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In this Response to Comment1 we address some crit-
icisms concerning the equivalence of the force-extension
curves measured with different statistical ensembles in the
thermodynamic limit. We show that the results presented in
our paper2 are correct and, at the same time, we also prove that
some “forms of inequivalence” introduced by Neumann3, 4 are
not in conflict with our achievements. In order to clearly ex-
plain these points we organize the present Response in two
different statements hereafter referred to as Property A and
Property B. The results of Ref. 2 (Sec. II E) can be formalized
as follows.

Property A: We consider a polymer system with
N monomers described by F (�r) = −kBT log Z�r (�r, T )
with Helmholtz isometric conditions (�r constant) and by
G( �f ) = −kBT log Z �f ( �f , T ) with Gibbs isotensional condi-

tions ( �f constant). The definitions of the partition functions
Z�r and Z �f can be found in Ref. 2 (see Eqs. (4) and (10)). The
corresponding constitutive equations valid for any value of
N are

〈 �f 〉 = ∂F (�r)

∂�r � φ(�r) (Helmholtz), (1)

〈�r〉 = −∂G( �f )

∂ �f � ψ( �f ) (Gibbs). (2)

Moreover, in the thermodynamic limit (i.e., N → ∞):
(i) we have that φ = ψ−1 or, equivalently, ψ = φ−1 (where

φ and ψ are vector functions mapping R3 in R3);
(ii) the following Legendre transforms are valid:

G(φ(�r)) = F (�r) − φ(�r) · �r, (3)

F (ψ( �f )) = G( �f ) + �f · ψ( �f ). (4)

The proof of this property sketched in Ref. 2 is correct.
While the second point (ii) was verified through Eqs. (24) and
(25) of Ref. 2, the equivalence between (i) and (ii) is a stan-
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dard result in the theory of Legendre transforms.5, 6 A formal
and unequivocally proof of Property A for Gaussian polymers
and for chains of rigid rods can be found in Ref. 7, which is
a recent work of great importance to clarify this subject. We
proved the equivalence for N → ∞ between 〈 �f 〉 = φ(�r) and
〈�r〉 = ψ( �f ) (i.e., φ = ψ−1 for N → ∞). It is true for a cou-
ple (�r, �f ) of conjugated variables. Of course, other choices
exhibit different behaviors.

Within our context, the argument presented in the
Comment1 is not valid in two main points:

� It is true that “for any finite N, one can reduce f suf-
ficiently to ensure that �f · �r � kBT log �,” as stated
in the Comment; nevertheless, if N → ∞ the log-
arithmic term is definitively negligible ( log N

N
→ 0 if

N → ∞) for any applied force confirming the valid-
ity of the Legendre transform in the thermodynamic
limit.

� In the Comment there is another attempt to prove that
the Legendre transform given in Eq. (3) is not valid
in the weak force regime (for a freely jointed chain
in Gaussian approximation). The Legendre transform
of F (�r) is given by FLg(�r) − kBT b2�r · �r (see Eq. (3)
of the Comment) and it should be compared with
G( �f ) = − �f · �f /(4kBT b2) (see Eq. (4) of the Com-
ment). Here b2 = 3/(2Nl2) where l is the bond
length.8 To perform the comparison we must substitute
�f → φ(�r) in G( �f ), as stated in the above Eq. (3).

Since φ(�r) = 2kBT b2�r (see Eq. (7) of the Comment)
the Legendre transform is perfectly verified. The au-
thor of the Comment instead of using the correct sub-
stitution �f → φ(�r) uses the average of the squared
end-separation (Eq. (5) of the Comment) leading to
non-correct conclusions. To corroborate this point we
remark that the author of the Comment correctly ob-
tains φ = ψ−1 (see Eqs. (7) and (8) of the Com-
ment), a condition mathematically equivalent to the
Legendre transforms between F and G.5, 6 Because
of the above arguments the Comment appears to be
self-contradictory; the problem is now solved through
the correct substitution of variables. Moreover, the
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validity of the Legendre transform for Gaussian poly-
mers is rigorously proved in Ref. 7 (for any applied
force).

To conclude the first part of this Response we remark that the
Property A does not state that the density probability is the
same for the Helmholtz and the Gibbs ensembles: rather, we
proved that the mathematical form of the constitutive equa-
tions (Eqs. (1) and (2)), i.e., the physical response, is identical
in the thermodynamic limit.

In spite of previous considerations, useful to place
our result in the proper context, we wish to underline that
a “form of inequivalence,” discovered by Neumann3, 4 is
correct, interesting, and, at the same time, not conflicting with
Property A. We observe that the constitutive laws given in
Eqs. (1) and (2) map different quantities: 〈 �f 〉 and �r for the
Helmholtz ensemble and 〈�r〉 and �f for the Gibbs one. For
example, in Fig. 5 of Ref. 2 we plotted on the same graph |�r|
versus |〈 �f 〉| for the Helmholtz results and |〈�r〉| versus | �f | for
the Gibbs ones (we adopted scalar dimensionless variable for
convenience). For N → ∞ the two ensembles converged to
the same curve, because of the Property A. We also underline
that numerical results are further confirmed by the fact that
the expression of the asymptotic (N large) force-extension
curve was analytically determined (see Eqs. (32) and (33) of
Ref. 2). Following the works of Neumann we observe that
different comparisons, based on different average values,
can be useful and show some “inequivalences:” they can be
summarized as follows.

Property B: For spherically symmetric systems we can
consider these force-extension responses:

|〈 �f 〉| = α(|�r|), (5)

〈| �f |〉 = γ (|�r|), (6)

for the Helmholtz case and the following relations:

|〈�r〉| = β(| �f |), (7)

〈|�r|〉 = δ(| �f |), (8)

for the Gibbs one. The functions α and β are the scalar coun-
terparts of φ and ψ defined in Property A. Hence, we have β

= α−1 (or α = β−1) in the thermodynamic limit. On the con-
trary, one can prove that γ −1 �= β, α−1 �= δ, and γ −1 �= δ for
any polymer length N and, therefore, also for systems in the
thermodynamic limit.

N → ∞ N → ∞ N → ∞
β

α−1

r
|r|

|f | f
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FIG. 1. Schematic representation of the relationships among the functions
defined in Property B. The central panel corresponds to Fig. 5 of Ref. 2. The
right panel corresponds to Fig. 4 or 5 of Ref. 9.

It is easy to verify that γ (0) > 0 and δ(0) > 0 for any
value of N by writing the expressions of the average values
with the pertinent canonical probability densities. Since it is
always true that α(0) = 0 and β(0) = 0, it is not difficult
to prove the Property B. The different behavior between γ

and β or between α−1 and δ is not related to the length of
the polymer but rather to the transformation of random vari-
ables introduced to determine the average value of the mod-
ulus (2-norm) of the vectors �r and �f (see Eqs. (6) and (8)).
In Fig. 1 one can find three plots explaining the relations
among the above functions. We observe that the differences
between the curves γ −1 and β (or α−1 and δ) are observ-
able in the regime of small forces or extensions, as predicted
by Neumann.3, 4 Indeed, the function δ has been analytically
studied by Neumann3, 4 in the Gaussian approximation and the
results have been confirmed by Süzen et al.9 through molecu-
lar dynamics simulations (also with quite small N). The dual
function γ is less tractable from the analytical point of view
(because it describes the Helmholtz case) but it could be nu-
merically investigated, e.g., with Monte Carlo techniques or
molecular dynamics simulations.

To conclude, we agree with the Comment that these
“forms of inequivalences” can be important for the interpre-
tation of experiments, but they are coherent with the equiva-
lence of the constitutive responses described in Property A.
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