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Abstract Delta plots (DPs) graphically compare reaction
time (RT) quantiles obtained under two experimental con-
ditions. In some research areas (e.g., Simon effects),
decreasing delta plots (nDPs) have consistently been found,
indicating that the experimental effect is largest at low
quantiles and decreases for higher quantiles. nDPs are un-
usual and intriguing: They imply that RT in the faster
condition is more variable, a pattern predicted by few stan-
dard RT models. We describe and analyze five classes of
well-established latency mechanisms that are consistent
with nDPs—exhaustive processing models, correlated stage
models, mixture models, cascade models, and parallel chan-
nels models—and discuss the implications of our analyses
for the interpretation of DPs. DPs generally do not imply
any specific processing model; therefore, it is more fruitful
to start from a specific quantitative model and to compare
the DP it predicts with empirical data.
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Chronometric research in cognitive psychology often seeks
to infer something about the number, nature, and temporal
organization of basic information-processing components
by looking at how reaction time (RT) varies across two or

more experimental conditions. Classic examples of this
approach using mean RT are Sternberg’s (1969) additive
factor method in memory scanning and Treisman and
Gelade’s (1980) analysis of the slope of RT versus set size
functions in visual search.

Increasingly, researchers have augmented the study of
mean RT with studies of RT distributions. First, in some
experimental paradigms, it is possible to distinguish among
different classes of models on the basis of their specific
predictions concerning between-condition effects on RT
distributions as well as means, allowing model classes to
be tested via distributional comparisons (e.g., Meyer, Irwin,
Osman, & Kounios, 1988; Miller, 1982; Pashler, 1994b;
Ratcliff & Smith, 2004; Ruthruff, 1996; Sigman & Dehaene,
2005). Second, some models predict how the exact shapes
of RT distributions should be affected by certain experimen-
tal manipulations, and these models can be assessed in terms
of the adequacy of their fits to the observed distributions
(e.g., Grice, 1972; Logan, 1992; Ratcliff & Rouder, 2000).
Third, at a purely descriptive level, RT distributions contain
far more information than is adequately summarized by their
means, so it may be possible to find empirical differences
among different experimental manipulations that all
have the same effect on mean RT (e.g., Balota, Yap, Cortese,
& Watson, 2008; Heathcote, Popiel, & Mewhort, 1991;
Townsend & Ashby, 1983).

In this article, we consider in detail one method for
describing the effects of an experimental manipulation on
RT distributions, the so-called delta plot (for short, DP),
introduced by De Jong, Liang, and Lauber (1994). As will
be developed more formally in the next section, the DP is a
graphical comparison between two RT distributions that
focuses on the question of whether the experimental manip-
ulation has a larger effect on the relatively fast responses or
on the relatively slow ones.
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The analysis of DPs is intriguing for two reasons. First,
although most experimental manipulations have a larger
effect on relatively slow responses than on relatively fast
responses, a few experimental manipulations are exceptions,
producing just the opposite pattern. The best-documented of
these exceptions is the standard Simon task (for recent
reviews, see Pratte, Rouder, Morey, & Feng, 2010; Proctor,
Miles, & Baroni, 2011; van den Wildenberg et al., 2010). In
this task, participants respond by pressing keys to the left
or right of the midline on the basis of a relevant visual
stimulus attribute such as color (e.g., respond to green
stimuli with the left hand and to red ones with the right
hand). Irrelevantly, the stimulus appears randomly on the
left or right side of the fixation point. The standard find-
ing is that responses are faster when the stimulus appears
on the same side as the hand that is required to respond
(congruent trials) than when it appears on the opposite
side (incongruent trials). For the present purposes,
though, the most important aspect of this congruency
effect is that it tends to be largest for fast or medium
responses and small or absent for slow responses, contrary
to the pattern observed with many other experimental
manipulations in RT tasks. For reasons that will become
apparent in the next section, we will refer to this unusual
pattern as the finding of DPs with negative-going slopes
(in short, nDPs).

Second, DP analysis is intriguing because the exceptional
nDPs observed with Simon tasks are not predicted by stan-
dard RT models. As recently reviewed by Pratte et al.
(2010), these models typically predict that the fastest
responses should be affected less than—or, at most, equally
with—the slowest responses. Similarly, standard neurocom-
putational modeling architectures typically produce increas-
ing rather than decreasing DPs (e.g., Davelaar, 2008, Fig. 3).
Thus, the opposite pattern observed with the standard Simon
effect would seem to provide very specific clues about the
nature of that effect. On the other hand, the exact nature of
these specific clues is not immediately obvious, which
suggests that a cautious approach is needed when inter-
preting DPs. Rather than asking which latency mecha-
nism is implied by a particular DP, it might be more
fruitful to ask, conversely: Which latency mechanisms
are able to predict (i.e., are compatible with) specific
forms of DPs?

The main purpose of this article is to describe several
classes of quantitative models capable of producing nDPs
like those that have been observed in Simon tasks. Clearly,
the proper interpretation of nDPs requires knowledge of
which information-processing models are compatible with
this unusual DP shape. Our emphasis is, therefore, not on
models of the Simon task per se but, rather, on the broader
set of models that might be considered when this shape of
nDPs is observed.

This article is organized as follows. First, by way of
background, we present a formal description of the DP and
review the basic statistical relationships that lead to nDPs.
Second, also as background, we briefly review the activa-
tion-suppression model of Ridderinkhof (2002a, 2002b;
Ridderinkhof, van den Wildenberg, Wijnen, & Burle,
2004), which is an influential account of nDPs in the context
of standard Simon effects. No previous explanations of
nDPs have been developed into formal quantitative models,
though, so the exact conditions under which such accounts
produce nDPs are at present unclear. In fact some of the
quantitative models that we suggest might be considered as
possible implementations of these, so a further goal of this
article is to explore some possibilities for formal versions of
the activation-suppression model.

Third, in the main section of the article, we describe
several formal models that are capable of producing nDPs.
These models are developed from principles that are famil-
iar within RT modeling, and some could even be viewed as
rather minor variants of existing RT models. It should be
emphasized that we do not attempt to develop a detailed
quantitative model for all aspects of the Simon effect per se
or a detailed version of the activation-suppression model.
Instead, we adopt a breadth-first search strategy to explore
more generally what types of RT models are capable of
producing nDPs. Even though it is never possible to identify
all such models, the interpretation of any observed data
pattern must be guided by some knowledge of the range of
underlying mechanisms compatible with that pattern.
Fourth, in the General Discussion section, we consider in
more detail the implications of this range of options for
current interpretations of effects producing an nDP.

The delta plot: Definition and basic properties

We first outline how empirical DPs are typically con-
structed. Consider two experimental conditions in which
RTs are obtained, such as, for example, congruent and
incongruent trials in a conflict (Ridderinkhof et al., 2004)
or context (Pratte et al., 2010) task. A typical example is the
study of Simon effects under rest and exercise by Davranche
and McMorris (2009). As is illustrated in the upper panel of
Fig. 1, a first step is to generate a frequency distribution of
these RTs, separately for each condition i 0 1,2, where we
use the convention that conditions 1 and 2 are, on average,
faster (e.g., congruent) and slower (e.g., incongruent),
respectively. RTs are first rank ordered for each participant
and condition separately and then are collected to form bins
of equal area. As is shown in Fig. 1, Davranche and McMor-
ris used ten bins; in the group average results shown, each
bin contained 20 RTs per participant. Next, the mean RT
within each bin is computed and used as an estimate of the
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corresponding RT quantile; for example, with ten bins, one
obtains estimates of the 5 %, 15 %, . . . , 95 % quantiles. As
is shown in the second panel of Fig. 1, the RT quantiles are
then used to construct an empirical estimate of the two
cumulative distribution functions (CDFs), denoted as Fi(t),
which, for each value of t, indicate the proportion of RTs
smaller than or equal to t.

The DP, which is shown in the third panel of Fig. 1, is
basically a visual comparison of the RT quantiles obtained
under the two experimental conditions. In the empirical
example shown in Fig. 1, the horizontal separation of the
two empirical CDFs in the second panel is 30 ms for the
initial bins of the two conditions and, so (by definition), is
the value of the DP. This value first increases slightly to
about 40 ms, which reflects an initial increase in the sepa-
ration of the two empirical CDFs. Starting with the 35 %
quantiles, this separation then gets smaller and eventually
drops off to a value of just 5 ms for the difference of the
estimate of the two 95 % quantiles. Therefore, the DP
decreases over the region from about 300 to 500 ms. Recall
that the pth RT quantile under condition i, qi(p), is that value
of RT below which falls the proportion p of all RTs in that
condition, qi(p) 0 F−1

i (p), i 0 1,2. More specifically, the DP
is a parametric plot of the difference, or separation, of
quantiles, y(p) 0 q2(p) − q1(p), against the average of the
quantiles, x(p) 0 [q1(p) + q2(p)]/2, as p is varied from zero to
one. In practice, the two cumulative RT distributions from
which a DP is generated are often first averaged by vincen-
tizing the CDFs within each condition across participants
(cf. Davranche & McMorris, 2009; Ratcliff, 1979). Howev-
er, this aspect is not crucial for the construction of DPs per
se, and in principle, a separate DP can be derived for each
participant individually. Also, we notice that most recent
studies (e.g., Kubo-Kawai & Kawai, 2010; Proctor, Pick,
Vu, & Anderson, 2005; Vallesi, Mapelli, Schiff, Amodio, &
Umiltà, 2005; Wascher, Schatz, Kuder, & Verleger, 2001;
Wylie, Ridderinkhof et al., 2010) have derived DPs from
correct-response RTs only but that some (e.g., Ridderinkhof,
Scheres, Oosterlaan, & Sergeant, 2005) have used RTs from
both correct and error trials (for a discussion of this point,
see Burle, Possamaï, Vidal, Bonnet, & Hasbroucq, 2002;
van den Wildenberg et al., 2010).

Although the concave form of the nDP shown in the third
panel of Fig. 1 is quite typical of many reported nDPs from
Simon tasks (cf. Vallesi et al., 2005, Table 2; Wylie et al.,
2010, Fig. 4; Wylie, Ridderinkhof, Bashore, & van den
Wildenberg, 2009, Fig. 3), nDPs with somewhat different
shapes have been reported as well, as is illustrated by the
empirical examples shown in the bottom panel of Fig. 1.
Specifically, nDPs for Simon tasks have sometimes been
reported to decrease linearly (cf. Burle, van den Wildenberg,
& Ridderinkhof, 2005, Fig. 1; DeJong et al., 1994, Fig. 3) or
even to be convex (they decrease, but at a decreasing rate;

Fig. 1 Top panel: Binned reaction time (RT) frequency distributions
for congruent (heavy solid line) and incongruent (heavy dotted line)
conditions, from the data in Davranche and McMorris (2009, Fig. 4A,
“rest” condition). The light solid and dotted lines indicate the bin
edges. Second panel: Cumulative distribution functions (CDFs) for
RT in the congruent (open circles) and incongruent (filled points)
condition, as computed from the bins in the top panel. Third panel:
Delta plot of quantile differences (ordinate) against quantile averages
(abscissa), as computed from the CDFs in the second panel. Bottom
panel: Delta plots of quantile differences (ordinate) against quantile
averages (abscissa). The curve on the left shows data from Burle, van
den Wildenberg, and Ridderinkhof (2005, Fig. 1), and the one on the
right shows data from Davranche, Paleresompoulle, Pernaud, Labar-
elle, and Hasbroucq (2009, Fig. 1B)
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cf. Davranche, Paleresompoulle, Pernaud, Labarelle, &
Hasbroucq, 2009, Fig. 1). As is also illustrated in Fig. 1,
decreasing DPs have sometimes been found to cross the
abscissa, meaning that the largest RT quantiles are larger
for the congruent than for the incongruent condition, a
violation of stochastic dominance. Evidently, any evaluation
of the statistical reliability of this feature must take the
standard errors involved in estimating the largest quantiles
into account, a point which we will address in our General
Discussion section.

As can be seen in Fig. 1, for a DP to decrease as t
increases, it is necessary for the early or medium quantiles
of the distributions to be widely separated and for the later
quantiles to differ by less and less. That is, the horizontal
separation of the CDFs must get smaller and smaller as t
increases. This qualitative pattern implies that the condition
with the shorter RTs also shows the wider spread of RT or,
more technically, that the shorter mean RT goes with the
larger RT variance. Like the nDP itself, this pattern of larger
mean plus smaller variance is quite remarkable because it
violates the general finding of a consistent ordering of the
RT moments—that is, that empirically, the smaller mean RT
almost always goes with the smaller variance (for a detailed
review, see Luce, 1986, chaps. 2, 11; Wagenmakers &
Brown, 2007).

Interpretations of delta plots with negative-going slopes

The literature offers no clear consensus about exactly what
nDPs imply about the underlying mechanisms generating
them. A sceptical view is that of Zhang and Kornblum
(1997), who emphasized the statistical properties of DPs.
They pointed out that these plots are essentially a variant of
the more traditional quantile–quantile (QQ) plot. Specifical-
ly, they showed that a DP is linear if and only if the two RT
distributions being compared belong to a location-and-scale
(LS) family—that is, if Fi(t) 0 F[(t − μi)/σi], where F is the
standard form of the LS-family. In that case, the slope of the
DP is independent of the location parameters μi and depends
only on the spreads (i.e., the σi’s) of the two RT distributions
involved. Specifically, the slope is equal to the ratio of the
difference of the scale parameters over the mean scale
parameters—that is, equal to (σ2 − σ1)/[(σ1 + σ2)/2]. There-
fore, if the DP is linear, a decrease simply reflects the fact
that the condition with the shorter RT has the larger spread
of RTs. In view of these results, Zhang and Kornblum con-
cluded that the DP is a simple graphical display that “reflects
the statistical properties of the pair of RT distributions and
not necessarily functional hypotheses concerning processing
mechanisms” (p. 1551). Although statistically impeccable,
this conclusion does not in itself give any positive clues
about the kinds of RT mechanisms that might produce the

statistical properties necessary for nDPs. Thus, Zhang and
Kornblum’s point of view nicely highlights the major con-
cern of the present article, which is to explore the types of
processing mechanisms compatible with nDPs. It should
also be noted that Zhang and Kornblum’s results, important
as they are, refer to the case in which the two RT distributions
belong to one LS family and, thus, generate linear DPs.
However, as is shown in Fig. 1, many empirical DPs in
context tasks appear decidedly nonlinear, and the implication
of Zhang and Kornblum’s results for this case are not clear.

Various less sceptical and more neutral descriptions of
nDPs essentially present them as convenient and interesting
data summaries. For example, Kubo-Kawai and Kawai
(2010) stated that “the Simon effect decreased as a function
of the [increasing RT] bins” (p. 457). Similarly, Vallesi et al.
(2005) summarized their DP analysis by stating that “the
distribution for corresponding responses lies to the left of
the non-corresponding distribution only in the faster part,
indicating that the correspondence effect is present only
when RTs are fast, and then vanishes” (p. B38). These
summaries are little more than restatements of the observed
CDFs—namely, that the congruency effect is relatively large
for fast responses but relatively small or absent for slow
ones. In view of Zhang and Kornblum’s (1997) result, this
seems rather uncontroversial, as long as it is taken only as a
purely descriptive claim about how the congruency effect
varies with RT.

More optimistically, DPs are sometimes seen to provide
supporting evidence for specific information-processing
models. In their original study demonstrating nDPs in the
context of the Simon effect, for example, DeJong et al.
(1994) claimed that their observed nDPs “almost certainly
provide a reliable estimate of the actual time course of these
effects” (p. 733). They argued that nDPs suggest a mecha-
nism for inhibiting irrelevant position information that starts
out weak at the beginning of the trial and strengthens over
time. This idea was subsequently developed into the
activation-suppression hypothesis (Burle et al., 2002;
Ridderinkhof 2002a, 2002b; Ridderinkhof et al., 2004;
Wylie, van den Wildenberg, et al., 2009). According to this
hypothesis, in a conflict task, the automatic activation due to
the irrelevant stimulus feature is initially strong but, over
time, is selectively inhibited. The buildup of this inhibition
is gradual and slow, so the effect of the automatic activation
diminishes over the course of the trial. According to Ridder-
inkhof (2002a, Fig. 5), the concept of gradual selective
response inhibition translates into a concave DP like the
one shown in the third panel of Fig. 1, which initially (i.e.,
for short RTs) increases and then, due to the inhibition,
levels off for medium RTs and decreases, possibly to zero
or even negative values for long RTs. Many studies by
Ridderinkhof and colleagues and by others have since con-
firmed this prediction under various conditions, especially
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with the standard Simon task (for recent reviews, see Pratte
et al., 2010; Proctor et al., 2011; van den Wildenberg et al.,
2010). Therefore, decreasing DPs have come to be seen as a
critical test of the activation-suppression hypothesis, and
they are often considered to be a key signature of a selective
response inhibition characterized by a slow buildup. Simi-
larly, Burle et al. (2002; e.g., p. 333) endorsed the idea that
nDPs indicate increasing suppression, which they inter-
preted as a sign of increasing executive control. Before
accepting nDPs as strong evidence for the activation-
suppression hypothesis, however, it seems worthwhile to
consider what other mechanisms could also generate this
observed data pattern.

Five classes of models predicting delta plots
with negative-going slopes

Exhaustive models and their delta plots

We first consider certain types of exhaustive processing
models. Such models include terms representing the maxi-
mum of two random variables, and in this section, we will
show that these can produce nDPs of the form shown in
Fig. 1. In RT research, such models can arise in systems
requiring exhaustive processing of different items or chan-
nels that are being processed in parallel (e.g., Townsend,
1984; Townsend & Ashby, 1983). In general, if the start of a
later process must await the completion of two or more
parallel prior processes (e.g., because the information from
all of the prior processes is needed as input to the later
process), the starting time for the later process can be mod-
eled as the maximum of the completion times of the prior
processes.

One familiar example of an exhaustive processing model
arises within the context of the psychological refractory
period paradigm. In this paradigm, the stimuli, S1 and S2,
for two separate tasks are presented sequentially, separated
by a brief stimulus onset asynchrony (SOA), and the partic-
ipant must make separate responses, R1 and R2, to the two
stimuli. According to standard central bottleneck models for
this paradigm (e.g., Pashler, 1994a), each task is accom-
plished by carrying out a sequence of three processing
stages, Ai, Bi, and Ci, where the letter denotes the stage
and the subscript denotes the task. These models explain the
standard finding that RT2 decreases as SOA increases by
assuming that central processing of the second task (i.e.,
stage B2) cannot begin until first-task central processing and
second-task precentral processing have both completed,
which happens at time max(A1 + B1− SOA,A2), defining
the onset of S2 as time zero. Thus, RT2 0 max(A1 + B1 −
SOA,A2) + B2 + C2. Essentially this same exhaustive pro-
cessing model can also be used to model precue utilization

tasks (Schwarz & Ischebeck, 2001); other examples of
maximum-based models arise within the context of stochas-
tic PERT models (e.g., Fisher & Goldstein, 1983; Miller,
1993; Schweickert, 1982; Schweickert & Townsend, 1989)
and within multichannel models in which processing waits
for the completion of the slowest channel (e.g., Colonius &
Ellermeier, 1997; Colonius & Vorberg, 1994).

Figure 2 illustrates an exhaustive processing model that
might be applicable to Simon tasks, in order to show how
these models can predict nDPs. The upper sequence of
stages depicts performance on congruent trials, with the
three stages corresponding to stimulus encoding, response
activation, and response execution, respectively. The lower
sequence of stages depicts performance on incongruent tri-
als. It is assumed that the encoding stage detects the mis-
match between the irrelevant position information and the
relevant stimulus dimension (e.g., Proctor et al., 2011, pp.
248–250). Because of that mismatch, it is necessary not only
to activate the correct response using the relevant dimension
(stage Bc), but also to actively inhibit the activation of the
incorrect response produced by the irrelevant dimension
(stage Bi). Inhibition of the incorrect response might be
necessary, for example, to resolve response conflict within
a winner-take-all response system. Activation of the correct
response and inhibition of the incorrect one can go on in
parallel, and response execution (i.e., stage C in Fig. 2)
cannot begin until both are completed. Thus, the RTs on
congruent and incongruent trials are, respectively,

RTc ¼ Aþ Bc þ C

and

RTi ¼ Aþmax Bc;Bið Þ þ C:

Intuitively, it makes sense that RTi should tend to be
lengthened relative to RTc, especially at the faster end of
the distribution. When Bc is relatively fast, there is a larger

A Bc C

A

Bi

Bc

C

Fig. 2 Top panel: Serial processing model based on three stages:
stimulus encoding (A), response activation (Bc), and response execu-
tion (C). Bottom panel: Exhaustive processing model: On incongruent
trials, the mismatch between relevant and irrelevant stimulus dimen-
sion is detected at the encoding stage, A. Response execution C cannot
begin until the correct response is activated (Bc) and the incorrect
response is successfully inhibited (Bi); the latter two processes go on
in parallel
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cost of waiting for Bi to be done too. When Bc is relatively
slow, however, there is a smaller cost of waiting for Bi; in
fact, if Bc > Bi, there is no cost at all.

Figure 3 shows an example of RT distributions and DPs
predicted by this model. RTs were assumed to come from a
model in which A + C was modeled as an ex-Gaussian
random variable, with μ 0 220 ms, σ 0 10 ms, and τ 0
10 ms in both conditions; Bc was modeled as an inverse
Gaussian variable with drift and variance parameter μ 0 1,

σ2 0 100, and barrier a 0 100 in both conditions. In the
incongruent condition max(Bc,Bi) was modeled as the max-
imum of Bc and the random variable Bi, also an inverse
Gaussian variable, with μ 0 1.135, σ2 0 31.3 and a 0 100, a
total of seven parameters. In line with the intuitive argu-
ments given above, Fig. 3 shows that the exhaustive model
is able to predict the RT histograms and concave nDPs of
the type shown in panel 3 of Fig. 1, which for the parameters
chosen rises from about 30 to 38 ms and then drops to a
value close to zero at higher RT quantiles. This predicted
pattern seems to be in reasonably good agreement with the
empirical DP shown in the third panel of Fig. 1.

Stage models and their delta plots

Stage models have a long history in RT modeling (e.g.,
Donders, 1868/1969; Sternberg, 1969). In these models,
processing is carried out by a sequence of stages, so the
total RT is simply the sum of the times needed by the
individual stages, as is shown for three serial stages in the
top panel of Fig. 2. Such models are easily capable of
producing positive-going DPs (Pratte et al., 2010). More
relevant for the present concerns, however, is that they can
also produce nDPs, as is illustrated in this section.

Consider the first two stages, A and B, of a simple serial
RT model (as in the top panel of Fig. 2). Let tA and tB be
random variables representing the durations of these two
stages, ignoring stage C for the moment. The total time
needed for the first two stages is tA + tB, and its mean RT
is of course μA + μB, where μA and μB are the means of the
individual random variables. More critically, the variance of
tA + tB is

Var tA þ tBð Þ ¼ σ2
A þ σ2

B þ 2 σA σB ρAB; ð1Þ

where σA and σB are the standard deviations of the two
variables and ρAB is their correlation.

For our purposes, the key fact about this stage model is
that the variance of the total RT increases with the correla-
tion between the two stage durations, ρAB. This implies that,
in any comparison between two conditions, the condition
with the smaller mean RT could easily have the larger
variance if it happens to have a larger correlation in the
finishing times of its two stages. This is evidently the case
when the correlation is positive for the congruent and neg-
ative for the incongruent conditions, but the requirement can
also be met when both correlations are positive or when
both are negative. The possibility of correlations among the
times needed for different stages, while sometimes ignored
in RT modeling, has been examined seriously by many (e.g.,
Colonius, 1986; Dzhafarov, 1992; Dzhafarov & Cortese,
1996; Pieters, 1983; Schwarz, 1994; Taylor, 1976; Van der
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Fig. 3 Top panel: Reaction time (RT) frequency distributions for
congruent (solid line) and incongruent (broken line) conditions, as
predicted by the exhaustive model shown in the bottom part of
Fig. 2. The distributions have mean RTs of 450 and 472 ms and
standard deviations of 64 and 60 ms, respectively. Middle panel:
Cumulative distribution functions (CDFs) for RT in the congruent
(solid line) and incongruent (broken line) conditions. Bottom panel:
Delta plot of quantile differences (ordinate) against quantile averages
(abscissa)
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Heijden, Schreuder, Maris, & Neerincx, 1984). Thus, it is not
unreasonable to consider models with correlated stage times
as candidates for explaining nDPs. After showing numerically
how such models can produce the nDP pattern, we discuss
some possible explanations both of correlations among stage
times and of changes in these correlations across conditions.

To provide a concrete illustration of how nDPs can arise
from stage models, we adopted the ex-Gaussian model (cf.
Luce, 1986, chap. 3.2.1) for the distributions in both of the
two conditions being compared (e.g., congruent and incon-
gruent). For this illustration, we used an exponential com-
ponent for stage C shown in the top panel of Fig. 2, and this
component had a mean of 50 ms in both conditions and was
independent of the normal component in both. The
ex-Gaussian’s normal component in each of the conditions
was conceived of as itself representing the sum of two
normally distributed stage times, A and B. In the faster
condition, the two stage times had means of μA 0 μB 0

200 ms and standard deviations of σA 0 σB 0 20 ms. The
correlation of these two stage times was ρAB 0 0.5, so the
overall standard deviation of the normal component wasffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
202 þ 202 þ 2� 20� 20� 0:5

p
0 35 ms. In the slower

condition, the two stage times had means of μA 0 200 ms
and μB 0 250 ms and standard deviations of σA 0 20 ms and
σB 0 25 ms. The correlation of these two stage times was
ρAB 0 −0.5, so the overall standard deviation of the normal

component was
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
202 þ 252 � 2� 20� 25� 0:5

p
0 23 ms.

Given that the normal standard deviations were all chosen in
fixed proportion to their mean (a factor of 0.1), this specific
version of the model has five parameters. Thus, including
the exponential components, the overall mean and standard
deviation of RT are 450 and 61 ms in the congruent condi-
tion, as opposed to 500 and 55 ms in the incongruent one, so
the faster condition has the larger variance.

The distributions and DP predicted from ex-Gaussian
distributions with the normal components involving the
positively and negatively correlated stage durations are
shown in Fig. 4. The nDP data pattern shown in Fig. 1 is
nicely reproduced, with a larger separation of the CDFs at
the low end of the RT distribution, a larger variance in the
faster condition, and an nDP. This is, of course, only one
simple illustration of how decreased correlations among
stage times can reduce overall RT variance and produce
nDPs; more elaborate illustrations (e.g., involving more
stages) can easily be constructed analogously.

It is possible to speculate about various possible sources
of correlation between different stage times and about sev-
eral factors that might cause the correlations to change
across conditions, thereby potentially producing both a larg-
er RT variance in the faster condition and an nDP. As one
rather generic example, tasks or processes competing for the
same limited-capacity resources tend to be negatively

correlated (e.g., Navon & Gopher, 1979, 1980; Pashler,
1994b). Thus, if the stages used in a faster task suffered less
from resource competition than did the stages used in a slower
task—perhaps because they required fewer resources in the first
place—then the faster-task stages would naturally have a larger
(or less negative) correlation, resulting in more RT variance.

Several more specific sources of correlation between
different stage times have been suggested. For example, in
their analysis of temporal preparation effects, Schwarz
(1994, p. 514) and Los and Schut (2008) suggested that

0

20

40

60

80

200 300 400 500 600 700

RT

0.2

0.4

0.6

0.8

C
D

F

0.0

0.002

0.004

0.006

0.008

0.01

0.012

P
D

F

Fig. 4 Top panel: Reaction time (RT) frequency distributions for
congruent (solid line) and incongruent (broken line) conditions, as
predicted by the serial model shown in the top part of Fig. 2. The
distributions have mean RTs of 450 and 500 ms and standard devia-
tions of 61 and 55 ms, respectively. Middle panel: Cumulatiave distri-
bution functions (CDFs) for RT in the congruent (solid line) and
incongruent (broken line) conditions. Bottom panel: Delta plot of
quantile differences (ordinate) against quantile averages (abscissa)
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nonspecific motor preparation can take place in parallel with
perceptual analysis (for further discussion, see Leonhard,
Bratzke, Schröter, & Ulrich, 2012). According to this model,
trials with slower perceptual analysis would provide more
opportunity for motor preparation—ultimately producing
faster motor execution—so the durations of the perceptual
andmotor stages would tend to be negatively correlated across
trials. If the inverse relationship were stronger for incongruent
trials than for congruent ones, the between-stage correlation
could be more negative for incongruent trials than for congru-
ent ones, leading to nDPs. This might happen, for example, if
perceptual times were more variable on incongruent trials or if
the degree of nonspecific motor preparation was less variable
on these trials. The reason is that in this model, assuming
perfect parallel motor preparation, the correlation (r) of the
perceptual (P) and residual motor (M − P) stage durations

would be r(P, M − P) 0 −1/
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ VarðMÞ=VarðPÞp

, which
becomes more negative as Var(P) increases or as Var(M)
decreases.

Within the Simon task, pre-trial preparatory differences
would be another natural source of correlations that could
differ between the congruent and incongruent conditions.
Suppose that when the trial starts, the participant has
already selectively preactivated a code for either “left”
or “right,” perhaps based on the stimulus location or the
response made on the previous trial (e.g., Hommel, Proctor,
& Vu, 2004; Kornblum, 1969; Notebaert & Soetens, 2003;
Notebaert, Soetens, & Melis, 2001). Suppose further that
this preactivation influences both the time needed for an
early stimulus localization stage and the time needed for a
later response selection stage, with both of these stages
operating faster when the appropriate output code has
been selectively preactivated. In the congruent condition,
where both stages need to output the same code, both of
these stages would operate relatively quickly when the
correct codes were preactivated and relatively slowly when
the incorrect codes were preactivated, which implies a positive
correlation across many congruent trials between the stage
times. In the incongruent condition, where the two stages need
to output opposite codes, the stage outputting the preactivated
code would operate relatively quickly, and the other stage
would operate relatively slowly, which implies a negative
correlation between the stage times.

It is true that many models of conflict tasks do not meet
the rigid assumptions of classical serial stage organization.
For example, the activation-suppression model (Ridderink-
hof, 2002a) assumes parallel response activation from rele-
vant and irrelevant stimulus features. However, we note that
additive models as defined above (i.e., RT 0 tA + tB) are not
limited to strictly serial latency mechanisms in which stage
n + 1 starts only if and when stage n is completely finished
(cf. Atkinson, Holmgren, & Juola, 1969; Townsend &

Ashby, 1983). In the simplest case, consider a parallel-
exhaustive model in which two processes start simulta-
neously and both need to be finished to produce the overt
response, RT 0 max(tA,tB). Even for this strictly parallel
model, the total RT still consists of two additive compo-
nents: the time from the start until the faster process fin-
ishes, T1 0 min(tA,tB), plus the remaining time from there
until the slower process finishes, T2 0max(tA,tB) −min(tA,tB).
That is, when imagined as an evolving process that unfolds in
time, then in any actual realization of T 0 max(A,B), the first
event is that the faster subprocess finishes. This happens after
T1 0 min(tA,tB) time units, which may be interpreted as the
duration of a serial stage 1. Furthermore, the time from there
until the slower process also finishes, T2 0 max(tA,tB) − min
(tA,tB), may be seen as the duration of a serial stage 2. Overall,
then, RT 0 T1 + T2. The termmin(tA,tB) appears with different
signs in the two components T1 and T2; therefore, these
components tend to be negatively correlated, even when the
process durations tA and tB themselves are independent. As
a consequence, if the congruency effect prolongs one of
the processes, the stage correlation will become more
negative under many constellations, leading to the charac-
teristic nDP pattern of an increased mean RT yet a smaller
RT variance for incongruent trials.

Mixture models and their delta plots

We next consider mixture models (for general background
and review, see Luce, 1986, chap. 7; Yantis, Meyer, &
Smith, 1991). The basic assumption of mixture models is
that on each trial, the participant is in one particular discrete
internal state that characterizes the processing mode on that
trial. Across trials, this state is probabilistically selected
from a small set of possible states. Here, we focus on binary
mixture models, which assume that on each trial, only two
such internal states, or processing modes, are available to
the participant.

Mixture models provide a fairly general formal structure
(see Luce, 1986, chap. 7), and they occur in many substan-
tive contexts under somewhat different labels. For example,
the dual-route model of spatial compatibility effects (e.g.,
Van Duren & Sanders, 1988, Fig. 3b) holds that the infor-
mation conveyed by the stimulus is processed via two
parallel routes: one controlled and relatively slow, the other
fast and automatic. On each individual trial, the overt
response is generated via either one or the other of the two
processing paths, with complementary probabilities of p and
1 − p. Formally identical models have also been proposed in
many other contexts—for example, to account for process-
ing differences following compatible versus incompatible
trials (Wylie et al., 2010) and for the effects of set on speed
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versus accuracy (Wylie, van den Wildenberg, et al., 2009;
Yellott, 1971).

The mean RT according to the binary mixture model is
(e.g., Yantis et al., 1991, Eq. 3)

E RTi½ � ¼ piμa þ 1� pið Þμb;

and the RT variance is (e.g., Yantis et al., 1991, Eq. 5)

Var RTi½ � ¼ piσ
2
a þ 1� pið Þσ2

b þ pi 1� pið Þ μb � μað Þ2;
where μa, μb, and σ2a σ

2
b are the means and variances, respec-

tively, of the two base states.
The inset of the upper panel of Fig. 5 shows two base

densities that characterize the distributions of RTs as they
would be observed under each “pure” state. We have chosen
for illustrative purposes two inverse Gaussian distributions
(both with barriers a 0 100 and variance parameter σ2 0 1),
differing only in their drift rates (μ 0 0.35 vs. μ 0 0.25), but
could just as well have chosen, for example, a pair of
lognormal or even normal distributions to a similar effect.
The mean RTs are μa 0 286 ms and μb 0 400 ms, and the
associated standard deviations are σa 0 48 ms and σb 0
80 ms. As a functional interpretation, for example, the one
state (a) could represent “fast and automatic” processing,
and the other state (b) “slow and controlled” processing; for
example, there might actually be no cost on incompatible
trials, only benefits for compatible ones. Broadly, these
distributions exhibit the qualitative features (means, spread,
skewness) often associated with RTs. Note, in particular,
that for these base distributions, the means and variances
are ordered consistently: The distribution with the smaller
mean also has the smaller variance. Correspondingly, the
DP formed from comparing these two types of processing,
not shown here, would be strictly increasing. The main part
of the upper panel shows two mixture distributions,
corresponding to two experimental conditions i 0 1,2. These
were generated from the two inset base distributions, with
mixture proportions of p1 0 .4 in the faster condition and p2
0 .05 in the slower condition, giving a total of six model
parameters. In the faster condition, the overall mean RT is
354 ms, and its standard deviation is 89 ms; in the slower
condition, mean RT is 394 ms, and its standard deviation is
83 ms. Thus, even though the means and variances of the
two base distributions shown in the upper panel are consis-
tently ordered, the basic mixture mechanism assumed by
this class of models can produce an inconsistent moment
ordering. The DP in the lower panel of Fig. 5 is generated
from the corresponding CDFs in the middle panel. Evident-
ly, after a short initial increase, the long tail of the DP is
decreasing. That is, the binary mixture model can produce
nDPs, even when the base distributions (inset within top
panel) show a consistent ordering of means and variances
and an increasing DP (not shown). A very similar DP

emerges if the controlled route can be used only on incom-
patible trials (i.e., p2 0 0), which would mean functionally
that there is actually no cost for incompatible trials but only
benefits for compatible ones.
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Fig. 5 Top panel: The inset shows base reaction time (RT) frequency
distributions for a faster and a slower processing state, with means of
286 and 400 ms and standard deviations of 48 and 80 ms, respectively.
The RT frequency distribution for the congruent condition (solid line)
is a mixture distribution, with weights of p1 0 .40 for the faster base
distribution, and 1 − p1 0 .60 for the slower base distribution, giving a
mean RT of 354 ms and an RT standard deviation of 89 ms. The RT
frequency distribution for the incongruent condition (broken line) is a
mixture distribution, with weights of p2 0 .05 for the faster base
distribution, and 1 − p2 0 .95 for the slower base distribution, giving
a mean RT of 394 ms and an RT standard deviation of 83 ms. Middle
panel: Cumulatiave distribution functions (CDFs) for RT in the con-
gruent (solid line) and incongruent (broken line) conditions. Bottom
panel: Delta plot of quantile differences (ordinate) against quantile
averages (abscissa)
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As was explained above, nDPs reflect an inconsistent
ordering of means and variances—the faster RT distribution
having the larger spread. Thus, an obvious question to ask is
whether, or under which conditions, the binary mixture model
predicts this inconsistent moment ordering. Consider the RTs
(RTi) in conditions i 0 1,2 as functions of the mixture param-
eters pi. To fix ideas, assume (as shown in Fig. 5) that μa < μb
and that σa < σb; that is, RTs produced from one state (a) are
shorter, on average, and also less variable than RTs from the
other state (b). If RT1 refers to the condition with the
shorter mean RT, it can be shown (see the Appendix) that
the pattern of inconsistent moment ordering

E RT1½ � < E RT2½ � and Var RT1½ � > Var RT2½ �
arises if (and only if) the following condition is satisfied:

p1 þ p2 < 1� σb
2 � σa

2

μb � μað Þ2 :

This result indicates some boundary conditions. For ex-
ample, the faster state may not be more frequent overall than
the slower one, because the condition cannot be satisfied if
p1 + p2 > 1. Also, the mean RTs associated with the two
states need to differ sufficiently, relative to the difference in
variances, because the condition cannot be met if (μb − μa)

2

< s2
b � s2

a . For the underlying cognition, that implies that
one state must be clearly slower than the other and be used
more often. Both conditions together tend to produce the
pattern shown in Fig. 5, in which, at the lower end, the CDF
of the faster condition is well separated from that of the
slower condition, whereas the CDFs converge at the upper
end. In sum, then, binary mixture models provide yet an-
other plausible class of processing models capable of ac-
counting for nDPs.

Cascade models and their delta plots

McClelland (1979; for elaborations, see Miller, van der
Ham, & Sanders, 1995; Schwarz, 2003) proposed a cascade
model that retains the basic notion of discrete, functionally
distinct processing stages of serial RT models but differs
from them in two important ways. First, rather than being
all-or-none, the output activation of each stage varies grad-
ually as a continuous function of time. Second, all stages are
concurrently active: Their activation is continuously passed
on from stage to stage such that the increase of activation at
a given stage is proportional to the difference between its
current activation and the activation of the immediately
preceding stage. Thus, the cascade model pictures the flow
of information as a continuous wave of activation traveling
along successive discrete processing stages, a notion that
has proven especially influential in the area of cognitive
psychophysiology (e.g., Forster & Corballis, 2000;

Scheffers & Coles, 2000). Also, it is one of relatively few
models assuming partially overlapping processing stages
that are sufficiently specified to allow derivation of explicit
quantitative predictions (Schweickert & Mounts, 1998;
Ulrich, Mattes, & Miller, 1999).

Closer analysis of this model reveals that it is easily
capable of generating nDPs. Because McClelland’s (1979)
original cascade model had no stochastic mechanism for
generating RT distributions—but only mean RTs—we adop-
ted the general stochastic cascade model framework de-
scribed by Schwarz (2003). Within this framework, neural
spikes are transferred from stage to stage, with possibly
different stage-specific rates, and the continuous activation
level at each stage corresponds to the hazard (or intensity)
function driving the neural spike counting process at that
stage. A response is given when a criterion number (k) of
spikes has been collected at the final output stage.

The upper panel in Fig. 6 shows RT frequency distribu-
tions based on a cascade model with two stages, each of
which is characterized by a separate spike transmission rate
(cf. Schwarz, 2003, Eq. 4). A response is given as soon as k
0 20 spikes are collected at the second stage. The figure is
based on the assumption that neural spikes at the first
processing stage arrive at a higher rate (α1) on incongruent
than on congruent trials but are then transmitted faster (rate
α2) on to the second stage on congruent than on incongruent
trials. Such a pattern might arise, for example, if the first
stage represents automatic processing and the second a more
controlled, or selective, form of processing. The automatic
process generates spikes favoring both response codes on
incongruent trials (because there is some activation associ-
ated with each response), but it generates only spikes favor-
ing one response code on congruent trials (because both
types of activation favor the same response). If spikes at
the first stage are generated indiscriminately by the pooled
activation of either response code, the rate α1 would be
higher for the incongruent condition. On the other hand,
controlled, selective processing might depend on the differ-
ential evidence favoring one of the responses over the other,
in which case the transmission of spikes to the second stage
would proceed at a higher rate (α2) for the congruent con-
dition. The associated CDFs in the middle panel of Fig. 6
show that for short RTs, the congruency effect is large and
that it declines as RT increases, thus generating (using five
free parameters) the nDP shown in the bottom panel. Thus, the
basic parallel architecture and the considerable flexibility of
cascade models enable them to generate nDPs, even with a
relatively straightforward implementation of conflict tasks.

Parallel channels models and their delta plots

As a final class, we consider parallel channels models,
which, like cascade accounts, are also based on the concept
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of massively parallel processing. These models assume that
a criterion number of parallel processing channels must
finish—or “information grains” be activated—before a mo-
tor command is initiated. More specifically, they assume
that an overt response is produced as soon as the first k
parallel channels have finished, from a total of n activated
channels (cf. Meijers & Eijkman, 1974; Meijers, Teulings,

& Eijkman, 1976; Miller & Ulrich, 2003). More formally,
then, RT depends on the latency of the kth fastest channel,
out of a total of n activated channels. A basic assumption
within these models is that the total number (n) of activated
channels varies systematically across conditions, in contrast
to the constant criterion number (k) of channels that need to
finish before a motor response is initiated. From these
assumptions, it is intuitively clear that mean RT decreases
as more channels are activated. For example, the 15th fastest
channel out of a total of n 0 20 activated channels will, on
average, clearly be faster than the 15th fastest channel out of
a total of just n 0 17 channels. The critical question in the
present context, however, is the following: Does this
decrease in mean RT go together with a corresponding
decrease in RT variance?

Figure 7 shows that the answer is “no, not necessarily.”
The figure is based on the assumption that, in both con-
ditions, a response is generated as soon as k 0 15 parallel
channels have finished. In the incongruent condition, a
total of n 0 17 channels are activated; in the congruent
condition, the total number of channels is n 0 20. For
simplicity, assume that all channels act independently and
that their latency is uniformly distributed between 100 and
600 ms, for an average of 350 ms. Under these assump-
tions, mean RT in the incongruent condition is 517 ms,
and its standard deviation is 43 ms. With n 0 20 activated
channels, mean RT in the congruent condition drops, as
expected, to 457 ms, but the standard deviation increases
by 12 % to 48 ms. Figure 7 indicates that this pattern
(generated using five free parameters) translates into an
nDP that is initially large and falls off for larger RT
quantiles. We conclude that the class of parallel channels
models is also capable of producing nDPs. We note,
however, that with various forms of the basic channel
latency distribution, an inconsistent congruency effect
on mean and variance is more difficult, or even impossi-
ble, to obtain within this class of models, especially for
channel latencies with a sharply peaked unimodal density.
That is, these models do not predict nDPs in general;
however, the crucial point is that under at least some
conditions, they do. The uniform distribution is not a
necessary condition, though, to get an nDP in this model;
for example, beta or bimodal distributions can produce
the effect as well. It should also be noted that the model
does not assume that the overt (observed) latency is
uniform, which would clearly be an implausible assumption.
In contrast, uniform latencies of covert (latent) component
processes actually have enjoyed some prominence; for exam-
ple, Ratcliff and Tuerlinckx (2002, Fig. 1 and p. 441) assumed
the nondecisional latency component Ter of their diffusion
model to be uniformly distributed; the same assumption has
been made routinely in fitting this popular model to data (e.g.,
Ratcliff, 2002).
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Fig. 6 Top panel: Reaction time (RT) frequency distributions for
congruent (solid line) and incongruent (broken line) conditions, as
predicted by a cascade model with two stages. In the congruent
condition, the spike arrival rate at stage 1 and the spike transmission
rate into stage 2 are α1 0 1/20 and α2 0 1/20; in the incongruent
condition, they are α1 0 1/15 and α2 0 1/200; in both conditions, a
response is given as soon as k 0 20 spikes are collected at stage 2. The
distributions have means of 420 and 481 ms and standard deviations of
89 and 74 ms, respectively. Middle panel: Cumulative distribution
functions (CDFs) for RT in the congruent (solid line) and incongruent
(broken line) conditions. Bottom panel: Delta plot of quantile differ-
ences (ordinate) against quantile averages (abscissa)
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General discussion

Deriving DPs from RT data is one specific form of distri-
butional analysis that, in going beyond mean RT, can po-
tentially provide useful clues about how to formulate, test,
and revise theoretical accounts of the latency mechanisms
underlying those RT data. For example, the distinctive nDP
signature often found with standard Simon tasks is an

exceptional feature of RTs that can help to narrow down
the search space for plausible candidate models. Analyzing
DPs may also help to better appreciate that formally related
tasks sometimes produce superficially similar results on the
level of mean RT yet differ reliably in important finer
dynamical aspects. For example, the Simon, Stroop, and
Eriksen paradigms are all formally “conflict tasks”, character-
ized by having both response-relevant and response-irrelevant
stimulus features that vary across trials. Although all three
paradigms typically produce a congruency main effect on
mean RT, often of roughly comparable size, they may never-
theless differ in the basic form of DPs they generate (for a
systematic review, see Pratte et al., 2010).

A necessary prerequisite to reap these potential benefits
of DP analysis, however, would seem to be a better under-
standing of quantitative latency mechanisms that are, or are
not, capable of producing nDPs. At present, there seems no
clear consensus about exactly which dynamic, process-
related implications nDPs actually have. Specifically, devel-
opment of detailed quantitative models could help to predict
the precise form of a DP and its variation across different
experimental conditions. These predictions could then be
compared with empirical DPs, much as, say, theoretical
ROC curves from competing recognition memory models
are routinely compared with data (e.g., Heathcote, 2003;
Wixted, 2007). For example, an important impetus behind
many DP analyses of the Simon effect to date is the view
that the activation-suppression model (Ridderinkhof, 2002a,
2002b) with its gradual buildup of inhibition predicts an
nDP. However, at present, this model has not been specified
to a degree that would permit one to deduce the precise
quantitative form of the DP that it predicts. Thus, it appears
that the full potential of critical DP analyses has not yet been
exploited.

The results presented in this article are a step toward this
aim. They show that various well-established RT models are
capable of producing nDPs—at least, under the right addi-
tional assumptions, which we specify in some detail. For
example, as was noted previously by Pratte et al. (2010),
serial stage models do not normally predict nDPs. We have
shown that they may do so with correlated stage durations,
however—as long as the between-stage correlation is larger
in the faster condition. As we have argued in our discussion
of the correlated stages model, this is a plausible scenario in
the case of congruent versus incongruent stimuli in the
Simon task. Similarly, two-state mixture models can predict
nDPs if the mean RTs associated with the two states differ
sufficiently and if the slower (e.g., controlled) processing
state is the more frequently used “standard route”. Also, we
show that models in which RT depends critically on the
slower of two parallel processes—such as processing the
relevant stimulus feature and inhibiting activation from the
irrelevant stimulus feature—are clearly consistent with
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Fig. 7 Top panel: Reaction time (RT) frequency distributions pre-
dicted by a model in which 15 parallel channels have to be finished
before an overt response is executed. In the congruent condition (solid
line), 20 channels are activated; in the incongruent condition (broken
line), 17 channels are activated. The finishing latency for each channel
is uniform [100, 600]. The distributions have means of 457 and 517 ms
and standard deviations of 48 and 43 ms, respectively. Middle panel:
Cumulative distribution functions (CDFs) for RT in the congruent
(solid line) and incongruent (broken line) conditions. Bottom panel:
Delta plot of quantile differences (ordinate) against quantile averages
(abscissa)
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nDPs. Other models that, under at least some conditions, are
able to generate nDPs include cascade models and massive-
ly parallel models in which the number of parallel channels
varies across conditions.

In the introduction, we conjectured that nDPs would
seem to provide rather specific clues about the nature of
the effect under investigation. This view can be made more
precise on the basis of our results. First, we note that from
the sheer number and diversity of the different processing
architectures that are all consistent with nDPs—ranging
from serial to mildly and massively parallel on to cascade
and mixture models—it appears unrealistic to expect that
any unique model class can be inferred on the basis of an
nDP. Second, a more realistic view is that certain classes of
models that are incapable of generating nDPs can be ruled
out as adequate accounts. For example, no candidate model
of the standard Simon effect can be regarded as plausible if
it is unable to generate an nDP. Of course, the ability to
generate an nDP is not sufficient for a model to provide an
adequate account of the Simon effect. For example, it must
also make appropriate predictions about the effects of vari-
ous experimental manipulations and have a certain degree of
neurological plausibility.

Diffusion models

One flexible and widely studied class of models that appar-
ently has to add implausible ad hoc assumptions to account for
the nDPs often seenwith Simon effects is the class of diffusion
models (e.g., Luce, 1986, chap. 9; Ratcliff & Smith, 2004).
These models assume that stimulus-related information is
accumulated gradually over time; this accumulation is mod-
eled as a diffusion process. A standard assumption is that
within any single trial, the mean drift rate μ and the variance
σ2 of this accumulation process are constant. In this case, the
time to reach a single evidence threshold a, typically postu-
lated to be the point at which a decision is reached, has an
inverse Gaussian distribution, with mean a/μ and variance a
σ2/μ3. In a simple implementation of this model, relative to
congruent stimuli the presentation of incongruent stimuli
might be assumed either (1) to increase the evidence thresh-
old, a, or (2) to lower the drift rate, μ. In either case, the
functions relating the mean and variance of the decision time
to the underlying model parameters imply that the mean and
variance would change concurrently as either parameter was
varied. Therefore, this simple model does not generate the
pattern of means and variances that typically underlies nDPs
(see also Pratte et al., 2010, pp. 2022–2023), and indeed it
generates increasing DPs.

A slightly more sophisticated diffusion model for the Si-
mon task could assume that the relevant (e.g., color) and
irrelevant (e.g., location) stimulus features induce separate,
possibly time-dependent, drift components [say, μr(t) ≥ 0,

and μi(t) ≥ 0]. For congruent stimuli, these two components
activate the same response and, thus, add, whereas for incon-
gruent stimuli, they activate opposite responses and, thus,
subtract (see Schwarz & Ischebeck, 2003). As one interpreta-
tion of the activation-suppression hypothesis, assume that the
drift component induced by the relevant stimulus feature is
constant [μr(t) 0 μr], whereas that induced by the irrelevant
stimulus feature becomes gradually inhibited over time; for
example, μi(t) 0 μi · e

−λt. Thus, for congruent stimuli, the net
drift rate would start as μr + μi and decline to μr. For incon-
gruent stimuli, it would start as μr − μi and increase to μr. That
is, for congruent stimuli, the asymptotic drift rate μr is
approached from above; for incongruent stimuli, μr is
approached from below. This means that the net drift rate at
any point in time would be smaller for incongruent stimuli
than for congruent stimuli, and this condition leads again to an
increase of both mean and variance for the decision times.
Overall, then, we conclude that standard implementations of
diffusion models, including those with time-dependent diffu-
sion rates, do not predict nDPs.

Of course, this does not rule out the possibility that nDPs
could be produced bymore complex diffusion model variants,
possibly with congruent and incongruent conditions differing
in threshold and drift at a time, with suitably chosen time- and
state-dependent drift and variance terms or with across-trial
parameter randomization schemes (Ratcliff, 1978). For exam-
ple, even the standard diffusion model with a single barrier,
leading to the inverse Gaussian distribution, can produce
nDPs. To get this result, assume that relative to the congruent
condition, for the incongruent condition the variance param-
eter σ2 is smaller (but μ, a remain unchanged), or, formally
equivalently, that both μ and a are larger (but σ remains
unchanged). It is not apparent to us, though, why that should
be so. The standard notions (cf. Luce, 1986, chap. 9) about
diffusion models are that the incongruent condition has
smaller drift and/or higher barriers and that, in a randomized
trial design, the choice of barriers does not depend on the
actual stimulus presented.

Similarly, the standard diffusion model would produce
nDPs within the framework of the mixture model, which can
be seen as a very simple form of parameter randomization.
That is, if RTs under both states underlying the mixture
model were inverse Gaussians differing only in their drift
rates, the state with the higher drift rate would have the
shorter mean RT and also the smaller RT variance. Indeed,
this is precisely the model from which Fig. 5 was generated:
The inset in its top panel shows two inverse Gaussian RT
distributions differing only in their drift parameters. The
bottom panel shows that if, under the congruent and incon-
gruent conditions, these two RT distributions are mixed in
the proportions used to construct Fig. 5, the diffusion-based
mixture model generates an nDP. In our view, this observa-
tion does not strongly support diffusion-based accounts of
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nDPs, though. Instead, it simply indicates that the random-
ization scheme underlying the mixture model provides a
fairly flexible mechanism that works similarly for nearly
any “well-behaved” unimodal distribution, which includes,
of course, the inverse Gaussian.

Time course of effects

In their original study reporting nDPs in the context of the
Simon effect, DeJong et al. (1994) claimed that their observed
nDPs “almost certainly provide a reliable estimate of the actual
time course of these effects” (p. 733). In view of the diversity of
models that potentially predict nDPs, our results further
strengthen previous conclusions (e.g., Zhang & Kornblum,
1997) that even if the separation of two RT CDFs is strictly
limited to the few earliest quantiles, there is still no assurance
that the effect generating this pattern necessarily operates at an
early stage of processing within any trial. To illustrate this
important point further, using the Simon task as an example,
consider a standard serial model (cf. Sternberg, 1969, and
Fig. 2) with two stages, RT 0 tA + tB, such as the popular ex-
Gaussian model used in Fig. 4. Let the notation RT 0 tA + tB
indicate that, on each trial, the stage whose duration is tA
precedes the stage whose duration is tB.

1 Suppose that in a
Simon task, the congruency effect observed selectively influ-
ences the stage with latency tA, prolonging it stochastically
from tA on congruent trials to tA′ on incongruent trials. Now,
the distribution of tA + tB is evidently the same as that of tB + tA
(i.e., when stage tB precedes the affected stage tA) and so,
therefore, are two DPs, one involving a plot of tA′ + tB versus
tA + tB, and one involving a plot of tB + tA′ versus tB + tA. Thus,
if an nDP is observed, it might just as well have resulted from
an effect on the later stage (i.e., from the underlying model
RT 0 tB + tA). Indeed, in a serial model with, say, 100 stages, an
nDP might show a congruency effect that is strictly limited to
the 10 % shortest RTs, and yet the effect may, on each trial,
exclusively arise at the very last of these 100 stages. For serial
models, it is, in principle, impossible to distinguish between
“early stage” and “late stage” chronometric interpretations of an
observed effect on the basis of the associated DP.

The activation-suppression model

As was noted above, the activation-suppression model (Rid-
derinkhof, 2002a, 2002b) has been a strong impetus behind
many extant DP analyses, even though the empirical evi-
dence supporting this model extends beyond DP analyses
(for a recent review, see van den Wildenberg et al., 2010).
Could any of the nDP-consistent models described in the

preceding sections fit in with the basic assumptions of that
model?

Neither mixture models, correlated serial-stages models,
cascade models, nor parallel channels models seem to cor-
respond at all well with the assumptions underlying the
activation-suppression model. According to mixture mod-
els, the response on each trial is made from within one of
several distinct states, but the activation-suppression model
postulates no such mutually exclusive states. The models
with correlated stages are strictly serial, in contrast to the
inherently parallel architecture of the activation-suppression
model. Furthermore, the correlated-stage models include
nothing that might be construed as suppression over time
of the influence of the irrelevant attribute. Within cascade
and parallel channels models, there is only accumulation of
activation (e.g., a summation of neural spikes), but no
explicit mechanism for inhibition or suppression. Thus, it
seems more natural to view these models as alternatives to
the activation-suppression model, however formalized, rather
than as possible implementations of it.

On the other hand, maximum-based exhaustive process-
ing models do correspond in some ways to the assumptions
underlying the activation-suppression model, so these could
possibly be viewed as potential formalizations of it. For
example, in both exhaustive processing models and the
activation-suppression model, nDPs emerge from the paral-
lel operation of two processes. One might even view the two
processes within the exhaustive processing model as
corresponding to activation of responses by the relevant
information and suppression of the irrelevant information,
which would make for an even closer correspondence of this
model to the activation-suppression model. On the other
hand, the activation-suppression model posits a continuous-
ly decreasing influence of one channel on the other, whereas
the exhaustive model could be said to involve a more all-or-
none influence of the suppression process on the activation
process. Specifically, suppression has an effect when it is the
slower process, by increasing the maximum, but no effect at
all when it is the faster process.

Statistical analyses of nDPs

An important benefit of an explicit formulation of models
capable of producing nDPs is that they provide a more
detailed characterization of DPs and, thereby, allow for a more
efficient and powerful analysis of empirical DPs. For exam-
ple, even for the standard Simon paradigm involving colored
patches and lateralized manual responses from healthy partic-
ipants, there is considerable variation in the results reported.
Burle et al. (2002, Fig. 1), Kubo-Kawai and Kawai (2010, Fig.
1), Pratte et al. (2010, Fig. 2D), and Proctor et al. (2005, Figs.
2 and 4) found strictly decreasing DPs, whereas Davranche
and McMorris (2009, Fig. 4), Ridderinkhof et al. (2004, Fig.

1 For example, tA might be the normal and tB the exponential compo-
nent in the ex-Gaussian model.
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2), Vallesi et al. (2005, Table 1), andWylie at al. (2010, Fig. 4)
reported an increasing-then-decreasing pattern. Similarly,
some studies (Burle et al., 2002, Fig. 1; Kubo-Kawai &
Kawai, 2010, Fig. 1; Vallesi et al., 2005, Fig. 1; Wylie,
Ridderinkhof, et al., 2009, Fig. 3B; Wylie et al., 2010, Fig.
4) reported nDPs crossing the abscissa at the highest quantiles
(thus violating stochastic dominance), whereas many others
(e.g., Burle et al., 2002, Fig. 3; Davranche &McMorris, 2009,
Fig. 1; Davranche et al., 2009, Fig. 1; DeJong et al., 1994, Fig.
3; Pratte et al., 2010, Fig. 3B) did not.

How can these different DP patterns be reconciled? One
informative approach is to try to relate them to subtle
stimulus- or design-related differences among these studies
(Proctor et al., 2011). In addition, to address the question of
how reliable and significant these apparent discrepancies
really are, it is also clearly relevant to consider the standard
errors (SEs) of the plotting positions of a DP and the factors
influencing them. To investigate these SEs, we simulated the
complete data generation and data analysis process follow-
ing the experimental protocol of Davranche and McMorris
(2009) precisely as shown in Fig. 1. In these simulations, we
used the ex-Gaussian model as a descriptive model that
would produce the type of densities, CDFs, and nDPs
shown in the top three panels of Fig. 1. Across simulated
experiments, we computed the means and standard devia-
tions of the obtained horizontal and vertical locations of
each point on the resulting DPs. The means are depicted
as the points in Fig. 8, and the standard deviations, which
represent SEs in this context, were used to compute the
horizontal and vertical error bars (i.e., ±1.96 × SE).

Davranche andMcMorris (2009) collected in their study n 0
200 RTs per condition for each of 12 participants. Under these
conditions, with the procedure illustrated in Fig. 1, the estimates
of the points along the DP are essentially unbiased in all cases
shown in Fig. 8, as is indicated by the fact that the points lie
directly on the theoretical curves. The SEs, however, can be-
come quite sizable, especially at the right end of a DP, as is
shown by the error bars. These SEs can also be assessed
analytically. Consider, for example, the estimates of the 95 %
quantile in the two conditions; for a single participant, their SEs
are2 12.3 ms (congruent RTs) and 9.2 ms (incongruent RTs).

The plotting position of the corresponding point on the DP of 1
participant is the average (x-coordinate) and difference (y-coor-
dinate) of these quantiles, and so their SEs are,3 respectively,
7.7 and 15.4 ms. As is shown in the left panel of Fig. 8 (filled
circles), the SE taken from the 95 % quantiles of 12 indepen-
dent participants, all operating under exactly the same param-
eters, are then 2.2. and 4.5 ms. This gives a 95 % confidence
ellipse with a vertical extension of about 9 ms and a horizontal
extension of about 4.4 ms. Evidently, the outermost points
along a DP will be particularly sensitive to the various proce-
dures used for removing outliers (see, e.g., Wascher et al., p.
735; Wylie, Ridderinkhof, et al., 2009, p. 2062; Wylie, van den
Wildenberg, et al., 2009, p. 1847; for analytical background on
such procedures, see Ulrich & Miller, 1994).

When only four bins are used (e.g., Proctor et al., 2005)
rather than ten, different points along the underlying DP are
estimated, as indicated by the open circles in the left panel of
Fig. 8. For example, the rightmost open circle in the left
panel of Fig. 8 refers to estimates at the 87.5 % quantile.
Figure 8 shows that the SE of comparable points along the
DP is roughly similar but tends to be slightly larger than
with ten bins. With fewer bins, more data per bin enter into
each quantile estimate, but the arithmetical mean of the
largest quarter of a sample is necessarily a cruder estimate
of the 87.5 % quantile, as compared with an estimate
obtained with narrower bins. Figure 8 also illustrates that
with just a few bins, it is clearly much harder to extract
shape information about the curvature of a DP. For all
choices of the number of bins, increasing the number of
trials per participant by a factor of, for example, four will cut

2 The estimate of the pth quantile (xp) of a distribution has a squared
standard error equal to

SE2 bxp� � ¼ p 1� pð Þ
nf 2 xp

� �
where n is the sample size and f(xp) is the underlying density, evaluated
at xp (cf. Kendall & Stuart, 1977, chap. 10.10, Eq. 10.29). For example,
the p 0 0.95 quantile of the ex-Gaussian density with μ 0 283, σ 0 20,
τ 0 40 (used in Fig. 8) is equal to x0.95 0 407.8; at this point, the density
equals 0.00125. Inserting into the above formula with n 0 200 and p 0
0.95 gives SE bxð 0.95) 0 12.32. Of course, in actual applications, one
replaces the estimated value bxp for the true quantile xp.

3 Let tcp and tip be the estimates of the pth RT quantile for a single
participant in the congruent and incongruent conditions, respectively.
These estimates are independent because they come from different
conditions, and they have individual variances as given in Footnote
1. The plotting position (xp|yp) on the DP is then xp 0 (tcp + tip)/2 and
yp 0 (tip − tcp). Therefore,

Var xp
� � ¼ 1

4
Var tcp

� �
þ Var tip

� �h i

and

Var yp
� � ¼ Var tcp

� �
þ Var tip

� �
;

and finally,

Cov xp; yp
� � ¼ 1

2
Var tip

� �
� Var tcp

� �h i
:

These relations explain the unequal SEs associated with the two
coordinates xp and yp forming a DP and their complex dependence
structure, which, for nDPs, typically varies from positive to negative
correlation as p increases. By way of contrast, we note that the coor-
dinates of QQ-plots (e.g., Marden, 2004) are independent of one
another, which makes it easier to derive and interpret the statistical
properties of such plots.
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the resultant SEs in half and has essentially the same effect
as multiplying the number of participants by 4 within this
simulation.

Of course, the assumption that all participants operate
under exactly the same population parameters seems quite
unrealistic, but the right panel of Fig. 8 shows that it is
critical. For the simulations depicted in this panel, it was
assumed that each parameter value for each of the 12 par-
ticipants is drawn from a normal distribution that has its
mean set at the fixed parameter value used for the left panel
of Fig. 8 and that a standard deviation equal to 5 % of each
mean parameter value is introduced to model between-
participants variability—an amount that would seem to be
rather modest. The pattern arising under this more realistic
scenario shows that even this small jitter in parameter values
between participants increases the SEs quite considerably.
For example, the 95 % confidence ellipse of the last point on
the DP has then a vertical main axis of about 16 ms and a
horizontal minor axis of about 7.8 ms and actually extends
down to the negative half-plane where stochastic dominance
is violated. These SEs are, in fact, larger than the SEs along
the DP of a single fixed participant, illustrating that inter-
participant variability can easily outweigh the reduction of
the SE achieved by Vincentizing. Another important effect
of jitter in parameter values between participants—not illus-
trated in the figure—is that the SE then depends to a much
lesser degree on the number of trials run per participant. For
example, running 800 rather than 200 trials would reduce
the vertical and horizontal SE of the rightmost data point in

the right panel of Fig. 8 only to 14.0 and 7.0 ms, respec-
tively. For a factor of four increase in trials, this represents a
rather minuscule reduction in SE and indicates that in the
presence of even modest parameter jitter, it does not pay to
sample each participant extensively. In contrast, running
four times as many participants does essentially cut the
SEs in half.

The results shown in Fig. 8 suggest that it is often unclear
whether, for example, a single final negative data point on
an empirical DP indicates a true violation of stochastic
dominance or simply reflects statistical noise. Similarly, it
is often unclear whether a DP has significant concave or
convex curvature, especially when as few as four data points
are obtained on the DP. Clearly, model-based techniques of
DP analysis could assist in resolving whether differences in
the form of reported DPs are systematic or simply within the
error margin. Another possibility for addressing the issue of
statistical noise is to draw on the statistical properties of QQ
plots, which are a more thoroughly investigated and better
understood data format (for a review, see, e.g., Marden,
2004). As was pointed out by Zhang and Kornblum
(1997), a DP is a linear 1–1 transform of a QQ plot; given
the extensive literature on their statistical properties, QQ
plots may provide more efficient statistical techniques for
assessing quantile differences between conditions.

A related point that our results can help to clarify con-
cerns the question of whether one and the same model can
be compatible with qualitatively different forms of DPs. For
example, Pratte et al. (2010) took the view that models

Fig. 8 Left panel: Solid line shows a population delta plot, using the
ex-Gaussian model with parameters τ 040, μ 0 283, σ 0 20 in the
congruent condition and τ 0 30, μ 0 325, σ 0 25 in the incongruent
condition, giving a delta plot (DP) comparable to that in the third panel
of Fig. 1. Filled points refer to DP estimates from ten bins, at the 5 %,
15 %, . . . ,95 % quantiles, using 12 participants, each with 200 trials in
each condition, as in the study of Davranche and McMorris (2009).
Open circles refer to DP estimates from four bins, at the 12.5 %,
37.5 %, 62.5 %, and 87.5 % quantiles, also using 12 participants, each
with 200 trials per condition. Mean DP plotting positions and standard

errors (SEs) were obtained from simulating the model 100,000 times
and applying the procedure shown in Fig. 1. The length of the vertical
and horizontal error bars indicates ±1.96 × SE. These simulations
assumed that all 12 participants operate under exactly the same set of
parameter values as that described above. Right panel: Same as left
panel, except that these simulations assumed that the 12 participants
operate under parameter values drawn independently from normal
distributions with means equal to the fixed parameter values used in
the left panel and a standard deviation equal to 5 % of that value
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based on the activation-suppression hypothesis will always
predict nDPs and, therefore, cannot account for tasks in
which nDPs are not routinely found: “Because each of these
[inhibition] models explains negatively sloped delta plots,
however, they cannot account for the Stroop congruency
effect, in which there is a positively sloped delta-plot pat-
tern” (p. 2016; for a similar view, see Proctor et al., 2011, p.
263). Our results indicate that for many models, this impli-
cation is too strong. In particular, many of the models we
describe as nDP consistent can also predict positive-going
DPs with some combinations of parameters. For example,
the two-state mixture model will usually predict an nDP
under the conditions specified in the Appendix, but it will
produce positive-going DPs under various other conditions.
Thus, it is certainly possible that the same model might
account for both Simon and Stroop congruency effects via
differences in parameter values between those two tasks.

In summary, our results confirm previous conclusions
(De Jong et al., 1994; Pratte et al., 2010; Proctor et al.,
2011; Ridderinkhof, 2002a, 2002b) that DPs can be a valu-
able data-analytic tool, extending routine analyses of mean
RT to a finer distributional level and providing more strin-
gent criteria that any candidate model must pass. In order to
take full advantage of the added distributional information
provided by such analyses, however, it is necessary to have
explicit models that can predict the quantitative form that a
DP will take under various experimental conditions. The
model classes presented in this article provide examples of
the classes that may be considered when attempting to
implement such explicit models. Indeed, such models must
ultimately be evaluated with respect to their ability to pro-
duce realistic RT distributions (CDFs and QQ plots), and
good fits to full RT distributions will, as a by-product,
naturally imply good fits to DPs as well.
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Appendix Inconsistent moment ordering with mixture
models

The binary mixture model predicts that under condition i 0
1,2

E RTi½ � ¼ piμa þ 1� pið Þμb

and the RT variance is

Var RTi½ � ¼ piσ
2
a þ 1� pið Þσ2

b þ pi 1� pið Þ μb � μað Þ2

We assume that the states themselves show a consistent
ordering of RT means and variances, in which case, say,

μa < μb and σ2a < σ2b. Denote without loss of generality as
RT1 and RT2 the RT in the condition with faster and slower
means, respectively. Because μa < μb, this convention implies
that p1 > p2. Inserting for Var[RTi] and elementary simplifica-
tions then show that

Var RT1½ � � Var RT2½ � ¼

p1 � p2ð Þ ðσ2
a � σ2

bÞ þ 1� p1 þ p2ð Þ½ � μb � μað Þ2
�
:

�

Because p1 > p2, the sign of Var[RT1] − Var[RT2] is equal
to the sign of the expression within the {. . .} brackets. This
implies that

Var RT1½ �
>
¼
<

8<
:

9=
;Var RT2½ � iff 1� σ2b�σ2a

μb�μbð Þ2
>
¼
<

8<
:

9=
;p1 þ p2

In particular, E[RT1] will be smaller than E[RT2] but
Var[RT1] will be larger than Var[RT2] if, relative to their
difference in variances, the state means μa and μb differ
sufficiently and the faster state is used less frequently overall.
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