
Response-Time Analysis for Task Chains in

Communicating Threads

Johannes Schlatow and Rolf Ernst

Institute of Computer and Network Engineering, TU Braunschweig

{schlatow,ernst}@ida.ing.tu-bs.de

Abstract—When modelling software components for timing
analysis, we typically encounter functional chains of tasks that
lead to precedence relations. As these task chains represent a
functionally-dependent sequence of operations, in real-time sys-
tems, there is usually a requirement for their end-to-end latency.
When mapped to software components, functional chains often
result in communicating threads. Since threads are scheduled
rather than tasks, specific task chain properties arise that can be
exploited for response-time analysis. As a core contribution, this
paper presents an extension of the busy-window analysis suitable
for such task chains in static-priority preemptive systems. We
evaluated the extended busy-window analysis in a compositional
performance analysis using synthetic test cases and a realistic
automotive use case showing far tighter response-time bounds
than current approaches.

I. INTRODUCTION

Large embedded systems are often implemented as a col-

lection of functions, each described as a task graph. To derive

end-to-end response times in such task graphs, we are typically

interested in the response times between the respective tasks.

The problem of task graph schedulability analysis and deadline

feasibility has been intensively studied, most recently in [1],

where a task-graph classification was provided in the context

of system types, along with the respective schedulability

analysis algorithms and their complexity. In this paper, we are

interested in task chains which are derived from communicat-

ing software threads leading to specific task chain properties

that can be exploited for response-time analysis covering both

synchronous and asynchronous communication. Such commu-

nicating threads have become the common implementation

vehicle, e.g. in automotive software components [2] or in

microkernel-based systems [3], [4].

A further challenge is the inclusion of this analysis in a

global system-level timing analysis that covers larger systems

integrating tasks with different scheduling policies. Therefore,

the response-time analysis should be compatible to a com-

positional performance analysis, such as Real-Time Calculus

(RTC) [5] or Compositional Performance Analysis (CPA) [6].

Unfortunately, in such an analysis, even simple task chains

currently lead to quite conservative results (cf. Section VIII),

such that new chain analysis solutions are required.

As a core contribution, this paper presents an extension

of the busy-window response-time analysis which is able to

cope with varying priorities along the chain resulting from

thread communication. We will see that chaining tasks with

arbitrary priorities incurs priority-inversion problems which

lead to deferred load challenging the busy-window mechanism.

In the end, we will apply the results to a synthetic example and

to a realistic automotive system with communicating threads.

II. MODELLING COMMUNICATING THREADS

In communicating software threads, we can identify two

different communication or activation semantics: the syn-

chronous IPC and the asynchronous notifications. The for-

mer is the conventional communication type in microkernel-

based systems and resembles a procedure call where the caller

blocks and waits for the reply of the callee. The latter relates to

a message-based (buffered) communication much like a “fire

& forget” scheme in which the sender transmits a notification

to the receiver without being blocked in its own execution.

As a result, asynchronous notifications can queue up at the

receivers’s input.

While the asynchronous scenario is already common in

timing analysis, the nature of the synchronous scenario is –

to our knowledge – currently not well-reflected in common

timing analysis models. Furthermore, when we try to perform

a timing analysis for these systems, we first encounter a

mismatch between the programming model and the timing

analysis model: On the one hand, the programmer implements

a thread that communicates at arbitrary points in its execution

using the available primitives, whereas the timing architect

models the system by tasks that are only allowed to com-

municate at the end of their execution, implicitly assuming

asynchronous communication semantics.

Figure 1 and 2 illustrate a possible model transformation

for the scenarios of synchronously and asynchronously com-

municating threads. According to [7], this transformation is

supposed to close the gap between the two models. Figure 1

shows a thread (Thread 1) that (synchronously) calls another

thread (Thread 2) at some point in its execution. Thread 1

can only continue after the latter completed and returned. The

right side of the figure illustrates how this scenario is reflected

in the timing model by a sequence of tasks that represent

the segments of the threads (1a, 2 and 1b) along with their

precedence relations. Figure 2 depicts a similar scenario but

with an asynchronous notification instead of the call. Here,

the second segment of Thread 1 does not need to wait for the

completion of Thread 2. In the resulting timing model the task

τ1a thus activates both tasks (τ2 and τ1b) simultaneously.

Although this is a straightforward transformation, it already

obfuscates important information that should be incorporated

https://doi.org/10.24355/dbbs.084-201803221521



Thread 1 Thread 2

1a

2

1b

call()

return

τ1a

τ2

τ1b

Figure 1. Communicating threads (implementation) naturally split up into a
chain of tasks (timing model).

Thread 1 Thread 2

1a

2

1b

τ1a

τ2

τ1b

Figure 2. Transformation of an asynchronous notifications between threads
into the timing model.

in the timing analysis: As already mentioned, the task timing

model does not reflect the blocking behaviour of the syn-

chronous call, i.e. it does not reflect that τ1a cannot execute

again before τ2 returned. In addition, it neither represents the

execution dependencies between the thread segments, i.e. that

τ1a cannot execute before τ1b finished.

One way to approach this with conventional timing analysis

– assuming a static priority scheduling – is to assume an

ascending priority assignment for a task chain such that a task

is never interfered by its predecessor. However, this strongly

contradicts what can actually be implemented on a real system

where a thread (e.g. Thread 1) is actually the scheduled

entity and thus determines the priority of several tasks in the

timing model (e.g. τ1a and τ1b). In consequence, it is not

possible to assume a monotonic priority assignment for a task

chain that models communicating threads but rather enforces

an alternating pattern between higher and lower priorities.

However, as we demonstrate in Section VIII, we encounter

(very) pessimistic results if we perform timing analysis on

such realistic priority assignments.

Instead, we show that by augmenting the timing analysis

model with the activation semantics we can derive a proper

analysis approach for these scenarios that not only improves

the latency estimates but also requires much less computational

effort.

This paper therefore comprises the following contributions:

• An extended timing analysis model that covers the se-

mantics of synchronous and asynchronous activations

reducing the number of event-model propagations in a

Compositional Performance Analysis (CPA).

• A worst-case response time analysis for entire task chains

in static-priority preemptive systems based on the busy-

window approach.

• Improved worst-case end-to-end latency bounds for syn-

chronous as well as asynchronous chains of tasks.

As we base our approach on the CPA, we first summarise its

essentials in Section III before elaborating on the related work

in Section IV. In Section V, we introduce our extension to the

timing analysis model and provide the required assumptions

and definitions. We then present and refine our response-

time analysis for synchronous task chains in Section VI and

further show its application to asynchronous chains as well

(Section VII). Finally, we evaluate and compare the presented

analyses in Section VIII before drawing our conclusion in

Section IX.

III. COMPOSITIONAL PERFORMANCE ANALYSIS

In CPA [6], systems are modelled by (processing) resources,

scheduling policies, tasks and precedence relations. The tasks

are mapped to the resources on which they execute and

consume service (processing time). As, typically, multiple

tasks share the service provided by a resource, the resource’s

scheduling policy determines how the contention is resolved.

A task’s execution behaviour is modelled by an activation,

core execution and propagation step. Once activated, a task

τi can be scheduled for its core execution on the resource

according to the scheduling policy (e.g. static-priority preemp-

tive). The core execution is modelled by the worst-case and

best-case execution time, denoted C+
i and C−

i , which provide

the upper and lower bound on the workload induced by a

single activation of task τi. Subsequent to its core execution,

a task activates its dependent task(s) in the propagation step.

Activations are propagated according to a directed graph of

tasks (nodes) and precedence relations (edges) representing

functional data dependencies such as communication primi-

tives. In the CPA task model, activations are buffered and can

queue up, i.e. the tasks can be executed independently from

each other. As the actual data is of no interest, the timing rela-

tions between task activations are modelled by an event model

interface, which abstracts every possible trace of events (i.e.

activations) by its lower and upper bound. An event model is

expressed by a pair of arrival curves η+(∆t)/η−(∆t) defining

an upper/lower bound on the number of events that can arrive

within any half-open time window [t, t+∆t) [8]. Alternatively,

an event model can be represented by the pseudo-inverse

functions, the so-called minimum/maximum distance function

δ−(n)/δ+(n), that return a lower/upper bound on the time

interval between the first and the last event of any sequence

of n event arrivals [9]. For the sake of brevity, we denote a

pair of arrival curves/distance functions by a bold symbol and

by omitting the superscript, i.e. η(∆t)/δ(n) respectively. Note

that event models are also used to describe activations from

external sources, such as a (periodic) timer or other devices.

In CPA, the system model and the environmental model

define the task graph and the event models for external

activations respectively. Initially, optimistic input event models

https://doi.org/10.24355/dbbs.084-201803221521



for all tasks are derived based on the environmental model.

The actual analysis is then composed of iteratively performing

local resource analysis and event model propagation, which

propagates the newly calculated output event models in order

to refine the input event models of dependent tasks. The

analysis terminates once convergence or non-schedulability is

reached.

The local resource analysis particularly yields the worst-

case response time (WCRT) of all tasks mapped to the

resource and serves as a basis for deriving the output event

models. In the scope of this paper, we base the local re-

source analysis on the generalised busy-window technique as

presented in [10] for preemptive static-priority scheduling as

follows:

Definition 1. (q-event busy-window) The q-event busy-window

Bi(q) denotes the maximum time a resource may be busy

processing q events of task τi and is iteratively calculated

by the following formula:

Bi(q) = q · C+
i +

∑

j∈Ii

η+j (Bi(q)) · C
+
j (1)

where Ii denotes the set of interfering higher-priority (or

equal-priority) tasks w.r.t. pi.

Equation 1 assumes that all q events (except the first) arrive

prior to the completion of the preceding events, i.e. before the

resource becomes idle. Hence the maximum q for which this

assumption holds is given by Equation 2 as follows:

Qi = max{n : ∀q ∈ N
+, q ≤ n : δ−i (q) ≤ Bi(q − 1)} (2)

Based on this, the WCRT of task τi is found among all

q ∈ [1, Qi] busy windows as follows:

R+
i = max

q∈[1,Qi]
(Bi(q)− δ−i (q)) (3)

In the remainder of this paper, we assume that the output

event models are accurately derived from the q-event busy-

window as described in [10].

After convergence of the analysis loop, the worst-case end-

to-end latencies can be conservatively estimated by adding up

the resulting WCRTs R+
i of all tasks τi belonging to a path

of interest [6], [11].

IV. RELATED WORK

There are various compositional approaches that address

the performance analysis problem by separating it into local

component (resource) analyses and modelling of the commu-

nication behaviour between these components. One prominent

approach is the Real-Time Calculus (RTC) [5], which models

this behaviour by arrival curves and service curves in continu-

ous time domain and applies convolutions in order to derive the

system-level performance metrics (e.g. end-to-end latencies).

In contrast, CPA [6] relies on discrete time models to derive

worst-case (and best-case) response times of every task on a

resource (cf. Section III). The busy-window technique applied

for this has been introduced in [12], [13] and generalised for

arbitrary event models in [10].

Several improvements have been made in the past regarding

the coverage of data dependencies (i.e. precedence relations)

and their implied correlations. In [14] a recursive path analysis

approach was presented which addresses the issue that a burst

of input events shall only be “paid” once when estimating the

latency for a particular path in a multiprocessor system. This

approach still relies on a WCRT computation on the local

resources but uses a recursive algorithm that improves the

estimated latency by excluding impossible combinations of

event arrivals and busy times within the path. On the other

hand, offset analysis [15] is an approach that focuses on the

improvement on the response-time analysis. Here, correlations

resulting from a transactional task model are taken into

account by introducing time offsets between different event

arrivals. These offsets can be static or dynamic [16]. Although

offset analysis is – in general – computationally intensive,

efficient implementations have been achieved for periodic

event models (with jitter) [17]. In [18] and [19] offset analysis

has been leveraged to take precedence relation into account.

In contrast to the compositional approaches, one can also

pursue a holistic approach [20] in order to take global corre-

lations in a multiprocessor system into account. However, the

complexity of such an holistic analysis grows with the size of

a system and the number of contained dependencies. In the

scope of this work, we thus still focus on a local rather than

a holistic view on a real-time system.

Many of these analyses have been implemented by research-

oriented [9], [21]–[23] as well as commercial [24] tools. An

evaluation and comparison between the different abstractions

for performance analysis can be found in [25].

In addition to the advances in performance analysis, [7]

presented how formal timing analysis and verification can

be integrated into the development process of real-time soft-

ware by means of a model transformation. As this closes

the semantic gap between the design and timing model, it

augments the practicability of timing analysis in (industrial)

design processes at least from the modelling perspective. Our

work rests upon this model transformation but focuses on the

quality and usability of the results (i.e. estimates) achievable

in this context.

V. EXTENDED TIMING ANALYSIS MODEL

When we perform timing analysis – e.g. CPA as introduced

in Section III – for task chains, we typically encounter

some pessimism in the resulting end-to-end latencies. More

precisely, the latencies are conservative but overestimate the

worst-case. On the one hand, this overestimation originates

from the event-model propagation which masks the timing

correlations between activations of dependent tasks. At the

expense of additional computational effort, offset analysis can

be used in order to account for the timing correlations inherent

in the precedence relations [18], [19]. On the other hand,

the summation of the tasks’ WCRTs to compute the end-to-

end latency may further add the same source of interference

multiple times (i.e. for each task) while, in reality, the same

event processed by a chain of tasks cannot experience the same

https://doi.org/10.24355/dbbs.084-201803221521



interference at each task. This has also been addressed as the

“pay-bursts-only-once” problem in [14].

When we look at the scenario of communicating threads

in Figure 1, we note that there are strict constraints for the

precedence and order of task executions. I.e. a synchronously

activated task can only interfere once with its predecessor, as

the latter must wait for the completion of its successor before

being activated again. This fact contrasts the common task

model, which assumes that activations can arbitrarily queue

up on the edges (buffers) in the task graph.

We therefore need a sound timing analysis that respects the

activation semantics we commonly encounter on our target

systems. Here, “sound” denotes the following aspects:

• conservative

• little overestimation

• bounded computational effort

Resource 1 Resource 2

τ11 τ12 τ13 τ21

τ22τ31τ32

input
event
model

output
event
model

propagated
event

models
task chains

synchronous asynchronous

Figure 3. Extended task graph example

Based on this, we propose the following extension to the

common timing analysis model. In this extended model, we

differentiate between the activation semantics, i.e. we dis-

tinguish synchronous (i.e. blocking) from asynchronous (i.e.

non-blocking) edges in the task graph. As our response-time

analysis approach (Section VI) considers entire task chains as

opposed to single tasks, we introduce a preprocessing step in

which the task chains are defined. Furthermore, as we only

need the propagated event models at the inputs/outputs of

the task chains, this preprocessing basically dissects the task

graph into task chains and the interjacent edges (e.g. resource

boundaries), which we call propagation points. Figure 3 illus-

trates such an extended task graph. Note that the preprocessing

can either be done manually by the designer/timing architect,

or automatically by tool support. In the scope of this paper,

we focus on a manual process that holds the following

assumptions:

1) Task chains do not cross resource boundaries.

2) Task chains cannot fork, i.e. a task within a chain must

not have multiple outgoing edges.

3) Task chains cannot join, i.e. a task within a chain must

not have multiple incoming edges (future work).

Definition 2. (Task chain)

A task chain denotes a path in the task graph in which every

node is mapped to the same resource and has an indegree

and outdegree of 1. A synchronous task chain only contains

synchronous edges whereas an asynchronous task chain only

contains asynchronous edges. A task chain might contain only

a single task.

Note that synchronous task chains reflect the scenario of

communication threads while asynchronous task chains rep-

resent conventional precedence relations between tasks. Al-

though we restrict task chains to a single activation type in the

scope of this paper, the reasoning presented in Section VI and

VII can also be applied to task chains with mixed activation

semantics. Note that our analysis approach is not limited to

CPA as it only modifies (extends) the local resource analysis.

In a multiprocessor system it should furthermore be combined

with an improved subsequent path analysis such as [14].

VI. RESPONSE-TIME ANALYSIS FOR SYNCHRONOUS TASK

CHAINS

In this section, we present the improved response-time

analysis for synchronous task chains. Figure 4 depicts two

synchronous task chains a and b and illustrates the notation we

use for the remainder of this section. Every task τij is specified

by two indices. The first index (i) denotes the task chain it

belongs to while the second index (j) declares the position of

the task within the chain assuming a sequential numbering

starting from zero. A task chain i (more specifically: task

τi0) is further activated by its input event model ηi(∆t). The

(propagated) output event model of a task chain i is denoted

by η̃i(∆t). Furthermore, let pij denote the priority of τij .

τa1τa0 τa2η
a
(∆t) η̃

a
(∆t)

τb1τb0η
b
(∆t) η̃

b
(∆t)

Figure 4. Two synchronous task chains a and b

In contrast to the classical CPA, our analysis approach

pursues the idea of computing the WCRT of entire task

chains in order to prevent that the same interference effect is

pessimistically accounted for every task. In the context of the

compositional analysis flow, this is a valid approach due to the

fact that (propagated) output event models are only required

between task chains as we proposed in Section V.

In order to derive the task-chain busy window, which

computes the busy window of an entire task chain a as opposed

to a single task (cf. Eq. 1), we first differentiate between three

categories of interference:

• intra-chain interference (τij∀i = a)

• inter-chain interference (τij∀i 6= a)

For a synchronous task chain, we know that it cannot

interfere with itself hence there is no intra-chain interference.

Regarding the inter-chain interference, we can provide better

bounds based on the following observations; note that we are

still assuming a preemptive static-priority scheduling:

https://doi.org/10.24355/dbbs.084-201803221521



Assume a priority assignment for the task chains depicted in

Figure 4 that satisfies pa0 ≥ pa2 > pb0 ≥ pb1 > pa1. I.e. the

tasks of chain b have a higher priority than the second task of

chain a but a lower priority than the first and last task. In this

case, τa1’s execution is blocked by task chain b potentially

leading to a deferred activation of τa2 as illustrated by the

Gantt chart in Figure 5. Here, τb0 is executed first, as there

is no higher-priority activation pending, immediately followed

by τb1. The latter, however, is preempted by τa0 as soon as

it is activated. Yet, task chain a cannot complete because τa1
is blocked by task chain b, i.e. τa1 can only execute after τb1
completed (and if there is no pending activation of task chain

b). The completion of τa1 eventually releases τa2. When we

now take a look at a second activation of task chain b, we

observe that it may experience interference from the first and

second activation of task chain a, more precisely from τa2 as

well as τa0. However, this interference can occur at most once

as τa1 is blocked by task chain b and therefore cannot release

τa2. On the other hand, if we direct our focus on task chain a,

we observe that this chain may be interfered arbitrarily by τb0
and τb1 due to the fact that they have a higher priority than

τa1, which is a classical priority inversion effect.

τa0 1 2

τa2 1 2

τb0 1 2

τb1 1 1 2

τa1 1 2

task-chain activation task precedence

Figure 5. Gantt chart for a deferred synchronous activation of τa2 (bold).

Note that priority inheritance [26] can also be implemented

for synchronous task chains [27] in order to avoid the priority

inversion but here we are treating the general case where this

is usually not possible. By pursuing the generalised analysis

approach for synchronous task chains, we can easily use it in

order to similarly improve the analysis of asynchronous task

chains as we present in Section VII. In the remainder of this

section, we first introduce a simple but general bound for the

(synchronous) task-chain busy window before we refine this

further for the synchronous case.

A. Task-chain busy window

We now formulate the task-chain busy window for a task

chain i similar to Eq. 1 taking the above observations into

account. I.e. we split the inter-chain interference into tasks that

can arbitrarily interfere and those for which we can guarantee

that they can execute only once within the busy window of

task chain i. First, we conservatively define the set of higher-

priority tasks for each interfering task chain j by considering

every task τjk that has a higher-priority than the lowest priority

task in chain i. Note that we use a superscript c to denote

symbols in the context of task chains in general whereas the

superscripts sc and ac indicate a particular validity only for

synchronous or asynchronous chains.

Definition 3. Hc
ij denotes the set of higher-priority tasks (i.e.

their indices) from task chain j w.r.t. task chain i.

∀j 6= i : Hc
ij = {k|pjk ≥ min

l
pil} (4)

If any of the tasks from task chain j is blocked, all higher-

priority tasks are deferred and thus interfere at most once.

Definition 4. (Deferred tasks)

Dsc
ij denotes the set of tasks (i.e. their indices) in a syn-

chronous task chain j that are deferred by the execution of

task chain i, i.e. all tasks τjk that can only interfere once with

task chain i.

∀j 6= i : Dsc
ij =

{

Hc
ij ∃τjk : k /∈ Hc

ij

∅ otherwise
(5)

Definition 5. Ic
ij contains the indices of all higher-priority

tasks in task chain j that are not deferred by task chain i.

∀j 6= i : Ic
ij = Hc

ij \ D
c
ij (6)

with Dc
ij = Dsc

ij .

In our example (Figure 4 and 5), we thus get: Ic
ab = Hc

ab =
{0, 1}, Dsc

ab = ∅, Dsc
ba = Hc

ba = {0, 2} and Ic
ba = ∅.

It is worth emphasising, that we can reuse Eq. 6 for

asynchronous or mixed task chains just by adapting Dc
ij

appropriately.

Based on these definitions, we can come up with a simple

bound for the (synchronous) task-chain busy window.

Corollary 1. The q-event busy window for the synchronous

task chain i is calculated by:

Bsc
i (q) = q

∑

k

C+
ik+ (7)

∑

j 6=i





∑

k∈Ic
ij

(η+j (B
sc
i (q))C+

jk) +
∑

k∈Dsc
ij

C+
jk





Similar to Eq. 1, the first sum term adds up the core

execution time for q activations of the entire task chain. The

second term eventually computes the inter-chain interference,

which is split into the set of arbitrarily interfering tasks Ic
ij ,

which are accounted η+j (B
sc
i (q)) times, and the “one-time”

interferers Dsc
ij .

B. Refined task-chain busy window

If we now consistently pursue the fact that any task that is

blocked by task chain i cannot release its dependent tasks, we

infer that a task chain j is broken up into several segments as

https://doi.org/10.24355/dbbs.084-201803221521



soon as there are multiple blocked tasks. We formally define

these segments as follows:

Definition 6. (Circular segment)

A circular segment Sikl is the set of tasks (their indices)

between τik and τil assuming that the last task is followed by

the first task of the chain:

Sikl :={m|(0 ≤ m < ni)∧ (8)

((k ≤ m ≤ l) ∨ (m ≥ k ≥ l) ∨ (k ≥ l ≥ m))}

where ni denotes the length of task chain i.

Moreover, we are only interested in those segments that

exclusively comprise deferred tasks:

Definition 7. (Deferred segments)

The set of circular segments in task chain j that can

interfere at most once with chain i is given by:

S∗
ij := {Sjkl|0 ≤ k < nj , 0 ≤ l < nj , ∀m ∈ Sjkl : m ∈ Dc

ij}

with Dc
ij = Dsc

ij .

Theorem 1. A task chain i can only be interfered by a single

deferred segment Sjkl ∈ S∗
ij of chain j.

Proof. The proof is by contradiction, hence we assume that

task chain i is interfered by two deferred segments, Sj23

and Sj56. By definition, τj1 and τj4 cannot execute in chain

i’s busy window. Furthermore, if Sj23 interferes with task

chain i, task chain j must have been preempted right after

the execution of τj1. On the other hand, if Sj56 interferes

with chain i, chain j must have been preempted right after

the execution of τj4. However, as τj4 requires Sj23 and τj1
requires Sj56 to execute beforehand, the hypothesis must be

rejected.

For a worst-case analysis, we are therefore interested in the

critical deferred segment, which maximises the interference

on chain i.

Definition 8. (Critical deferred segment)

The critical segment of task chain j w.r.t. chain i is the

longest interfering segment in terms of execution time.

∀j 6= i : Scrit
ij := argmax

Sjkl∈S∗

ij





∑

m∈Sjkl

C+
jm



 (9)

Corollary 2. The q-event busy window for a synchronous task

chain i only needs to consider the critical deferred segments

instead of all deferred tasks and is calculated by:

Bsc
i (q) = q

∑

k

C+
ik+ (10)

∑

j 6=i





∑

k∈Ic
ij

(η+j (B
sc
i (q))C+

jk) +
∑

k∈Scrit
ij

C+
jk





Here, the only difference between Eq. 7 and Eq. 10 is that

Dsc
ij has been replaced with Scrit

ij .

VII. RESPONSE-TIME ANALYSIS FOR ASYNCHRONOUS

TASK CHAINS

In this section, we leverage our analysis approach for syn-

chronous task chains in order to improve the latency estimates

for conventional (asynchronous) chains as well. In contrast to

the synchronous case, an asynchronous task chain i may be

subject to a pipelined, i.e. interleaved, execution, depending

on the input event model (ηi). As multiple asynchronous

activations of higher priority tasks can potentially queue up,

we need to reconsider the impact of deferred activations.

τa0 1 2

τa2 1 2

τb0 1 2

τb1 1 2

τa1 1 2

task-chain activation task precedence

Figure 6. Gantt chart for an interleaved execution of task chain a and deferred
asynchronous activations of τa2 (bold).

Figure 6 illustrates such an interleaved execution of task

chain a from our example in Figure 4. First, there are two

consecutive activations of task chain a that result in τa0 being

executed twice. In turn, this releases two activations of τa1,

which, however, are blocked by the pending activation and

execution of task chain b. Thus, after the completion of chain

b, τa1 executes for the first time and eventually releases τa2.

In the meantime, chain b is activated again and executes after

τa2’s completion. The second activation of task chain a can

only complete after b is idle again.

In contrast to the synchronous case (cf. Eq. 5), a task can

only be considered as a deferred task if it has a predecessor

whose execution is blocked. I.e. the first tasks of an asyn-

chronous task chain (here: τa0) can still interfere arbitrarily

given they have a higher-priority than any task of the analysed

task chain.

Definition 9. The set of deferred tasks of an asynchronous

task chain j w.r.t. a task chain i is defined as follows:

∀j 6= i : Dac
ij = {k ∈ Hc

ij |∃l < k : pjl < min
m

pim} (11)

The definition of deferred tasks is essentially the only

modification that is required to apply the (simple) task-chain

busy window of Eq. 7 to the asynchronous task chains. By

looking at the Gantt chart, we presume that although there

can be multiple asynchronous activations of a deferred task

https://doi.org/10.24355/dbbs.084-201803221521



(τa2), only a single activation can interfere with our analysed

task chain.

Theorem 2. A deferred task τjk ∈ Dac
ij of an asynchronous

task chain j can only interfere once with task chain i.

Proof. By definition, a deferred task τjD always has a lower-

priority predecessor τjL. Hence, according to the preemptive

static-priority scheduling, a deferred activation of a τjD will

always execute before τjL. Consequently, two executions of

τjL are always separated by an execution of τjD. Therefore, at

most one activation of τjD can be pending at any point in time.

Furthermore, as τjL can never execute while task chain i is

busy, τjD can only interfere once within i’s busy window.

Corollary 3. The q-event busy window for an asynchronous

task chain i is constructed by including the intra-chain in-

terference and by replacing Ic
ij and Dsc

ij in Eq. 7 with their

corresponding definitions for asynchronous chains:

Bac
i (q) =

∑

k

max(η+i (B
ac
i (q)), q)C+

ik+ (12)

∑

j 6=i





∑

k∈Ic
ij

(η+j (B
ac
i (q))C+

jk) +
∑

k∈Dac
ij

C+
jk





with Ic
ij = Hc

ij \ D
ac
ij .

However, due to the potentially interleaved execution of

an asynchronous task chain, the refined approach that we

presented for the synchronous case cannot be applied here,

i.e. the interference from a deferred segment does not mutually

exclude the interference from another deferred segment of the

same asynchronous task chain.

VIII. EVALUATION

In this section, we first provide a detailed experimental

comparison of the analyses presented in Section VI and

show its improvement over conventional CPA. In addition,

we demonstrate how our analysis approach enhances the

applicability of (automated) timing verification by means of

an automotive use case.

A. Experimental results

In order to evaluate our analysis approach in general, we

performed three experiments for which we compared the

resulting latency bounds of different analyses.

All three experiments comprise two task chains containing

six tasks in total that are mapped to the same resource (similar

to Figure 4). For the different experiments, we changed the

structure of the task chains as illustrated in Figure 7.

We further assigned six distinct priorities to the tasks and

performed our analyses for all 720 permutations. Note that

we selected this generalised (task-level) priority assignment

as opposed to a thread-level assignment due to the fact that

the latter would heavily influence the convergence of the CPA

(cf. Section VIII-B) and thus limit the comparability with our

approach. Table I specifies the worst- and best-case execution

Table I
TASKS USED IN THE EXPERIMENTS AND THEIR CORE EXECUTION TIMES

Task(s) τa0 τa1 τa2 τb0 τb1, τa4 τb2, τa3

WCET 10 2 4 3 9 5
BCET 1 2 2 1 4 3

Table II
INPUT EVENT MODELS OF TASK CHAIN a AND b USED FOR THE

EXPERIMENTS

Experiment Period a Jitter a Period b Jitter b

3:3 20 5 100 0
4:2 30 5 100 0
5:1 40 5 100 0

times of the tasks. Moreover, the task chains were activated

by periodic input event models as specified in Table II.

In each experiment, we performed the following four anal-

yses for every priority assignment:

1) Conventional CPA with subsequent path analysis to

derive the latency bounds for the task chains (cf. Sec-

tion III).

2) WCRT analysis for synchronous task chains based on

the simple task-chain busy window (Eq. 7).

3) WCRT analysis for synchronous task chains based on

the refined task-chain busy window (Eq. 10).

4) WCRT analysis for asynchronous task chains based on

the task-chain busy window as in (Eq. 12).

All analyses have been performed with a modified version

of pyCPA [21] that implements our analysis approach. We

limited the number of fixed-point iterations in Eq.1 to 1000,

in order to catch the non-convergence case of the CPA.

The results are summarised in Table III. While our analy-

ses (2)-(4) successfully terminated in all cases, a substantial

number of conventional CPA runs failed because it did not

reach convergence within the limited number of iterations.

Note that this is already a significant improvement over other

approaches that still rely on a WCRT analysis of the single

tasks, such as [14]. In all remaining cases, the analyses (2)-

(4) provided better latency bounds for both task chains in the

first two experiments. In the third experiment (5:1), this also

holds for task chain a whereas the latency bound for task

chain b improved only in 125 of 180 cases and showed the

same result as the conventional CPA for the other 55 priority

assignments. This is explained by the fact that task chain b
only contains a single task in the third experiment and thus

can only improve on the inter-chain interference, i.e. only for

priority assignments for which τb0 interferes with at least one

but not all tasks of chain a.

In more detail, Figure 8a and 8b depict scatter plots of the

relative improvements on the latency bounds from our analyses

(2) and (4) over conventional CPA respectively. The relative

improvement is determined by dividing the new result by the

result from the conventional CPA. Here, the x-axis determines

the improvement for task chain a whereas the y-axis shows the

same for task chain b. Different markers are used in order to

https://doi.org/10.24355/dbbs.084-201803221521



τa1τa0 τa2η
a

τb1τb0 τb2η
b

(a) 3:3 experiment

τa1τa0 τa2 τa3η
a

τb1τb0η
b

(b) 4:2 experiment

τa1τa0 τa2 τa3 τa4η
a

τb0η
b

(c) 5:1 experiment

Figure 7. Task chains used for the different experiments.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
task chain a

0.0

0.2

0.4

0.6

0.8

1.0

ta
sk

 c
h
a
in

 b

3:3
4:2
5:1

(a) synchronous

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
task chain a

0.0

0.2

0.4

0.6

0.8

1.0

ta
sk

 c
h
a
in

 b

3:3
4:2
5:1

(b) asynchronous

Figure 8. Relative latency improvements by our analyses for synchronous and asynchronous task chains compared to conventional CPA.

Table III
RESULT SUMMARY

exp. # runs # failed # improved # improved
(conventional) (task chain a) (task chain b)

3:3 720 366 354 354
4:2 720 359 361 361
5:1 720 540 180 125

differentiate the experiments. Furthermore, we added a line for

orientation that indicates the points where both chains would

experience the same relative improvement.

We recognise that the results basically accumulate around

this line, demonstrating a similar improvement for many cases.

We also observe that analysis (2) and (4) show at least a

relative improvement of 0.4 and 0.7 respectively for task

chain a. Moreover, as the length of task chain a is increased

(and task chain b is shortened in return), the latency bound

improves even more for task chain a while this effect gradually

decreases for chain b. For 55 priority assignments in the 5:1

experiment, the latency bound could not be improved at all,

as the markers on the very top the plots indicate. Hence,

as expected, the potential of improving the latency bound

with our analysis approach correlates with the length of the

analysed task chains.

We also compared the results from the simple and refined

0 5 10 15 20 25 30 35
refined

0

5

10

15

20

25

30

35

si
m
p
le

4:2
5:1

Figure 9. Resulting latency bounds for task chain b from our refined analysis
approach compared to our simple approach.

approach, i.e. analyses (2) and (3), in the last two experiments

for all 720 cases. Here, the refined approach improved for

chain b in 48 (120) cases in the 4:2 (5:1) experiment respec-

tively. Note that due to the length of the task chains in the

3:3 experiment, there can only be one deferred segment and

thus no improvement over the analysis (2). Figure 9 depicts

https://doi.org/10.24355/dbbs.084-201803221521



the detailed results of this improvement by comparing the

end-to-end latency bound for task chain b from the refined

analysis (Eq. 10) on the x-axis with the results from the

simple approach (Eq. 7) on the y-axis. For orientation, we

added helper lines that indicate the 0%, 10%, 20%, 30%,

40% and 50% improvement. Note that the size of the markers

corresponds to the number of analysed cases with the same

results.

B. Analysis of an automotive use case

In this section, we demonstrate the applicability of our

approach to an automotive use case that has been developed in

the scope of the research unit Controlling Concurrent Change

(CCC), where a contract-based process is currently being im-

plemented that enables the automated (in-system) integration

of software components with non-functional constraints [28].

This use case implements a park and lane-assist function

and involves several software components (i.e. threads) for

trajectory calculation (TC), object recognition (OR1 and

OR2), object masking (OM) and steering (S) required by

the higher-level components that eventually implement the

parking assistant (P) and lane detection (L).

Figure 10 depicts the thread communication of this use

case. The obligation of the contracting process is to find a

priority assignment that satisfies the given latency constraints.

The task graph corresponding to this thread communication

is illustrated in Figure 11. This task graph comprises two

synchronous task chains P and L, one for the park assist

and another one for the lane assist function respectively. The

figure also indicates the threads from which the tasks originate.

Note that the tasks inherit their priority from the corresponding

seven threads. We do not assign the same priority to multiple

threads as this typically only adds more pessimism to the

analysis result.

P TC OR1

P0

P1

P2

P3

P4

L OR2 OM S

L0

L1

L2

L3

L4

L5

L6

Figure 10. Thread communication for the park and lane assist use case.

In order to show the applicability and benefit of our analysis

approach in the scope of this use case, we determined the solu-

tion space that we face depending on the implemented timing

analysis. For this purpose, we performed a conventional CPA

as well as our refined analysis for synchronous task chains for

all possible priority assignments in the given scenario.

Table IV specifies the worst-case and best-case execution

times of the tasks on which we based the analyses. As input

event models, we assumed a period of 200 ms for chain P and

τP1

TC

τP0

P

τP2

OR1

τP3

TC

τP4

P

η
P
(∆t)

τL1

OR2

τL0

L

τL2

L

τL3

OM

τL4

L

τL5

S

τL6

L

η
L
(∆t)

Figure 11. Task graph of a potential configuration for the park and lane assist
use case. The labels above the tasks indicate from which software component
(here: thread) the task originates.

Table IV
SPECIFICATION OF WORST-CASE (WCET) AND BEST-CASE EXECUTION

TIMES (BCET) [IN MILLISECONDS] OF THE TASKS IN FIGURE 11

τP0 τP1 τP2 τP3 τP4

WCET 3 5 50 5 7
BCET 1 1 10 1 1

τL0 τL1 τL2 τL3 τL4 τL5 τL6

WCET 3 10 3 10 10 10 4
BCET 1 5 1 5 5 5 1

a period of 100 ms for chain L as well as a jitter of 5 for both.

According to the use case, the maximum acceptable latency

for both task chains is 150 ms.

Note that we reduced the maximum number of fixed-point

iterations to 100 in order to keep the computational effort

of the conventional CPA tractable. As a result, performing

the conventional CPA for all 5040 priority assignments took

about eight hours on single core of a conventional desktop

CPU whereas our analysis approach only required 22 seconds.

Moreover, the former reached the maximum number of itera-

tions in all but 6 cases and therefore determined the priority

assignment not schedulable. For the remaining analysable

priority assignments it achieved latency results between 4949

and 8613 ms for chain P and between 1017 and 2322 ms for

chain L. Thus, by means of conventional CPA, there is no

feasible priority assignment.

On the contrary, our analysis approach draws a totally

different picture, which is illustrated by the scatter plot of

the resulting latencies for both task chains in Figure 12. In

comparison, we also performed an offset-based analysis as

presented in [18] with MAST [23]. Both analyses returned

latency results for all priority assignments and below those of

conventional CPA. The lines in Figure 12 mark the latency

constraints, i.e. the space of acceptable solutions is below

and left of these lines, which contains 2880 (11) of the 5040

priority assignments for our approach (MAST). The size of

the markers corresponds to the number of analysed cases with

the same results.

IX. CONCLUSION AND FUTURE WORK

In this paper, we presented an approach to end-to-end

latency analysis for tasks chains that significantly reduces

the pessimism of the worst-case timing analysis. From the

model transformation between the programming model and

the timing analysis model we derived that threads naturally

https://doi.org/10.24355/dbbs.084-201803221521



0 50 100 150 200 250 300 350 400
task chain P

0

50

100

150

200

250

300

350

400

ta
sk

 c
h
a
in

 L

refined
MAST

Figure 12. Resulting worst-case latency bounds [in ms] from the refined
analysis and MAST. The lines indicate the acceptable solution space.

build chains of tasks with precedence constraints, which

motivates the high relevance of this analysis. Furthermore, as

these precedence relations affect the actual execution order

(scheduling), we believe that the analysis of such chains

are best approached by local scheduling analysis. Based on

the busy-window approach that is typically applied on the

task level, we derived a response-time analysis for entire

task chains. We could not only show that this approach is

able to significantly improve the end-to-end latency bounds

but also increases the number of analysable systems as it

reduces the number of fixed-point iterations. In contrast to

other approaches, we were therefore able to improve the

results (bounds) from the timing analysis while simultaneously

reducing the computational effort. Consequently, this enhances

the applicability and even enables the in-field use of timing

analysis for common scenarios, which we also demonstrated

by means of an automotive use case that has been developed in

the scope of the CCC project. In future work, we will address

how this approach can be extended to allow joins in task chains

as this is a case we face as soon as software components (e.g. a

communication stack) are shared among several components.

ACKNOWLEDGEMENTS

This work was supported by the DFG Research Unit

Controlling Concurrent Change (CCC), funding number FOR

1800. We thank the members of CCC for their support.

REFERENCES

[1] M. Stigge, “Real-time workload models: Expressiveness vs. analysis
efficiency,” Ph.D. dissertation, Uppsala University, 2014.

[2] AUTOSAR website. [Online]. Available: http://www.autosar.org/
[3] PikeOS Hypervisor. [Online]. Available: https://www.sysgo.com/

products/pikeos-rtos-and-virtualization-concept/
[4] seL4 Microkernel. [Online]. Available: https://sel4.systems/
[5] S. Chakraborty, S. Kunzli, and L. Thiele, “A general framework for

analysing system properties in platform-based embedded system de-
signs,” in Proceedings of the Conference on Design, Automation and

Test in Europe - Volume 1, ser. DATE ’03. Washington, DC, USA:
IEEE Computer Society, 2003.

[6] R. Henia, A. Hamann, M. Jersak, R. Racu, K. Richter, and R. Ernst,
“System Level Performance Analysis - the SymTA/S Approach,” in
IEEE Proceedings Computers and Digital Techniques, 2005.

[7] R. Henia, L. Rioux, N. Sordon, G.-E. Garcia, and M. Panunzio, “Inte-
grating Formal Timing Analysis in the Real-Time Software Development
Process,” in Proceedings of the 2015 Workshop on Challenges in

Performance Methods for Software Development, ser. WOSP ’15. New
York, NY, USA: ACM, 2015, pp. 35–40.

[8] K. Richter, “Compositional Scheduling Analysis Using Standard Event
Models,” Ph.D. dissertation, TU Braunschweig, Braunschweig, Ger-
many, 2005.

[9] J. Diemer, P. Axer, and R. Ernst, “Compositional Performance Analysis
in Python with pyCPA,” in 3rd International Workshop on Analysis Tools

and Methodologies for Embedded and Real-time Systems (WATERS), Jul.
2012.

[10] S. Schliecker, J. Rox, M. Ivers, and R. Ernst, “Providing Accurate Event
Models for the Analysis of Heterogeneous Multiprocessor Systems,” in
Proc. 6th International Conference on Hardware Software Codesign and

System Synthesis (CODES-ISSS), Atlanta, GA, Oct. 2008.
[11] J. Sun and J. W. S. Liu, “Bounding the end-to-end response time in

multiprocessor real-time systems,” in Proceedings of the 3rd Workshop

on Parallel and Distributed Real-Time Systems, ser. WPDRTS ’95.
Washington, DC, USA: IEEE Computer Society, 1995.

[12] J. Lehoczky, “Fixed Priority Scheduling of Periodic Task Sets with
Arbitrary Deadlines,” Proc. 11th RTSS, pp. 201–209, Dec 1990.

[13] K. Tindell, A. Burns, and A. Wellings, “An extendible approach for
analyzing fixed priority hard real-time tasks,” Real-Time Systems, vol. 6,
no. 2, pp. 133–151, 1994.

[14] S. Schliecker and R. Ernst, “A recursive approach to end-to-end path
latency computation in heterogeneous multiprocessor systems,” in Proc.

7th International Conference on Hardware Software Codesign and

System Synthesis (CODES-ISSS). Grenoble, France: ACM, oct 2009.
[15] K. Tindell, “Adding time-offsets to schedulability analysis,” Univ. of.

York, UK, Tech. Rep. YCS 221, 1994.
[16] J. C. Palencia and M. González Harbour, “Schedulability analysis for

tasks with static and dynamic offsets,” in Proceedings of the IEEE Real-

Time Systems Symposium, ser. RTSS ’98. Washington, DC, USA: IEEE
Computer Society, 1998.

[17] J. Mäki-Turja and M. Nolin, “Efficient implementation of tight response-
times for tasks with offsets,” Real-Time Systems, vol. 40, no. 1, pp.
77–116, 2008.

[18] J. C. Palencia and M. G. Harbour, “Exploiting precedence relations in
the schedulability analysis of distributed real-time systems,” in Real-

Time Systems Symposium, 1999. Proceedings. The 20th IEEE, 1999, pp.
328–339.

[19] R. E. Rafik Henia, “Improved offset-analysis using multiple timing-
references,” in Proceeding Design Automation and Test in Europe, Mar.
2006.

[20] K. Tindell and J. Clark, “Holistic schedulability analysis for distributed
hard real-time systems,” Microprocess. Microprogram., vol. 40, no. 2-3,
pp. 117–134, Apr. 1994.

[21] pyCPA website. [Online]. Available: https://bitbucket.org/pycpa/pycpa
[22] E. Wandeler and L. Thiele, “Real-Time Calculus (RTC) Toolbox,”

2006. [Online]. Available: http://www.mpa.ethz.ch/Rtctoolbox
[23] MAST: modeling and analysis suite for real-time. [Online]. Available:

http://mast.unican.es/
[24] SymTA/S: symbolic timing analysis for systems. [Online]. Available:

https://www.symtavision.com/symtas.html
[25] S. Perathoner, “Modular performance analysis of embedded real-time

systems: improving modeling scope and accuracy,” Ph.D. dissertation,
ETH Zurich, 2011.

[26] L. Sha, R. Rajkumar, and J. P. Lehoczky, “Priority inheritance proto-
cols: An approach to real-time synchronization,” IEEE Trans. Comput.,
vol. 39, no. 9, pp. 1175–1185, Sep. 1990.

[27] U. Steinberg, A. Böttcher, and B. Kauer, “Timeslice Donation in
Component-Based Systems,” in 6th OSPERT, Brussels, Belgium, 2010.

[28] J. Schlatow, M. Moestl, and R. Ernst, “An extensible autonomous
reconfiguration framework for complex component-based embedded
systems,” in 12th International Conference on Autonomic Computing

(ICAC 2015), Grenoble, France, July 2015, pp. 239–242.

https://doi.org/10.24355/dbbs.084-201803221521

http://www.autosar.org/
https://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
https://www.sysgo.com/products/pikeos-rtos-and-virtualization-concept/
https://sel4.systems/
https://bitbucket.org/pycpa/pycpa
http://www.mpa.ethz.ch/Rtctoolbox
http://mast.unican.es/
https://www.symtavision.com/symtas.html

	Introduction
	Modelling Communicating Threads
	Compositional Performance Analysis
	Related work
	Extended timing analysis model
	Response-time analysis for synchronous task chains
	Task-chain busy window
	Refined task-chain busy window

	Response-time analysis for asynchronous task chains
	Evaluation
	Experimental results
	Analysis of an automotive use case

	Conclusion and future work
	References

