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Abstract: This paper presents a work-in-progress on the response time
variability problem. This problem occurs whenever events, jobs, clients
or products need to be sequenced so as to minimize the variability of
time they wait for their next turn in obtaining the necessary resources.
The problem has numerous real-life applications, which will be briefly
reviewed. The problem has distinctive number theoretic flavor. We
study its computational complexity, present efficient, polynomial time
algorithms for some cases and the NP-completeness proof for a general
problem. We then propose a position exchange heuristic and apply it
to improve the response time variability of an initial sequence. The
latter is obtained in various ways: the optimum bottleneck sequence,
Webster and Jefferson sequences of the apportionment, or randomly.
We report on computational experiments with the heuristic.

1. Introduction

Most modern systems shares its resources between different jobs.
The jobs define a certain amount of work to be done, for instance
the file size to be transmitted to or from a server or the number of
cars of a particular model to be produced on a mixed-model assembly
line. To ensure fair sharing of common resources between different
jobs, this work is divisible in atomic tasks, for instance data blocks or

1This research has been supported by the Natural Sciences and Engineering
Research Council of Canada grant OPG0105675 and by the Ministerio de Ciencia
y Technologia of Spain project DPI2001-2176.
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cars. These tasks, in turn, are required to be evenly distributed so that
the distance between any two consecutive tasks of the same job is as
regular as possible, in other words, ideally constant. The following are
some real-live examples.
The Asynchronous Transfer Mode (ATM) networks divide each appli-
cation (voice, large data file, video) into cells of fixed size so that the
application can be preempted after each cell. Furthermore, isochronous
applications, for instance voice and video, require that a inter-cell dis-
tance in a cell stream be as close to being constant as possible and in
the worst case not exceeding some pre-specified value. The latter is to
account for limited resources shared with other applications, Han, Lin,
and Hou [9], and Altman, Gaujal and Hordijk [1]. In fact multime-
dia systems should avoid presenting video frames too early or too late
which would result in jagged motion perceptions.
On a mixed-model, just-in-time assembly line a sequences of different
models to produce is sought where each model is distributed as ”evenly”
as possible but appears a given number of times to satisfy demand for
different models. Consequently, shortages, on one hand, and excessive
inventories, on the other, are reduced, Monden [14].
The stride scheduling is a deterministic scheduling technique where
each client is first issued a number of tickets. The resources are then
allocated in discrete time slices called quanta. The client to be allo-
cated resources in next quantum is calculated as a certain function
of the number of allocations obtained in the past and the number of
tickets issued, Waldspurger, and Weihl [17]. This paper considers the
throughput error and the response time variability as two main metrics
of the schedule obtained.

These problems are often considered as the distance-constrained
scheduling problems, where the temporal distance between any two
consecutive executions of a task is not longer that a pre-specified dis-
tance, Han, Lin, and Hou [9]. Sometimes even stronger condition is
imposed that the temporal distance is equal to the pre-specified dis-
tance, constant gaps discussed by Altman, Gaujal and Hordijk [1], see
also Anily, Glass and Hassin [2], where periodic machine maintenance
problem is considered with equal distances between consecutive services
of the same machine.

The distance-constrained model, however, suffers from a serious
problem which is that there may not be a feasible solution that re-
spects the distance constraints and at the same time makes sure that
tasks are done at given rates. In this paper, we propose the response
time variability metric instead to avoid the feasibility problem but at
the same time preserve the main idea of having any two consecutive
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tasks at a distance which remains as constant as the existing resources
and other competing tasks allow. We formulate the problem as follows.

Given are n positive integers d1 ≤ . . . ≤ dn, define D =
∑n

i=1 di

and ri = di

D
. Consider a sequence s = s1s2 . . . sD of length D where i

(client, product or task) occurs exactly di times. Such sequence will
be called feasible. For di ≥ 2, for any two consecutive occurrences of i

define a distance t being the number of positions that separate the two
plus 1. This distance will also be referred to as the end-to-end distance
between the two occurrences. Since i occurs exactly di times in s, then
there are exactly di distances ti1, . . . , t

i
di

for i, where tdi
is the distance

between the last and the first occurrence of i. Since

ti1 + . . . + tidi
= D,

then the average distance ti between the i’s in s equals

D

di

=
1

ri

,

and it is the same for each feasible sequence s. We define the response
time variability for i as follows

RTVi =
∑

1≤j≤di

(tij − ti)
2,

and the response time variability as

RTV =
n∑

i=1

RTVi =
n∑

i=1

∑

1≤j≤di

(tij − ti)
2.

We observe that the response time variability is a weighted variance
with weights being equal to demands, that is

RTV =
n∑

i=1

diV ari,

where V ari = 1
di

∑

1≤j≤di
(tij − ti)

2.
We also consider the maximum deviation just-in-time sequencing

problem, or the bottleneck minimization problem. We shall use the
term throughput error (TE) as well in the paper. Let xi,k be the number
of occurrences of i in the k-prefix of s, that is in s1 . . . sk.

B∗ = min max
i,k

|xi,k − kri|
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Subject to

xi,k ≤ xi,k+1 for i = 1, . . . , n and k = 1, . . . , D − 1
∑n

i=1 xi,k = k for k = 1, . . . , D
xi,k non-negative integers for i = 1, . . . , n and k = 1, . . . , D.

The plan for the paper is as follows. Section 2 studies the optimiza-
tion and the computational complexity of the response time variability
problem. It first introduces the number decomposition graphs as a
useful tool for the analysis of the response time variability. Second, it
shows an optimization algorithm for two product case. The algorithm
minimizes both the response time variability and the bottleneck at the
same time. Third, the section shows a dynamic programming algo-
rithm to prove polynomial solvability for a fixed number of products.
Finally, it proves that the problem is NP-complete. Section 3 presents
optimization algorithms for the response time variability. Section 4
presents a simple position exchange heuristic that takes a sequence ex-
changes positions of some products as long as the exchanges lead to
improvements in the value of RTV . The sequences subjected to this
exchange heuristic are generated by various procedures: the bottleneck
that solves the bottleneck problem to optimality, insertion based on
a solution to the two product case, Webster and Jefferson based on
the well known methods of the apportionment. These are described in
Section 4.2. Section 5 presents results of computational experiments
with the exchange heuristic as well as very limited experiment with an
optimization algorithm based on mathematical programming. Finally,
Section 6 presents conclusions and remarks on further research.

2. Optimization and Complexity

2.1. Number Decomposition Graphs vs RTV. For product i, con-
sider a vector α = (α1, . . . , αdi

) of di ≥ 2 positive integers that sum up
to D. Without loss of generality we assume the coordinates of α ordered
in descending order, that is α1 ≥ . . . ≥ αdi

. Any vector α that meets
the above conditions will be referred to as the decomposition vector of
D into di components. Now let us define a unit exchange operation on
the decomposition vector α as follows. Consider two components αj

and αk > 1, j < k, of α. Replace αj by αj + 1 and αk by αk − 1 and
keep all other components of α unchanged. The new components after
ordering them define another decomposition vector β. For instance,
consider α = (6, 6, 5), then adding 1 to the second component and sub-
tracting 1 from the third component leads to the vector β = (7, 6, 4).
Let us consider a weighted directed graph Di, we refer to this graph as
the number decomposition graph for product i, with the set of nodes
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Ni including all decomposition vectors of D into di components, and
the set of arcs Ai including all pairs of decomposition vectors (α, β)
such β is obtained from α by a unit exchange operation. The weight
of the arc (α, β) is defined as

2(αj − αk + 1).

We have the following straightforward properties of Di.

Lemma 2.1. The following properties hold for Di:

• The graph Di is acyclic with a single maximal node, Ni, and a
single minimal node, Mi.

• Ni = (⌈
D

di

⌉, . . . , ⌈
D

di

⌉
︸ ︷︷ ︸

D mod di

, ⌊
D

di

⌋, . . . , ⌊
D

di

⌋
︸ ︷︷ ︸

di−D mod di

).

• Mi = (D − di + 1, 1, . . . , 1
︸ ︷︷ ︸

di−1

).

Proof. If (α, β) ∈ Ai, then
n∑

i=1

α2
i <

n∑

i=1

β2
i .

Therefore, Di must be acyclic. The node Ni has in-degree 0. Otherwise,
there would be a node α in Di such that (α,Ni) ∈ Ai. Then, there
would be two components αj and αk > 1, j < k, of α that would
become some components αj + 1 and αk − 1 of Ni. Then, αj + 1 must
be either ⌊D

di
⌋ or ⌈D

di
⌉. Consequently, αj must be either ⌊D

di
⌋ − 1 or

⌈D
di
⌉− 1. Then, however, αk − 1 ≤ ⌈D

di
⌉− 2 ≤ ⌊D

di
⌋− 1, and thus αk − 1

cannot be a component of Ni. No other node has in-degree 0 since it
can be shown that there is a path from Ni to the node in Di. Finally,
by definition the only node with out-degree 0 is the one that has the
last di components all equal 1. Otherwise a unit exchange would be
possible. However, since all components of any node must sum up to
di, there is only one such a node, namely Mi.

Figure 1 presents the number decomposition graph for D = 16 and
di = 3.
Consider Ni and another node α in Di. The length of a directed path
from Ni to α is the sum of all the weights along the path. We have the
following lemma.

Lemma 2.2. For any node α in Di, all directed paths from Ni do α

have the same length.
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6, 5, 5

6, 6, 4 7, 5, 4

7, 6, 3 8, 5, 3 8, 4, 4

7, 7, 2 8, 6, 2 9, 4, 39, 5, 2

8, 7, 1 9, 6, 1 10, 5, 1 10, 4, 2

11, 4, 1

12, 3, 1

13, 2, 1

14, 1, 1

2+ 4+

2+

6+

4+

8+ 6+

2+

8+ 10+ 6+

12+
10+

12+

10+

2+

14+

6+

8+

4+

14+
8+

16+

4+ 8+

10+

6+

12+ 18+

16+

20+

24+

4+

Figure 1. The number decomposition graph for D=16
and di = 3.

Proof. For a node α ∈ Di define

RTV (α) =
n∑

j=1

(αj −
D

di

)2.

Let p be any path from Ni to α, and w(p) its total weight. It can be
shown that

RTV (α) = RTV (Ni) + w(p).

This, however, implies the lemma since both RTV (α) and RTV (Ni)
are constants, that is path independent.

The following lemma links the decomposition graphs and the response
time variability problem.

Lemma 2.3. Let S be a solution to the response time variability prob-
lem with value RTV . Then there are nodes α1, . . . , αn in the decompo-
sition graphs D1, . . . ,Dn respectively, such that

RTV =
n∑

i=1

w(Ni, α
i) +

n∑

i=1

RTV (Ni),
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where w(Ni, α
i) is the length of a directed path from Ni to αi in Di and

RTV (Ni) = (D mod di)(⌈
D

di

⌉ −
D

di

)2 + (di − D mod di)(⌊
D

di

⌋ −
D

di

)2

for i = 1, . . . , n.

Proof. Follows from Lemma 2.2.

2.2. Two Product Case. This section considers a two product case.
It shows a solution that minimizes both the response time variabil-
ity and the maximum deviation at the same time, which generally is
impossible for more than two products. Prior to giving the details of
the solution we need to point out that the sequence minimizing the
response time variability for two products is quite straightforward to
obtain as follows. Let d1 < d2. We omit the case d1 = d2 since it
is trivial. It follows from our discussion in Subsection 2.1 that if one
can find a solution with distances ⌈D

d1
⌉ and ⌊D

d1
⌋ for product 1, and

⌈D
d2
⌉ and ⌊D

d2
⌋ for product 2, then this solution will be optimal. We

notice, however, that such solution is always possible since ⌊D
d1
⌋ ≥ 2

and 2 > D
d2

> 1. Therefore, starting a sequence with product 1 and

then sequencing any consecutive copy of 1 at a distance either ⌈D
d1
⌉ or

⌊D
d1
⌋ (the number of times each distance is used is given in Lemma 2.3)

from the last one will produce the sequence where empty positions are
separated by at most a single copy of product 1. This allows us to fit
in product 2 in the empty positions ensuring the desired distances for
product 2.
We now discuss details of the solutions that minimizes both the re-
sponse time variability and the maximum deviation. We assume that
the greatest common divisor of d1, d2, and D = d1 + d2 is 1, that is
gcd{d1, d2} = 1. Otherwise, the optimal solution for d1

g
and d2

g
can be

repeated g = gcd{d1, d2} times resulting into an optimal solution with
respect to both metrics for the original instance with demands d1 and
d2.
Our solution relies on the ideal positions for copy j of product i, i = 1, 2
and j = 1, . . . , di defined as ⌈2j−1

2ri
⌉, see Kubiak and Sethi [10]. We con-

sider two cases. One with one demand being odd and the other even
is easier to deal with since then all the ideal positions are pairwise
different. The other with both demands being odd is a bit more in-
volved since then there may be two ideal positions with the same value
creating a conflict for two copies.
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Lemma 2.4. Consider numbers aj = 2j−1
2r1

for j = 1, . . . , d1 and bk =
2k−1
2r2

for k = 1, . . . , d2. If l − 1 < aj ≤ l and l − 1 < bk ≤ l for some
l = 1, . . . , D, then aj = bk = l.

Proof. Since aj = 2j−1
2r1

= (l − 1) + f1 and bk = 2k−1
2r2

= (l − 1) + f2,

with 0 < fi ≤ 1 (i = 1, 2), we have

2j − 1 = 2r1(l − 1) + 2r1f1

2k − 1 = 2r2(l − 1) + 2r2f2

and, since r1 + r2 = 1

j + k − 1 = (l − 1) + r1f1 + r2f2

which, as the left-hand side of the equation and (l−1)are integers, can
only be possible if r1f1 +r2f2 is also integer; however, 0 < r1f1 +r2f2 ≤
1, since r1f1 + r2f2 ≤ (r1 + r2) max (f1, f2) = max (f1, f2) ≤ 1, and is
equal to 1 if and only if f1 = f2 = 1.

Lemma 2.5. If one of demands, d1 and d2, is odd and the other even
than none of the numbers aj = 2j−1

2r1
for j = 1, . . . , d1 and bk = 2k−1

2r2
for

k = 1, . . . , d2 is an integer.

Proof. If one of demands, d1 and d2, is odd and the other even, then
D is odd and, consequently, (2j−1)D is odd, j = 1, . . . , di and i = 1, 2.

Since 2di is even, then (2j−1)D
2di

= 2j−1
2ri

is not an integer for j = 1, . . . , di

and i = 1, 2.

Lemma 2.6. If one of demands, d1 and d2, is odd and the other even,
then αj = ⌈aj⌉ for j = 1, . . . , d1 and βk = ⌈bk⌉ for k = 1, . . . , d2 are
pairwise different.

Proof. Follows immediately from Lemma 2.4 and Lemma 2.5.

Lemma 2.7. If both d1 and d2 are odd, than none of the numbers
aj = 2j−1

2r1
for j = 1, . . . , d1+1

2
− 1, d1+1

2
+ 1, . . . , d1 and bk = 2k−1

2r2
for

k = 1, . . . , d2+1
2

−1, d2+1
2

+1, . . . , d2 is integer. However, both a d1+1

2

and

b d2+1

2

= D
2

are integers equal D
2
.
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Proof. If d1 and d2 are odd, then D
2

is integer, however, D
2

and di

are relatively prime for i = 1, 2. Furthermore, di divides 2j − 1 for
j = 1, . . . , di and i = 1, 2 only if j = di+1

2
. Therefore, a d1+1

2

= b d2+1

2

= D
2

and none of the numbers (2j−1)D
2di

= 2j−1
2ri

for j = 1, . . . , di+1
2

− 1, di+1
2

+
1, . . . , di and i = 1, 2 is an integer.

Lemma 2.8. If both d1 and d2 are odd, then αj = ⌈aj⌉ for j =
1, . . . , d1, and βj = ⌈bk⌉ for k = 1, . . . , d2+1

2
− 1, d2+1

2
+ 1, . . . , d2, and

β d2+1

2

= ⌈b d2+1

2

⌉ + 1 = D
2

+ 1 are pairwise different.

Proof. Follows immediately from Lemma 2.4 and Lemma 2.7, and
the fact that ⌈aj⌉ 6= D

2
+ 1 for j = 1, . . . , d1, and ⌈bk⌉ 6= D

2
+ 1 for

k = 1, . . . , d2. The latter holds since ⌈2j−1
2ri

⌉ ≥ D
2

+ 2 for j = di+1
2

+ 1.

We shall refer to the solutions defined in Lemma 2.6 and in Lemma
2.8 as αβ solutions. We now show in Lemmas 2.9 to 2.11 that these
solutions are optimal for the response variability problem. To that
end we prove that the distance between any two consecutive copies of
product 1 equals either ⌈D

d1
⌉ or ⌊D

d1
⌋ and for product 2 equals either

⌈D
d2
⌉ or ⌊D

d2
⌋.

Lemma 2.9. We have ⌊D
d1
⌋ ≤ ⌈aj+1⌉−⌈aj⌉ ≤ ⌈D

d1
⌉ for j = 1, . . . , d1−1

and ⌊D
d2
⌋ ≤ ⌈bj+1⌉ − ⌈bj⌉ ≤ ⌈D

d2
⌉ for j = 1, . . . , d2 − 1.

Proof. We have,

D

d1

− 1 = aj+1 − aj − 1 ≤ ⌈aj+1⌉ − ⌈aj⌉ ≤ aj+1 − aj + 1 =
D

d1

+ 1.

Since D
d1

is not an integer and ⌈aj+1⌉ − ⌈aj⌉ is an integer, then

⌊
D

d1

⌋ ≤ ⌈aj+1⌉ − ⌈aj⌉ ≤ ⌈
D

d1

⌉.

The proof for product 2 is similar and thus will be omitted.

Lemma 2.10. We have ⌊D
d1
⌋ ≤ D − ⌈ad1

⌉ + ⌈a1⌉ ≤ ⌈D
d1
⌉ and ⌊D

d2
⌋ ≤

D − ⌈bd2
⌉ + ⌈b1⌉ ≤ ⌈D

d2
⌉.

Proof. We have ad1
= D − D

2d1
, a1 = D

2d1
and consequently

D

d1

−1 = D−ad1
+a1−1 ≤ D−⌈ad1

⌉+⌈a1⌉ ≤ D−ad1
+a1+1 =

D

d1

+1.
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Since D
d1

is not an integer and D + ⌈ad1
⌉ − ⌈a1⌉ is an integer, then

⌊
D

d1

⌋ ≤ D + ⌈ad1
⌉ − ⌈a1⌉ ≤ ⌈

D

d1

⌉.

The proof for product 2 is similar and thus will be omitted.

Lemma 2.11. For d1 and d2 odd, we have

b d2+1

2

+ 1 − ⌈b d2+1

2
−1
⌉ = ⌈

D

d2

⌉

and

⌈b d2+1

2
+1
⌉ − b d2+1

2

− 1 = ⌊
D

d2

⌋.

Proof. For d1 and d2 odd, we have b d2+1

2

= D
2
, which is an integer.

Consequently,

D

d2

= b d2+1

2

−b d2+1

2
−1

≤ b d2+1

2

+1−⌈b d2+1

2
−1
⌉ ≤ b d2+1

2

+1−b d2+1

2
−1

=
D

d2

+1.

Since D
d2

is not an integer and b d2+1

2

+ 1 − ⌈b d2+1

2
−1
⌉ is an integer, then

the first equality holds. Furthermore,

D

d2

−1 = b d2+1

2
+1
−b d2+1

2

−1 ≤ ⌈b d2+1

2
+1
⌉−b d2+1

2

−1 ≤ b d2+1

2
+1
−b d2+1

2

=
D

d2

.

Since ⌈b d2+1

2
+1
⌉−b d2+1

2

−1 is an integer, then the second inequality also

holds. This proves the lemma.

We can now conclude with the following theorem.

Theorem 2.12. The αβ solutions are optimal for the response time
variability.

Proof. Lemma 2.6, Lemmas 2.9 and 2.10 show that if one of demands,
d1 and d2, is odd and the other even, then distances in the αβ solutions
are equal either ⌊D

di
⌋ or ⌈D

di
⌉ for i = 1, 2. Lemmas 2.8 to 2.11 show that

if both demands, d1 and d2, are odd, then distances in the αβ solutions
are equal either ⌊D

di
⌋ or ⌈D

di
⌉ for i = 1, 2 as well.

We close this section by showing that the αβ sequence minimizes max-
imum deviation as well.
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Theorem 2.13. The αβ solutions minimize maximum deviation.

Proof. The theorem holds for if one of the demands is even and the
other odd since then all copies are sequenced in their ideal positions,
which minimizes maximum deviation Kubiak [12]. If both demands
are odd, then all copies are in their ideal positions, except copy d2+1

2

of product 2 which is in position D
2

+ 1 whereas its ideal position is
D
2
. This, however, does not change the deviation for the copy, which

is 1
2

in either position. Consequently, the maximum deviation equals 1
2

which is optimal for both demands being odd, Kubiak [12]. Therefore,
the αβ solutions minimize maximum deviation.

2.3. Fixed Number. This section shows a straightforward dynamic
programming for the response time variability problem. The program
proves that the problem can be solved in polynomial time for any fixed
number of products, and thus complements our other results concerning
its complexity. However, it is not designed as a practical alternative
for efficiently solving the problem.
The state of the dynamic programming is represented by a quadruple
〈f, l, r, d〉. The f is an n dimensional vector f = (f1, . . . , fn), where
fi = 0, 1, . . . , D − di + 1 for i = 1, . . . , n represents the position of the
first copy of product i. The l is an n dimensional vector l = (l1, . . . , ln),
where li = 0, di + 1, . . . , D for i = 1, . . . , n represents the position of
the last copy of product i in the sequence of length d. The r is an
n dimensional vector r = (r1, . . . , rn) represents the number of copies
that remain to be sequenced, ri = 0, ..., di. Finally, d is the length of
the current sequence, d = 0, ..., D. Initially, f = l = 0, r = (d1, ..., dn),
and d = 0. A final state is any state with r = 0 and d = D. There is
a weighted arc from a non-final state 〈f, l, r, d〉 to a state 〈f ′, l′, r′, d′〉
if and only if there is an i such that r′i = ri − 1 ≥ 0, d′ = d + 1,
l′i = d′. Furthermore, if fi = 0, then f ′

i = d′. The weight for the arc is
calculated as follows for di ≥ 2,

l〈f,l,r,d〉〈f ′,l′,r′,d′〉 =







0, ri = di;
(d′ − li −

D
di

)2, di − 1 ≥ ri > 1;

(d′ − li −
D
di

)2 + (D − d′ + fi −
D
di

)2, ri = 1

and it is equal to 0 for di = 1. Finally, we connect all final states to a
dummy state referred to as the destination. All arc to the destination
have length 0. The shortest path between the initial state and the
destination obviously defines an optimal solution to the response time
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variability. The shortest path can be found in time which is polynomial
in the number of nodes. This is of O(D3n+1), therefore the complexity
is polynomial for a fixed number of products n.

2.4. Complexity. This section shows that the response time variabil-
ity problem is NP-complete. The reduction is from the Periodic Main-
tenance Scheduling Problem studied by Anily, Glass and Hassin [2].
The latter is defined as follows. Given m machines and integer service
intervals l1, l2, . . . , lm such that

∑
1
li

< 1. Does there exist a servicing

schedule s1, . . . , sL, where L = lcm(l1, l2, . . . , lm) is the least common
multiplier of l1, l2, . . . , lm, of these machines in which consecutive ser-
vicing of machine i are exactly li time slots apart and no more than
one machine is serviced in a single time slot ?
The Periodic Maintenance Scheduling Problem has been shown NP-
complete by Bar-Noy et al. [4] who prove the following.

Theorem 2.14. The Periodic Maintenance Scheduling Problem is NP-
complete in the strong sense.

We now show the following theorem.

Theorem 2.15. The Response Time Variability Problem is NP-
complete.

Proof. For an instance l1, l2, . . . , lm of the Periodic Maintenance
Scheduling Problem, define demands di = L

li
, i = 1, . . . ,m, and

dm+1 = 2L −
∑

di, where L = lcm(l1, l2, . . . , lm). Thus, D = 2L
and n = m + 1. Finally, the upper bound on the variability V = β(2−

D
dm+1

)2 +(dm+1−β)(1− D
dm+1

)2, where β ≡ D mod dm+1. Assume that

there is a solution s1, s2, . . . , sL for the Periodic Maintenance Sched-
uling Problem. Then, consider the sequence S = s

′

1, n, s
′

2, n, . . . , s
′

L, n

with every other time slot occupied by n, and s
′

j = sj if sj is a machine

or s
′

j = n if sj is empty in the Periodic Maintenance Scheduling Prob-
lem. Consequently, consecutive copies of i are exactly 2li time slots
apart in S for i = 1, . . . ,m. Therefore, the variability for each of these
i’s is 0. Furthermore, any two consecutive copies on n are either next
to each other or separated by a single copy of i 6= n, and thus, the
variability of S equals V . Now, let us assume that there is a solution
Q to the response time variability with variability V ar ≤ V . First,
we observe from Lemma 2.1 that V arn ≥ V in any solution to the
response time variability, and consequently V ar = V arn and V ari = 0
for i = 1, . . . ,m in Q. Second, again by Lemma 2.1, we observe that
if any two copies of n were three or more slots apart in Q, that is, if
they were separated by two or more copies of i 6= n, then V arn > V
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for Q, which would lead to a contradiction. Therefore, no i ≤ m and
j ≤ m are next to each other in Q. The first observation implies that
all distances between consecutive copies of product i, i = 1, . . . ,m, are
equal in Q. Furthermore, since there are di copies of i in the sequence
of length D, then the distance between the consecutive copies of i is
D
di

= 2li in Q. Now, let ci, ci + 2li, . . . , ci + 2(di − 1)li be the ends
of time slots in Q occupied by i, i = 1, . . . ,m. Of course all these
numbers are different as no time slot is occupied by more than one i.
Consequently, all numbers, ci

2
, ci

2
+ li, . . . ,

ci

2
+ (di − 1)li, i = 1, . . . ,m,

are different. Furthermore, by the second observation, if for some i, j, h

and k, ck

2
+hlk > ci

2
+jli, then ck

2
+hlk−( ci

2
+jli) > 1

2
. Consequently, all

numbers ⌈ ci

2
⌉, ⌈ ci

2
⌉+ li, . . . , ⌈

ci

2
⌉+ (di − 1)li, i = 1, . . . ,m, are different.

By servicing machine i in time slots ⌈ ci

2
⌉, ⌈ ci

2
⌉+ li, . . . , ⌈

ci

2
⌉+ (di − 1)li,

i = 1, . . . ,m we obtain a solution to the Periodic Maintenance Sched-
uling Problem. This proves the theorem.

It remains an open question whether the response time variability prob-
lem is NP-complete in the strong sense.

3. Exact Algorithm

3.1. Mathematical Programming Models to Obtain Optimal

Solutions. Optimal solutions to the response time variability problem
(RTVP) can be obtained by means of the DP scheme described in
Section 2.3. Another approach to get optimal solutions consists in
using mathematical programming models.
From the outset, RTVP can be considered as a special case of Quadratic
Assignment Problem (QAP) and therefore formalized as a quadratic
integer programming (QIP). We will use the following notation:

G1 = {i|di ≥ 2}

UBi = D − di + 1

Upper bounds, ∀i ∈ G1, on the distance between two consecutive units
of product i.

Eik = k ∀i ∈ G1 k = 1, ..., di

Earliest position that can be occupied by unit k of product i.

Lik = D − di + k ∀i ∈ G1 k = 1, ..., di
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Latest position that can be occupied by unit k of product i.

yikh ∈ {0, 1}

i = 1, ..., n; h ∈ Hik,where Hik = {h|Lik ≤ h ≤ Eik} (i = 1, ..., n; k =
1, ..., di) and with yikh = 1 if and only if unit k of product i is placed
in position h.

Sik = {(h, j)|h ∈ Hik, j ∈ Hi,k+1} ∀i ∈ G1, k = 1, ..., di − 1

Sidi
= {(h, j)|h ∈ Hidi

, j ∈ Hi1} ∀i ∈ G1

Sets of pairs of positions that can be occupied, respectively, by units k

and (k+1) mod di of product i. Define

RTV =

∑

i∈G1

di−1∑

k=1

∑

(h,j)∈Sik

(j−h)2yikhyi,k+1,j+
∑

i∈G1

∑

(h,j)∈Sidi

(D+j−h)2yidihyi1j−
∑

i∈G1

t̄2i

Then, the model can be formulated as follows:

minimise RTV

s. t.

∑

∀(i,k)|h∈Hik

yikh = 1 h = 1, ..., D

∑

h∈Hik

yikh = 1 i = 1, ..., n; k = 1, ..., di

∑

h∈Hi,k+1

hyi,k+1,h −
∑

h∈Hik

hyikh ≥ 1 ∀i ∈ G1 k = 1, ..., di − 1

Where the first two groups of constraints are the assignment constraints
and the third group the precedence constraints.

This QIP model can be solved by means of ILOG SOLVER. However,
a preliminary computational experiment showed, as it was expected,
that the algorithm was not able to find optimal solutions, within an
acceptable computing time (fixed at 180 sec), except for very small
instances.
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Instead, the use of CPLEX with MILP models derived from the QIP
turned out to be more efficient, as a computational experiment showed.
In order to linearize the QIP model three techniques were applied:

(i) Substitute the binary variables δikhjfor the products yikh · yi,k+1,j

and include the constraints:

1 + δikhj ≥ yikh + yi,k+1,j.

(ii) Substitute the binary variables δikhjfor the products yikh · yi,k+1,j

and include the constraints:

2 · δikhj ≤ yikh + yi,k+1,j

1 + δikhj ≥ yikh + yi,k+1,j.

(iii) Introduce the binary variables δ
j
ik (i ∈ G1; k = 1, ..., di; j =

1, ..., UBi), substitute the objective function for
∑

i,k,j

j2 · δj
ik and include

the constraints:

∑

h

hyi,k+1,h −
∑

h

hyikh = δ1
ik + ... + j· δj

ik + ... + UBi · δ
UBi

ik

D −
∑

h∈Hidi

hyi,di,h +
∑

h∈Hi1

hyi1h = δ1
ik + ... + j · δj

ik + ... + UBi · δ
UBi

ik

UBi∑

j=1

δ
j
ik = 1 ∀i, k

(which allows suppressing the precedence constraints, since they are
embedded in the new ones).

The lower computing times were those corresponding to the model
obtained by technique (iii). Therefore, this was the model that we used
to compare the solutions obtained by heuristics with optimal solutions
in the computational experiment described in Section 5. Notwithstand-
ing, the experiments indicate that the practical limit to get optimal
solutions applying CPLEX to this model is D = 25.

4. Heuristics

This section describes heuristics for the response time variability
problem. Each of these heuristics uses the exchange procedure de-
scribed in Subsection 4.1 to exchange products next to each other in a
given sequence in order to reduce the sequence’s response time variabil-
ity. The exchange procedure can be applied to any feasible sequence,
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and as expected its result is rather sensitive to the selection of the ini-
tial sequence it is applied to. Therefore, in Subsection 4.2 we describe
a number of different ways the initial sequence was obtained in our
study.

4.1. The Exchange. Consider a sequence s = s1 . . . sD and a product
i with di ≥ 2 in position p of s, that is sp = i. We define the closest
to position p clockwise i as the first i in s encountered when moving
clockwise away from p, similarly, we define the closest to p counter-
clockwise i as the first i encountered when moving counter-clockwise
away from p. Notice that if di = 2, then that the clockwise i is the same
as the counter-clockwise i. The Exchange Heuristic does the exchange
of two products that are next to each other whenever the exchange
leads to the reduction of response time variability. More precisely,
consider products i and j, i 6= j, that are next to each other in a given
sequence s, assume the i is in position p and the j in position p + 1.
Let Li and Ri be distances to the closest to p clockwise, respectively
counter-clockwise, i in s. Similarly, let Lj and Rj be distances to the
closest to p+1 clockwise, respectively counter-clockwise, j in s. Then,
for di, dj ≥ 2,

B = L2
i + R2

i + L2
j + R2

j

before the exchange and

A = (Li + 1)2 + (Ri − 1)2 + (Lj − 1)2 + (Rj + 1)2

after the exchange. Since all the other distances remain unchanged,
we have the following net change in the value of the response time
variability,

∆ = B − A = 2(Li − Ri + 1) + 2(Rj − Lj + 1).

If dj = 1 and di ≥ 2, then ∆ = 2(Li − Ri + 1). By symmetry, if di = 1
and dj ≥ 2, then ∆ = 2(Lj − Rj + 1). Finally, if di = dj = 1, the
∆ = 0. The exchange takes place only if ∆ is positive. The exchange
algorithm passes counter-clockwise through the sequence and checks
for each neighboring couple spsp+1 if the exchange within the couple
reduces the response time variability, if so, the exchange is made and
the algorithm moves to position p + 1. It is worth keeping in mind
that position D is immediately followed by position 1. If position 1
is reached without any reduction in the response time variability, then
the heuristic stops. Otherwise, the next pass through the sequence
begins. We observe that the heuristic eventually stops since each pass
either reduces the response time variability, an optimal value of which



17

is obviously finite, or no improvement takes place. In fact the ex-
change heuristic goes a bit further, namely, whenever no improvement
is possible in a given pass it tries to do the exchanges even if their net
improvement is 0. However, these exchanges are only done if the maxi-
mum distance for either of the two products being exchanged does not
increase and moreover at least one of the maxima actually decreases.
This last condition ensures that the heuristic actually terminates. The
exchange heuristic is applied to an initial sequence which is generated
in a number of different ways. These will be detailed in the subsequent
sections.

4.2. The Initial Sequences.

4.2.1. Bottleneck (minimum throughput error) sequences. Bottleneck
sequences have been obtained by solving to optimality the bottleneck
problem defined in the Introduction. We used the algorithm of Moreno,
2002 to solve the bottleneck problem. However, other approaches have
been proposed in the literature and could be used to obtain, perhaps
different, bottleneck sequences( see Kubiak [11], Steiner and Yeomans
[16], and Bautista, companys and Corominas [6]).

4.2.2. Random sequences. The bottleneck sequence s has been random-
ized as follows. For each position x in 1..D, get a random number ran

in the range 1..D. Then, swap S[x] with S[ran].

4.2.3. Webster’s sequences. These sequences have been obtained by ap-
plying the parametric method of apportionment with parameter δ = 1

2
, known as Webster’s method (Balinski and Young [3], Bautista, Com-
panys and Corominas [5]). The sequence is generated as follows. Con-
sider xit the number of product i copies in the sequence of length t, t =
0, 1, . . .. Assume xi0 = 0, i = 1, . . . , n. The product to be sequenced in
position t + 1 can be computed as follows i∗ = arg maxi{

di

(xit+δ)
}.

4.2.4. Jefferson’s (stride scheduling) sequences. These sequences have
been generated by applying the parametric method of apportionment,
described before, with δ = 1 , known as Jefferson’s parametric method
(Balinski and Young [3]). The stride scheduling technique produces
the same sequences as shown by Kubiak [13].

4.2.5. Insertion sequences. Recall that d1 ≤ . . . ≤ dn. Consider n − 1,
two-product problems Pn−1 = (dn−1, dn), Pn−2 = (dn−2,

∑n

j=n−1 dj),

. . . , P1 = (d1,
∑n

j=2 dj). In each of the problems Pn−1, Pn−2, . . . , P1, the
first product is the original one, that is n−1, n−2, . . . , 1 and the second
product will be the same (fictitious product) for all problems, and
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denoted by ∗. Let sequences Sn−1, Sn−2, . . . , S1 be the optimal solution
for problems Pn−1, Pn−2, . . . , P1 respectively. They can be obtained by
the algorithm described in Section 2.2. Notice that the sequence Sj,
j = n−1, . . . , 1, is made up of the product j and ∗. Then the sequence
for the original problem is built recursively by first replacing ∗ in S1

by S2 to obtain S ′
1. Notice that the latter is made up of products 1, 2,

and ∗. Next, ∗ are replaced by S3 in S ′
1 to obtain a sequence S ′′

1 made
up of products 1, 2, 3 and ∗. Finally, sequence Sn−1 replaces all the
remaining ∗ and thus we obtain a sequence, referred to as the insertion
sequence, where product i occurs exactly di times.

5. Computational Experiments

The computational experiment has been carried out in order to study
how the Exchange heuristic affects two metrics, throughput error and
response time variability. The experiment consists of applying the Ex-
change heuristic to earlier described initial sequences and analyzing the
main metrics. In this report we include only the main results.

All codes have been implemented in C++ and executed on a X86-
based PC with 500 Mhz processor and 128 MB of RAM.

Instances for this experiment are generated by fixing the total num-
ber of units D and number of products n , and randomly selecting the
number of copies of each product, di , which are uniformly distributed.
A total of 6650 instances have been run for different (D,n) values,
which are as follows:

D = 100, n : (3, 10k, k = 1, . . . , 9)

D = 500, n : (3, 5, 10, 50k, k = 1, . . . , 9)

D = 1000, n : (10, 50, 100k, k = 1, . . . , 9)

D = 1500, n : (100k, k = 1, . . . , 14)

5.1. Computational Results. The Exchange heuristic has been de-
signed for the problem of minimization of the response time variability
(RTV). Therefore, RTV was considered as a main metric to examine,
while the throughput error (TE) for the sequence was included as a
secondary metric.

The computational results have shown that, on average, much lower
values of final response time variability have been reached after the
application of the Exchange heuristic to the initial bottleneck, ran-
dom and insertion sequences. Moreover, the bottleneck and insertion
sequences have produced final sequences with small final throughput
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errors, although, as expected, the TEs of bottleneck sequences’ have in-
creased with respect to the initial TE, while for the insertion sequences
they have, on average, decreased.

The Webster’s and Jefferson’s sequences have resulted in the final
sequences with values of RTV comparable to the bottleneck and inser-
tion sequence only for very small values of n. For larger n, on average,
their RTV was higher than for the bottleneck, random and insertion
sequences. The same has been observed about the change in the values
of TE. For small n, the TE has been in the same range as the values
of TE for bottleneck and insertion sequences, while TE significantly
grew when n increased. For these reasons we do not include the com-
putational results with neither Webster’s nor Jefferson’s sequences in
Tables 1-4.

On average, final TE for bottleneck sequences is lower than the final
throughput error for random sequences. For small and large n values
the bottleneck sequences result in lower RTV, while on average, random
sequences perform slightly better with regard to RTV. To sum up, with
respect to the reduced RTV value, the most promising initial sequences
were bottleneck, random and insertion sequences.

The change in Response Time Variability (RTV) and Throughput
Error (TE) for bottleneck, random and insertion initial sequences, for
each value of D is presented in Tables 1-4. The first column contains
values of n, the second column includes the averages of RTV for bot-
tleneck sequences for each n (we call them initial RTV). The averages
are rounded to integers for ease of understanding. The third column
is composed of averages of reduced RTV values (we call them final
RTV). The fourth column contains averages of optimum throughput
error (initial TE) and the fifth column their final values (final TE).
The same order is for the other two initial sequences, that is random
and insertion.

Initially, we have compared only two sequences (bottleneck and ran-
dom) and concluded that bottleneck sequences result in lower response
time variability in 54% of cases; random sequences result in lower re-
sponse time variability in 41% of cases; for 5% of cases the two coincide.
The insertion method sequences seem to perform well with regard to
both metrics, throughput error and response time variability, but on
average, the random sequences still perform better with regard to re-
sponse time variability. Finally, for very small values of n, the best
sequences, resulting in lower RTV, are bottleneck sequences.

The instances with ratio: n
D

≈ 0.1 − 0.5 can be considered as the
worst cases with regard to the reduced RTV value. It has been observed
(see tables) that for these instances the values of reduced RTV are
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Table 1. The exchange improvements on the Bottle-
neck, Insertion and Random initial sequences for D=100.

 n:

Bottleneck Random Insertion

Init RTV
Final

RTV
Init TE

Final

TE
Init RTV

Final

RTV
Init TE

Final

TE
Init RTV

Final

RTV
Init TE

Final

TE

3 43 26 0.639 0.738 1377 71 4.052 2.726 31 26 0.757 0.766

10 539 86 0.794 1.220 8868 143 4.114 2.454 306 101 1.232 1.188

20 2763 105 0.856 1.522 10424 142 4.178 2.608 498 104 1.120 1.059

30 3447 139 0.880 1.347 15598 120 3.562 1.828 1539 85 1.199 1.063

40 4908 172 0.923 1.337 32549 70 3.183 1.521 3307 71 1.263 1.033

50 8621 94 0.938 1.431 32280 51 2.908 1.546 2609 57 1.223 1.081

60 12100 35 0.946 1.128 31413 31 2.715 1.410 1840 31 0.995 0.990

70 15111 17 0.954 1.182 23834 25 2.616 1.510 687 11 0.990 0.990

80 20029 10 0.958 1.087 17576 15 2.338 1.194 187 4 0.990 0.990

90 20296 3 0.967 0.990 10381 3 1.876 0.995 17 2 0.990 0.990

Table 2. The exchange improvements on the Bottle-
neck, Insertion and Random initial sequences for D=500.

n:

Bottleneck Random Insertion

Init RTV
Final

RTV
Init TE

Final

TE
Init RTV

Final

RTV
Init TE

Final

TE
Init RTV

Final

RTV
Init TE

Final

TE

3 82 73 0.651 0.677 2959 608 10.605 9.670 108 92 0.724 0.713

5 1081 177 0.748 1.170 27032 1224 9.379 7.010 285 183 1.218 1.170

10 3403 409 0.825 1.200 82248 2441 9.441 7.336 993 443 1.260 1.199

50 63498 1948 0.939 1.593 1000332 2384 6.607 3.534 29925 2256 1.549 1.323

100 153664 1404 0.960 2.036 1492918 1207 7.111 4.797 106108 1313 1.509 1.190

150 234034 4086 0.977 2.637 3372643 871 5.181 2.811 300787 1353 2.153 2.140

200 461694 1497 0.980 1.285 3730674 593 4.487 2.115 344989 1036 1.252 1.032

250 719887 496 0.985 1.433 4069915 345 5.008 3.431 380971 496 1.116 1.016

300 1245583 255 0.987 1.290 3800175 289 4.631 3.041 244113 236 1.031 1.003

350 1578706 86 0.987 1.365 2573962 306 5.136 3.731 88601 56 0.998 0.998

400 3079086 38 0.991 1.075 2788306 137 3.197 1.951 32116 20 0.998 0.998

450 1996168 41 0.991 1.089 1063597 149 3.300 1.646 1580 9 0.998 0.998

much higher than for instances corresponding to other n value. This is
also shown by the averages of maximum differences between maximum
and minimum distances. For these instances averages of maximum
difference in improved sequences are higher than in other cases.

The time it takes to do the exchanges with the Exchange heuristic is
almost negligible. It depends on both D and n

D
. The longest times are

reached for instances with ratio n
D

≈ 0.4 − 0.5 and for instances with
a very small difference between dn and d1. Average reduction times
(clock time) have been: in range of 0 − 1 sec for D = 500, range of
0 − 7 sec for D = 1000, and of 0 − 20 sec for D = 1500.

As a part of our computational experiment we also compared heuris-
tic solutions with optimum obtained by solving the MILP described in
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Table 3. The exchange improvements on the Bottle-
neck, Insertion and Random initial sequences for
D=1000.

 n:

Bottleneck Random Insertion

Init RTV
Final

RTV
Init TE

Final

TE
Init RTV

Final

RTV
Init TE

Final

TE
Init RTV

Final

RTV
Init TE

Final

TE

10 17904 601 0.837 1.503 253685 5435 13.327 10.985 1546 625 1.461 1.406

50 180503 3208 0.936 2.004 2706679 7407 9.704 6.219 49101 4242 1.761 1.570

100 636545 4946 0.964 2.289 7130615 6375 8.812 5.564 253319 5866 2.207 1.825

200 1020847 8412 0.978 2.931 13476818 3517 7.662 4.596 873579 5032 2.039 1.977

300 1418033 6120 0.985 3.555 16271934 2266 8.605 6.400 1376361 2717 2.166 2.153

400 3574364 3913 0.991 4.754 35047637 1195 6.339 4.203 3584645 3395 3.512 3.409

500 6232671 1162 0.992 2.327 35083775 862 5.883 4.006 3290617 1313 1.856 1.574

600 7681994 496 0.992 1.648 21386442 962 7.549 5.924 1321738 375 1.049 1.014

700 12206931 179 0.993 1.407 20496095 952 6.716 5.093 706786 130 1.007 1.001

800 18083157 334 0.994 1.466 15952258 697 5.431 3.676 184422 84 1.163 1.071

900 15549203 82 0.996 1.181 8299817 472 4.421 2.685 14832 18 1.004 1.001

Table 4. The exchange improvements on the Bottle-
neck, Insertion and Random initial sequences for
D=1500.

n:

Bottleneck Random Insertion

Init RTV
Final

RTV
Init TE

Final

TE
Init RTV

Final

RTV
Init TE

Final

TE
Init RTV

Final

RTV
Init TE

Final

TE

100 885866 8780 0.967 2.005 13310978 13475 10.325 6.394 318918 11125 1.752 1.462

200 3206865 10985 0.977 2.209 28313115 10532 10.292 6.582 1554419 12273 1.732 1.320

300 3243331 13577 0.986 1.833 51059006 5475 8.309 5.019 3611346 9623 1.696 1.166

400 4996223 23905 0.989 1.874 73166821 4048 8.200 5.157 6624499 8586 1.608 1.190

500 6458663 10564 0.991 1.808 82218609 3517 6.980 4.284 8396917 7558 1.446 1.140

600 11085096 4866 0.992 1.534 98681397 2208 7.225 4.847 9990472 4804 1.425 1.070

700 14593169 2051 0.994 1.646 116870944 1628 7.574 5.671 10742017 3627 1.236 1.049

800 24081386 1309 0.994 1.472 110641048 1369 6.394 4.217 8495253 1501 1.147 1.038

900 36781821 1007 0.995 1.316 112399627 1086 5.888 3.884 7107165 1068 1.076 1.016

1000 49367053 298 0.995 1.215 100131267 990 5.423 3.641 4335813 442 1.022 1.003

1100 67535885 150 0.996 1.179 90861641 893 4.934 3.286 2475907 259 1.003 0.999

1200 78982366 116 0.996 1.123 71570932 620 4.542 2.964 966875 70 0.999 0.999

1300 83546651 82 0.997 1.067 52228958 632 4.213 2.737 201881 29 0.999 0.999

1400 60688751 65 0.997 1.038 27742011 360 3.179 1.697 14809 8 0.999 0.999

Section 3. The MILP has been applied to 389 instances, for D=10, 15,
20 and 25 and different values of n. The results are presented in Table
5. For most instances the optimal solutions have been reached within
300 sec. Nevertheless, for some instances, 39 out of 389, the number of
nodes of the branch-and-bound tree was increasing dramatically after
the first 180 sec. and the execution was aborted, for these instances the
best objective function value has been kept, however, these instances
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Table 5. The comparison of the exchange heuristic for
different initial sequences with optimal solutions.

D n [1] [2]
Insertion Webster Jefferson Bottleneck Random

[6]
[3] [4] [5] [3] [4] [5] [3] [4] [5] [3] [4] [5] [3] [4] [5]

10

3 8 0 7 0.500 4 8 0.000 0 8 0.000 0 8 0.000 0 8 0.000 0 8

4 7 0 5 0.857 4 6 0.286 2 5 0.857 4 5 0.857 4 5 0.857 4 7

5 7 0 3 1.429 4 2 2.286 6 6 0.571 4 2 2.286 6 4 0.857 2 7

6 5 0 4 0.400 2 3 0.800 2 4 0.400 2 5 0.000 0 5 0.000 0 5

7 3 0 3 0.000 0 3 0.000 0 3 0.000 0 2 0.667 2 3 0.000 0 3

8 2 0 2 0.000 0 2 0.000 0 2 0.000 0 2 0.000 0 2 0.000 0 2

9 1 0 1 0.000 0 1 0.000 0 1 0.000 0 1 0.000 0 1 0.000 0 1

for

D=10
33 0 25 25 29 25 28 33

15

3 12 0 10 1.333 10 10 0.667 6 11 0.500 6 11 0.167 2 9 0.833 4 12

4 16 0 12 1.375 8 13 1.000 8 11 1.375 6 14 0.875 8 14 0.375 4 16

5 14 0 6 3.571 16 8 1.286 8 8 1.429 4 8 1.000 4 10 0.571 2 12

7 13 0 5 3.231 16 1 7.385 16 2 4.308 10 1 5.846 16 5 2.769 10 7

9 9 0 7 0.667 4 3 3.778 12 3 2.444 6 3 4.000 14 7 0.444 2 9

11 4 0 4 0.000 0 3 0.500 2 3 0.500 2 3 0.500 2 2 2.000 6 4

13 2 0 2 0.000 0 2 0.000 0 2 0.000 0 2 0.000 0 2 0.000 0 2

for

D=15
70 0 46 40 40 42 49 62

20

3 19 0 15 0.947 8 15 0.632 4 14 0.842 4 16 0.421 4 12 2.105 16 18

4 17 0 11 1.765 14 11 1.176 8 9 1.529 8 13 0.471 2 11 0.824 4 14

5 17 3 6 3.429 14 7 2.286 14 3 3.714 12 7 2.000 14 6 3.286 12 10

6 20 3 3 6.471 20 1 6.000 18 2 4.471 10 4 4.941 14 10 2.000 8 12

7 18 3 5 4.400 12 1 7.067 14 0 6.400 10 2 6.267 14 4 4.267 10 7

8 18 0 5 3.333 8 2 8.333 18 2 5.556 16 4 7.000 18 5 3.444 10 8

9 17 0 5 3.765 16 0 11.760 34 1 5.882 16 1 10.940 34 4 4.940 24 8

11 13 0 7 1.846 8 2 6.769 18 2 5.231 24 2 4.615 8 2 3.692 8 7

13 9 0 7 0.444 2 3 2.667 8 1 3.556 6 4 1.556 4 3 1.778 4 8

15 6 0 5 0.333 2 4 0.667 2 4 0.667 2 3 1.000 2 4 1.000 4 5

18 2 0 2 0.000 0 2 0.000 0 2 0.000 0 2 0.000 0 2 0.000 0 2

for

D=20
156 9 71 48 40 58 63 99

25

3 18 2 13 1.625 12 15 0.625 10 15 0.625 10 16 0.000 0 9 2.250 14 16

5 17 8 3 4.444 14 3 4.667 14 4 4.000 10 4 4.000 14 3 4.444 16 7

7 20 14 2 4.000 14 1 5.000 8 0 10.000 16 1 5.333 10 0 5.000 8 2

9 18 6 2 9.167 30 0 14.670 22 0 11.500 20 0 13.500 22 1 6.667 18 3

11 18 0 0 10.110 38 0 23.890 52 1 10.890 20 0 19.560 52 2 7.000 16 3

13 15 0 3 5.067 18 1 16.000 36 1 11.200 28 0 14.530 36 2 4.933 16 5

16 13 0 6 1.538 6 1 7.385 20 3 4.769 12 3 4.615 12 5 2.923 8 9

19 8 0 6 0.500 2 5 0.750 2 4 1.250 4 4 1.250 4 5 0.750 2 7

22 3 0 3 0.000 0 3 0.000 0 3 0.000 0 3 0.000 0 3 0.000 0 3

for

D=25
130 30 38 29 31 31 30 55

Total 389 39 180 142 140 156 170 249

(1) Number of instances

(2) Number of instances excluded from examination

(3) Number of instances for which the heuristic found an optimal solution

(4) Average difference between the heuristic and optimal values

(5) Maximum difference between the heuristic and optimal values

(6) Number of instances for which some heuristic found an optimal solution

have been excluded from the comparison statistics. The highest aver-
age and maximum differences between heuristic and optimal solutions
have been achieved whenever 0.3 ≤ D

n
≤ 0.6. The sequences obtained
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by the Insertion method have been reduced to optimal ones most often,
closely followed by Random sequences and bottleneck sequences. The
heuristics found optimum for 249 instances out of the 350 for which
the optimum could be found.

6. Conclusions and Further Research

There a number of possible directions to proceed in order to search
for improvement in response time variability. We think the following
are most natural for the problem and promising.

• Exploit the properties of the number decomposition graphs in-
troduced in Section 2 and the sufficient conditions for local op-
tima defined by the exchange procedure from Section 4 in the
Constraint Logic programming approach.

• Use the randomized greedy algorithm, in the form of GRASP,
see Feo and Resende [7]. This would build a sequence, one
product at a time, by taking into account the increase in the
response time variability, first, and the throughput error, sec-
ond, associated with the candidate product. The choice could
be randomized by randomly choosing one of the best candi-
dates, but not necessarily the best one. The complete sequence
would then by subjected to the exchange procedure described
in Section 4.

• Use multi-start.
• Find lower bounds on the response time variability for partial

solutions and use them along with the upper bounds obtained
by the heuristics of Section 4 to prune the states of the Dynamic
Programming algorithm defined in Section 2.
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