
Scaling the Web

Response-Time Analysis of
Composite Web Services
Daniel A. Menascé • George Mason University • menasce@cs.gmu.edu

Web services let programs submit requests
to other programs over the Internet via
open protocols and standards.1 Many tra-

ditional Web sites, including popular search
engines like Google and large online bookstores
such as Amazon.com, are boosting their traffic
through Web service APIs.

A single Internet application can invoke many
different Web services — for example, the
metasearch engine WebSifter uses several online
ontologies to refine a user’s request into a more
meaningful query and then submits that query to
various search engines in parallel.2 We call such
applications composite Web services.3 As I dis-
cussed in a previous column, many important
challenges stem from the quality-of-service issues
in composite Web services.4 In this column, I
address the impact of slow services on the overall
response time of a transaction that uses several
Web services in parallel.

The Computing Paradigm
Consider the distributed application in Figure 1.
An initialization step S0 is followed by a parallel
invocation of N Web services running on differ-
ent servers. We assume the average time to obtain
a response from any Web service 1 through N – 1
to be S time units. Web service N is slower to
respond; we assume its average response time to
be g × S, where g ≥ 1. (The factor g is the slow-
down factor of Web service N.) The application’s
final step Sf can only be executed after all N Web
services have responded. The time spent waiting
for all N Web services to respond is the synchro-
nization component of the application’s overall
response time.

This type of computing paradigm, called fork
and join, is typical of many parallel and distrib-
uted applications. I use this simple model here to
explore the impact of g on the average time T
required to execute all N services — the average
time taken inside the dashed rectangle of Figure 1.

A Performance Model
Let T (g) be the average time to execute Figure 1’s
fork and join as a function of g. I am interested in
exploring the impact of g on the application’s
overall slowdown factor G, which is

. (1)

The time it takes to execute N Web services that
must synchronize after they’ve all completed is
maxN

i=1{Si}, where Si is the time it takes to execute
Web service i (i = 1, …, N). It’s easy to show that if
all service times Si are exponentially distributed
with the same mean S, then

T(1) = HN × S, (2)

where HN is the Nth harmonic number defined as

.

To find a general expression for T(g), I adapted
the Markov chain model I derived in a previous
article that studied the scheduling of parallel tasks
running on heterogeneous multiprocessors.5 A gen-
eral state of this Markov chain is (i, j, k), where i (i
= 0, …, N – 1) indicates the number of Web services
still running on the fast Web services, j (j = 0, 1) is
the number of Web services running on the slow
Web service, and k (k = 1, …, N) is the number of
Web services yet to complete. I found a closed-form
solution for this Markov chain in a previous study.5

We can easily obtain T (g) from that solution:

(3)

where

,

P N F i gF V

i

N

() () ()= + + +

=

− −

∑1 1
1

2 1

T g
S

N
g

P N
()

()
=

− +

1
1

1

1

/ i
i

N

=
∑

G
T g
T

=
()
()1

90 JANUARY • FEBRUARY 2004 Published by the IEEE Computer Society 1089-7801/04/$20.00 © 2004 IEEE IEEE INTERNET COMPUTING

,

AND

.

The expression in Equation 3
reduces, as expected, after some alge-
braic manipulation to Equation 2
when g = 1.

Analysis of the Results
Clearly, when g = 1, the overall slow-
down factor G is equal to 1. As g
increases, more time is spent at the
slow Web service relative to the oth-
ers. Figure 2 shows the variation of G
as a function of g for four different
values of the number of Web services
(N = 5, 10, 15, and 20) the application
uses. For example, when g is equal to
5, the application’s overall slowdown
factor is 2.4 when five Web services
are involved. In other words, if an
application uses five Web services, one
of which is five times slower than the
other four, the overall average res-
ponse time will be 2.4 larger than what
would be achieved if all five Web ser-
vices had the same response time as
the four fast services.

Figure 2’s curves show two things.
One, for any value of N, G increases
with g. For small values of g (below
four), G’s increase is nonlinear. This
nonlinearity is because the time spent
waiting for the synchronization of all
Web services is an important compo-
nent of overall response time. As g
increases, it becomes more likely that
all N – 1 fast Web services will com-
plete before the slow one. T(g) is thus
dominated by the time it takes to exe-
cute the slow Web service; at this point,
the variation of G versus g becomes
almost linear. Two, for the same value
of g, G decreases with the number of
Web services the application invokes in
parallel. (This effect is more pro-
nounced for larger values of g.) The
explanation is that as g increases, the
slowest Web service dominates overall

response time, decreasing the synchro-
nization effect. But T(1) increases with
N, thus G decreases with N.

Figure 3 (next page) shows the
variation of the average response time
T(g) normalized with respect to the
average response time S of the fast
Web services versus g. For example, as
the curves indicate, for g = 2 and N =
20, the application’s average response
time is approximately equal to four
times the average response time of the
fastest Web service.

Figure 3’s curves indicate two
things. One, the average normalized
response time increases with g in a
nonlinear fashion for low values of g.

For higher values of g, the variation is
almost linear. This is because for low
values of g, synchronization time
dominates the time spent at the slow
service. Two, the average normalized
response time increases with N, espe-
cially for low values of g, due to the
relatively high synchronization time.
As g increases, the impact of N de-
creases because the time spent at the
slow Web service dominates overall
execution time.

Concluding Remarks
We can generalize the fork-and-join
model discussed here in the follow-
ing cases:

F i
N j

N j
g

j

N i

() =
−

− − +=

− −

∏
1

1
1

1

V

g j
F i

i j

N

j

N

=
=

−

=

−

∑∑1 1 1

1

1

()

IEEE INTERNET COMPUTING www.computer.org/internet/ JANUARY • FEBRUARY 2004 91

Response-Time Analysis

Figure 1. A composite Web service. After an initialization step S0 , NWeb
services are invoked in parallel. Service N takes longer than the others, and the
final step Sf can only be carried out after all N services have completed.

S0

Sf

1 N2 . . . N – 1

Figure 2. Application slowdown factor G versus Web service slowdown factor g.
We consider four different values of the number of Web services N.

0

1

2

3

4

5

6

7

8

9

10

0 2 4 6 8 10 12 14 16 18 20
Slowdown factor (g)

O
ve

ra
ll

sl
ow

do
w

n
fa

ct
or

 (
G

)

N = 10N = 5 N = 15 N = 20

January/February
E-Voting

March/April
Wireless Security

May/June
Security in Large Systems—
Legacy and New

July/August
Red Teaming State-of-the-Art

September/October
Special Report

November/December
Reliability/Dependability
Aspects of Critical Systems

• The application’s structure consists
of a sequence of fork and joins
connected by one or more steps. In
this case, the application’s total
average response time is the sum of
the times spent at each fork-and-
join phase plus the time spent at
each serial step.

• The application’s structure includes
fork-and-join components execut-
ed in a mutually exclusive fashion
with given probabilities. In this
case, the application’s average
response time is obtained as the
weighted sum of the solutions; the
weights are the probabilities of
executing each fork and join.

• One of the Web services is faster, as
opposed to slower, than all others

(for example, g < 1). In this case,
the derivation of Equation 3 works
for any value of g > 0.

Although simple, the model dis-
cussed in this article provides good
insights on the performance impact
of a slower service that participates
in an application using several Web
services. We can improve the appli-
cation’s scalability as a whole by
reducing the time spent at the slow
server. Caching of the results that the
server provides can significantly
improve performance.

References
1. F. Curbera et al., “Unraveling the Web Ser-

vices Web: An Introduction to SOAP, WSDL,

and UDDI,” IEEE Internet Computing, vol. 6,

no. 2, 2002, pp. 86–93.

2. W. Kim, L. Kerschberg, and A. Scime,

“Learning for Automatic Personalization in

a Semantic Taxonomy-Based Meta-Search

Agent,” J. Electronic Commerce Research

and Applications (ECRA), vol. 1, no. 2,

2002, pp. 150–173.

3. B. Benatallah, Q.Z. Sheng, and M. Dumas,

“The Self-Serve Environment for Web Ser-

vices Composition,” IEEE Internet Comput-

ing, vol. 7, no. 1, 2003, pp. 40–48.

4. D.A. Menascé, “QoS Issues in Web Services,”

IEEE Internet Computing, vol. 6, no. 6, 2002,

pp. 72–74.

5. D.A. Menascé et al., “Static and Dynamic

Processor Scheduling Disciplines in Hetero-

geneous Parallel Architectures,” J. Parallel

and Distributed Computing, vol. 28, no. 1,

1995, pp. 1–18.

Acknowledgments
The author’s work is partially supported by grant

number NMA501-03-1-2022 from the National

Imagery and Mapping Agency (NIMA).

Daniel A. Menascé is a professor of computer

science, the co-director of the E-Center for

E-Business, and the director of the MS in E-

Commerce program at George Mason Uni-

versity. He received a PhD in computer sci-

ence from the University of California, Los

Angeles, and published the books Perfor-

mance by Design, Capacity Planning for Web

Services, and Scaling for E-Business (Pren-

tice Hall, 2004, 2002, and 2000). He is a fel-

low of the ACM and a recipient of the A.A.

Michelson Award from the Computer Mea-

surement Group.

92 JANUARY • FEBRUARY 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Scaling the Web

Figure 3. Normalized response time of the application versus the Web service
slowdown factor g. The variation with g is nonlinear for low values of g and
becomes linear for higher values of g.

0

1

2

3

4

5

6

7

1 2 3 4 5
Slowdown factor (g)

N
or

m
al

iz
ed

 o
ve

ra
ll

re
sp

on
se

 t
im

e
(T

(g
)/

S)

N = 10N = 5 N = 15 N = 20

IEEE Security & Privacy 2004 Editorial Calendar

www.computer.org/security/author.htm

