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The growth of Internet datacenters is increasingly limited by their power consumption. Powering and cooling
a datacenter now rivals the cost of the hardware: each $1 spent on servers in 2005 required an additional
$0.48 to power and cool it, expected to rise to $0.71 by 2010 [4]. Techniques to scale down power consumption
during periods of low workload are therefore desirable. However, datacenter operators also typically require
a strong guarantee on the tail of the response-time distribution called a service-level agreement (SLA), such
as that the 99th percentile of response times is less than 300 ms. Power management technology built in to
current microprocessors includes techniques such as dynamic voltage and frequency scaling (DVFS), which
dynamically reduces the CPU frequency during periods of low utilization. In actual datacenters, however, the
built-in DVFS is almost never used, because conventional wisdom holds that its use leads to unpredictable
service times. Indeed, this concern is justified, because built-in power management strategies are oblivious to
the desired SLA, so they cannot increase resources when the desired performance objective is not met.

In this work, we present a power management strategy that explicitly predicts the expected application
performance, and so can manage power subject to the desired SLA. To do this, we estimate the response time
of the application as a function of workload, resource allocation, and various power management settings. We
fit the tail of the conditional distribution using nonlinear quantile regression [2]. This allows a control loop
that sets the power management settings to minimize power consumption, as long as the predicted response
time meets the SLA. Indeed, we show that for a particular single-tier web application, the built-in DVFS
violates the SLA for long periods, while our power-management method does not. This allows operators
to achieve the monetary and environmental benefits of power management without an unacceptable cost to
performance.

This framework can be extended in two interesting directions. First, the model can be used offline as an
additional source of information in choosing the SLA, because it allows exploring how sensitive the power
consumption is to changes in the SLA. Second, the modeling and control framework can be extended to
include other resource allocation decisions as well, such as horizontal replication and dynamic updates of
various datacenter configuration options.

1 Response-time modeling

Since datacenter operators usually require guarantees on the tail of the response time distribution, such
as the 99th or 99.9th percentile [1], we use quantile regression to estimate the performance models. To
illustrate our approach, we consider a simple Ruby on Rails web application deployed on a single server with
DVFS capabilities. In order to use as little power as possible, we would like to choose the lowest clock rate
of the four supported CPU frequencies (1.0, 1.8, 2.0, or 2.2GHz), as long as given the current workload,
the predicted 99th quantile of response time still meets the desired objective (400 ms in the experiments
here).



We obtain the performance model of this application by subjecting it to varying workload levels, from 0
requests per second (rps) to about 50 rps, once for each frequency of the CPU. Next, we use quantile regression
to fit a model of the 99th percentile of the response time for each CPU frequency; we use parametric model
of this form: rt99th(w) = a1 + a2 ∗ w + exp(a3 + a4 ∗ w), where w is the workload request rate. In Figure
1a, we show the observed data and fitted models. On held-out data, the absolute difference between the
predicted and observed quantiles, averaged over the 20 bins shown in the figure, is 33 ms. The exponential
shape of the curve models the fact that response times tend to become arbitrarily long once the workload
exceeds capacity. Note that this modeling framework avoids the unrealistic assumption that the response
time depends linearly on CPU frequency. We are currently working on performance models that handle
multi-tier applications and more realistic workloads and resource allocation.

2 On-line power management and resource allocation

The performance model allows us to use a power management policy that uses the lowest frequency of the
CPU such that the resulting performance meets the SLA. This has two important advantages to a policy
based solely on CPU utilization. First, we can provide predictions to an operator of the expected performance
of the web application under the new configuration. Second, using only CPU utilization ignores the desired
performance objective: Even when the CPU is not fully loaded, if the observed response time does not meet
the objective, we may still wish to increase the frequency.

We compare this policy to the “on-demand” policy [3] built-in to the standard Linux kernel. We use a
25 minute, linearly increasing workload with exponential interarrival times that peaks at about 33 rps.
Figure 1b shows the response times for both policies, where our model-based policy uses an SLA of 400
ms, shown by the horizontal line. Up to 25 minutes, the on-demand policy violates the SLA in two out of
five of the five-minute intervals, while our policy violates the SLA in none of the five-minute intervals. Of
the seventy-five 20-second intervals, the on-demand policy violates the SLA in 39% of the intervals, while
our policy violates the SLA in only 16% of the intervals. Because of fluctuation in workload, it is more
difficult to maintain performance at finer time granularities. The model-based policy monitors the workload
at 20-second intervals, so we do not report the performance at finer time granularity.

The model-based policy spends 30% of its time at 1.0GHz, 54% at 1.8GHz, and 16% at 2.0GHz.1 Since
performance models for 2.0 and 2.2GHz make almost identical predictions at 33rps, the model-based policy
uses at most 2.0GHz without sacrificing performance. After 25 minutes, the workload exceeds the server’s
capacity, so neither control scheme meets the SLA.

3 Setting SLAs

An interesting potential application for these performance models is to understand the tradeoffs involved in
setting the SLAs in the first place. For each level of power consumption, we can find the resource allocation
that maximizes performance over a historical workload, and thus help the owners of a datacenter understand
whether a large reduction in power can be achieved by a slight (e.g., 50 ms) increase in the desired response
time, or how much power would be required to decrease the response time significantly.
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(b) On-demand vs. model-based policy

Figure 1: At left, a boxplot of the actual response times of individual requests at CPU frequency of 2.2GHz;
whiskers extend to data extremes, circles are 99th percentiles of observed data. The solid line represents the
model of 99th percentile of response time. The dashed lines represent models for the remaining frequencies of
CPU. At right, a comparison of the built-in on-demand and model-based power management policies. Each
point is the observed 99th percentile of response time over a 20-second interval. In particular, between 15
min and 25 min, the on-demand policy consistently violates the SLA, while the model-based policy seldom
does. The three intervals above the graph represent the frequencies selected by the model-based policy.
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