
 Open access Proceedings Article DOI:10.1109/TRUSTCOM.2011.146

Response Time Analysis of COTS-Based Multicores Considering the Contention on
the Shared Memory Bus — Source link

Dakshina Dasari, Björn Andersson, Vincent Nélis, Stefan M. Petters ...+2 more authors

Institutions: International Student Exchange Programs, Software Engineering Institute, KAIST

Published on: 16 Nov 2011 - Trust, Security And Privacy In Computing And Communications

Topics: Bus contention, Local bus, Shared memory, Control bus and Task (computing)

Related papers:

 Worst case delay analysis for memory interference in multicore systems

 Memory Access Control in Multiprocessor for Real-Time Systems with Mixed Criticality

 Bounding the shared resource load for the performance analysis of multiprocessor systems

Bus Access Optimization for Predictable Implementation of Real-Time Applications on Multiprocessor Systems-on-
Chip

 Bounding memory interference delay in COTS-based multi-core systems

Share this paper:

View more about this paper here: https://typeset.io/papers/response-time-analysis-of-cots-based-multicores-considering-
2vbrtmxf13

https://typeset.io/
https://www.doi.org/10.1109/TRUSTCOM.2011.146
https://typeset.io/papers/response-time-analysis-of-cots-based-multicores-considering-2vbrtmxf13
https://typeset.io/authors/dakshina-dasari-4iysiwztck
https://typeset.io/authors/bjorn-andersson-2vnajqtfgp
https://typeset.io/authors/vincent-nelis-2fsuhzuwtb
https://typeset.io/authors/stefan-m-petters-2vuir3fp3j
https://typeset.io/institutions/international-student-exchange-programs-2c36vhx6
https://typeset.io/institutions/software-engineering-institute-3aownu06
https://typeset.io/institutions/kaist-ta0mf5gm
https://typeset.io/conferences/trust-security-and-privacy-in-computing-and-communications-23ioaccs
https://typeset.io/topics/bus-contention-1vzjenja
https://typeset.io/topics/local-bus-1m7cgw5r
https://typeset.io/topics/shared-memory-3mkb16w1
https://typeset.io/topics/control-bus-cv6lz00s
https://typeset.io/topics/task-computing-jlmq508j
https://typeset.io/papers/worst-case-delay-analysis-for-memory-interference-in-298fbcbjj3
https://typeset.io/papers/memory-access-control-in-multiprocessor-for-real-time-apqnsif1tp
https://typeset.io/papers/bounding-the-shared-resource-load-for-the-performance-45rvwdd6up
https://typeset.io/papers/bus-access-optimization-for-predictable-implementation-of-2r226w4p3h
https://typeset.io/papers/bounding-memory-interference-delay-in-cots-based-multi-core-1yjfklz778
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/response-time-analysis-of-cots-based-multicores-considering-2vbrtmxf13
https://twitter.com/intent/tweet?text=Response%20Time%20Analysis%20of%20COTS-Based%20Multicores%20Considering%20the%20Contention%20on%20the%20Shared%20Memory%20Bus&url=https://typeset.io/papers/response-time-analysis-of-cots-based-multicores-considering-2vbrtmxf13
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/response-time-analysis-of-cots-based-multicores-considering-2vbrtmxf13
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/response-time-analysis-of-cots-based-multicores-considering-2vbrtmxf13
https://typeset.io/papers/response-time-analysis-of-cots-based-multicores-considering-2vbrtmxf13

Response Time Analysis of COTS-Based
Multicores Considering The Contention On
The Shared Memory Bus

www.hurray.isep.ipp.pt

Technical Report

HURRAY-TR-110705

Version:

Date: 09-27-2011

Dakshina Dasari

Björn Andersson

Vincent Nelis

Stefan M. Petters

Arvind Easwaran

Jinkyu Lee

Technical Report HURRAY-TR-110705 Response Time Analysis of COTS-Based Multicores Considering

 The Contention On The Shared Memory Bus

© IPP Hurray! Research Group
www.hurray.isep.ipp.pt

1

Response Time Analysis of COTS-Based Multicores Considering The
Contention On The Shared Memory Bus

Dakshina Dasari, Björn Andersson, Vincent Nelis, Stefan M. Petters, Arvind Easwaran, Jinkyu Lee

IPP-HURRAY!

Polytechnic Institute of Porto (ISEP-IPP)

Rua Dr. António Bernardino de Almeida, 431

4200-072 Porto

Portugal

Tel.: +351.22.8340509, Fax: +351.22.8340509

E-mail: dndi@isep.ipp.pt, baa@isep.ipp.pt, nelis@isep.ipp.pt, smp@isep.ipp.pt, aen@isep.ipp.pt, jule@isep.ipp.pt

http://www.hurray.isep.ipp.pt

Abstract

Abstract—The current industry trend is towards using Commerciallyavailable Off-The-Shelf (COTS) based multicores

for developing realtimeembedded systems, as opposed to the usage of custom-madehardware. In typical implementation

of such COTS-based multicores,multiple cores access the main memory via a shared bus. This oftenleads to contention

on this shared channel, which results in an increaseof the response time of the tasks. Analyzing this increased

responsetime, considering the contention on the shared bus, is challengingon COTS-based systems mainly because bus

arbitration protocolsare often undocumented and the exact instants at which the sharedbus is accessed by tasks is not

explicitly controlled by the operatingsystem scheduler; they are instead a result of cache misses. This paperproposes

three contributions towards analyzing tasks scheduled onCOTS-based multicores. Firstly, we describe a method to

model thememory access patterns of a task. Secondly, we apply this model toanalyze the worst-case response time for a

set of tasks. Finally, thispaper describes a method to experimentally obtain the parametersrequired for such an analysis,

by using performance monitoringcounters. We compare our work against an existing approach andshow that our

approach outperforms it by providing tighter upperboundson the number of bus requests generated by the tasks.

Response Time Analysis of COTS-Based Multicores Considering the Contention on the

Shared Memory Bus

Dakshina Dasari∗, Björn Andersson†∗, Vincent Nelis∗, Stefan M. Petters∗, Arvind Easwaran∗ and Jinkyu Lee‡

∗CISTER-ISEP Research Centre, Polytechnic Institute of Porto, Portugal
†Software Engineering Institute, Carnegie Mellon University, USA

‡Dept. of Computer Science, KAIST, South Korea

{dndi, baa, nelis, smp, aen}@isep.ipp.pt; jinkyu@cps.kaist.ac.kr; baandersson@sei.cmu.edu

Abstract—The current industry trend is towards using Commercially

available Off-The-Shelf (COTS) based multicores for developing real-

time embedded systems, as opposed to the usage of custom-made

hardware. In typical implementation of such COTS-based multicores,

multiple cores access the main memory via a shared bus. This often

leads to contention on this shared channel, which results in an increase

of the response time of the tasks. Analyzing this increased response

time, considering the contention on the shared bus, is challenging

on COTS-based systems mainly because bus arbitration protocols are

often undocumented and the exact instants at which the shared bus is

accessed by tasks are not explicitly controlled by the operating system

scheduler; they are instead a result of cache misses. This paper makes

three contributions towards analyzing tasks scheduled on COTS-based

multicores. Firstly, we describe a method to model the memory access

patterns of a task. Secondly, we apply this model to analyze the worst-

case response time for a set of tasks. Although the required parameters

to obtain the request profile can be obtained by static analysis, we

provide an alternative method to experimentally obtain them by using

performance monitoring counters (PMCs). We also compare our work

against an existing approach and show that our approach outperforms

it by providing tighter upper-bound on the number of bus requests

generated by a task.

I. INTRODUCTION

Currently, multicore processors are generic building blocks in

the design of embedded real-time computing systems. In a typical

multicore system, each core has its own resources (architectural

state, registers, execution units, some or all levels of caches).

Data is transferred from the memory to the processor over an

interconnection network and the focus of this paper is on mul-

ticore implementations that use the Front Side Bus (FSB) as

the interconnection network. Since all the cores access memory

via the FSB, cores may stall while waiting for requests to be

served, thereby increasing the execution time of the tasks running

on those cores. For the deployment of real-time applications on

multicores it is often of utmost importance to determine whether

tasks meet their deadlines by analyzing their worst-case response

time (WCRT) at design time, considering the contention on shared

low-level hardware resources. Unfortunately, established methods

to compute WCRT of tasks for a uniprocessor cannot be used

unmodified for multicores, since they do not take into account the

This work was supported by the CISTER Research Unit (608FCT),
the REPOMUC project (ref. FCOMP-01-0124-FEDER-015050), funded
by FEDER funds through COMPETE (POFC - Operational Programme
’Thematic Factors of Competitiveness), and by National Funds (PT) through
FCT - Portuguese Foundation for Science and Technology; by the RE-
COMP project, funded by National Funds through FCT under grant ref.
ARTEMIS/0202/2009, and by the ARTEMIS JU under grant agreement no
100202.

additional impact of shared low-level hardware resources. For the

multicore domain, methods to profile the bus request patterns and

to compute the increased execution time due to contention on the

shared low-level hardware resources are still in the initial stages of

research. Hence there is a need to develop such a method which

will help in leveraging the computing power of multicores for real-

time applications. To do so, we first discuss the solutions which

exist in the state of the art and then proceed towards defining our

objectives and proposing our method for analyzing tasks deployed

on multicores, considering the contention on the memory bus.

A. Related Work

The research community has made important initial contributions

to advance the state of the art. Some TDMA-based schemes have

been analyzed since they are predictable and hence real-time

friendly. However, it is difficult to point out currently existing

architectures that actually support TDMA, for lack of documen-

tation from the vendors. A TDMA-based arbitration algorithm has

been proposed by Rosén et al. [1], in which different time slots

to access the bus are allocated to different processors by static

scheduling, stored in a memory directly connected to the bus arbiter

(not available in COTS systems). Schranzhofer et al. [2] developed

a framework for analyzing the worst-case response time of real-

time tasks when TDMA is applied to arbitrate access to a shared

resource. This was followed by their work on resource adaptive

arbiters [3]. Unfortunately, their rigid assumption of tasks being

split into superblocks which execute in some statically pre-defined

order and divided into mutually exclusive acquisition, execution

and replication phases limits the applicability of their solution. In

the TDMA-based schemes proposed in [4] and [5], the authors

have considered the effect of shared instruction caches with a

shared bus as well. Since they do not model data accesses and

assume separate buses and memories for code and data (uncommon

in commodity hardware), their solution though interesting, has

limited applicability. Another method to model request patterns

and the memory bus using timed automata has been proposed in

[6], but they model only instruction accesses. Pellizoni et al. [7]

have developed a method to compute an upper bound to the

contention delay incurred by a task, for systems comprising any

number of cores and any number of peripheral buses sharing

a single main memory. They assume time triggered (periodic)

tasks and a restrictive preemption model and hence their solution

does not cater to event-triggered tasks. Schliecker et al. [8] have

proposed a method to address the issue of bounding the shared

resource load for multiprocessor systems using a general event

based model, but their method is based on the computation of

the minimum time between two consecutive accesses to a shared

resource, leading to an over-estimation of the number of requests

since it inherently implies a uniform distribution of requests. We

will show in Section V that the approach proposed in this paper

provides a tighter upper-bound on the number of requests when

compared to the approach by Schliecker et al.

B. Objectives and Assumptions

Given the WCET of a task in isolation, we aim to develop a

method to compute the WCRT, considering the increased execution

time due to contention on the bus for COTS-based systems. As

chip makers often do not publish the underlying bus arbitration

protocols, the method must not be tightly bound to a particular bus

arbitration mechanism and therefore should be generic. In addition,

the method should also deal efficiently with event-triggered tasks

to reflect real world applications. In order to realize such a method,

we believe that it is warranted to make the following assumptions:

A1. The interconnection network to memory is a bus: The rationale

for this assumption is that although the general trend among

chip makers is towards switched interconnection networks, the

shared front side bus is still the dominant technology in multicore

processors and is expected to be used for some considerable time.

A2. Non preemptive tasks: This assumption is made as a first

step to avoid dealing with cache-related preemption delays and the

effect of context switching overhead associated with preemptive

scheduling.

A3. A constrained deadline sporadic task model: sporadic tasks

have proven remarkably useful for the modeling of event-triggered

real-time systems.

A4. Partitioned scheduling (tasks have been assigned to processors

before run-time and they do not migrate at run-time): Again, this

is to focus on the problem of bus contention.

A5. Arbitration for the memory bus is work conserving: This is

the current standard of COTS-based multicore implementations.

A6. Only one memory request can be handled at a time. Today,

most of the commercial memory controllers implement complex

and optimized features to improve the memory performance, such

as multiple data rates or multiple channels. In such memory con-

trollers, memory requests can be overlapped and multiple requests

can then be served simultaneously. However, this assumption is

made to simplify the analysis while still providing safe results.

We present a method which attempts to fulfill the objectives

stated above, based on assumptions A1–A6. Our main contributions

are towards developing a method to (i) Characterize the bus request

pattern of the task (ii) Find an upper bound on the number of bus

requests generated in a time window of length t (iii) Compute

the WCRT of tasks for multicores under a partitioned scheme,

considering the contention on the bus (iv) Experimentally obtain

the requisite parameters on a COTS-based multicore. These are

presented in Sections III, IV and VI in the paper. We also compare

our method with the method proposed in [8] in Section V.

II. SYSTEM AND TASK MODEL

A. Hardware Model

The hardware is composed of a set of m processor cores denoted

by π1, π2, . . . , πm, and as stated, the cores do not share caches.

This model applies to systems in which each core has a private

cache, or the shared cache if present, is disabled. All the cores

communicate over a shared bus (the Front-Side-Bus) in order to

access the shared main memory.

B. Task Model

The application is composed of a set of tasks τ =
{τ1, τ2, . . . , τn}. We also assume a constrained-deadline sporadic

task model in which each task τi is characterized by �Ci, Di, Ti�;
a worst-case execution time, Ci, a minimum inter-arrival time Ti

and a deadline Di ≤ Ti, with the interpretation that, during the

execution of the system, task τi releases a sequence of jobs such

that two subsequent jobs from τi are released at least Ti time

units apart and the exact times of the releases of these jobs cannot

be controlled by the scheduling algorithm. In order to meet its

deadline, each job released by τi needs to be executed for Ci time

units within Di time units from its release. We denote by Ri an

upper-bound on the worst-case response time (WCRT) of task τi.

The response time of a job denotes the time between its arrival and

its completion and the WCRT of a task is the maximum amongst

the response time of all the jobs released by the task.

In this paper, we are interested in finding the WCRT when τi

executes with contention on the memory bus, i.e., assuming that

other tasks are running on other cores. Clearly, this value is not an

inherent property of τi, but is co-runner dependent and it depends

on the memory request pattern of the other tasks scheduled to run

during its execution. To compute this contention-aware WCRT, we

extend the general WCRT time equation for non-preemptive tasks

and incorporate the extra delay introduced due to cores competing

for the same shared FSB to access the shared main memory. To

compute the contention delay, we next introduce the notations

BRi(t) and TR.

Given a task τi, we define a function BRi(t), that returns an

upper bound on the number of bus requests that task τi can generate

in a time interval of length t. Since the tasks do not share any

cache in our hardware model, the initial value of BRi(t), is clearly

dependent on task τi only, and independent of the behavior of tasks

running on the other processors/cores. But, as will be seen, since

the computation of BRi(t), takes as a parameter the response time

of the task, which is in turn affected by the other tasks run in the

system, the value of BRi(t) will change accordingly.

We denote by TR an upper bound on the time needed to perform

a bus transaction. In general, a bus transaction is a complete

sequence of bus actions required to perform a read (or write)

operation.

C. Scheduler Specification

As noted, tasks are assigned to processors before run-time; i.e.,

we consider a partitioned scheme of task assignment in which

tasks are not allowed to migrate from one core to another. Also,

remember that tasks run to completion and are not preempted.

For analysis, we will assume that each task assigned to a core

is assigned a unique priority at design time. It has to be noted that

the assumption of fixed priority scheduling has only been made for

clarity of representation, but in principle our approach can be used

with any fixed job priority algorithm which allows the computation

of the WCRT Ri. To summarize, our current approach assumes a

non-preemptive, fixed priority, partitioned model for the task set

under analysis.

2

timeCi Ci Ci Ci

TiTi Ti
carry in Ti −Ri

Ri

thead tbody ttail

t = thead + tbody + ttail

Figure 1. Calculation of BRi(t) for t ≥ Ci

time

Ci

s

s + t

t

Figure 2. Calculation of BRi(t) for t < Ci

We denote by π(i), the set of tasks, excluding τi, that are

assigned to the same core as τi. The notation π̄(i) will be used to

denote the set of tasks not assigned to the same core as τi. Also,

we denote by lp(i) and hp(i) the subset of tasks executed on the

same core as τi and which have a lower and higher priority than

τi, respectively.

III. A METHOD TO COMPUTE BRi(t)

As stated previously, BRi(t) denotes an upper bound on the

number of bus requests that task τi can generate during any time

interval of duration t. The following notations are used in context

of the computation of BRi(t):

1) A lower and upper bound, ARLj
i (t) and ARHj

i (t) (re-

spectively) on the number of bus requests in an interval

[0, t], where 0 denotes the beginning of execution of the jth

execution path of task τi up to time t.
2) The execution time Cj

i of the jth execution path of task τi.

We note that different executions of the same path may result

in different number of bus requests as a result of the underlying

cache replacement policy; this is the reason why we distinguish

between ARHj
i (t) and ARLj

i (t). We let paths(τi) denote the set

of all the execution paths of task τi. By definition, ARHj
i (t) and

ARLj
i (t) are non-decreasing functions for all i, j.

Consider a time window of a given length t, for which we need

to compute an upper bound BRi(t) on the number of bus requests

generated by a task τi. We can have three types of jobs in this time

interval (i) A job that is released before the start of the time window

but with its deadline in the time window, which means it executes

partially or completely within the window(ii) Jobs that are released

within this time window and complete their entire execution within

it, and (iii) A job released within the given time window but having

its deadline outside the window and hence executes partially or

completely within the time window. To calculate BRi(t), we divide

the time window t into three subintervals correspondingly: the head

portion of length thead, the body portion of length tbody, and the

tail portion of length tL, such that thead + tbody + ttail = t and

thead, ttail < Ti.

As shown in Figure 1, the head has a length of less than Ti,

implying either one partial or one complete execution. The head is

in turn divided into two parts, namely, the carry in and the arrival

gap (a gap). The carry-in portion represents the execution segment

of the task which lies within the time window (under consideration)

and it ranges from 0 to Ci. Since the task executes in the carry-in

portion, we can also view the carry-in part as the request generating

portion of the head. On the other hand, the a gap part specifies the

time between the termination of τi in the head and its next release

time-instant, i.e., it is the time between the end of the carry-in

and the next release of τi. In this portion, no bus requests can

be generated since the CPU is waiting for the next release of τi.

In order to maximize the number of requests in the whole time

window under consideration, it can be easily shown that the a gap

interval should be as short as possible, and its shortest length is

given by (Ti − Ri), which assumes the scenario in which the job

of τi that executes in the head has completed execution exactly Ri

time units after its release. We represent this by

thead
def
=

(

carry in+a gap if carry in > 0

0 otherwise

with 0 ≤ carry in ≤ Ciand a gap = Ti − Ri

Since the head part starts from any arbitrary point of an execution

of τi, but includes the end point of that execution, an upper bound

on the number of bus requests generated in the head portion is

given by:

f
head
i (carry in)

def
= max

j∈paths(τi)

n

ARH
j

i (C
j

i)− ARL
j

i ([C
j

i − carry in])
o

(1)

In the body portion, there are exactly tbody/Ti complete execu-

tions of τi and the maximum number of request generated in the

body portion is given by:

f
body
i (tbody)

def
=

tbody

Ti

× max
j∈paths(τi)

n

ARHj
i (C

j
i)

o

(2)

Finally, the length of the tail part is less than Ti, implying either

one partial or one complete execution. The number of bus requests

generated in the tail part can be bounded from above by:

f tail
i (ttail)

def
= max

j∈paths(τi)

n

ARHj
i (min{ttail, C

j
i })

o

(3)

Algorithm 1 describes a method to compute the function BRi(t).

The input to the algorithm is t, the duration for which the number

of requests needs to be upper bounded, Ri, the response time of the

task, Ci and Ti. When the task is run in isolation, we assign Ri =
Ci. The algorithm computes the maximum number of requests by

considering every feasible combination of thead, tbody and ttail.
To do so, it initially fixes the carry in which ranges from 0 to Ci,

computes the arrival gap given by Ti−Ri and then correspondingly

calculates tbody and ttail in lines 3 to 14 of the algorithm. Next

the body portion is computed and the rest of the time interval is

assigned to the tail portion. This is represented as:

tbody
def
= max



0,

—

(t − thead)

Ti

�ff

× Ti (4)

ttail
def
= max {0, t − thead − tbody} (5)

For every combination of thead, tbody and ttail, the algorithm

computes the number of requests in line 15. The maximum

3

Algorithm 1: ComputeBR()

input : Ri, Ci, Ti and time interval t
output: BRi(t)

1 begin

2 total ← maxreq ← 0 ;
3 for carry in ← 0 to min(Ci, t) do

4 if (carry in == 0) then

5 thead ← 0 ;

6 tbody ←
j

t
Ti

k

× Ti;

7 ttail ← t − tbody;
8 else

9 a gap ← Ti − Ri;
10 thead ← carry in+a gap;
11 if thead > t then tbody ← ttail ← 0 ;
12 else

13 tbody ←
j

t−thead
Ti

k

× Ti;

14 ttail ← t − thead − tbody;

15 total ← fH
i (carry in) + fM

i (tbody) + fT
i (ttail);

16 if total > maxreq then maxreq ← total

17 if t < Ci then

18 Compute maxreq1 as per Equation (6) ;
19 if maxreq1 > maxreq then maxreq ← maxreq1

20 return maxreq ;

recorded value of the number of requests generated is updated as

the algorithm proceeds and the final value is returned as BRi(t).

For the special case in which t < Ci, the maximum number of

requests may be generated across two jobs (with only a carry in

and tail portion, and no body portion), or in any arbitrary segment

of the task. In the latter case, we compute BRi(t) as follows (see

Figure 2):

BRi(t) = max
j∈paths(τi)

0≤s<(Ci−t)

n

ARHj
i (min{s + t, C

j
i }) − ARLj

i (s)
o

(6)

For this scenario t < Ci, BRi(t) is thus computed by taking the

maximum between the value returned by the algorithm described

above and the value returned by Equation (6), which handles the

case in which the maximum number of requests is generated within

a task segment.

Although it appears that the algorithm loops over all the values

from 0 to Ci, in practice it is not feasible to compute the value of

ARHi(t) or ARLi(t) for all t from 0 to Ci as it is computationally

expensive and hence the values must be computed at a coarser

granularity. In reality and as described in the experiment section,

a limited number (say k) of sampling points are chosen from 0
to Ci and readings are recorded only at these k points. In such a

method, whenever t is not equal to one of these k sampling point

while reading ARHi(t) or ARLi(t), it is always important for

these two functions to round the returned value to the next higher

sampling point. This may result in a over-approximated number

of request for a given t, but the returned value will be safe. The

algorithm is presented as such, to separate the theoretical method

which is generic, from the implementation which may depend on

the hardware (e.g. the resolution of timers, which will decide the

frequency of sampling).

The current method of exploring all paths is inevitable in static

analysis, measurement-based or hybrid methods to ensure safe

upper bounds. It can be optimized on an application-to-application

basis, considering the input sets and eliminating paths which will

not contribute to the maximum number of requests (for e.g. simple

error reporting/recovery paths which return immediately or paths

with certain conditional clauses). The proposed method can thus

be applied after a path truncation phase and application of other

optimization techniques which is not in the focus of the paper. The

proposed solution as such, is meant to serve as a generic method,

irrespective of the application or the input set.

IV. RESPONSE TIME ANALYSIS

In this section, we describe the function to compute the general

response time and then propose an extension to handle interference

from the other cores.

A. General Response-Time Analysis

The research literature provides methods for computing the exact

response-time of tasks scheduled by non-preemptive fixed-priority

scheduling on uniprocessor system [9], [10]. For the task model

considered in this paper, a simplified version which does not

explore the entire busy period and is hence faster can be derived

from [11]. Instead of computing the response time Ri of task τi

exactly, it computes an upper-bound bRi on it by using the following

recursive equation:

bR
(k+1)
i = Ci + Bi +

X

j∈hp(i)

&

bR
(
ik)

Tj

’

× Cj (7)

where Bi is the maximum blocking time imposed on task τi due

to lower-priority tasks, i.e., Bi
def
= maxj∈lp(i){Cj}. The WCRT

Ri of the task τi is computed in an iterative manner, starting from
bR

(0)
i = Ci + Bi, and is given by the smallest value of bR

(k)
i that

satisfies Equation (7). The process terminates when either it reaches

the first fixed-point value of the equation at which bR
(k+1)
i = bR

(k)
i ,

in which case the WCRT Ri = bR
(k+1)
i is obtained, or it reaches

bR
(k)
i > Di which implies that the deadline of task τi is missed.

B. Extended Response-Time analysis

The computation of the WCRT in the multicore scenario must

consider the increased delay due to tasks executing on the same

core and the additional delays due to contention on the FSB from

tasks running on the other cores. We now introduce the extended

response-time equation which, in addition to the original WCRT

equation, also factors-in the contention delay due to requests

generated by the co-scheduled tasks on the other cores competing

for the shared FSB.

bR
(k+1)
i = Ci +Bi +

X

j∈hp(i)

&

bR
(k)
i

Tj

’

×Cj +
X

j∈π̄(i)

BRj(bR
(k)
i)×TR

(8)

Equation (8) encapsulates the effects of the delay due to inter-

ference by higher priority tasks on the same core, the blocking by

the lower priority tasks on the same core and the delay caused

by interference from tasks running on the other cores. If τi is

the task under analysis, all the tasks with a higher priority than

4

Algorithm 2: ComputeRespTime()

input : τi

output: Rnew
i or failure code

1 Rnew
i ← Ci ;

2 repeat

3 Rold
i ← Rnew

i ;

4 Rnew
i ← Ci + Bi +

P

j∈hp(i)

‰

Rold
i

Tj

ı

× Cj +
P

j∈π̄(i) BRj(R
old
i) × TR ;

5 if (Rnew
i > Di) then return failure ;

6 until (Rnew
i == Rold

i) or (Rnew
i > Di);

7 return Rnew
i ;

τi and assigned on the same core as τi, will also be impacted

by the requests generated by tasks scheduled on the other cores,

thereby increasing their execution time. This in turn will impact the

WCRT of task τi. In the increased response time, more requests

may be generated by the tasks running on the other cores. This will

continue till the value of bRi stabilizes (like the regular response

time equation). Hence, to incorporate the extra delay due to the bus

requests, which are generated during the increased response time,

BRj() is parameterized with bR
(k)
i .

Although the process is largely standardized, we present the

method to compute the above equation as an algorithm (Algorithm:

ComputeRespTime()) for easier readability. In order to prove that

this algorithm terminates, we have to prove that the value of

Rnew
i ≥ Rold

i in each iteration of the algorithm. The following

conditions will cause the algorithm to terminate: (i) Rnew
i > Di

implying that the task will miss its deadline, hence making the

task set non schedulable (ii) Rnew
i = Rold

i implying that the fixed

point value of the equation is reached and the recurrence relation

has converged. The term representing the interference from the

higher priority tasks is known to be a monotonically increasing

function. To guarantee increasing monotonicity of the entire right-

hand side (RHS) of the equation, we then need to prove the mono-

tonic increasing property of the term,
P

j∈π̄(i) BRj(R
old
i) × TR,

representing the interference from the other cores.

We know from Algorithm ComputeBR() for task τi, which is

being delayed by requests from τj (j ∈ π̄(i)), we have to compute

BRj(t). In the case presented here, the value of t is Rold
i . Hence

we can express BR as a function of two parameters and represent

it here as BRj(Rj , R
old
i). The value of Rj stays constant during

the entire iterative process ComputeRespTime() but the value of

the input Rold
i increases at each iteration (see line 3). By the very

definition of the function BR(), we know that for all tasks τj having

the property Cj ≤ Rj ≤ Dj and for all t, t� > t: BRj(Rj , t
�) ≥

BRj(Rj , t). Hence we obtain the monotonic increasing property

of the RHS of the equation.

C. System Analysis

To analyze the entire system, we need to find the response

times of all the tasks in the system. To facilitate this, we have

formulated the process as two algorithms: PerCoreAnalysis() and

SystemAnalysis() (Algorithm 3 and 4). The value of any variable

X in the iterative step k is denoted by Xk in both algorithms.

Algorithm PerCoreAnalysis(): This algorithm captures the

computation of Rk
i for a set of tasks assigned to a core, during

Algorithm 3: PerCoreAnalysis()

/* πj denotes the core index */

input : stepnum, πj

output: statuscode (TRUE(1) or FALSE(0) or failure(-1))
1 begin

2 k ← stepnum, RiModified ← FALSE, R0
i ← C0

i ← Ci;
/* Compute the WCRT for the set of n tasks

*/

3 foreach (τi assigned to πj) do

4 Rk+1
i ← ComputeRespT ime(τi) ;

5 if (Rk+1
i > Di) OR Rk+1

i = failure then

return failure;

6 if (Rk+1
i �= Rk

i) then RiModified ← TRUE;

7 return RiModified ;

Algorithm 4: SystemAnalysis()

begin

stepnum ← 0 ;
repeat

foreach πi ∈ {π1, π2, . . . , πm} do

status ← PerCoreAnalysis(stepnum, πi);
if (status == failure) then

print “Task Set Not Schedulable”, Exit

/* status returns TRUE if any Ri was

modified. */

stepnum ++ ;
until (status �= TRUE);

the iteration step k. For every iteration k, Rk+1
i is computed using

Equation (8), considering the interference (modeled by BRj(R
k
i))

from the tasks running on the other cores. If the response time of

any task exceeds its deadline, the algorithm returns a failure status.

If the response time of any task in the current iteration differs from

the previous iteration, the algorithm, sets the value of the variable

RiModified to TRUE, implying that another round of iteration is

required.

Algorithm SystemAnalysis(): This algorithm applies the PerCore-

Analysis() algorithm to the set of tasks running on each core in a

sequence of iterative steps, passing the step index as a parameter.

The algorithm PerCoreAnalysis() for step k is first applied to

the tasks set on core π1, then on core π2 and subsequently to

core πm. The algorithm terminates when the response time, Ri

for every task τi in the entire system (all task sets on all cores)

converges to a stable value across iterations (Rk+1
i = Rk

i), or

the WCRT of any task of the entire system exceeds its deadline,

implying that the task set is not schedulable, thereby terminating

the entire offline analysis process. It is important to note that

if the call to PerCoreAnalysis() results in a modified response

time of any task, it affects the resulting value, generated by the

ComputeBR() algorithm (which uses the value of Ri as an input).

Hence, the next call to PerCoreAnalysis, must be made, with the

modified Ri as input to the ComputeBR() algorithm, to reflect

the modified external core interference represented by the term
P

j∈π̄(i) BRj(t) × TR in Equation (8).

In order to prove that the algorithm terminates, we have to

prove that the (k + 1)th call to the function PerCoreAnalysis()
generates a value Rk+1

i ≥ Rk
i . Note that the value of k now denotes

5

the iteration index in the context of Algorithm SystemAnalysis().

On exiting the PerCoreAnalysis() function, the response time of

every task has reached a fixed-point equation or a status indicating

that the deadline of the task is exceeded is returned. In the former

case, the attainment of the fixed point value implies that:

Ri = Ci + Bi +
X

j∈hp(i)

‰

Ri

Tj

ı

× Cj +
X

j∈π̄(i)

BRj(Ri) × TR (9)

The computeBR() algorithm for task τj needs Rj (amongst other

parameters) as an input, to compute the maximum number of

requests in time t. As mentioned earlier, BR() can be expressed as

a function of two parameters BRj(Rj , t). In the above equation t
has the value Ri.

Lemma 1: For all tasks τj having the property Cj ≤ Rj ≤ R�
j ,

it holds for all t > 0 that BRj(Rj , t) ≤ BRj(R
�
j , t)

Proof: The proof follows from Algorithm computeBR(). In-

creasing the response time Ri implies that the maximum arrival

gap (Ti − Ri) decreases, thereby decreasing the idle segments of

the time window in which no requests are generated between task

releases: It potentially allows more requests to be generated in the

carry-in portion, the body portion or the tail portion during the time

window under consideration1.

V. COMPARISON WITH RELATED WORK

An arbitration algorithm agnostic method is proposed by [8] (and

an extended version in [12]) and hence warrants a comparison with

our method, since the method may look similar in principle to

the reader. The approach presented in [8] uses an event activation

model to compute the upper bound to access shared resources in a

given time t. To compute the maximum number of requests for a

single task instance, they assume that there is a known minimum

time dsr between two requests to a shared resource. They propose

a simple lower bound to compute the minimum time that a task

must execute, to generate n requests, given by δ−(n) = (n− 1)×
dsr. This is then extended, to compute the minimum time to make

n requests by multiple instances of the task. An inverse function

η+(t), is used to derive the maximum number of requests in time

t. The assumption of a minimum request distance is request pattern

agnostic and inherently implies a uniform distribution of requests

and hence leads to an over-estimation of the maximum number of

requests that a task can generate in a given time t.
It is important to note that the method proposed here, uses a

different technique (compared to the method proposed in [8]) to

compute the maximum number of requests for a task in a time

interval t and hence the experiments here are used to highlight only

that phase of the overall analysis. Since our approach to compute

BRi(t) takes into consideration, the request profile of a task and

is request pattern sensitive, the bounds computed are tighter, as

seen in Figure 3(c) and 3(d). These results are drawn from artificial

request patterns depicted in Figure 3(a) and 3(b). These patterns are

representative of applications having a (i) burst of requests at the

beginning and end and (ii) wave like request distribution. In these

graphs, Ci = 100, Ti = 300 and the maximum number of requests,

BR(Ci) in one task instance (referred to Nmax
j in their approach)

1Although intuitive, it is to be noted that when Ri = Ti, no more
requests can be generated, as the entire carry in portion is within the time
window.

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

C
u
m

.
n
u
m

b
e
r

o
f
re

q
u
e
s
ts

Execution time

Wavy pattern

(a) Input: wave-like request pat-
tern with Ci = 100

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100

C
u
m

.
n
u
m

b
e
r

o
f
re

q
u
e
s
ts

Execution time

Bursty begin end

(b) Input: request pattern with
burst at begin-end with Ci = 100

 0

 1000

 2000

 3000

 4000

 0 200 400 600 800

M
a
x
.
n
u
m

b
e
r

o
f
re

q
u
e
s
ts

Time

Task parameters: Ci=100, Ti=300

Our method
method in [8]

(c) Output: wave-like request pat-
tern (wave-like) over t = 900
time units

 0

 1000

 2000

 3000

 4000

 0 200 400 600 800

M
a
x
.
n
u
m

b
e
r

o
f
re

q
u
e
s
ts

Time

Task parameters: Ci=100, Ti=300

Our method
method in [8]

(d) Output: request pattern (burst
at begin-end) over t = 900 time
units

Figure 3. Comparison of the approaches

is 1000. The experiments are run with Ri = Ci as inputs to both

algorithms. The maximum number of requests are computed for

all values from 0 to 900 (i.e. 3*Ti time units). The curve denoted

by “method in [8]” reflects the number of requests as per the

method proposed in [8], while the curve denoted by “Our method”

reflects the number of requests reported by our method. As seen

in the graphs, our method for determining the maximum number

of requests first characterizes the task behavior and then derives

the bounds. In contrast, in the method proposed in [8], the authors

do not consider the request distribution and base their analysis on

the basis of request distances. As a result, their approach yields

more pessimistic upper bounds on the number of requests that a

task can generate. We compared the two approaches for other types

of request patterns (like bursts at the beginning of the application,

bursts at the end of the application, etc.) as well and found that

our method outperforms their method. As expected, for tasks with

uniform distribution of requests, both methods yield the same upper

bounds. The graphs with other patterns are not presented here

due to space limitations. Summarizing the discussion above, we

believe that our approach dominates their approach in yielding

tighter upper bounds on the number of requests in a given time

interval.

VI. A METHOD TO OBTAIN PARAMETERS EXPERIMENTALLY

In principle, it is possible to use the substantial amount of

work developed in the WCET analysis community [13] to provide

suitable bounds on ARH and ARL. However, these approaches

generally need an important amount of information about the

hardware in order to provide accurate results. Since it is difficult

to obtain suitably accurate documentation for COTS hardware,

those techniques might provide highly pessimistic results and we

focus on an alternative technique based on measurements, as this

is still the de-facto standard in the analysis of safety critical

systems. This alternative is also preferable when the underlying

cache replacement policy is pseudo-LRU, because static/offline

6

analysis methods generally lead to highly pessimistic results for

such policies (and pseudo-LRU is usually employed in COTS-based

hardware).

The approach proposed in the paper requires as an input, the

parameters TR, an upper bound on the time to complete one bus

transaction. It also needs the cache profile of a task modeled by

the ARH and ARL values. This section details how these values

can be obtained by measurement on the actual hardware.

The experiments were carried out on an IntelTMCore2 Quad

Q8300 processor consisting of four cores placed on two dies on

a single chip. Each die has two cores and each core has its own

instruction and data cache (denoted as I$ and D$). However,the

two cores on the same die share the L2 cache i.e., (i) Core-1 and

Core-2 share a L2 cache on one die and (ii) Core-3 and Core-4

share a L2 cache on another die. All the 4 cores access the main

memory via a single shared bus. On one die, tasks were run only

on Core-1, keeping Core-2 idle, thereby giving Core-1 access to

the entire L2 cache available on that die. Analogously, on the other

die tasks were run only on Core-3, keeping Core-4 idle, thereby

giving Core-3 access to the entire L2 cache available on that die.

Experiments were performed on the VxWorks 6.8 [14] real-time

operating system. Other relevant details of the experimental setup

are presented in Table I.

System characteristics

Processor model Intel R� Core2TMQuad Processor

CPU Q8300 @ 2.50GHz

L1 cache 32 KB D-cache, 32KB I-cache, 8-way associative

L2 cache 2048 KB, unified, 8-way associative

FSB Specs 333 MHz, 1333 MTps, 10656 MBps

OS kernel VxWorks 6.8

Table I
TEST SYSTEM DESCRIPTION

A. Measurement Setup

Before each run of the experiments, the cache was invalidated,

ensuring that the state of the cache was consistent across runs.

The experiments were run with the same input, thereby forc-

ing single execution paths. To reduce the non determinism, the

hardware prefetching and adjacent cache line prefetching features

were disabled in the processor. To avoid migration of the tasks

across cores, tasks were pinned to the cores using the taskAffinity

feature in VxWorks. Another feature namely, “CPU Reservation”

(in VxWorks terminology) that dedicates a core to a task was also

used to ensure that the task to which the core is dedicated runs

non-preemptively. Events were monitored at the micro-architectural

level by writing to model-specific registers and reading PMCs

directly. PMCs are a set of special-purpose registers built into

modern microprocessors to store the counts of hardware related

activities, such as cache misses ([15], [16]). It is necessary to

disable the prefetching feature (i) to isolate the bus contention

problem and (ii) to have more determinism while taking the

measurements, as prefetchers speculatively fetch data and add to

the traffic on the bus and run in the background at arbitrary

times, thus making the timing measurements inaccurate. Since the

memory is shared between several peripherals, the interference

from these must be kept to a minimum. Hence the experiments

were run with a basic console device and a diskless system to

avoid any DMA activity to influence measurement results.

B. Measurement of TR

TR is defined as an upper bound on the time to complete one

bus transaction. To obtain this value experimentally, a task was

generated that constantly accessed the memory and generated an L2

cache miss on each access. We programmed this task by declaring

an array twice the size of the cache and accessing each line of the

cache sequentially, thereby causing an L2 miss for every access.

Since the array size is twice the cache size, the task scans the

entire cache twice in each run, hence evicting all the cache lines

that were already fetched, prior to the next run. The number of

bus requests, denoted by NBR, is obtained by monitoring the

Bus Requests Mem event, for each run and the time taken for

each run, denoted by TBR is recorded. The number of bus requests

generated was verified against the expected number of bus requests

(which is twice the number of cache lines) to validate the approach

and was found to be consistent. The value of TR is thus computed

for thousands of runs and the maximum is recorded over all the

runs. Then the final TR is given by Equation (10).

TR = max
k=1..nr

(TBRk / NBRk) (10)

where k denotes the run index, nr denotes the number of runs and

TBRk and NBRk denote the corresponding values in that run.

The value of TR from the experiments was 46.6 nano seconds.

C. Measurement of ARH and ARL

The ARH and the ARL values described in Section III, represent

the upper and lower bound on the number of bus requests generated

by a task from the beginning of its execution up to time t. To

measure these values for a given task, we chose some sampling

points by dividing the execution time of the tasks into subintervals.

We obtained the cumulative number of bus requests upto that point

by interrupting the task and reading the performance monitoring

counters at the required sampled point. We then re-ran the task and

interrupted the task at the next sampling point. At each sampling

point, the highest measured value was recorded as ARH and

the lowest value was recorded as ARL, over multiple iterations.

It is to be noted that unlike simulations, where it is assumed

that a task will have fixed number of memory accesses at a

given time instance, this presents a more realistic approach, as

it takes into account the variations in the number of requests

issued due to the underlying cache replacement policy employed

and makes this method very generic. For the given system, the

Bus Requests Mem This Core This Agent event was monitored

to precisely measure the number of requests issued by the task. An

example of the AR curve, showing the ARH and ARL values at

each sampling point for the Search Benchmark from the MiBench

Suite [17] is presented in Figure 4. The AR curve for the search

program shows a variability in the number of cache misses across

runs during one complete execution. It can be seen that after a

certain time, the number of bus requests remains almost constant

and then increases. The constant number of requests seen in the

graph corresponds to the time when the task is not issuing any

7

requests and this was achieved by the introduction of a task delay

in the program (to demonstrate the variability in the request pattern

which can be captured by PMCs).

Figure 4. ARH, ARL Curve for the Search Benchmark

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a method to analyze the response

times of tasks in a multicore system, considering the contention on

the shared front-side-bus. We have presented a method to model

the memory access patterns of a task, and used it to derive an

upper bound on the number of requests it can generate within a

given time window. By comparing our approach with an existing

approach, we have shown that we can derive tighter bounds on the

number of requests. We also outline the steps to obtain the required

parameters on an actual hardware set-up. In the current work we

considered a non-preemptive task model and multicores with non-

shared caches. In the future, we plan to extend the current work to

analyze shared caches.

REFERENCES

[1] J. Rosén, A. Andrei, P. Eles, and Z. Peng, “Bus access optimiza-
tion for predictable implementation of real-time applications on
multiprocessor systems-on-chip,” in Proceedings of the Real-Time

Systems Symposium, 2007, pp. 49–60.

[2] A. Schranzhofer, J.-J. Chen, and L. Thiele, “Timing analysis for
TDMA arbitration in resource sharing systems,” in Proceedings

of the 16th IEEE Real-Time and Embedded Technology and

Applications Symposium, 2010, pp. 215–224.

[3] A. Schranzhofer, R. Pellizzoni, J.-J. Chen, L. Thiele, and M. Cac-
camo, “Timing analysis for resource access interference on adap-
tive resource arbiters,” in Real-Time and Embedded Technology

and Applications Symposium, 2011.

[4] S. Chattopadhyay, A. Roychoudhury, and T. Mitra, “Modeling
shared cache and bus in multi-cores for timing analysis,” in
Proceedings of the 13th International Workshop on Software &

Compilers for Embedded Systems, 2010, pp. 6:1–6:10.

[5] T. Kelter, H. Falk, P. Marwedel, S. Chattopadhyay, and A. Roy-
choudhury, “Bus-Aware Multicore WCET Analysis through
TDMA Offset Bounds,” in ECRTS ’11: Proceedings of the 2011

Euromicro Conference on Real-Time Systems, 2011.

[6] M. Lv, W. Yi, N. Guan, and G. Yu, “Combining abstract inter-
pretation with model checking for timing analysis of multicore
software,” in Proceedings of the 2010 31st IEEE Real-Time

Systems Symposium, ser. RTSS ’10, 2010, pp. 339–349.

[7] R. Pellizzoni, A. Schranzhofer, J.-J. Chen, M. Caccamo, and
L. Thiele, “Worst case delay analysis for memory interference in
multicore systems,” in Proceedings of the Conference on Design,

Automation and Test in Europe, 2010, pp. 741–746.

[8] S. Schliecker, M. Negrean, and R. Ernst, “Bounding the shared
resource load for the performance analysis of multiprocessor sys-
tems,” in Proceedings of the Conference on Design, Automation

and Test in Europe, 2010, pp. 759–764.

[9] R. J. Bril, J. J. Lukkien, and W. F. Verhaegh, “Worst-case response
time analysis of real-time tasks under fixed-priority scheduling
with deferred preemption,” Real-Time Systems, vol. 42, pp. 63–
119, August 2009.

[10] K. Tindell, A. Burns, and A. Wellings, “Calculating controller
area network (can) message response times,” Control Engineering

Practice, vol. 3, no. 8, pp. 1163–1169, 1995.

[11] K. W. Tindell, A. Burns, and A. J. Wellings, “An extendible
approach for analyzing fixed priority hard real-time tasks,” Real-

Time Systems, vol. 6, pp. 133–151, March 1994.

[12] S. Schliecker and R. Ernst, “Real-time performance analysis of
multiprocessor systems with shared memory,” ACM Transactions

in Embedded Computing Systems, vol. 10, pp. 22:1–22:27, 2011.

[13] R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing,
D. Whalley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra,
F. Mueller, I. Puaut, P. Puschner, J. Staschulat, and P. Stenström,
“The worst-case execution-time problem – overview of methods
and survey of tools,” ACM Trans. Embed. Comput. Syst., vol. 7,
pp. 36:1–36:53, 2008.

[14] VxWorks, Applications Programmers Guide, 6.8.

[15] B. Sprunt, “The basics of performance-monitoring hardware,”
IEEE Micro, vol. 22, pp. 64–71, 2002.

[16] Intel 64 and IA-32 Architecture Software Developers Manual

Volume 3B: System Programming Guide, Part 2, Intel Corp.

[17] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin,
T. Mudge, and R. B. Brown, “Mibench: A free, commercially
representative embedded benchmark suite,” in Proceedings of the

Workload Characterization, 2001, pp. 3–14.

8

