous

example, this would be evaluated as 2

3
correct only.
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• Fraction single recoded The fraction single evaluator creates unbalanced re-

sults because an incorrect result is evaluated as fully incorrect, but a correct

result could be evaluated as (for example) 2

3
or 1

3
correct. To solve this prob-

lem the fractions are recoded. This recoding is based on the distribution of the

suggested categories, and each fraction is divided by the fraction that occurs

most often. For example, in the on-going example the possible categories are

[AAB], which means that A occurs two out of three times and B one out of three

times. By dividing these fractions by the highest fraction (in this case 2

3
), the

new recoded fractions are 1 for category A, and 1

2
for category B. In this case, if

the classifier returns category A, this is evaluated as completely correct. If the

classifier returns category B, then this is only 1

2
correct, because category A is

suggested twice as often as B.

• Exists An even more lenient method is an evaluator that always evaluates a pre-

dicted category as fully correct if it was annotated at least once. In our example,

this means that if the classifier returns category A or B, this is evaluated as fully

correct in both cases because both category A and B have been suggested at

least once. A downside of this method is that if a lot of different categories are

suggested for a particular user turn, then the classifier has a very high (perhaps

unreasonable) chance of predicting a suggested category.

In the end, it is hard to tell which of these measures is a ‘fair’ evaluation method

that returns representative results (so a meaningful number between 0 and 1). The

methods given are ordered from very strict (resulting in lower values) to very lenient

(resulting in higher values). However, when using the evaluation to identify relative

differences between approaches, then the evaluation method does not really matter,

as long as the same evaluation method is used in each approach.

8.4.3 Classifiers

The goal of these classifiers is of course to create working models for response selec-

tion, but a second important goal is to learn how these models work. Therefore, we

decided to only use machine learning techniques that produce human-readable and

understandable models. The first classifier is the decision tree algorithm J48, which

is a Java implementation of the C4.5 algorithm (Salzberg, 1994). This classifier pro-

duces a decision tree, a tree-like model. The nodes in the tree represent the ‘choices’

to make, usually a comparison of a value which determines which path to take from

there. The leaves are labelled with the predicted response. The second classifier we

used is Ripper (Cohen, 1995), an algorithm that produces simple rules in the form:

if value1 < v1 and value2 > v2 and value3 < v3 => response A

8.5 Performance results

This section presents the results of the response classification. Using each possible

configuration of the different trainers and evaluators, we passed the data through
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both classifiers using ten-fold cross-validation. In the first round we used the de-

scribed trainers and evaluators, and based on the results we made some improve-

ments.

8.5.1 First round

Table 8.3 shows the initial classifier results, with for each group and evaluation

method the average F-value (harmonic mean of precision and recall) of the three

training methods and two classifiers.

# of Fraction full Fraction single Fraction recoded Exists

Group categories Ob Po Pru Spi Avg Ob Po Pru Spi Avg Ob Po Pru Spi Avg Ob Po Pru Spi Avg

Cluster-based 3.25 0.19 0.28 0.19 0.32 0.24 0.29 0.40 0.30 0.48 0.37 0.38 0.46 0.37 0.54 0.44 0.41 0.50 0.40 0.57 0.47
Intuition 6.75 0.15 0.17 0.14 0.12 0.14 0.18 0.21 0.17 0.14 0.17 0.23 0.25 0.22 0.19 0.22 0.25 0.27 0.25 0.23 0.25
PCA 20 20 0.03 0.04 0.03 0.04 0.03 0.04 0.05 0.04 0.05 0.04 0.07 0.10 0.06 0.09 0.08 0.09 0.11 0.08 0.11 0.09
PCA 10 10 0.06 0.08 0.06 0.07 0.07 0.09 0.12 0.09 0.10 0.10 0.11 0.17 0.11 0.15 0.13 0.11 0.18 0.11 0.18 0.15
PCA 5 5 0.13 0.14 0.14 0.13 0.13 0.18 0.20 0.19 0.18 0.19 0.20 0.23 0.22 0.21 0.21 0.21 0.25 0.24 0.21 0.23

Question Full 15 0.05 0.05 0.05 0.05 0.05 0.06 0.07 0.06 0.07 0.06 0.10 0.13 0.10 0.11 0.11 0.10 0.15 0.12 0.13 0.12
Question Good 8.5 0.09 0.10 0.08 0.10 0.09 0.12 0.14 0.11 0.15 0.13 0.19 0.20 0.17 0.19 0.19 0.21 0.22 0.19 0.21 0.21

Random3A 3 0.21 0.19 0.18 0.20 0.19 0.35 0.34 0.29 0.35 0.33 0.45 0.41 0.35 0.43 0.41 0.49 0.43 0.37 0.45 0.44
Random3B 3 0.20 0.19 0.21 0.18 0.19 0.35 0.33 0.38 0.32 0.35 0.42 0.39 0.48 0.39 0.42 0.45 0.42 0.50 0.41 0.44
Random5A 5 0.12 0.13 0.12 0.11 0.12 0.20 0.21 0.21 0.18 0.20 0.30 0.33 0.32 0.28 0.31 0.34 0.37 0.36 0.32 0.35
Random5B 5 0.12 0.12 0.11 0.14 0.12 0.19 0.19 0.18 0.23 0.20 0.26 0.29 0.25 0.36 0.29 0.30 0.33 0.30 0.39 0.33

Table 8.3: Initial classifier results, showing the F-value (harmonic mean of precision and recall)

of each group and evaluation method. Each value is the average of the three training

methods and the two classifiers.

This table shows that the evaluators are indeed ordered by leniency, where the

leftmost evaluator is the most strict and results in the lowest values, and the rightmost

evaluator is the most lenient with the highest values. It also shows that the cluster-

based groups performed best, together with the random groups with three categories

(Random3A and Random3B). This can be explained by the fact that these groups

contain fewer categories, which means that the chance that the classifier returns the

correct category is higher. We will go into more detail later, but first we will show the

differences between the trainers and classifiers used.

Table 8.4 and 8.5 show the differences between the classifiers and training meth-

ods used.

Fraction full Fraction single Fraction recoded Exists

Classifier Ob Po Pru Spi Avg Ob Po Pru Spi Avg Ob Po Pru Spi Avg Ob Po Pru Spi Avg

J48 0.16 0.18 0.15 0.17 0.16 0.24 0.27 0.23 0.26 0.25 0.32 0.35 0.31 0.33 0.33 0.35 0.38 0.35 0.37 0.36
JRIP 0.12 0.14 0.11 0.13 0.12 0.18 0.20 0.16 0.18 0.18 0.22 0.24 0.20 0.22 0.22 0.23 0.25 0.21 0.24 0.23

Table 8.4: The differences between the two classifiers. The values are averages of all trainers

and evaluators.

Fraction full Fraction single Fraction recoded Exists

Trainer Ob Po Pru Spi Avg Ob Po Pru Spi Avg Ob Po Pru Spi Avg Ob Po Pru Spi Avg

Full 0.15 0.16 0.14 0.16 0.15 0.22 0.25 0.21 0.24 0.23 0.28 0.31 0.28 0.30 0.29 0.31 0.33 0.31 0.33 0.32
Single 0.15 0.17 0.14 0.16 0.15 0.23 0.26 0.21 0.24 0.23 0.30 0.33 0.27 0.31 0.31 0.33 0.38 0.30 0.34 0.34

Unique 0.12 0.14 0.12 0.13 0.13 0.17 0.19 0.17 0.18 0.18 0.22 0.23 0.21 0.22 0.22 0.23 0.24 0.23 0.24 0.24

Table 8.5: The differences between the three training methods. The values are averages of all

classifiers and evaluators.
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From these tables, it looks as if the J48 algorithm performs best, and the Full and

Single training method too. However, we decided to dig a bit deeper for details. Table

8.6 shows the results of different combinations of classifiers and trainers. Because

this table is meant to demonstrate the relative differences, the values are based on

only one evaluator, namely Fraction full. This table shows that the J48 algorithm

works best in combination with the Full and the Single trainers. The Unique trainer

performs worse, mostly in combination with the JRip classifier (see the bottom row

in Table 8.6).

Classifier Trainer Cluster-based Random3A Random3B Random5A Random5B PCA 5 Intuition Ques Good PCA 10 Ques Full PCA 20

J48 Full 0.28 0.24 0.26 0.18 0.17 0.13 0.16 0.13 0.08 0.07 0.05
J48 Single 0.27 0.26 0.24 0.15 0.16 0.17 0.17 0.13 0.08 0.06 0.05
J48 Unique 0.26 0.16 0.18 0.16 0.14 0.12 0.18 0.11 0.07 0.06 0.05

JRip Full 0.25 0.19 0.17 0.09 0.08 0.12 0.15 0.08 0.05 0.04 0.02
JRip Single 0.25 0.18 0.18 0.09 0.11 0.14 0.14 0.07 0.07 0.04 0.02
JRip Unique 0.15 0.15 0.15 0.07 0.09 0.12 0.08 0.05 0.05 0.02 0.02

Table 8.6: The results of different combinations of classifiers and trainers. The evaluator Frac-

tion full was used for the results.

Some other conclusions could be drawn based on the results so far. To start, some

groups performed badly, especially the ones with a lot of categories. This makes sense

for several reasons. Firstly, if there are more categories to choose from, the chance of

selecting the correct one is lower. Secondly, more categories means less training data

per category, lowering the quality of the classifier. Lastly, if there are more categories

the chance that some categories will overlap — they can be selected in certain similar

contexts — increases. This means that the chance that an appropriate category will

be predicted by the classifier which has not been annotated increases as well.

Another look at Table 8.3 shows that the random groups perform relatively well.

This is tied to the previous point, since the random groups only contain three or

five categories, while other groups sometimes contain more than 10 categories. To

make comparisons that are more valid, in the next section we will modify our random

groups.

We will not show the details here, but we also have access to the results of each

category, showing exactly which category of which group performed well and which

did not. We can use this information to improve our models by removing the cat-

egories that did not perform well. This might seem strange at first, because this

effectively means that the classifier can predict less. However, our goal is to create

response models that can predict a certain response in certain contexts, but it does

not have to predict a response at all times. If the classifier is not sure at a certain

moment, it is best not to use its output but to use a different model instead. So, we

are mainly looking for categories that can be (more or less) reliably predicted.

8.5.2 Different feature sets

In section 8.1 we explained that we used two types of features: the automatically

extracted audio features and the human-made annotations. The models in the pre-

vious section only use the audio features, mostly because the final models should be

able to work in a real system. But what would happen if the models were trained and

evaluated on the annotations? Since the annotations are man-made, one could expect
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the quality to be higher than automatically extracted features. But would the quality

of the models improve too? Also, the annotations contain different information than

the extracted features, and we would like to know how this information affects the

classifiers.

This section explores the differences between the extracted features and the an-

notations. The experiment from the previous section was performed again, with

some small variations. Only the groups Intuition, PCA 5, Questionnaire full, Ques-

tionnaire good, and cluster-based were used, and only the Full and Single trainer.

We removed the groups PCA 10 and PCA 20 and the Unique trainer since these per-

formed worse than the others.

Using these groups and trainers we trained and evaluated the classifiers again, but

this time with different parts of the annotations. Since all recordings were annotated

with the five core dimensions — Valence, Activation, Power, Anticipation/Expectation

and Intensity — we used these five dimensions in all tests. Additionally, we tried

adding the dimensions that were annotated most often, namely agreement, gives

information, amusement, and gives opinion. The results of these dimensions can be

found in Table 8.7.

Fraction full Fraction single Fraction recoded Exists
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Extracted audio-features 0.24 0.14 0.13 0.05 0.09 0.37 0.17 0.19 0.06 0.13 0.44 0.22 0.21 0.11 0.19 0.47 0.25 0.23 0.12 0.21
Core-dimensions 0.22 0.14 0.13 0.05 0.09 0.33 0.17 0.19 0.07 0.13 0.42 0.22 0.22 0.11 0.19 0.47 0.25 0.24 0.12 0.22

Core+Agreement 0.22 0.14 0.13 0.05 0.09 0.35 0.17 0.19 0.07 0.13 0.44 0.22 0.22 0.11 0.19 0.50 0.24 0.25 0.13 0.23
Core+Amusement 0.23 0.13 0.13 0.04 0.09 0.36 0.16 0.21 0.06 0.13 0.46 0.21 0.24 0.09 0.19 0.52 0.24 0.28 0.11 0.22
Core+Information 0.23 0.15 0.13 0.05 0.10 0.35 0.19 0.20 0.07 0.15 0.43 0.24 0.24 0.11 0.21 0.47 0.26 0.26 0.13 0.25

Core+Opinion 0.21 0.14 0.13 0.05 0.09 0.32 0.17 0.20 0.06 0.13 0.40 0.22 0.23 0.11 0.19 0.44 0.25 0.26 0.12 0.22

Table 8.7: A comparison between different feature sets. The numbers are the average values of

all four characters, using both the J48 and JRip classifiers with the Full and the Single

trainers.

This table shows that the classifiers performed very similarly with different fea-

tures. The classifier with the extracted audio features had an average score of 0.16,

which is the same average score as the classifiers that use the annotations. Only the

classifier that used the Core and the Information annotations scored slightly better

with an average score of 0.18.

It is possible that the annotations will not provide more useful information for

response selection than features that can be automatically extracted. Or perhaps the

quality of the annotations was too low to be useful. It could be one of these reasons,

or perhaps both. In any case, in the next sections we will only use the extracted

audio-features, since we could use the classifiers that are created with this data in an

online system as well.

8.5.3 Validating the cluster-based method

The cluster-based group — created by grouping responses that were suggested after

similar user turns — performed better than most other groups, but there could be a
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very good reason for this: the grouping was based on the same data that was used for

training and evaluation. The categories consisted of responses that followed similar

user turns, which increases the likelihood that the classifier will find the same patterns

and will be able to distinguish these categories more easily.

To verify whether this is a problem or not, we checked if a group that is created

from different data performs similar to a group that is created from all data. We

split the data in two equal-sized parts (imaginatively called ‘part1’ and ‘part2’), and

performed the same grouping-strategy — using EM or K-means algorithms to cluster

the user turns — to create a group for each part. Then we ran the classifiers over the

same parts, using both groups and the original cluster-based grouping. We expected

to see that the groups of the same data would perform better than the other group,

but what we wanted to see was that the other group did not perform too badly. We

used only the J48 algorithm, and both the Full and Single trainers. The results can be

found in Table 8.8.

Fraction full Fraction single Fraction recoded Exists

Category Ob Po Pru Spi Avg Ob Po Pru Spi Avg Ob Po Pru Spi Avg Ob Po Pru Spi Avg

Using the part1 data

Cluster-based 0.23 0.33 0.21 0.33 0.27 0.29 0.42 0.25 0.40 0.34 0.37 0.47 0.31 0.46 0.40 0.41 0.51 0.32 0.49 0.43
Clustered part1 0.36 0.34 0.30 0.45 0.36 0.44 0.42 0.39 0.55 0.45 0.54 0.50 0.48 0.62 0.53 0.57 0.52 0.50 0.64 0.55
Clustered part2 0.26 0.32 0.25 0.28 0.28 0.33 0.39 0.30 0.33 0.34 0.43 0.47 0.39 0.41 0.42 0.46 0.49 0.42 0.43 0.45

Using the part2 data

Cluster-based 0.22 0.33 0.24 0.35 0.29 0.28 0.41 0.29 0.42 0.35 0.36 0.45 0.37 0.46 0.41 0.39 0.48 0.41 0.49 0.44
Clustered part1 0.25 0.29 0.26 0.36 0.29 0.32 0.35 0.34 0.44 0.36 0.43 0.43 0.42 0.52 0.45 0.46 0.46 0.44 0.55 0.48
Clustered part2 0.33 0.39 0.31 0.32 0.34 0.42 0.46 0.39 0.38 0.41 0.52 0.52 0.45 0.46 0.49 0.54 0.55 0.48 0.48 0.51

Table 8.8: Results of splitting the data in two parts, creating cluster-based groups of each part

and train and evaluate the classifiers with this data.

This table shows that the groups that were tested on different data than the

ones they were created from had the same performance as the original cluster-based

groups. This shows that this approach is also valid when different data is used.

8.5.4 Improving the models

Based on the results of the first round we could improve the models, because some

categories performed really badly. The intuition and the questionnaire-based models

were improved by removing these categories. The PCA 10 and PCA 20 groups were

removed completely due to their low performance.

To make a fairer comparison, we created a random version of each existing group,

with the exact same number of categories, and each category containing the exact

same number or responses. This should have ensured a fair comparison with a ran-

dom model. The results of these new models can be found in Table 8.9.

This table shows that most models were indeed better than randomly selecting

a group. The PCA 5 group is the only one that performed worse than random with

each evaluator. The Intuition group performed worse than random with more lenient

evaluators (fraction recoded and exists). Appearantly, that particular random-group

had its responses divided into categories in such a way that suggested responses easily

fell into multiple categories. This means that a user turn had multiple suggested

categories, which raised its score with the more lenient evaluators.
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# of Fraction full Fraction single Fraction recoded Exists

Group categories Ob Po Pru Spi Avg Ob Po Pru Spi Avg Ob Po Pru Spi Avg Ob Po Pru Spi Avg

Cluster-based 3.25 0.26 0.30 0.21 0.34 0.28 0.41 0.45 0.32 0.52 0.42 0.54 0.53 0.43 0.59 0.52 0.60 0.60 0.50 0.63 0.58
Cluster-based Rand 3.25 0.25 0.24 0.16 0.25 0.22 0.43 0.25 0.27 0.41 0.34 0.60 0.25 0.33 0.51 0.42 0.66 0.25 0.38 0.57 0.46

Intuition Impr 4.5 0.19 0.27 0.21 0.30 0.24 0.24 0.32 0.25 0.37 0.29 0.30 0.38 0.35 0.45 0.37 0.34 0.42 0.41 0.51 0.42
Intuition Impr Rand 4.5 0.15 0.19 0.16 0.19 0.17 0.24 0.31 0.25 0.33 0.28 0.38 0.46 0.38 0.45 0.42 0.45 0.55 0.45 0.48 0.48

Mixed 2.25 0.35 0.39 0.32 0.33 0.35 0.49 0.50 0.41 0.46 0.46 0.57 0.53 0.49 0.52 0.53 0.63 0.59 0.54 0.60 0.59
Mixed Rand 2.25 0.32 0.30 0.23 0.32 0.29 0.44 0.42 0.38 0.42 0.41 0.45 0.46 0.48 0.44 0.46 0.47 0.55 0.56 0.45 0.51

PCA 5 5 0.14 0.16 0.15 0.15 0.15 0.22 0.25 0.23 0.21 0.23 0.26 0.33 0.31 0.27 0.29 0.29 0.39 0.36 0.28 0.33
PCA 5 Random 5 0.16 0.18 0.16 0.16 0.16 0.26 0.29 0.26 0.27 0.27 0.41 0.45 0.42 0.42 0.42 0.46 0.50 0.48 0.49 0.48

Questionnaire Impr 5.25 0.19 0.21 0.15 0.21 0.19 0.26 0.29 0.21 0.30 0.26 0.38 0.39 0.31 0.35 0.36 0.43 0.45 0.38 0.41 0.42
Questionnaire Impr Rand 5.25 0.13 0.14 0.12 0.16 0.14 0.21 0.19 0.19 0.22 0.20 0.32 0.23 0.26 0.25 0.26 0.38 0.27 0.31 0.29 0.31

Table 8.9: The improved classifier results, with a random version of each tested group for fair

comparison.

Unfortunately, it is not possible to calculate the exact performance of each classi-

fier. Part of the reason for this is the data: the fact that each user turn has multiple

responses makes it hard to evaluate properly. But another, major reason is the fact

that during the annotation, the raters did not select all appropriate responses but

only three. This means that we do not know exactly which responses are appropriate

and which are not. If an appropriate response is predicted by the classifier, but was

not suggested as such by the annotators — because he selected three other responses

which were also appropriate — then the response is usually evaluated as inappropri-

ate, even though it is appropriate.

The evaluations performed in this section show that the models can at least roughly

predict appropriate responses, but in order to evaluate how well they really perform

a different kind of evaluation is needed. In the next section we will explain how we

performed this evaluation by showing the user turns and the predicted responses to

users, so that they could directly rate that response.

8.6 Online evaluation

In order to evaluate whether our classifiers can be used to select responses for new

user turns, we decided to perform an evaluation in which humans had to rate the

responses suggested by those classifiers. Using new fragments from the SEMAINE

corpus (recording 17, 18 and 19), we extracted 50 fragments containing a user turn,

with an average length of 12.94 seconds (SD 8.97 seconds). We used openSMILE to

extract audio features from these fragments, and we used our classifiers to produce

possible responses for each user turn.

We used our best-performing models. For the groups, we used the cluster-based,

the questionnaire-improved, the intuition-improved, and the mixed group. We took

the J48 algorithm and the Full trainer, since these performed best. These classifiers

predicted a response category for each user turn, together with a confidence value.

Also, all responses that were not included in the categories were put in the category

‘None’, which was used to indicate that the classifier does not know an appropriate

response. If another category was selected by the classifier but the confidence value

was below 0.5, then it was converted to None as well. This meant that for every user

turn, each classifier could return a good response category, but it was also possible
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for a classifier to return nothing. This resulted in one to four categories per user turn.

For each category, three responses were randomly selected from that category, giving

the user turn three to twelve actual responses. Additionally, we added two completely

random (selected from all possible responses) responses, resulting in five to fourteen

possible responses per user turn.

In short, we used four different classifiers, and each could suggest a category or

not. From each category, three responses were randomly selected. Additionally, we

added two random responses to the list.

In the end, we had 50 short clips, and for each clip four different response lists

based on a certain SEMAINE character, containing five to fourteen possible responses

for each character. Ten clip-character combinations were taken out because no clas-

sifier could select an appropriate response, resulting in 190 combinations. We put

these clips in an online questionnaire, in which we asked participants to view 50 clips

and rate the quality of the classifier’s responses The clips were shown in a random

order, as were the classifier’s responses. Each response was rated on a 7-point Likert

scale. In total, 21 people participated, resulting in a total number of ratings of 613

user turns and a total of 4841 responses.

To calculate the performance of the different models, we calculated the average

rating for each character and category combination. These results can be found in

Table 8.10.

This table shows the average ratings, the standard deviations, and the total num-

ber of responses that were annotated. To find out which models performed signif-

icantly better or worse than others, the next step was to perform an ANOVA test,

followed by a Games-Howell post-hoc test, chosen because of unequal sample sizes.

The results, combined with a visual representation of the mean ratings, can be found

in Figure 8.3.

These results show that for Poppy and Prudence, the classifiers performed better

than the random model, although unfortunately only the Mixed model and the Ques-

tionnaire model for Poppy were significantly better. For Obadiah, the random model

performed similarly to the classifiers, and for Spike the random model performed

even better than the classifiers, in one case even significantly better.

However, there are some minor issues with the clips and the responses that pos-

sibly skewed the results. There could have been some apparently ill-chosen video

clips that were very hard to respond to appropriately with the limited set of responses

we had. Also, there could have been responses that were simply not appropriate at

all, except on some very rare occasions. To filter these issues out, we selected three

clips that performed too low (an average score below 3) and removed them from the

data. To find inappropriate responses, we selected responses that were rated at least 6

Cluster-based Intuition Mixed Questionnaire Random

Mean SD N Mean SD N Mean SD N Mean SD N Mean SD N

Poppy 3.87 1.94 315 3.84 2.03 399 4.32 1.73 60 4.4 1.7 57 3.48 2 312
Prudence 3.8 1.79 183 3.81 1.86 285 3.69 1.92 219 4 1.99 204 3.61 1.9 294
Obadiah 4.02 2.03 375 3.7 2.01 480 3.27 1.96 123 3.7 2.1 249 3.74 2.03 320
Spike 3.66 2.08 369 3.44 2.07 126 0 0 0 3.37 1.98 171 4.02 2.00 300

Table 8.10: Average ratings for the different groups and characters.
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Figure 8.3: Average ratings for the different groups and characters, and significant differences. *

= p <0.05, ** = p <0.01, *** = p <0.005

times, with an average rating below 1.5. Five responses fulfilled this requirement, and

they were removed from the data. Note that these removals are not biased towards

a single classifier model, they only remove clips and responses that under-perform.

Detailed results can be found in Table 8.11, and a visual representation of the average

ratings and their significant differences can be found in Figure 8.4.

Cluster-based Intuition Mixed Questionnaire Random

Mean SD N Mean SD N Mean SD N Mean SD N Mean SD N

Poppy 3.94 1.92 297 3.87 2.01 378 4.32 1.73 60 4.4 1.7 57 3.55 2 297
Prudence 3.8 1.79 183 3.83 1.86 276 3.87 1.9 189 4.07 1.99 195 3.51 1.86 268
Obadiah 4.21 1.98 336 3.82 1.99 434 3.6 1.93 93 3.92 2.07 219 3.9 2 288
Spike 3.69 2.07 351 3.72 1.97 105 0 0 0 3.44 1.91 153 4.1 1.96 282

Table 8.11: Average ratings for the different groups and characters, based on the filtered results.

These results show some improvements. The four classifiers of Prudence are now

rated even higher than the random model, and the Questionnaire model is now signif-

icantly better too. The models for Obadiah and Spike have not improved. This means

that for Poppy and Prudence, some of our classifiers produce responses that are sig-

nificantly more appropriate than random responses, with an average rating greater

than four on a seven point scale.

8.7 Discussion

In this chapter we have explained how we trained classifiers to select the next re-

sponse of the agent, based on the previous turn of the user. We evaluated these clas-

sifiers in two ways, namely by calculating the classifiers’ performance and by having

humans rate their suggested responses. We have shown, when calculating the per-

formance of the classifiers, that they performed better than a random model. At first

sight, the differences are not that great, but when calculating the improvement the

classifier performed up to 41% better than the random model (using the most strict
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Figure 8.4: Average ratings for the different groups and characters, and significant differences,

based on the filtered results. * = p <0.05, ** = p <0.01, *** = p <0.005

evaluation method). But even so, the performance results are still far from perfect,

and there are several reasons for this.

The first cause that the results are still far from perfect is the structure of the

training and evaluation data, in which each user turn can have up to six response

suggestions. Also, the fact that it has multiple response suggestions does not mean

that the other responses are not appropriate. These issues cause problems when

training the classifiers, although we have tried to minimize the problems by using the

data in different ways.

• The FULL dataset contains all data, but also contains multiple response sugges-

tions for each user turn which are all correct. Also, when multiple responses

belong in the same category, this potentially creates an imbalance in the data

by introducing user turn–response category combinations that are equal to each

other (for more details, see section 8.4.1).

• The UNIQUE dataset removes these double combinations, but this still leaves the

problems of multiple possible responses for each user turn.

• The SINGLE dataset contains only one response suggestion for each user turn

by choosing the response that was selected most often. The downside of this

method is that it throws away a lot of data.

These methods try to deal with the problems of the data, but they all have their

limitations. And the same problems emerge in the evaluation of the results, since if

there are multiple ‘correct’ responses, which one should be used to check the result?

Again, we have developed different methods that vary the strictness of the evaluation.

For more details of the different evaluation methods, see section 8.4.2. Suffice to say

that there still is no ‘best’ way to evaluate these classifiers and to get ‘true’ accuracy

values.
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A second reason for the imperfect performance has to do with the grouping of the

responses. We have shown that the grouping is very important, and creating good

groups is necessary to get classifiers that perform well. But as we have shown in the

first reason, grouping responses can lead to similar combinations of user turn and

response suggestion, which confuses the training of the classifiers. Also, grouping as-

sumes that responses in a category are interchangeable, that is, in every situation you

can use any response from the same group. We made this assumption for simplicity’s

sake, but it probably does not work this way. It is more likely that responses belong

in different and multiple groups, and that depending on the context the grouping

changes.

A third cause is the set of input features. We only used simple audio features

and some affective dimensions (derived from the audio too), since the models should

work in a speech-only system as well. Using more features could improve the classi-

fiers a lot. For example, the video features could be used, more specifically the facial

expressions and the head movements of the user. Additionally, more complex inter-

preted features could be used, such as boredom, agreement, the start of a new topic,

and so on.

The online evaluation shows that for Poppy and Prudence most classifiers pro-

duced better results than a random model. Three models even produced responses

with an average rating higher than four (on a seven point scale). These results

demonstrate that the classifiers can use simple audio features to suggest appropri-

ate responses. However, only the classifiers for Poppy and Produce performed well;

the models for Obadiah performed similar to random, and Spike’s models performed

even worse than random. Why?

We argue that Poppy and Prudence are easier because they are more positive.

Obadiah, the depressed character, uses most of its responses to whine about how

awful life is and that the situation is completely hopeless. It is likely that the human

raters did not find these responses appropriate in a lot of situations. The same holds

for Spike, whose only goal is to aggravate the user, and a lot of its responses are

insults to the user. Again, it is very likely that humans did not find this appropriate

behaviour. However, this does make us wonder whether the raters evaluated the

responses as the appropriate character. So, did they rate most of Spike’s responses

low because these responses were not appropriate for Spike in the conversation, or

because they were not appropriate in the conversation independent of the current

character? We do not know, but we do know that we need to make the context (that

is, the current character) more clear in future evaluations.

8.8 Conclusions and future work

In the previous chapter and this one we showed different approaches to appropriate

response selection for our virtual listening agent. In the previous chapter we looked

at other dialogue systems, specifically how they selected responses and how that is

tied to the type of dialogue system and the domain it is operating in. We looked at

task-oriented systems, question-answer systems, and dialogue systems that operate in

small domains. We continued by explaining that Sal is different and that the usual



102 | Chapter 8

approaches cannot be applied directly. Sal does not take the content of the conversa-

tion into account. As a listening agent its role is only to react to the user and motivate

him or her to continue speaking, and Sal can only select a response from a small

finite list. We completed the chapter by discussing an initial attempt to hand-craft

dialogue models, which react to detected events in the conversation such as a high or

low arousal of the user, a longer period of silence, or a user’s smile.

In this, we explained how we used a more data-driven approach to create dialogue

models. Using videos of human-human conversations, we extracted turns from which

we automatically extracted audio features. Human annotators then had to suggest

three possible responses that an agent could give after each extracted turn. To lower

the total number of possible responses, we used several methods of grouping them

into response categories. These extracted audio features, the suggested responses,

and the different groups were then fed into several classifiers to train them to give

appropriate responses after a user’s turn.

We evaluated the classifiers by matching their output with the suggested responses,

which showed that most models performed better than random models, even up to

40% better. We continued with an online evaluation, in which we used the trained

classifiers to predict appropriate responses for new turns. The online evaluation con-

tained several video clips with a user’s turn, and below that a randomized list with

all predicted responses and two random responses. The evaluators had to rate how

appropriate each response was after the given user’s turn. This showed that all mod-

els for Poppy and Prudence performed better than the random model, of which three

models significantly better with an average rating of four (on a seven point scale).

This shows that even with simple audio features it is possible to create decent classi-

fiers that produce appropriate responses based only on the previous turn of the user.

But of course there are a lot more things to do and to study. For example, it

would be worthwhile to use more types of features, such as facial expressions and

head movements, more higher-level features such as agreement and boredom, and

perhaps even some features derived from the actual content of the user’s turn.

Another point of interest is the classifier itself. We used two techniques that pro-

duce human-readable models, mostly because we wanted to see what we could learn

from the rules. It would be interesting to see whether other black box classifiers pos-

sibly perform better. Also, we did not tune specific parameters of the classifiers, so

there is another chance to possibly increase the performance.

It would also be interesting to see what the effect is of the limited response an-

notations we had. A lot of work-arounds had to be created to fix the problems that

were introduced by having one to six possible suggestions. By annotating all possible

responses for each user turn, the classifiers would know exactly which responses are

appropriate and which are not. It would be interesting to see whether these classifiers

would perform better than ours, and what the differences would be. A downside of

this method is that it would require a lot of work to annotate the complete dataset,

and when multiple annotators are needed to do this a good method to fix disagree-

ments has to be found.
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Eyben, F., Wöllmer, M., and Schuller, B. (2010). Opensmile: the munich versatile and fast

open-source audio feature extractor. In Proceedings of the international conference on Multi-

media, MM ’10, pages 1459–1462, New York, NY, USA. ACM.

Fontaine, J. R. J., Scherer, K. R., Roesch, E. B., and Ellsworth, P. C. (2007). The World of

Emotions is not Two-Dimensional. Psychological Science, 18:1050–1057.

Fukayama, A., Ohno, T., Mukawa, N., Sawaki, M., and Hagita, N. (2002). Messages embedded

in gaze of interface agentsimpression management with agent’s gaze. In Proceedings of the

SIGCHI conference on Human factors in computing systems: Changing our world, changing

ourselves, pages 41–48, Minneapolis, Minnesota, USA. ACM New York, NY, USA.

Giles, H., Taylor, D. M., and Bourhis, R. (1973). Towards a theory of interpersonal accommo-

dation through language: some Canadian data. Language in Society, 2:177–192.

Goldberg, J. A. (1990). Interrupting the discourse on interruptions : An analysis in terms of

relationally neutral, power- and rapport-oriented acts. Journal of Pragmatics, 14(6):883–

903.

Goldberg, L. R. (1993). The structure of phenotypic personality traits. American Psychologist,

48(1):26–34.

Gratch, J., Okhmatovskaia, A., Lamothe, F., Marsella, S., Morales, M., Van der Werf, R., and

Morency, L.-P. (2006). Virtual rapport. In 6th International Conference on Intelligent Virtual

Agents, pages 14–27. Springer.

Gunes, H. and Pantic, M. (2010a). Automatic, dimensional and continuous emotion recogni-

tion. International Journal of Synthetic Emotions, 1(1):68–99.

Gunes, H. and Pantic, M. (2010b). Dimensional emotion recognition from spontaneous head

gestures for interaction with sensitive artificial listeners. In Allbeck, J., Badler, N., Bick-

more, T., Pelachaud, C., and Safonova, A., editors, Proceedings of the 10th International



106 | Bibliography

Conference on Intelligent Virtual Agents, IVA 2010, volume 6356 of Lecture Notes in Com-

puter Science, pages 371–377, Berlin. Springer Verlag.

Hartmann, B., Mancini, M., and Pelachaud, C. (2002). Formational parameters and adaptive

prototype instantiation for mpeg-4 compliant gesture synthesis. In Computer Animation

Conference, pages 111–119.

Jiang, B., Valstar, M. F., and Pantic, M. (2011). Action unit detection using sparse appearance

descriptors in space-time video volumes. In Proceedings of Ninth IEEE International Confer-

ence on Automatic Face and Gesture Recognition (FG 2011), pages 314–321, Santa Barbara,

USA. IEEE.

Johnston, M. (2009). EMMA: Extensible MultiModal Annotation markup language. World

Wide Web Consortium, http://www.w3.org/TR/emma.
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Thórisson, K. R. (2002). Natural turn-taking needs no manual: Computational theory and

model, from perception to action. Multimodality in language and speech systems, pages

173–207.

Traum, D. and Larsson, S. (2003). The Information State Approach to Dialogue Management.

In Current and New Directions in Discourse and Dialogue, pages 325–353.

Traum, D., Roque, A., Leuski, A., Georgiou, P., Gerten, J., Martinovski, B., Narayanan, S.,

Robinson, S., and Vaswani, A. (2007). Hassan: A Virtual Human for Tactical Questioning.

In Proceedings of the 8th SIGdial Workshop on Discourse and Dialogue, pages 71–74.

Traum, D. R., Bos, J., Cooper, R., Larsson, S., Lewin, I., Matheson, C., and Poesio, M. (1999).

A model of dialogue moves and information state revision. Technical report, Deliverable

D2.1, Trindi-project.

Traum, D. R. and Rickel, J. (2002). Embodied agents for multi-party dialogue in immersive

virtual worlds. In Proceedings of the first international joint conference on Autonomous agents

and multiagent systems: part 2, pages 766–773, New York, USA. ACM.

Trimboli, C. and Walker, M. B. (1984). Switching pauses in cooperative and competitive

conversations. Journal of Experimental Social Psychology, 20(4):297–311.
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Summary

Communication with a machines is inherently not ‘natural’, but still we prefer to interact

with them without learning new skills but by using types of communication we already know.

Ideally, we want to communicate with a machine just as we communicate with people: we

explain (using our voice and gestures) what we want the machine to do, and it understands

this and performs the required task.

In its simplest form, such a dialogue system receives the user’s input as written text, which

it has to parse and analyze to extract the intentions of the user. But a more complex dialogue

system can perceive the user via a microphone and a camera, and the user can use normal

speech and gestures to explain his or her intentions. However, this means that the system

has to take other aspects of human conversation into account besides interpreting the user’s

intentions. For example, it has to manage correct turn-taking behaviour, it has to provide

feedback, and it has to manage a correct level of politeness.

This thesis focusses on two aspects of the interaction between a user and a virtual agent (a

dialogue system with a visual embodiment), namely the perception of turn-taking strategies

and the selection of appropriate responses. This research was carried out in the context of

the SEMAINE project, in which a virtual listening agent was built: a virtual agent that tries

to keep the user talking for as long as possible. Additionally, the system consists of four

specific characters, each with a certain emotional state: a happy, a gloomy, an aggressive, and

a pragmatic one. These characters also try to get the user in the same emotional state as they

themselves are in.

Turn-taking is a good example of something that is completely natural for most people,

but very hard to teach a system. And while most dialogue systems focus on having the agent’s

responses start as soon as possible after the user’s end of turn without overlapping it, evidence

indicates that starting too early or too late is not always inappropriate per se. People might

start speaking too early because of their enthusiasm, or they might start later than usual

because they are thinking.

This thesis describes the study of how different turn-taking strategies used by a dialogue

system influence the perception that users have of that system. These turn-taking strategies

are different start times of the next turn (starting before the user’s turn has finished, directly

when it finishes or after a small pause) and different responses when overlapping speech is

detected (stop speaking, continue normally or continue with a raised voice).

These strategies were evaluated in two studies. In the first study, a simulator was cre-

ated that generated conversations by having two agents ‘talk’ to each other. The turn-taking

behaviour of each agent was scripted beforehand, and the resulting conversation was played

by using non-intelligible speech. After listening to a simulated conversation, the users had

to complete a questionnaire containing semantic differential scales about how they perceived

a participant in the conversation. In the second study, the users actively participated in the

conversation themselves. They were interviewed by a dialogue system, but the exact timing

of each question was controlled by a human wizard. This wizard varied the start time of
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the questions depending on the selected strategy of that particular interview, and after each

interview the users had to complete a questionnaire about how they perceived the dialogue

system.

These studies showed that starting too early (that is, interrupting the user) was mostly

associated with negative and strong personality attributes: agents were perceived as less

agreeable and more assertive. Leaving pauses between turns had contrary associations: it was

perceived as more agreeable, less assertive, and created the feeling of having more rapport.

It also showed that different strategies influence the response behaviour of the users as well.

The users seemed to ‘adapt’ to the interviewing agent’s turn-taking strategy, for example by

talking faster and with shorter turns when the interviewer started early during the interview.

The final part of the thesis describes the response selection of the listening agent. We

decided to select an appropriate response based on the non-verbal input, rather than on the

content of the user’s speech, to make the listening agent capable of responding appropriately

regardless of the topic. This thesis first describes the handcrafted models and then the more

data-driven approach. In this approach, humans annotated videos containing user turns with

appropriate possible responses. Classifiers were then used to learn how to respond after a

user’s turn. Different methods were used to create the training data and evaluate the results.

The classifiers were tested by letting them predict appropriate responses for new fragments

and let humans rate these responses. We found that some classifiers produced significantly

more appropriate responses than a random model.



Samenvatting

Communiceren met machines is per definitie niet ‘natuurlijk’, maar toch zouden we graag

met ze communiceren zonder nieuwe vaardigheden te moeten aanleren, maar op een manier

die we al kennen. Idealiter zouden we kunnen communiceren met een computer op dezelfde

manier als wij communiceren met een ander persoon, namelijk door onze intenties duidelijk

te maken door middel van spraak en non-verbaal gedrag.

Bij een simpel dialoogsysteem kunnen gebruikers hun zinnen typen. Deze zinnen wor-

den ontleed en geanalyseerd, en de intenties van de gebruikers worden geëxtraheerd. Een

complexer dialoogsysteem kan gebruikers waarnemen met een camera en een microfoon, zo-

dat deze gebruikers gewoon kunnen praten en bewegen om hun intenties over te brengen.

Maar dit betekent ook dat het systeem rekening moet houden met andere aspecten van con-

versaties. Zo zal het bijvoorbeeld moeten zorgen voor nette beurtwisselingen, zal het korte

feedback moeten geven terwijl de gebruiker praat, en moet het zorgen voor een bepaalde

mate van beleefdheid.

Dit proefschrift focust zich op twee aspecten van interactie tussen een gebruiker en een

virtueel persoon (een dialoogsysteem met een visuele belichaming), namelijk de perceptie

van verschillende manieren om van beurt te wisselen (dit aspect heet ‘turn-taking’) en het

selecteren van passende reacties na de beurt van een gebruiker. Dit onderzoek is uitgevoerd

in de context van het SEMAINE project, waarin een virtuele luisteraar is gemaakt. Dit is een

virtueel persoon dat als doel heeft om de gebruiker zo lang mogelijk aan de praat te houden.

Daarnaast bestaat het systeem ook uit vier specifieke karakters met een eigen emotionele

staat: een vrolijk, een depressief, een boos en een pragmatisch karakter. Deze karakters

hebben ook het doel om de gebruikers in hun eigen emotionele staat te krijgen.

Turn-taking is een goed voorbeeld van iets dat bij mensen volstrekt natuurlijk gaat, maar

moeilijk is om een computer te laten doen. De meeste dialoogsysteem proberen om hun

beurt zo snel mogelijk na de beurt van de gebruiker te laten beginnen, maar verschillende

onderzoeken wijzen erop dat te vroeg of te laat beginnen van een beurt niet altijd verkeerd

is. Soms beginnen mensen te vroeg met praten vanwege hun enthousiasme, or ze beginnen

te laat omdat ze nog aan het denken zijn.

Dit proefschrift beschrijft de studies die zijn uitgevoerd over hoe verschillende turn-taking

strategieën, gebruikt door een virtueel persoon, de perceptie van een gebruiker verandert.

Deze strategieën zijn de verschillende starttijden van een beurt (beginnen voordat de ge-

bruiker klaar is, zo snel mogelijk als de gebruiker klaar is, of na een korte pauze) en het

gedrag als zowel de gebruiker en de virtuele persoon tegelijk praten (stoppen met praten,

gewoon doorgaan, of doorgaan met een luidere stem).

Deze strategieën zijn geëvalueerd in twee studies. In de eerste studie is een conversa-

tiesimulator gemaakt die een conversatie kan genereren door twee programma’s met elkaar

te laten ‘praten’. Het turn-taking gedrag van deze programma’s was vooraf gespecificeerd,

en de gegenereerde conversaties werden afgespeeld door middel van onverstaanbare spraak.

Nadat gebruikers deze opnames hadden gehoord, moesten ze een vragenlijst invullen met
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daarin semantische differentiaalschalen over hun perceptie van een deelnemer in de conver-

satie. In de tweede studie waren de gebruikers actieve deelnemers in het gesprek. Ze werden

gëınterviewd door het dialoogsysteem, maar de starttijd van elke vraag werd bepaald door

een zogenaamde ‘wizard’, een persoon op de achtergrond die het dialoogsysteem aanstuurt.

De gekozen starttijd varieerde van gesprek tot gesprek, en na elk interview vulde de gebruiker

opnieuw een vragenlijst in over hoe de interviewer op hem of haar overkwam.

De uitkomsten van deze studies laten zien dat te vroeg beginnen (dus terwijl de ge-

bruiker nog aan het praten is) werd geassocieerd met negatieve en sterke persoonlijkheids-

kenmerken: de systemen werden gezien als minder aangenaam en assertiever. Het tegen-

overgestelde effect werd bereikt door aan het eind van de beurt van de gebruiker pas te

beginnen na een korte pauze: het systeem werd dan gezien als aangenamer, minder assertief,

en met een grotere betrokkenheid. De resultaten laten ook zien dat verschillende turn-taking

strategieën het gedrag van de gebruiker bëınvloedden. De gebruikers pasten zich aan aan de

turn-taking strategie van de interviewer, namelijk door sneller te praten met kortere beurten

als de interviewer steeds vroeg begon met de vragen.

Het laatste deel van dit proefschrift beschrijft het selecteren van een passende reactie na

een beurt van de gebruiker. Om de reacties van de virtuele persoon onafhankelijk te maken

van de inhoud van het gesprek is er voor gekozen om de reacties alleen te baseren op het non-

verbale gedrag van de gebruiker. Dit proefschrift beschrijft eerst de handgemaakte modellen

voor passende reacties, en gaat daarna door met een methode die data gebruikt om zelf goede

regels te leren. Voor deze methode hebben een aantal mensen filmpjes met daarin fragmenten

van gebruikers bekeken, en voor elk fragment een aantal suggesties voor passende reacties

gegeven. Deze suggesties zijn gebruikt als trainingsdata voor een programma dat hiermee zelf

regels leert wanneer een reactie passend is en wanneer niet. Deze programma’s zijn getest

door ze reacties te laten voorspellen voor nieuwe fragmenten en deze te laten beoordelen door

mensen. Hier kwam uit dat sommige programma’s significant betere reacties produceerden

dan een programma dat willekeurig reacties kiest.
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