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Abstract: This paper presents an experimental analysis of the optimization of PZT-based tiles for
energy harvesting. The hardware (actual experiment), PZT-based tiles, were developed using
6 × 6 piezoelectric (PZT—lead zirconate titanate) sensors of 40 mm in diameter on a hard card-
board sheet (300 × 300 mm2). Our experimental analysis of the designed tiles obtained an optimized
power of 3.626 mW (85 kg or 0.83 kN using 36 sensors) for one footstep and 0.9 mW for 30 footsteps
at high tapping frequency. Theoretical analysis was conducted with software (Design-Expert) using
the response surface methodology (RSM) for optimized PZT tiles, obtaining a power of 6784.155 mW
at 150 kg or 1.47 kN weight using 34 sensors. This software helped to formulate the mathematical
equation for the most suitable PZT tile model for power optimization. It used the quadratic model
to provide adjusted and predicted R2 values of 0.9916 and 0.9650, respectively. The values were
less than 0.2 apart, which indicates a high correlation between the actual and predicted values. The
outcome of the various experiments can help with the selection of input factors for optimized power
during pavement design.

Keywords: sensor; sustainable resource; PZT; electricity; energy harvesting; solar

1. Introduction

Global energy demand is surging due to dramatic urbanization, industrialization, and
technological advancements [1]. The world’s energy consumption is expected to grow
by 44% from 2006 to 2030 [2]. As India is the third-largest energy consumer across the
globe, the energy challenges it faces are greater than in any other developing or developed
country. India’s energy demand was expected to rise by almost 50% between 2019 and 2030,
although since the COVID-19 pandemic, that prediction has been reduced to 35% over the
same period [3]. A move toward cleaner energy production techniques including solar,
wind, geothermal, etc., is conducive to meeting future energy challenges. Recently, energy
harvesting from vibration energy using piezoelectric (PZT—lead zirconate titanate) floor
tiles has been acknowledged by the technical community as one of the most promising new
options. According to the principle of piezoelectricity, a potential difference is developed
whenever the piezoelectric material experiences stress or mechanical pressure. Amongst
the various mechanical stress sources, vibrations from human movements are used as the
primary and spontaneous power source for PZT floor tiles, which convert them into useful
energy [4].

Many researchers have studied PZT-based energy harvesting mechanisms. Ahad et al. [5]
analyzed PZT sensors embedded in nine different materials and concluded that the PZT
tiles with direct force produced greater voltages under foam and those with indirect force
under aluminum. Abdal-Kadhim et al. generated energy via PZT transducers and achieved
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a maximum output voltage of approximately 50 V for 80 N force. Rumman et al. [6] de-
veloped tiles using PZT sensors for the mall to harvest the energy at the entrance gate by
person movement. Taking a different approach, Kar et al. [7] presented a tire that could
be used for energy harvesting and conducted a cost analysis and power estimation for
a vehicle. The power production was observed at around 441 J, which was sufficient for
low-power applications of the vehicle. Adhikari et al. [8] conducted a PZT performance
analysis in terms of power using parameters such as frequency, tip mass, and EIDC. They
noted that the output power increased 19-fold with an enhancement of EIDC values. Re-
searchers striving to achieve energy neutrality also utilized a PZT-based energy generation
concept [9–12]. Various reviews of novel PEH [13] for pavement applications generated an
average output power of 3.106 mW, and importantly, noted that tiles should be protected
by plastic material [14–16]. Various PEH for biomedical applications and nanogenerators
with different material compositions have also been developed [17–21].

Sharpes et al. [22] also reported a novel approach for developing a new PZT material
that can be utilized to function as a renewable resource. Table 1 presents a comparative
analysis of various techniques for energy generation using PZT sensors.

Table 1. Comparative analysis of various available techniques for energy generation using PZT
sensors.

Ref. Technology Number of Sensors Output (Power, Voltage, and
Current) Force

[23] PZT-based - 50 V 80 N
[5] PZT-based 72 15–18 V, 0.1 µA -

[9,10] PZT based 29, 30 6 µW 75 kG

[21] PZT-based 54 with 9500 uF
capacitor

Charges in 90 min up to 5.75 V at
4 Hz -

[24] PZT-based with
additional circuitry 200 450 mW

[25] PZT-based 36 50 V 50 kG

[26] PZT with bending
mechanism

Single sensor with
different diameters (30,

40, and 50 mm)
19, 34.4, and 50.4 V 3D printer technology

[27,28] STEP technology using
wireless-based PZT Switch on the light and fan Per footstep

Novel PZT material 42 V and 11 µA Per footstep
Novel PZT with LED 10 300 µJ -

[29] S-sock using hybrid
polymer and PZT chip - 1.71 mW output power at 2 Hz

and 59.7 MΩ -

[30] piezo sensor-based
cantilever - energy (0.278 mJ) one footstep

[31] triboelectric energy
harvester (TEH)

25 V for 0.5 g
acceleration at 8 Hz

[32] PZT with boost
converter - 6.94 V for 300 mV input at 60 Hz

AC -

[33]

Piezoelectric (PE) and
electromagnetic

harvester
(EM) for WSN

1–3.34 V

[34] 44 PZTs with cantilever 35 mWrms 50 kG

The literature review revealed various ways to enhance the energy generated by PZT,
such as with bending support, additional circuitry, a change to the number of sensors, and
many more. By applying those, the present study aimed to design optimized PZT tiles with
improved energy production. The present article details our experimental and theoretical
analyses of the optimization of PZT-based tiles for energy harvesting through the response
surface methodology (RSM).
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Smart industries ensure that almost 90% of tasks are performed by robots to increase
production. Hence, high consumption of electricity is required, and although solar panels
are already installed in smart industries, both the current and future demand outstrip the
provision of a single renewable energy source, meaning a mix of renewable resources must
be incorporated. This paper presents the power optimization of PZT-based tiles, which can
be assembled via traditional techniques and used at smart campuses, smart buildings, and
smart offices, with the tiles placed in suitable locations such as ladders, lifts, corridors, etc.

2. Materials and Methods

Tiles were developed using PZT sensors of 40 mm diameter. The effect where piezoelec-
tric material produces electricity on the application of a direct force is called the piezoelectric
effect or piezoelectricity. Equation (1) represents the displacement under stress.

D →= dT + εTE (1)

where D represents electric displacement vectors, T is stress, E is the electric field, d is the
piezoelectric strain coefficient matrix, and ε is the dielectric permittivity. Two tiles were
designed by placing PZT sensors over a platform. The platform for the tiles was made
using a wooden or hard cardboard sheet to design model 1 (30 PZT sensors) and model 2
(36 PZT sensors), respectively, and this tile was laminated with plastic for protection. The
experimental analysis of the tile involved testing it with three different cover materials:
hard wooden board, steel plate, and cardboard sheet. Cardboard sheet was most suitable
for generating optimized power. The material used to cover the tile was a laminated
hard cardboard sheet of 2 mm thickness. The tensile strength was 10.8 kN/m and it had
high stiffness.

Experimental Details

A block diagram and the designed PZT tile for energy generation are shown in
Figure 1a,b. In total, 36 piezoelectric sensors were installed on 300 × 300 mm2 hard
cardboard sheet, as depicted in Figure 1b. The PZT sensors were arranged in a series-
parallel configuration containing six rows and six columns, where every row contained
six sensors, which were connected in series with each other, and these six rows were
connected in parallel with each other. Furthermore, the tile was connected to a voltage
multiplier circuit, which was designed using a capacitor and diode to stabilize the generated
output voltage for battery storage.

Materials 2023, 16, x FOR PEER REVIEW 3 of 10 
 

 

many more. By applying those, the present study aimed to design optimized PZT tiles 
with improved energy production. The present article details our experimental and theo-
retical analyses of the optimization of PZT-based tiles for energy harvesting through the 
response surface methodology (RSM). 

Smart industries ensure that almost 90% of tasks are performed by robots to increase 
production. Hence, high consumption of electricity is required, and although solar panels 
are already installed in smart industries, both the current and future demand outstrip the 
provision of a single renewable energy source, meaning a mix of renewable resources 
must be incorporated. This paper presents the power optimization of PZT-based tiles, 
which can be assembled via traditional techniques and used at smart campuses, smart 
buildings, and smart offices, with the tiles placed in suitable locations such as ladders, 
lifts, corridors, etc. 

2. Materials and Methods 
Tiles were developed using PZT sensors of 40 mm diameter. The effect where piezo-

electric material produces electricity on the application of a direct force is called the pie-
zoelectric effect or piezoelectricity. Equation (1) represents the displacement under stress.  𝐷 → 𝑑𝑇 𝜖𝑇𝐸 (1)

where 𝐷 represents electric displacement vectors, 𝑇 is stress, 𝐸 is the electric field, d is 
the piezoelectric strain coefficient matrix, and 𝜖 is the dielectric permittivity. Two tiles 
were designed by placing PZT sensors over a platform. The platform for the tiles was 
made using a wooden or hard cardboard sheet to design model 1 (30 PZT sensors) and 
model 2 (36 PZT sensors), respectively, and this tile was laminated with plastic for protec-
tion. The experimental analysis of the tile involved testing it with three different cover 
materials: hard wooden board, steel plate, and cardboard sheet. Cardboard sheet was 
most suitable for generating optimized power. The material used to cover the tile was a 
laminated hard cardboard sheet of 2 mm thickness. The tensile strength was 10.8 kN/m 
and it had high stiffness. 

Experimental Details 
A block diagram and the designed PZT tile for energy generation are shown in Figure 

1a, b. In total, 36 piezoelectric sensors were installed on 300 × 300 mm2 hard cardboard 
sheet, as depicted in Figure 1b. The PZT sensors were arranged in a series-parallel config-
uration containing six rows and six columns, where every row contained six sensors, 
which were connected in series with each other, and these six rows were connected in 
parallel with each other. Furthermore, the tile was connected to a voltage multiplier cir-
cuit, which was designed using a capacitor and diode to stabilize the generated output 
voltage for battery storage. 

 

 
(a) (b) 

Figure 1. (a) Block diagram of PZT-based tiles’ energy generation, and (b) layout of walking tile 
platform. 

  

Figure 1. (a) Block diagram of PZT-based tiles’ energy generation, and (b) layout of walking tile
platform.

3. Methodology

To create the affordable PZT tile, the required components are 36 PZT sensors, con-
necting wires, two hard cardboard sheets of 300 × 300 mm2 dimensions, a multimeter, and
a glue gun. The hardness of the PZT sensor was 85, which was tested using a durometer
under the applied force of a finger. The whole experimental setup was designed to generate
optimized power. That included the arrangement of PZT disks in rows and columns, where
the power generated (in voltage and current) under the applied load was tested using a
multimeter and stored in a battery.
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Two tiles were designed by placing PZT sensors over the platform. The platform
for the tiles was made using wooden or hard cardboard sheet to design model 1 (30 PZT
sensors) and model 2 (36 PZT sensors), respectively, where sensors were placed in series
and with a parallel configuration. To make the arranged sensors immovable, the glue gun
was used. A layer of flexible material rubber was utilized to cover the tops of the PZT disks.
These designs were tested in different setups (one sensor, two sensors, four sensors, six
sensors, 30 sensors, and 36 sensors), under varying loads, using different subjects, and by
changing the connection of the sensors (series, parallel, and series-parallel). Pressure was
applied on top of the solid cardboard sheet using varying force, from 4.6 kg to 85 kg, of
the human body. The maximum power of 0.9 mW was recorded for one footstep with a
maximum applied force of 85 kg. To begin with, two sensors, four sensors, and six sensors
were tested only in series and with parallel connections separately. The corresponding
maximum values of recorded power in terms of voltage and current observed. Next, the
combination of series and parallel connections was tested using 30 and 36 PZT sensors and
with weights from 29 kg to 85 kg.

Statistical Assessment and Mathematical Modeling

Statistical techniques are employed to support and reinforce experimental research
methodologies and findings. In the present work, RSM (response surface methodology)
was applied to standardize the input variables (subject weight and number of sensors)
to optimize the power. The designed tile was validated and optimized using statistical
software, i.e., Design-Expert software version 13 (Stat-Ease, Inc., Minneapolis, MN, USA)
and Microsoft Excel 2013. The recorded experimental data were analyzed and fitted
to a quadratic equation with a regression coefficient. Through experimental analysis
of the designed tile, we obtained an optimized power of 3.626 mW (85 kg or 0.83 kN
using 36 sensors) for one footstep and 0.9 mW for 30 footsteps at high tapping frequency.
Theoretical analysis was conducted with software (Design-Expert) using the response
surface methodology (RSM) for PZT tile optimization, obtaining a power of 6784.155 mW
at 150 kg or 1.47 kN weight using 34 sensors.

4. Results and Discussion
4.1. Software Validation and Optimization of Tiles

The response surface methodology (RSM) tool was used to design the theoretical
experiments to optimize power. Two input parameters were used: sensor quantity (A) and
subject weight (B). The RSM is a valuable statistical method that aids in the optimization
of effective parameters with few experiments and the analysis of parameter interactions.
The designed tile was validated and optimized using statistical software, i.e., Design-
Expert software version 13 (Stat-Ease, Inc., Minneapolis, MN, USA). The analyses had two
independent variables, i.e., sensor quantity (A) and weight (B), and one dependent variable,
i.e., power (P).

According to the theoretical power analyses for A and B, the correlation factor was
0.494 or 0.740, respectively, as shown in Figure 2, which signifies that to optimize power,
subject weight was more important than the number of sensors. The tool provides a
theoretical design matrix with 13 experiments. These were conducted to study the effects of
the two parameters (A and B) on power (P). The obtained experimental data were analyzed
and fitted to a quadratic equation with a regression coefficient.

4.2. Development of Regression Model

The 3D power response of the tile, measured by conducting experiments using op-
erational parameters, is provided in the design matrix shown in Figure 3. The sequential
model sum of squares shows the quadratic model to be best fitted to the theoretical data
for power responses for A and B, and the cubic model is shown to be aliased for power
responses. The Table 2 also reveals that the adjusted R2 value is 0.9916 and the predicted
R2 value is 0.9650; their reasonable agreement of less than 0.2 indicates a high correlation
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between the observed and predicted values. In this theoretical analysis, there is only a
single response optimized, i.e., power (P), as represented in quadratic Equation (2). A graph
is also presented in Figure 4 showing the predicted and actual values of the experiments,
which indicate the model’s suitability.

P = 898.31 + 260.14A + 389.32B + 208.58AB + 371.91A2 + 189.56B2 (2)

where A is the sensor quantity, B is the weight of the subject, and P is power.
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Table 2. Power response fit summary for different models.

Source Sequential p-Value Adjusted R2 Predicted R2 Remarks

Linear 0.0004 0.7495 0.5596

2FI 0.0448 0.8264 0.6868

Quadratic <0.0001 0.96916 0.9650 Suggested

Cubic 0.1133 0.9951 0.8683 Aliased
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4.3. Prototype Tile Validation

Two prototype models with different base materials and using 30 or 36 sensors were
developed. The experiment with model 1 did not produce the desired power; there-
fore, model 2 was implemented using another base material (hard cardboard sheet with
36 sensors). Model 2 had different connections—series, parallel, and a series-parallel (P-
S) configuration—which were tested under varying force (applied by different subjects).
Initially, there were two, four, and six PZT sensors, connected in series and parallel, indi-
vidually tested by applying different forces (29 to 85 kg) in different manners (via finger,
single leg, and jumping). A maximum current of 16.7 µA in series and 62.9 µA for parallel
connections were measured at 52 kg.

We observed that sensors connected only in parallel produced less voltage and more
current, while sensors connected only in series produced more voltage and less current.
Therefore, to optimize the maximum power, we designed a series-parallel combination of
tiles. The results showed that by varying the load on designed tiles 1 and 2 (fast varying,
stepping on platform, walking), the maximum power could be generated, as shown in
Figure 5. The designed tiles were also tested for varying weights of different subjects, with
the effects observed via the experimental setup illustrated in Figure 6. It can be concluded
that weight is a key factor in generating maximum power. Hence, body weight and the
generated output power of a designed tile have a direct relationship.

Furthermore, measurements were carried out by applying varying body force (using
different people) and changing the alignment of the sensors (center and edges) with a
P-S combination of 6 × 6 sensors, as shown in Figure 5. The maximum output power of
3.626 mW was achieved with 86 kg weight for one footstep using 6 × 6 sensors. In the next
step, the generated power was passed through a voltage multiplier circuit to enhance the
power stored in batteries.
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4.4. Summary of Research Findings

The theoretical experiments using software as shown in Figure 7 revealed that opti-
mized power (P) can be achieved by focusing on the subject weight (B), which has a higher
correlation with power than the sensor quantity (A). Meanwhile, the practical experiments
revealed that optimized power can be achieved by taking the following steps: (a) the PZT
sensor should be securely fixed to a base material using a glue gun, (b) the tapping at
varying force on the tile platform should be at a high frequency, (c) the PZT disk must be
connected in an S-P configuration to achieve maximum power, (d) the PZT sensors must
be in the center and at all four corners of the tile to generate the maximum voltage and
current, (e) a large number of sensors and high body weight should be applied on the tile
(series-parallel configuration), and (f) the designed tiles must be positioned in locations
with high footfall, such as dancefloors and railway stations.



Materials 2023, 16, 1146 8 of 10Materials 2023, 16, x FOR PEER REVIEW 8 of 10 
 

 

  

(a) (b) 

Figure 7. Predicted power analysis using varying quantities of (a) sensors and (b) weights of the 
subject. 

5. Conclusions 
An affordable prototype model of a tile using 36 PZT sensors has been successfully 

designed and experimentally analyzed for maximum power generation with various com-
binations of sensors. The comparative experimental analysis tested two, four, and six PZT 
sensors individually connected in series and with a parallel configuration. We used a 6 × 
6 matrix arrangement of sensors connected in a P-S configuration, where 6 sensors were 
connected in series and another 6 sensors were connected in parallel to generate the max-
imum power. The designed prototype tile (36 sensors) could generate a maximum power 
of 3.626 mW for an 86 kg load. In our experiments, we found the designed prototype tile 
could generate maximum power if it was placed in a realistic location, such as on a ladder, 
a disco floor, or a railway station. The maximum load limitation, tested with various sub-
jects for the prototype tile, was 29–120 kg. The RSM analysis predicted a maximum load 
capacity of 150 kg for optimized power. Theoretical analysis was conducted with software 
(Design-Expert) using the response surface methodology (RSM) for PZT tile optimization. 
The obtained power was 6784.155 mW at 150 kg or 1.47 kN weight using 34 sensors. 
Hence, our experiments lead us to conclude that the tapping frequency, number of sen-
sors, sensor fixation, sensor connection, and direction of applied force are important fac-
tors for maximizing output power. The theoretical experiments using RSM also revealed 
that the number of sensors (A) and subject weight (B) are crucial factors for optimizing 
power. 

Author Contributions: Methodology, P.G.; Software, P.G.; Validation, P.G.; Resources, P.G. and 
S.A.; Data curation, P.G.; Writing—original draft, P.G.; Writing—review & editing, D.R., R.M., T.V. 
and A.K. All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Conflicts of Interest: The authors declare that they have no conflict of interest. 

References 
1. Mukherji, R.; Mathur, V.; Bhati, A.; Mukherji, M. Assessment of 50 kWp rooftop solar photovoltaic plant at The ICFAI University, 

Jaipur: A case study. Environ. Prog. Sustain. Energy 2020, 39, e13353. 
2. Kessides, I.N. Nuclear power and sustainable energy policy: Promises and perils. World Bank Res. Obs. 2010, 25, 323–362. 

0

500

1000

1500

2000

2500

3000

3500

29 30 33 33 33 33 36 36 38

Po
w

er
 in

 µ
W

Number of sensors

0

500

1000

1500

2000

2500

3000

3500

17 29 29 57 57 57 85 97

Po
w

er
 in

 µ
W

Weight in kG

Figure 7. Predicted power analysis using varying quantities of (a) sensors and (b) weights of the
subject.

5. Conclusions

An affordable prototype model of a tile using 36 PZT sensors has been successfully
designed and experimentally analyzed for maximum power generation with various
combinations of sensors. The comparative experimental analysis tested two, four, and
six PZT sensors individually connected in series and with a parallel configuration. We used
a 6 × 6 matrix arrangement of sensors connected in a P-S configuration, where 6 sensors
were connected in series and another 6 sensors were connected in parallel to generate the
maximum power. The designed prototype tile (36 sensors) could generate a maximum
power of 3.626 mW for an 86 kg load. In our experiments, we found the designed prototype
tile could generate maximum power if it was placed in a realistic location, such as on a
ladder, a disco floor, or a railway station. The maximum load limitation, tested with various
subjects for the prototype tile, was 29–120 kg. The RSM analysis predicted a maximum load
capacity of 150 kg for optimized power. Theoretical analysis was conducted with software
(Design-Expert) using the response surface methodology (RSM) for PZT tile optimization.
The obtained power was 6784.155 mW at 150 kg or 1.47 kN weight using 34 sensors.
Hence, our experiments lead us to conclude that the tapping frequency, number of sensors,
sensor fixation, sensor connection, and direction of applied force are important factors for
maximizing output power. The theoretical experiments using RSM also revealed that the
number of sensors (A) and subject weight (B) are crucial factors for optimizing power.
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