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Response Sensitivity for Nonlinear Beam–Column Elements
Michael H. Scott1; Paolo Franchin2; Gregory L. Fenves3; and Filip C. Filippou4

Abstract: Response sensitivity is needed for simulation applications such as optimization, reliability, and system identifica
exact response sensitivity of material nonlinear beam–column elements is derived for the displacement- and force-based formu
displacement-based beam–column elements the response sensitivity is straightforward to compute because the displacem
specified along the element. A new approach is presented for computing the response sensitivity of force-based beam–colum
in which the displacement field is not specified. In this approach, the response sensitivity depends on the derivative of unbalan
forces because the element displacement field changes with the element state. Example nonlinear static analyses of steel a
concrete structural systems verify the exact response sensitivity for force-based elements using the new approach.
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Introduction

The computational simulation of structural systems has an
gral role in earthquake engineering analysis and design. The
ity to model accurately the response of a structural syste
crucial, particularly with the advent of performance-based e
quake engineering methodologies. The simulated response
structure depends on modeling assumptions, a majority of w
are based on simplified approximations. In addition, the desi
a new structural system is a function of design parameters h
uncertain properties. The computation of response sensitivity
vides guidance to engineers as to which parameters contr
response of a structural system. As a consequence, the sen
of the system response is just as important as the response
Structural reliability, optimization, and system identification
plications all require accurate and efficient response sens
computations for the convergence of iterative search algorith
an optimal solution point~Liu and Der Kiureghian 1991!.

The sensitivity of a structural response quantity due
change in a parameter can be computed in one of two ways
first approach is the finite difference method~FDM!, in which the
simulation is repeated with a perturbed value of the param
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This approach is time consuming because the analysis mu
repeated for each parameter that defines the model, and it is
to numerical round-off error for small parameter perturbati
The second method is the direct differentiation method~DDM!, in
which the governing equations of structural equilibrium, com
ibility, and constitution are differentiated exactly~Kleiber et al
1997!. The DDM gives the response sensitivity as the ana
proceeds, rather than by reanalysis with perturbed param
and it can be computed very efficiently.

In the nonlinear analysis of structural systems, there are
types of formulations for beam–column elements: displacem
based and force-based. Displacement-based elements follo
standard finite element procedure of specifying an approxi
displacement field along the element~Zienkiewicz and Taylo
2000!. In contrast, force-based elements interpolate inte
forces, which is exact even in the nonlinear range of mat
behavior~Spacone et al. 1996!. Neuenhofer and Filippou~1997!
have stated the advantages of force-based elements
displacement-based elements, the most notable being the
to use one element to represent the material nonlinear behav
a beam–column member, compared with several displace
based elements for a single member. The formulation of resp
sensitivity for displacement-based elements is straightforwar
cause the element displacement field is specified. The deriv
of response sensitivity for force-based elements, however, is
difficult because the displacement field depends on the se
constitutive response, which must be determined such that
librium is maintained with the element forces.

The objective of this paper is to present a uniform approa
the computation of response sensitivity for beam–column
ments, highlighting the similarities and differences between
displacement- and force-based formulations. The method
for computing the response sensitivity at the structural lev
formulated first. Then the response sensitivity of displacem
based elements is presented, followed by a new derivation
response sensitivity for force-based elements. Attention then
to the computation of response sensitivity at the section con
tive level. The paper concludes with example applications s

ing the validity of the force-based element response sensitivity.

STRUCTURAL ENGINEERING © ASCE / SEPTEMBER 2004 / 1281
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Global Formulation for Sensitivity

The global equilibrium equations for a structural system wh
resisting forces come from inelastic rate-independent ma
models have the general form

Pr~U~U,t !,U!5Pf~U,t ! (1)

wherePf is a vector of the external forces applied to the struc
and U is a vector of parameters for the structural model.
external forces are a function of pseudo-time,t, as is the noda
displacement vectorU, which is obtained by standard nonline
solution procedures such as the Newton–Raphson method
resisting force vectorPr is assembled from element forces, an
depends on the parameters explicitly, as well as implicitly via
nodal displacements. The focus of this paper is the derivatio
response sensitivity for the element resisting forces. As a r
Eq. ~1! is limited to static equilibrium effects because the in
sion of inertial and damping forces for nonlinear dynamic an
sis is accomplished at the global level following well establis
procedures, and is independent of the element formulation.

Applying the chain rule to Eq.~1!, the derivative of the equ
librium equations with respect to a parameteru, which belongs to
the vectorU, is

]Pr

]U
]U
]u

1
]Pr

]u U
U

5
]Pf

]u
(2)

where]Pr /]uuU is termed the conditional derivative of the res
ing force vector because it gives the derivative of the resi
forces with respect tou while the displacements are held fix
Physically, this derivative represents the change in resisting f
required to keep the structure fixed at the current state whil
parameter changes. Using the definition of the tangent stif
matrix, KT5]Pr /]U, Eq. ~2! gives a linear system of equatio
for the nodal response sensitivity]U/]u

KT

]U
]u

5
]Pf

]u
2

]Pr

]u U
U

(3)

The conditional derivative of the resisting force vector is
sembled from element contributions in the same manner a
resisting force vector. Response sensitivity analysis at the g
level requires assembly of the right-hand side and solution o
factorized linear system of equations@Eq. ~3!# for each paramete
in the vector U. The derivative of the external force vect
]Pf /]u, is nonzero only for parameters that describe the
applied to the structure. With the formulation at the global le
the element contribution to the response sensitivity must b
termined.

Element Formulation for Sensitivity

Beam–column elements are conveniently formulated in a
system, free of rigid body displacement modes. For this dis
sion, element deformations are assumed small. In the
dimensional simply supported basic system, the element defo
tion vector, v5v~u!, consists of three components: one a
deformation and one rotation at each node, as shown in F
Three-dimensional elements have six deformations. The c
sponding basic forces,q5q~v~u!,u!, are a function of the eleme
deformations, as well as the parameteru. At every cross sectio
along the element, there are section deformations,e5e~u!, and

the corresponding section forces,s5s~e~u!,u!. For both the

1282 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / SEPTEMBER
displacement- and force-based element formulations, the ele
response is obtained by integration of the section respons
prescribed by the equations of element equilibrium and com
ibility.

To compute the element response sensitivity, it is necess
differentiate the basic and section forces with respect to th
rameteru. By application of the chain rule, in a manner simila
the global resisting forces, the derivative of the basic forces

]q
]u

5k
]v
]u

1
]q
]uU

v

(4)

wherek5]q/]v is the element stiffness matrix. The derivative
the section forces is also obtained by the chain rule

]s
]u

5ks

]e
]u

1
]s
]uU

e

(5)

where the section stiffness matrix isks5]s/]e.
The geometric transformations of basic forcesq to global re-

sisting forcesPr and global displacementsU to element deforma
tionsv are linear for small deformations and displacements. T
transformations are carried out by well documented struc
analysis procedures, and the response derivatives transfor
tween the global and basic systems in the same manner
response itself.

The computation of response sensitivity for path-depen
problems is a two-phase process~Zhang and Der Kiureghia
1993!. Phase one begins with the assembly of]Pr /]uuU from the
conditional derivative of the basic forces]q/]uuv for each ele
ment. Solution for the nodal response sensitivity]U/]u by Eq.~3!
concludes phase one. For path-dependent problems, the re
sensitivity is also path-dependent. To track the path-depe
response sensitivity, sensitivity history variables are required
computation of the derivative of section deformations]e/]u from
the nodal response sensitivity permits the update of these
tivity history variables during phase two. Which sensitivity h
tory variables must be stored and how they are updated de
on the section constitutive model. This process is outline
Zhang and Der Kiureghian~1993! for the J2 plasticity mode
~Simo and Hughes 1998! and in the Appendix of this paper for
simplified uniaxial concrete model.

Due to the governing equations of element equilibrium
compatibility, the computation of the conditional derivative
basic forces and the derivative of section deformations is diff
for displacement- and force-based elements. The stateme
equilibrium and compatibility, and the computational steps fo
response sensitivity, are presented in the following two sec

Fig. 1. Simply supported basic system for two-dimensional be
column elements
for each element formulation.
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Displacement-Based Elements

For displacement-based beam–column elements~Zienkiewicz
and Taylor 2000!, compatibility along the element is stated as

e5aev (6)

where the matrixae5ae(x) contains interpolation functions rela
ing section deformations to element deformations. The prin
of virtual displacements leads to a weak form of equilibr
between basic forces and section forces

q5E
0

L

ae
Tsdx (7)

The element stiffness matrix is obtained from linearization of
~7! with respect to the element deformations

k5
]q
]v

5E
0

L

ae
Tksaedx (8)

Typically, the assumed displacement fields along the ele
are linear for the axial component and cubic Hermitian for
transverse component. These displacement fields admit co
axial deformation and linear curvature along the element in
~6!, according to the Bernoulli beam theory. Due to this appr
mation of deformations, which is exact only for linear elas
prismatic elements, it is necessary to use several displace
based elements~h refinement! to represent the material nonline
behavior of a structural member. It is possible to use higher o
interpolation functions~p refinement!, but the deformations alon
the element remain constrained to an approximate and gen
inaccurate solution for material nonlinearity.

The response sensitivity for displacement-based eleme
well known~Zhang and Der Kiureghian 1993!, but it is derived in
this paper by an approach that lends insight into the derivati
response sensitivity for force-based elements. To determin
response sensitivity, the equilibrium relationship, Eq.~7!, is dif-
ferentiated with respect tou

]q
]u

5E
0

L

ae
T

]s
]u

dx (9)

After insertion of the basic and section force derivatives, f
Eqs.~4! and ~5!, Eq. ~9! expands to

k
]v
]u

1
]q
]uU

v

5E
0

L

ae
TS ks

]e
]u

1
]s
]uU

e
D dx (10)

The solution for the conditional derivative of basic forces giv

]q
]uU

v

5E
0

L

ae
T

]s
]uU

e

dx1E
0

L

ae
Tks

]e
]u

dx2k
]v
]u

(11)

The derivative of the element compatibility relationship, Eq.~6!

]e
]u

5ae

]v
]u

(12)

is combined with Eq.~11! to give the following expression:

]q
]uU

v

5E
0

L

ae
T

]s
]uU

e

dx1S E
0

L

ae
TksaedxD ]v

]u
2k

]v
]u

(13)

From the definition of the element stiffness matrix, Eq.~8!, the
last two terms on the right-hand side of Eq.~13! are equal, and th
conditional derivative of the basic forces for the displacem

based formulation reduces to
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t

-

]q
]uU

v

5E
0

L

ae
T

]s
]uU

e

dx (14)

In the implementation of displacement-based beam–column
ments, the basic forces and their conditional derivative, from
~7! and ~14!, respectively, are evaluated by the Gauss–Lege
numerical integration rule. For the assumption of a cubic He
ian transverse displacement field along the element, two Ga
Legendre integration points is sufficient.

The result in Eq.~14! could have been obtained directly fro
Eq. ~9! because the condition of fixed nodal displacements
to fixed element and section deformations in the displacem
based element formulation. However, differentiation of the
ment equilibrium and compatibility relationships and subseq
combination of these derivatives is necessary in the derivati
response sensitivity for force-based elements.

Force-Based Elements

In the force-based element formulation~Spacone et al. 1996!, the
equilibrium relationship is stated in strong form as

s5bq (15)

where the matrixb5b(x) contains equilibrium interpolatio
functions that express section forces in terms of basic force
the absence of element loads, the axial force is constant, wh
bending moment varies linearly along the element.

From the principle of virtual forces, the compatibility relatio
ship between section deformations and element deformation

v5E
0

L

bTedx (16)

Linearization of Eq.~16! with respect to basic forces gives
element flexibility matrix

f5
]v
]q

5E
0

L

bTfsbdx (17)

where fs5ks
21 is the section flexibility matrix. Inversion of th

element flexibility matrix gives the element stiffness matrixk
5f21.

The derivation of response sensitivity for force-based elem
is not as straightforward as that for displacement-based elem
The difficulty arises from the structure of the element equilibr
and compatibility relationships in the force-based formulation
demonstrate this difficulty, differentiation of the equilibrium re
tionship, Eq.~15!, with respect tou gives

]s
]u

5b
]q
]u

(18)

After substitution of the derivatives of basic and section fo
from Eqs.~4! and ~5!, Eq. ~18! expands to

ks

]e
]u

1
]s
]uU

e

5bS k
]v
]u

1
]q
]uU

v
D (19)

However, the conditional derivative of basic forces canno
determined from Eq.~19! because the interpolation matrixb is
not invertible. Adding to the difficulty, differentiation of the e
ment compatibility relationship, Eq.~16!, gives

]v
]u

5EL

bT
]e
]u

dx (20)

0
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in which the derivative of the section deformations appears i
integrand on the right-hand side of Eq.~20!. From the form o
Eqs. ~19! and ~20!, it is apparent that further manipulation
required to derive the conditional derivative of the basic for
The following derivation establishes the response sensitivit
force-based elements.

As a first step, the derivative of the section deformations
be obtained from Eq.~19! by solving for]e/]u

]e
]u

5fsbk
]v
]u

1fsS b
]q
]uU

v

2
]s
]uU

e
D (21)

The quantity in parentheses on the right-hand side of Eq.~21!
represents an unbalanced section force derivative because i
difference between the interpolation of the conditional deriva
of the basic forces and the conditional derivative of the se
forces. The conditional derivative of the basic forces mus
computed, and the key step is the substitution of Eq.~21! into Eq.
~20!

]v
]u

5S E
0

L

bTfsbdxD k
]v
]u

1E
0

L

bTfsS b
]q
]uU

v

2
]s
]uU

e
D dx (22)

From the definition of the element flexibility matrix in Eq.~17!
and the identityfk5I , the term on the left-hand side and the fi
term on the right-hand side of Eq.~22! are equal. Eq.~22! then
reduces to

05E
0

L

bTfsS b
]q
]uU

v

2
]s
]uU

e
D dx (23)

Eq. ~23! is important because it requires the unbalanced se
force derivatives to be zero in an average sense along the ele
After inversion of the element flexibility matrix in Eq.~23!, the
final expression for the conditional derivative of the basic fo
in the force-based formulation is

]q
]uU 5kEL

bTfs

]s
]uU dx (24)

Table 1. Steps for Computation of Beam–Column Element Res

Phase Step

I Section flexibility

Element flexibility

Element stiffness

Section force conditional derivative

Basic force conditional derivative

Assembly and solutio

KT]U

]u
5

II Element deformation derivative

Section deformation derivative
v 0 e

1284 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / SEPTEMBER
.

It is worth noting the similarity between Eqs.~14! and~24! for
the two beam–column formulations since it can be shown tha
interpolation matrix relating the increment in section defor
tions to an increment in element deformations isae5fsbk for
force-based elements. The interpolation of section deforma
from element deformations depends on the current element
because the element stiffness changes due to nonlinearity
section constitutive response. As a result, the unbalanced s
force derivative must be included in the derivative of the sec
deformations, as seen in Eq.~21!. For displacement-based e
ments, the derivative of the section deformations is comp
directly from the derivative of the element deformations in
~12! according to the specified element displacement field.

In the numerical implementation of force-based beam–co
elements, the compatibility relationship, Eq.~16!, must be solve
by an iterative method, e.g., Newton–Raphson, or by a non
tive approach~Neuenhofer and Filippou 1997!. The intermediat
steps in finding element compatibility do not affect the resp
sensitivity for these elements because the sensitivity is only
puted at a converged state in which compatibility is satisfied
assure the computation of the exact response sensitivity for
based elements, the consistent section flexibility and ele
stiffness matrices from the compatible state must be used in
~21! and ~24!. Furthermore, the Gauss–Lobatto numerical i
gration rule is applied to Eqs.~16! and ~24! because it place
integration points at the element ends, where the bending
ments are largest in the absence of element loads. Typically,
to five Gauss–Lobatto integration points along the element
rately represent the material nonlinear behavior.

The two-phase process for the computation of response
tivity for beam–column elements is summarized in Table 1.
conditional derivative of the basic forces is computed by e
Eq. ~14! or ~24!. Then, after assembly and solution for the no
response sensitivity in Eq.~3!, the derivative of the section defo
mations is determined by Eq.~12! or ~21!. The computationa
steps outlined in Table 1 have been implemented in theOpenSee

Sensitivity

Force-based Displacement-based

fs5ks
21

f5E
0

L

bTfsbdx

k5f21

]s

]uU
e

]s

]uU
e

]q

]uU
v

5kE
0

L

bTfs

]s

]uU
e

dx
]q

]uU
v

5E
0

L

ae
T

]s

]uU
e

dx

odal response sensitivity

]Pr

]u U
U

]v

]u

]v

]u

fsbk
]v

]u
1fsS b

]q

]uU
v

2
]s

]uU
e
D ]e

]u
5ae

]v

]u
ponse

n for n

]Pf

]u
2

]e

]u
5

finite element analysis framework~McKenna et al. 2000!.
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Section Formulation for Sensitivity

Having formulated the response sensitivity at the global and
ment levels, attention turns to the formulation at the section l
There are two methods to specify the section constitutive
sponse. The first method is the specification of the section f
as a function of the section deformations by a resultant plas
model. Direct differentiation of the section response gives
conditional derivative of the section forces,]s/]uue.

The second method is integration of the material stres
sponses over the section area

s5E
A
as

TsdA (25)

The compatibility matrixas gives the material strain« as a func
tion of the section deformations

«5ase (26)

By a derivation identical to that for displacement-based elem
the conditional derivative of the section forces for this metho

]s
]uU

e

5E
A
as

T
]s

]uU
«

dA (27)

Differentiation of the statement of section compatibility, Eq.~26!,
gives the relationship between the derivatives of material s
and section deformations

]«

]u
5as

]e
]u

(28)

This relationship is necessary to account for path-dependen
havior in the computation of response sensitivity at the mat
level.

Examples

To show the validity of the new DDM for the force-based elem
formulation, the response sensitivity is compared with that
tained from the FDM for small parameter perturbations,Du5«u.
For decreasing parameter perturbations, the sensitivity obt
by the FDM should converge to the DDM sensitivity

lim
Du→0

U~u1Du!2U~u!

Du
5

]U
]u

(29)

The convergence of the FDM to the DDM indicated in Eq.~29! is
demonstrated in the following nonlinear static analyses of

Fig. 2. Load–displacement response of steel cantilever beam
force- and displacement-based beam–column elements
and reinforced concrete structural systems.

JOURNAL OF
Steel Cantilever

In the first example, a cantilever steel beam is used to com
the displacement- and force-based formulations. The respon
the W21350 section is integrated by the midpoint rule with
layers from the stress–strain behavior represented by a un
version of theJ2 plasticity model. The elastic modulus isE
52.03105 MPa, the yield stress issy5250 MPa, and 2% kine
matic strain hardening is assumed. The beam is loaded at it
end through one sinusoidal cycle of peak intensityP5134 kN.

The load–displacement response of the steel cantilev
shown in Fig. 2. A mesh of five displacement-based elem
captures the material nonlinear behavior of the beam where
one force-based element is required. The response sensiti
computed with respect to the steel yield stress for both ele
formulations, and is shown in Fig. 3. The results obtained by
FDM converge to those obtained by the DDM for both
displacement- and force-based element formulations. Dis
jumps are seen in the sensitivity as the steel material swi
from elastic to plastic states~Conte et al. 1999!.

Fig. 3. Steel cantilever beam response sensitivity through one
soidal load cycle with respect to yield stress computed by d
differentiation and finite difference methods:~a! force based, on
element and~b! displacement based, five elements

Fig. 4. Steel cantilever beam local response at the peak loa
force- and displacement-based element formulations:~a! curvature
distribution and~b! sensitivity of curvature distribution with respe
to yield stress, computed by direct differentiation method
STRUCTURAL ENGINEERING © ASCE / SEPTEMBER 2004 / 1285
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An application of response sensitivity to structural design
determine the change in displacement resulting from a chan
the selected parameter. Plotted in Fig. 3 is the qua
(]U/]sy)sy , the sensitivity of the tip displacement with resp
to yield stress, scaled by the yield stress. Multiplication of
quantity by a percent change in yield stress gives the resu
change in tip displacement. For example, at the peak load o
kN, the tip displacement is 43.4 mm for the force formulat
and the scaled response sensitivity computed by the DD
2214.8 mm. A 5% increase in yield stress gives a 10.7 mm~25%!
reduction in the tip displacement.

Although the global response of the steel beam agrees
well for the displacement- and force-based element formulat
the response sensitivity is quite different, as seen in Fig. 3
assess this discrepancy in response sensitivity, the local res
of the beam is examined. There is a noticeable difference i
distribution of curvature in the plastic hinge zone at the peak
of 134 kN, as shown in Fig. 4~a!. The scaled response sensitiv
of the curvature distribution at the peak load is shown in
4~b!. At the peak load, the maximum curvature predicted by
force formulation is 3.1231025/mm, and the associated sca
response sensitivity is22.4431024/mm. A reduction of 1.2
31025/mm ~39%! in maximum curvature is estimated from a
increase in the steel yield stress.

Fig. 5. Steel moment-resisting frame model for sensitivity exam

Fig. 6. Load–displacement response of steel moment-resisting
for force- and displacement-based beam–column elements
1286 / JOURNAL OF STRUCTURAL ENGINEERING © ASCE / SEPTEMBER
e

Steel Moment-Resisting Frame

The second example is a five-story, one-bay steel mom
resisting frame, as shown in Fig. 5. All members areW21350
with E52.03105 MPa andsy5250 MPa. The flexural behavi
is represented by a bilinear moment–curvature relationship
2% kinematic hardening. The axial behavior of the membe
assumed to be linear elastic and uncoupled from the flexura
havior. The frame is loaded laterally through one sinusoidal c
by an inverted triangular distribution. The maximum force
plied at the roof level isP5150 kN, which gives a peak ba
shear of 450 kN for the given lateral load distribution.

The response is computed with one element per memb
the force-based formulation~five Gauss–Lobatto integrati
points!, and five elements per member for the displacement-b
formulation. The base shear is plotted against the roof disp
ment in Fig. 6 for both element formulations. The sensitivity
the roof displacement with respect to the yield moment,M y , of
theW21350 section, is shown in Fig. 7. The sensitivity obtai
by the FDM converges to the DDM sensitivity and discrete ju
appear in the sensitivity as plastic hinges form throughou
structure. This example shows the validity of the response s
tivity computation for elements in which a resultant plasti
model represents the section behavior, rather than the integ
of material stress, as in the first example.

Reinforced Concrete Cantilever Beam

The final example is of a reinforced concrete cantilever b
The section is rectangular, with two layers of five No. 9 steel

Fig. 7. Steel frame response sensitivity through one sinusoidal
cycle with respect to yield moment computed by direct differentia
and finite difference methods:~a! force based, one element per me
ber and~b! displacement based, five elements per member

Fig. 8. Stress–strain relationship for uniaxial concrete mode
2004
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and 50 mm cover. The concrete is represented by the pheno
logical stress–strain relationship shown in Fig. 8, in which mo
tonic behavior in compression is represented by a parabolic
tion up to the peak compressive strength off c8 at a strain of«c ,
followed by a linear descending branch to a crushing strain o«u ,
where the concrete loses all strength. For simplicity, the con
model unloads and reloads along the same branch, which p
through the origin, and the tensile strength is zero. The deriva
of the stress–strain response for this concrete material mod
presented in the Appendix.

For this example, the concrete has a compressive stren
f c85228.0 MPa, crushing strain«c520.002, and ultimate stra
«u520.006. The steel is bilinear with 2% kinematic harden
elastic modulus E52.03105 MPa, and yield stresssy

5420 MPa. A constant axial load equal to 10% of the gross
tion capacity and a transverse sinusoidal load of peak inte
P5260 kN are applied to the beam. The integration of the
and concrete material stress response over the section ar
counts for axial–moment interaction, and the midpoint integra
rule is used with 20 concrete layers.

The load–displacement response for the beam is shown i
9. The response sensitivity is computed with respect to bot

Fig. 9. Load–displacement response of reinforced conc
cantilever beam for one force-based element

Fig. 10. Reinforced concrete cantilever beam response sens
through one sinusoidal load cycle with respect to:~a! Steel yield
stress and~b! concrete compressive strength; computed by direc
ferentiation and finite difference methods for one force-based ele
JOURNAL OF
-

s

-

steel yield stress and the concrete compressive strength
single force-based element with five Gauss–Lobatto integr
points. As shown in Fig. 10, the beam displacement is much
sensitive to the steel yield stress than to the concrete compr
strength.

Conclusions

The exact response sensitivity of force-based beam–colum
ments has been developed from a consistent definition of th
rivatives of the element equilibrium, compatibility, and sec
force–deformation relationships. Direct differentiation of the g
erning statements of element equilibrium and compatibility
vides a uniform approach to computing the response sens
for both displacement- and force-based elements. This app
overcomes the difficulty that arises in the derivation of resp
sensitivity for force-based elements because the displace
field along the element is not specified, but changes accord
the element state.

The response sensitivity computed by the finite differe
method converges to the exact sensitivity computed by the
differentiation method, as demonstrated by the nonlinear an
of steel and reinforced concrete structures. The ability to com
the response sensitivity accurately and efficiently for force-b
elements broadens the application of these elements in the
of structural analysis, design, reliability, and optimization.

Appendix. Uniaxial Concrete Model

The response derivatives for the uniaxial concrete material m
shown in Fig. 8 are presented in this Appendix. There are
history variables to track path-dependent behavior:«min , the larg-
est compressive strain, andsmin , the stress on the backbone c
responding to«min . The only parameter considered for differ
tiation in this example is the compressive strengthf c8 . The
response derivatives for each branch labeled in Fig. 8 are s
below.

Parabolic Ascending Branch ( «Ë«min and «Ì«c)

Stress response

s5 f c8~2h2h2!, h5
«

ec
(30)

Derivative of stress

]s

] f c8
5~2h2h2!1

2 f c8

«c
~12h!

]«

] f c8
(31)

Conditional derivative of stress

]s

] f c8
U

«

5~2h2h2! (32)

Linear Descending Branch „«Ë«min and «Ë«c…

Stress response

s5 f c8
«u2«

eu2«c
(33)
Derivative of stress
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]s

] f c8
5

«u2«

«u2«c
2

f c8

«u2«c

]«

] f c8
(34)

Conditional derivative of stress

]s

] f c8
U

«

5
«u2«

«u2«c
(35)

Unloading ÕReloading Branch „«Ì«min …

Stress response

s5
smin

«min
« (36)

Derivative of stress

]s

] f c8
5S «min

]smin

] f c8
2

]«min

] f c8
smin

«min
2

D «1
smin

«min

]«

] f c8
(37)

Conditional derivative of stress

]s

] f c8
U

«

5S «min

]smin

] f c8
2

]«min

] f c8
smin

«min
2

D « (38)

Given a strain« and the history variables«min and smin , the
conditional derivative of the stress is computed from either
~32!, ~35!, or ~38!, depending on the active branch of the stre
strain relationship. This conditional derivative of stress con
utes to the conditional derivative of the section forces in Eq.~27!
during phase one of sensitivity computations.

The derivatives]smin /]fc8 and]«min /]fc8 are required to com
pute the conditional derivative of stress on branch 3, as se
Eq. ~38!. As a result, these derivatives must be stored as sen
ity history variables. When on branches 1 and 2,]«min /]fc8 is set
to ]«/] f c8 , as given by Eq.~28! during phase two of sensitivi
computations. The derivative]smin /]fc8 is then computed by e
ther Eq.~31! or ~34!. When on branch 3,«min does not change, s
the sensitivity history variables]«min /]fc8 and ]smin /]fc8 are no

updated during unloading and reloading.
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Notation
The following symbols are used in this paper:
ae 5 section deformation interpolation matrix;
as 5 section compatibility matrix;
b 5 section force interpolation matrix;
e 5 section deformation vector;
f 5 element flexibility matrix;

fs 5 section flexibility matrix;
KT 5 global tangent stiffness matrix;

k 5 element stiffness matrix;
ks 5 section stiffness matrix;
Pf 5 global external force vector;
Pr 5 global resisting force vector;
q 5 element basic force vector;
s 5 section force vector;

U 5 global displacement vector;
v 5 element deformation vector;
« 5 material strain; parameter perturbation;
u 5 parameter;

U 5 parameter vector; and
s 5 material stress.
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