

Canadian Journal of Fisheries and Aquatic Sciences Journal canadien des sciences halieutiques et aquatiques

Responses of invasive silver and bighead carp to a carbon dioxide barrier in outdoor ponds

Journal:	Canadian Journal of Fisheries and Aquatic Sciences
Manuscript ID	cjfas-2015-0472.R2
Manuscript Type:	Article
Date Submitted by the Author:	07-Jun-2016
Complete List of Authors:	Cupp, Aaron; USGS Upper Midwest Environmental Science Center Erickson, Richard A.; Upper Midwest Environmental Sciences Center Fredricks, Kim; USGS Upper Midwest Environmental Science Center Swyers, Nicholas; USGS Western Fisheries Research Center Hatton, Tyson; USGS Western Fisheries Research Center Amberg, Jon; USGS Upper Midwest Environmental Science Center
Keyword:	INVASIVE SPECIES < Organisms, Asian carp, Carbon Dioxide, Barrier

- 1 Title: Responses of invasive silver and bighead carp to a carbon dioxide barrier in outdoor ponds
- 2 **Proposed outlet:** Canadian Journal of Fisheries and Aquatic Sciences
- **3** Author list: Aaron R. Cupp^{1*}, Richard A. Erickson¹, Kim T. Fredricks¹, Nicholas M. Swyers², Tyson W.
- 4 Hatton², Jon J. Amberg¹
- 5 Author email address: acupp@usgs.gov, rerickson@usgs.gov, kfredricks@usgs.gov, nswyers@usgs.gov,
- 6 thatton@usgs.gov, jamberg@usgs.gov
- 7 Author affiliation:
- 8 ¹U.S. Geological Survey, Upper Midwest Environmental Sciences Center, 2630 Fanta Reed Rd., La Crosse,
- 9 WI 54603, USA
- 10 ²U.S. Geological Survey, Western Fisheries Research Center, 5501A Cook-Underwood Road, Cook,
- 11 Washington 98605, USA
- 12 *Corresponding author: Aaron R. Cupp, Telephone: (608)781-6266, Fax: (608)783-6066,
- 13 acupp@usgs.gov, 2630 Fanta Reed Rd., La Crosse, WI 54603, USA
- 14
- 15 Manuscript is submitted to Canadian Journal of Fisheries and Aquatic Sciences as an original research

16 paper.

17 Abstract

18	Resource managers need for effective methods to prevent the movement of silver
19	(Hypophthalmichthys molitrix) and bighead carp (H. nobilis) from the Mississippi River basin into the
20	Laurentian Great Lakes. In this study, we evaluated dissolved carbon dioxide (CO_2) as a barrier and
21	deterrent to silver (278 \pm 30.5 mm) and bighead (212 \pm 7.7 mm) carp movement in continuous-flow
22	outdoor ponds. As a barrier, CO_2 significantly reduced upstream movement but was not 100% effective
23	at blocking fish passage. As a deterrent, we observed a significant shift away from areas of high $\rm CO_2$
24	relative to normal movement before and after injection. Carbon dioxide concentrations varied across
25	the pond during injection and reached maximum concentrations of 74.5 \pm 1.9 mg/L CO ₂ ; 29 532 – 41 393
26	μatm at the site of injection during three independent trials. We conclude that CO_2 altered silver and
27	bighead carp movement in outdoor ponds and recommend further research to determine barrier
28	effectiveness during field applications.
29	
30	Keywords

31 Carbon dioxide; Asian carp; invasive species; barrier

32 Introduction

33 Range expansion of the invasive silver (Hypophthalmichthys molitrix) and bighead carp (H. nobilis) throughout the Mississippi River basin has been documented by resource agencies since the 34 35 1970's (Kelly et al. 2011). These prolific fish cause harm to native aquatic ecosystems by competing with 36 native mussels, early life-stage fish, and other filter-feeding fish for food resources from a planktivorous 37 diet overlap (Irons et al. 2007; Sampson et al. 2009; Walleser et al. 2014). This increased competition 38 has been demonstrated through major shifts in zooplankton communities on the Illinois River where 39 silver and bighead carp are in high abundances (Sass et al. 2014). Recent detections using eDNA and 40 physical captures place the upper range of these invasive carp at tributaries adjacent to the southern 41 Great Lakes (Jerde et al. 2013; Parker et al. 2015). With direct hydrological connection of these 42 tributaries to the Great Lakes, research evaluating potential barriers to prevent further upstream 43 movement has become increasingly important. 44 Physical barriers are not an option on many navigational rivers due to economic losses from the 45 movement of goods and services. Closure of navigational locks for invasive species control on the 46 Chicago Area Waterway System (CAWS), the shipping channel connecting the Mississippi River basin to 47 the Great Lakes basin, was estimated to cost consumers and commercial traffic \$1.3 billion USD annually

48 (Schwieterman 2010). With obvious economic concerns, resource managers have started exploring non-

49 physical barriers that aim to prevent invasive species movement while concurrently allowing water-body

50 navigation (Noatch and Suski 2012).

51 Fisheries professionals have described a number of potential non-physical strategies for 52 preventing the spread of invasive carps in North America, but most agree that a general lack of data 53 addressing the effectiveness of these techniques will ultimately delay management actions (Wittman et 54 al. 2014). In response, recent studies have begun to address this gap in published literature. Experiments 55 using acoustic barriers, bubble barriers, hydro-guns, carbon dioxide (CO₂), and electricity have all shown

Page 3 of 22

56 varying levels to efficacy to deter invasive carps (Taylor et al. 2005; Kates et al. 2012; Ruebush et al.

57 2012; Romine et al. 2015). Realizing the need for continued research, the Asian Carp Regional

58 Coordination Committee (ACRCC) prioritized promising technologies (ACRCC MRW 2014) and dissolved

59 CO₂ was identified as a strategy that requires further testing.

60 A review of non-physical barriers by Noatch and Suski (2012) highlights the potential for CO_2 to 61 work as a barrier for invasive fishes. Further, reviews by Ishimatsu et al. (2005) and Perry and Abdallah 62 (2012) describe a suite of negative physiological responses by fish when exposed to hypercapnia. Most 63 fish sense CO₂ through chemoreceptors located on the gills (Ishimatsu et al. 2005; Perry and Abdallah 64 2012) and the potential to exploit CO_2 sensitivity in fish suggests that this technique may also work to deter invasive carp movement (Noatch and Suski 2012). In laboratory tests with silver carp, Kates et al 65 (2012) observed avoidance behavior and irregular movements at $70 - 90 \text{ mg/L CO}_2$. Further, recent tests 66 67 in a static pond confirmed that silver and bighead carp avoided approximately 60 mg/L CO_2 (Donaldson 68 et al. 2016). With evidence growing, the effectiveness of CO_2 as a barrier to invasive carp movement 69 needs to be tested.

70 The objective for our study was to evaluate silver and bighead carp movement in outdoor ponds 71 in response to a CO_2 barrier over three independent trials. We hypothesized that CO_2 would reduce 72 upstream passage and subsequently deter fish to seek refuge in areas of lower CO₂. Barrier effectiveness 73 was determined by quantifying upstream passage through the injection site. Deterrence effectiveness 74 was determined by quantifying shifts in fish locations relative to changes in CO₂. Using these behavioral 75 metrics, we compared fish movement collected before, during, and after CO₂ injection. Results are 76 focused on the applicability of CO_2 to deter silver and bighead carp passage with implications for 77 reducing the risk transfer between the Mississippi River and Great Lakes basins.

78

79 Materials and Methods

Page 4 of 22

80 Study Animals – We obtained silver carp (n = 15; total length: 278 ± 30.5 mm; wet weight: 229.2 81 \pm 81.9 g; mean \pm standard deviation) and bighead carp (n = 15; total length: 212 \pm 7.7 mm; wet weight: 82 101.4 ± 12.3 g; mean ± standard deviation) from the Missouri River near Columbia, Missouri, USA and a 83 private aquaculture farm in Osage Beach, Missouri, USA . Fish were held at the U.S. Geological Survey 84 (USGS) Upper Midwest Environmental Sciences Center (UMESC) Invasive Species Complex (La Crosse, WI 85 USA) until the time of testing. During the week preceding each trial, five bighead and five silver carp 86 were removed from the 1500-L source tanks and placed in a single 130-L flow-through tank at 12±1°C 87 where diet was converted from dry feed to an algal feed mixture. Algal mix contained equal parts of 3.6 g/L Chlorella (Yaeyama Shokusan Co. Ltd., Shiraho, Ishigaki Island, Japan) and Spirulina (Stakich, Inc., 88 89 Royal Oak, MI, USA) and was the same feed administered during the outdoor trials. Approval from 90 UMESC Animal Care and Use Committee (Protocol Number: AEH-12-PPTAC-01), using similar guidelines 91 as described in Guide for the Care and Use of Laboratory Animals (1996), was gained before study 92 initiation.

93

Pond Setup - Trials were conducted in outdoor concrete ponds at UMESC. Pond dimensions 94 were 10.0 m long x 4.9 m wide x 1.2 m deep with a volume of approximately 58 700 L. Influent water 95 96 was supplied directly to the pond from two on-site wells and effluent water was discharged from the 97 pond by spilling over at the top of the opposite wall. Setup was similar to a large choice chamber, with 98 the pond divided into two symmetrical halves by a partial concrete block wall and a 3.1 m opening at the 99 effluent end (Figure 1). Each half contained similar water volumes and a continuous supply of inflowing 100 water (300 L/min) down each side. Wood lattice was affixed to all pond walls, including the brick 101 partition, to reduce reflection of acoustic telemetry signals during fish tracking. 102 Three micro-bubble diffusers (Model: Point Four™ MBD 300, Pentair Aquatic Eco-Systems™, 103 Apopka, FL, USA) were placed at an equal distance across the opening to one half of the pond and were

Page 5 of 22

used to inject CO₂ into the pond. To evaluate changes in fish locations, the pond was divided into two
areas (Figure 1). The side where CO₂ was injected was termed "High CO₂ Area" and the opposite side
"Low CO₂ Area". Names for each area also describe relative CO₂ concentrations found during CO₂
injection.

108 For water chemistry sampling, plastic tubing (4.8 mm ID, Python Products Inc., Milwaukee, WI, 109 USA) was run from six locations near the pond bottom to a peristaltic pump (Model 7553-70, Cole-110 Parmer[®], Vernon Hills, IL, USA) outside of the pond area to prevent the potential influence of sample 111 collection on fish behavior (Figure 1). All tubing was placed before fish were stocked into the pond. In 112 the High CO_2 Area, shade was created near the inflowing water as refuge to entice carp to pass through 113 the area of elevated CO₂. Once-daily, 15 L of the algal feed mixture was injected using a small water 114 pump (Little Giant[®], Oklahoma City, OK, USA) under the shaded area and served as an additional attractant for fish to cross the High CO₂ area. Diffusers, shade and feeding were placed on the west half 115 116 of the pond during Trials 1 and 2. Trial 3 was run as a mirror-image of the first two trials; with diffuser, 117 shade, and feeding moved to the opposite (east) pond half. Study events were identical for all three trials. 118

119

120 Acoustic Telemetry - Fish positions were continuously monitored and recorded using an acoustic 121 telemetry array. One Hydroacoustic Technology Inc. Model 290 acoustic tag receiver (HTI, Seattle, WA, 122 USA) was connected to 16 individual HTI Model 590-series hydrophones. Hydrophones were top-123 mounted at the water's surface by suspending each hydrophone from a grid of cable strung above the 124 pond supported with small foam floats. Locations for each hydrophone were manually surveyed from an 125 origin at the bottom of the southwest pond corner. All hydrophones were secured in the same fashion. 126 Ten modified HTI Model 795LD acoustic tags were used for each trial. To eliminate the need for 127 surgical implantation of acoustic tags, tags were modified to allow for external attachment using a T-bar

Page 6 of 22

128	whisker (Floy Tag, Seattle, WA, USA) from methods described in Romine et al. (2015). Modifications
129	included a T-bar whisker, foam insulation (approximately 6 mm diameter) and an acoustic tag inserted
130	into heat shrink tubing (BuyHeatShrink.com, Deerfield, FL, USA) with the ceramic end of the acoustic tag
131	and T-bar whisker protruding from the tubing at the same end. Heat was carefully applied to the heat
132	shrink tubing until all components were securely held in place. Modified tags were placed in water and
133	the foam trimmed to achieve near neutral buoyancy. Individual tags were programmed using a HTI
134	Model 490-LP Acoustic Tag Programmer (ATP) with ping rates ranging from 2059 to 2675 ms. Once
135	activated, presence and persistence of pings were verified using the HTI Model 492-B Acoustic Tag
136	Detector before attachment to fish.
137	During post-processing of acoustic data, valid signal returns were filtered from ambient noise
138	and signal multipath using USGS-developed (public) software, FishCount. Position estimates were then
139	created using USGS-developed (public) software, GeneticFish, from the previous valid detections. Logic
140	filters (i.e., pond borders, distance between detections, velocity, vector angles, and absence of signal)
141	were used to identify and remove any unreasonable position estimates. We determined the accuracy of
142	our telemetry array to be < 0.2 m by comparing known tag locations to post-processed position
143	estimates.
144	
145	CO ₂ Trials - Feed was withheld 48 h before transfer and tagging of fish in the outdoor pond as
146	recommended when sedating fish. All fish were under light sedation using 50 – 100 mg/L AQUI-S®20E (5
147	– 10 mg/L active ingredient eugenol; AQUI-S New Zealand Ltd., Lower Hutt, New Zealand) during
148	transfer (Cupp et al. <i>in press</i>). Modified acoustic tags were disinfected for 15 min using a solution of 3%
149	(v/v) Nolvasan $^{ m \$}$ (active ingredient: chlorohexidine diacetate [2%], Ford Dodge Animal Health, Ford
150	Dodge, IA, USA) and rinsed with deionized water. Five bighead and five silver carp were used during

151 each trial. Fish were removed from the sedative solution and the tag was inserted with a T-bar anchor

Page **7** of **22**

152	tagging gun at a 45° posterior angle into the dorsal musculature approximately 1 cm lateral and
153	posterior to the mid-line of the dorsal fin. This allowed streamline tag protrusion while swimming and
154	ensured that the T-end was securely implanted (Wydoski and Emergy 1983). All fish appeared to recover
155	in <1 min from the light sedation when placed in the pond. However, fish were given until the following
156	day to fully recover from sedation and handling. Water temperature during the stocking of fish was
157	typical of UMESC well water at 12 \pm 1°C. During experimentation, recorded pond temperature was 13.0 \pm
158	3.0°C (Trial 1), 11.3 ± 0.4°C (Trial 2), and 8.2 ± 2.5°C (Trial 3) corresponding with air temperatures at the
159	time of testing. Pond water alkalinity measured throughout testing was 137 \pm 1 mg/L CaCO $_3$.
160	After recovery, the first trial began and fish positions were continuously recorded for 72 h. All
161	trials were discretized into three sequential 24 h periods: (1) pre-; (2) during; and (3) post-CO ₂ injection.
162	No human influence on fish behavior occurred at any time during these 72h trials. Fish positions
163	collected pre- and post-CO $_{\rm 2}$ were used to determine baseline occupancy and movement of fish
164	throughout the pond in the absence of CO ₂ . Study events across all three time periods were identical,
165	except for the date of CO_2 injection. No stimuli (e.g. injection of compressed gas) was added during the
166	pre- or post-injection.
167	During CO_2 injection, gas was supplied directly from the port on a single 180-L liquid CO_2 tank
168	(Airgas Inc., La Crosse, WI, USA) connected to a manifold of three flow meters (AngelAqua®, Busan,
169	Korea). Diffusers delivered CO_2 at a rate of 3 L/min. Two peristaltic pumps (Model 7553-70, Cole-
170	Parmer [®] , Vernon Hills, IL, USA) continuously extracted water through the plastic tubing from six
171	locations (Figure 1). Water samples were collected from pumps and analyzed immediately for carbon
172	dioxide by a modified HACH [®] Method 8205 digital titration method using sodium hydroxide. Briefly, the
173	100 mL water sample was poured into a 500-mL glass-beaker and placed on a stir plate with a magnetic
174	stir bar. Titrant (0.3636 \pm 0.00200 N NaOH) was added to the sample using the HACH® Digital Titrator
175	until an endpoint of pH 8.3 (Beckman Coulter Model 410 pH meter, Beckman Coulter Inc., Chaska, MN,

Page **8** of **22**

176	USA) was reached. Partial pressures of CO_2 were calculated from pH, temperature, and alkalinity using
177	USGS CO2Calc (http://pubs.usgs.gov/of/2010/1280/). Alkalinity was measured using the pH 4.5
178	titrimetric method with 0.02 N H_2SO_4 at various times throughout all three trials from the water samples
179	(APHA 1995). Atmospheric carbon dioxide levels were intermittently measured during each trial using a
180	handheld pSense Model AZ-0001 meter (CO2 Meter Inc., Ormond Beach, FL, USA) to ensure human
181	safety.
182	At the conclusion of the trial, the pond was drained and fish were euthanized using an overdose
183	(200 mg/L) of MS-222. Trials were repeated using the same methods previously described, except for
184	the injection site, shade, and feed being placed on the opposite pond half during Trial 3. All trials began
185	at exactly 07:00 CDT and subsequent transitions between study phases occurred at exactly 24h
186	thereafter. Trials were conducted October 15, 2014 to November 1, 2014.
187	
188	Statistical Analysis – Exploratory data analysis approaches was used to visualize data (Tukey
189	1977). Fish locations were visualized using density plots for pre-, during and post-CO $_2$ injection. Fish
190	location counts were also visualized for the same three time periods. Carbon dioxide and pH trends were
191	visualized through time. Fish crossings per hour were visualized using box-and-whisker plots before and
192	after CO_2 concentrations stabilized. All data visualization was done with the ggplot2 package (Wickham
193	2009) in R (R Core Team 2015). Confirmatory statistics were used for parameter estimation and to test
194	the research hypotheses. Generalized linear mixed models (GLMM) with Poisson error terms were used
195	for all statistical comparisons because the three exposure tanks created a nested experimental design
196	and individual fish are pseudo-replicates (Bolker 2008). Trial number and fish ID were included as a
197	random effect. Species and time period (pre, during, and post- injection) were included as fixed effects.
198	For the crossing per hour per fish GLMM, trial had an interaction with CO ₂ concentration within the

Page **9** of **22**

- 199 model and was included as a fixed effect. The glmPQL package from the MASS (Venables and Ripley
- 200 2002) in R was used for all GLMM's. Statistical significance was declared at α < 0.05.
- 201
- 202
- 203 Results

Water Chemistry – CO₂ was stable at ambient levels before and after injection (range: 3.8 - 7.6
mg/L CO₂; 1 776 – 4 688 μatm). During injection, CO₂ increased and pH decreased (Figures 2-3). Highest
CO₂ concentrations (max = 74.5±1.9 mg/L; 29 532 – 41 393 μatm) were found at the injection site
relative to the rest of the pond. Lowest CO₂ concentrations after 24 h of injection (max: 34.1±8.6 mg/L;
16 683 – 20 352 μatm), were found farthest from injection and nearest to the inflowing fresh water. CO₂
stabilized at maximum levels approximately 4 – 6 h after injection began (Figure 2).

210

Barrier and Deterrence Efficacy– Signal transmission stopped from one tag in Trial 2 (n=9) and two tags from Trial 3 (n=8) early in each trial and those tags were subsequently removed from the dataset. No signals were lost during Trial 1 (n=10). Physical retention of tags by fish was 100% at the completion of all three trials. After applying filters to the raw telemetry data, 679 248 (Trial 1), 777 807 (Trial 2), and 637 665 (Trial 3) valid fish positions were included in analyses. There were no mortalities during any of the trials.

Silver and bighead carp were found significantly more times in the High CO₂ Area during pre- (t=8.40, p < 0.0001, df = 52) and post-injection (t = 7.20, p < 0.0001, df = 52) compared to when CO₂ was injected (Figure 4). Detections in the High CO₂ Area did not differ between species (t = -1.329, p = 0.19, df = 23). Conversely, silver and bighead carp were detected significantly more times in the Low CO₂ Area during CO₂ injection compared to pre- (t = -20.63, p < 0.0001, df = 52) and post-injection (t = -20.80, p < 0.0001, df = 52; Figure 4). This did not differ by species (t = -0.444, p = 0.66, df = 23). Silver and bighead

Page 10 of 22

223	carp crossed upstream through the injection site significantly fewer times during CO_2 injection
224	compared to pre- (t = 14.46, p < 0.0001, df = 52) and post-injection (t = 6.76, p < 0.0001, df = 52; Figure
225	4). Density plots visualized the change in fish locations for all three trials (Figures 5,6,7). Fish crossed the
226	injection site in both directions and there were no instances where a single fish remained upstream of
227	the CO_2 injection site. Silver carp crossed fewer times than bighead carp (t = -2.10, p = 0.046, df = 23).
228	Carbon dioxide levels began to stabilize at the injection site around 60 mg/L CO_2 (Figure 2). When CO_2
229	levels were > 60 mg/L (approximately > 24 000 μ atm), silver and bighead carp passed through the
230	injection site significantly fewer times per hour relative to concentrations \leq 60 mg/L CO ₂ (t =-9.22, p <
231	0.0001, df = 652; Figure 8). Silver carp also passed through fewer times than bighead carp (t = -2675, p =
232	0.016, df = 16). Trial 3 had the lowest number of crosses (t = -6.48, p < 0.0001, df = 652).
233	
234	Discussion
235	The potential for CO_2 to function as a non-physical deterrent has been recently described in the
236	literature (Noatch and Suski 2012; Kates et al. 2012), and our study was the first to quantify the
237	effectiveness of a CO_2 barrier to invasive carps movement. We found that that CO_2 injection was
238	effective to reduce the upstream movement of silver and bighead carp, but did not completely stop fish
239	passage. Similarly, we observed a significant shift in fish movement away from areas of high CO ₂ . Most
240	notably, results were consistent across all three trials, including when CO_2 was injected into the opposite
241	side of the pond during Trial 3, providing evidence that CO_2 modified silver and bighead carp behavior.
242	This study demonstrates the potential use of CO_2 to deter silver and bighead carp movement and results
243	contribute to a growing body of research evaluating the use of CO_2 as a deterrent to invasive fishes.
244	Many fish species have been shown to avoid CO_2 during laboratory experiments. For instance,
245	Clingerman et al. (2007) used 60 – 120 mg/L dissolved CO_2 for non-physical transfer of rainbow trout

Page **11** of **22**

Page 12 of 30

approach was conducted by Kates et al. (2012), where avoidance responses were documented from
silver carp, bluegill (*Lepomis macrochirus*), and largemouth bass (*Micropterus salmoides*) at
concentrations ≥ 100 mg/L CO₂. Further, blacknose dace (*Rhinichthys atratulus*) and brook trout
(*Salvelinus fontinalis*) exhibited avoidance behavior when exposed to 120 mg/L CO₂ in small laboratory
tanks (Ross et al. 2001). When in our outdoor pond, we observed similar avoidance behavior of silver
and bighead carp at concentrations around 70 mg/L CO₂ and found that this technique could potentially
be used to deter upstream movement.

254 The sensitivity of fish to elevated CO_2 warrants continued investigation into the use of this non-255 physical method. However, with any non-physical deterrence strategy, less than 100% deterrence must 256 be an acceptable outcome (Noatch and Suski 2012; Wittman et al. 2014). During periods of hypercapnia, 257 fish undergo physiological detriments such as ion imbalance (Claiborne et al. 2002), increased stress 258 response (Kates et al. 2012), acidosis (Ishimatsu et al. 2005), hyperventilation (Perry and Abdallah 2012), 259 hypoventilation (Kates et al. 2012), loss of sensory function (Nilsson et al. 2012), and changes in protein 260 composition (Dennis et al. 2015). In conjunction with elevated CO_2 , a corresponding decrease in pH 261 occurs due to the hydration equilibrium of CO_2 to form bicarbonate (HCO₃) and carbonic acid (H₂CO₃). 262 This decrease in pH may play a role in behavioral avoidance during hypercapnia due to the influence of 263 pH on biochemical processes, however, several studies have shown that fish specifically sense and avoid 264 CO₂ (Ishimatsu et al. 2005; Perry and Gilmour 2006; Perry and Abdallah 2012). 265 Consideration should be given to the methods used to quantify and units reported of dissolved 266 CO₂, for comparisons with previous literature. Our study quantified CO₂ using methods described in 267 Clingerman et al. (2007), Kates et al. (2012), Dennis et al. (2015), and Donaldson et al. (2016) to allow 268 direct comparisons of the results. Free CO_2 can be easily related with pH, which may also facilitate

transition to the field using common water chemistry data loggers (Kates et al. 2012). However, CO₂ gas

270 saturation is dependent on temperature, pressure, alkalinity, biological status and pH. Common units for

Page 12 of 22

271 carbon dioxide are reported or derived in terms of pressure (e.g. PCO₂, mmHg, µatm). While there is a 272 general lack of uniformity in units quantifying CO₂ across current research, recognizing units are 273 important for comparison of results. 274 Results from our study identify many of the consideration with CO₂ as a control tool in fisheries 275 management. For example, the U.S. Army Corps of Engineers operates and maintains an electrical 276 barrier in the CAWS near Romeoville, IL, USA to inhibit further upstream movement of silver and 277 bighead carp into the Great Lakes basin (Moy et al. 2011). While the electric barrier is currently the most 278 important management tool to deter upstream movement of carp in the Great Lakes, there is a need for 279 redundancy and multiple integrated deterrence mechanisms (Noatch and Suski 2012). Additionally, 280 Noatch and Suski (2012) expressed concern that electricity loses effectiveness on smaller fish due to a 281 reduction in total body voltage at smaller body sizes (Reynolds 1996; Dolan and Miranda 2003). The 282 potential for size-related effectiveness with the electric barrier further supports the need for alternative 283 and supplemental deterrence strategies. In our study, CO₂ deterred stock length silver carp and sub-284 stock length bighead carp (Phelps and Willis 2013). With branchial CO₂ receptors present throughout the 285 life-history of most fish (Perry and Abdallah 2012), the absence of size-related effectiveness suggests the 286 CO_2 could be used to supplement other barriers to deter smaller fish passage.

287 Carbon dioxide may be useful to supplement other barriers (e.g. lock and dams or electrical 288 barriers). During scheduled usage or maintenance, CO₂ could be beneficial to deter silver and bighead 289 carp until primary barriers are restored. For instance, CO_2 could be applied to reduce fish from entering 290 or passing gates during planned vessel lockage. One important observation during our study was that 291 adequate time must be allowed for CO_2 to accumulate to target concentrations to be most effective at 292 deterring fish (e.g. Figures 5,6,7). We observed 4 -6 h for CO_2 levels to stabilize using a simple diffusion 293 injection system and recommend exploring improved designs to reduce build-up time. Reducing the 294 build-up time would expand the utility of CO₂ under different applications. Further, understanding

Page 13 of 22

operational efficiency of individual CO₂ injection systems under different scenarios will be important
during rapid implementation (e.g. unexpected primary barrier failure) and for calculating operational
costs. For rapid implementation, other deterrent strategies (e.g. mobile electrical barriers, soundbubble-strobes, or acoustic noise) may be considered due to their on-and-off style of operation (Taylor
et al. 2005; Ruebush et al. 2012; Vetter et al. 2015).

300 Carbon dioxide was not an absolute barrier to silver and bighead carp in our outdoor ponds. 301 While the success of any barrier is binomial, it is possible that total crossings in our study may have been 302 inflated due to the relatively small spatial size of our test pond. With recorded burst speeds of 1.28 – 303 1.66 m/s (Hoover et al. 2012), silver and bighead carp in our 10 m pond could have moved upstream 304 through the injection site before sensing elevated CO_2 . This hypothesis is further supported by the 305 reduced time that fish spent in the High CO₂ Area. In our study, fish consistently avoided areas of 306 elevated CO₂ when given an option of fresh-water. Further, when concentrations were greater than 60 307 mg/L CO₂ (\sim 24 000 µatm) we also observed the most effective reduction in upstream movement 308 relative to lower concentrations, suggesting a potential dose-response effectiveness (Figure 8). Higher 309 concentrations may be considered for future research. Complementary to the statistical comparisons, 310 visualized distributions of fish in the pond shown in Figures 5,6,7 demonstrate the clear shift in fish 311 locations relative to CO₂ injection. Most notably, similar movement away from the injection site during 312 Trial 3 when CO_2 was moved to the opposite side of the pond confirmed that CO_2 deterred fish. Testing 313 on a larger spatial scale can likely address this shortcoming and application of CO₂ on a larger spatial 314 scale may increase its effectiveness as a deterrent, especially when access to fresh water is made readily 315 available. Locations such as the entrance to approach channels at lock and dams or tributaries on large 316 rivers where fish can choose to stay out in the main channel should be considered for further testing. 317 Carbon dioxide may provide a safer alternative than other non-physical methods, primarily the 318 electrical barrier in the CAWS. Measurements taken by the U.S. Coast Guard conclude that the

Page 14 of 22

electrical barrier can result in a lethal shock to humans if they fall into the water near the barrier (ADRSC
2011). Carbon dioxide exists naturally in the atmosphere as a byproduct of aerobic respiration and
burning of fossil fuels at concentrations of 0.038 - 0.04 percent (NOAA 2015). Acceptable human
exposure limits of atmospheric CO_2 established by the Occupational Safety and Health Administration
(OSHA) were set at 5 000 ppm as a time weighted average (TWA) for an 8 h exposure and 30 000 ppm
for acute exposures (OSHA 29 CFR 1910.1000). Atmospheric CO_2 measured before and during our trials
were stable at a range of $433 - 498$ ppm and did not increase during periods of CO_2 injection. While
these concentrations are well below levels generating safety concerns, adequate monitoring should be
incorporated when CO_2 is applied at a larger field-scale.
Acknowledgements
Funding for this work was provided by the U.S. Environmental Protection Agency's (EPA) Great
Lakes Restoration Initiative (Agreement number DW14-92404001). Any use of trade, firm, or product

names is for descriptive purposes only and does not imply endorsement by the U.S. Government.

333 References

- Acquisition Directorate Research and Development Center (ADRDC). 2011. CSSC Fish barrier simulated
- rescuer touch point results, operating guidance, and recommendations for rescuer safety
- 336 Publication No: CG-D-01-12. Available from http://www.dtic.mil/dtic/tr/fulltext/u2/a554514.pdf

337 [Accessed 15 April 2015].

- Asian Carp Regional Coordinating Committee Monitoring and Response Workgroup (ACRCC MRW).
- 339 2014. Monitoring and response plan for Asian carp in the upper Illinois River and Chicago Area
- 340 Waterway System. Available from http://www.asiancarp.us/documents/MRP2014.pdf
- 341 [Accessed 3 January 2015].
- 342 American Public Health Association (APHA). 1995. Standard methods for the examination of water and
- 343 wastewater. 19th ed. American Public Health Association, American Water Works Association,
- 344 and Water Pollution Control Federation, Washington, D.C.
- Bolker, B.M., 2008. Ecological models and data in R, 508 edition. ed. Princeton University Press,

346 Princeton, N.J.

- 347 Claiborne, J.B., Edwards, S.L., and Morrison-Shetlar, A.I. 2002. Acid-base regulation in fishes: cellular and
- 348 molecular mechanisms. J. Exp. Zool. **293**(3): 302-319. DOI: 10.1002/jez.10125.
- 349 Clingerman, J., Bebak, J., Mazik, P.M., and Summerfelt, S.T. 2007. Use of avoidance response by rainbow
- trout to carbon dioxide for fish self-transfer between tanks. Aquacult. Eng. **37**(3): 234-251.
- 351 DOI:10.1016/j.aquaeng.2007.07.001.
- 352 Cupp, A.R., Fredricks, K.T., Porcher, S.T., Smerud, J.R., Hartleb, C.F., and Gaikowski, M.P. (*in press*).
- 353 Survival and behavioral responses of cool and warm water fish sedated with AQUI-S[®]20E (10%
- eugenol) at high loading densities. Aquacult. Res. DOI:10.1111/are.12992.

Page 16 of 22

355	Dennis, C.E., Kates, D. F., Noatch, M.R. and Suski C.D. 2015. Molecular responses of fishes to elevated
356	carbon dioxide. Comp. Biochem. Physiol. A: Mol. Integr. Physiol. 187: 224-231.
357	DOI:10.1016/j.cbpa.2014.05.013.
358	Dolan, C.R., and Miranda, L.E. 2003. Immobilization thresholds of electrofishing relative to fish size.
359	Trans. Am. Fish. Soc. 132 (5): 969-976. DOI:10.1577/T02-055.
360	Donaldson, M.R., Amberg, J., Adhikari, S., Cupp, A.R., Jensen, N., Romine, J., Wright, A., Gaikowski, M.,
361	and Suski, C.D. 2016. Carbon dioxide as a tool to deter the movement of invasive bigheaded
362	carps. Trans. Am. Fish. Soc. 145: 657-670. DOI:10.1080/00028487.2016.1143397.
363	Guide for the care and use of laboratory animals. 1996. National Academy Press, Washington D.C.
364	Hoover, J. J., Southern, W., Katzenmeyer, A. W., and Hahn, N. M. 2012. Swimming performance of
365	bighead carp and silver carp: methodology, metrics and management applications. U.S. Army
366	Corps of Engineers, Aquatic Nuisance Species Research Program, Technical Notes Collection
367	ERDC/TN ANSRP-12-3, Vicksburg, Mississippi. Available from
368	http://el.erdc.usace.army.mil/elpubs/pdf/ansrp12-3.pdf [Accessed 7 March 2015].
369	Irons, K.S., Sass, G.G., McClelland, M.A., and Stafford, J.D. 2007. Reduced condition factor of two native
370	fish species coincident with invasion of non-native Asian carps in the Illinois River, U.S.A. Is this
371	evidence for competition and reduced fitness?. J. Fish Biol. 71 : 258-273. DOI: 10.1111/j.1095-
372	8649.2007.01670.x.
373	Ishimatsu, A., Hayashi, M., and Lee, K.S. 2005. Physiological effects on fishes in a high-CO $_2$ world. J.
374	Geophys. Res. 110 : 1-8. DOI:10.1029/2004JC002564.
375	Jerde, C.L., Chadderton, W.L., Mahon, A.R., Renshaw, M.A., Corush, J., Budny, M.L., Mysorekar, S., and
376	Lodge, D.M. 2013. Detection of Asian carp DNA as part of a Great Lakes basin-wide surveillance
377	program. Can. J. Fish. Aquat. Sci. 70 : 522-526. DOI.org/10.1139/cjfas-2012-0478.

Page **17** of **22**

Kates, D., Dennis, C., Noatch, M.R., and Suski, C.D. 2012. Responses of native and invasive fishes to

378

379	carbon dioxide: potential for a nonphysical barrier to fish dispersal. Can. J. Fish. Aquat. Sci. 69:
380	1748-1759. DOI:10.1139/f2012-102.
381	Kelly, A.M., Engle, C.R., Armstrong, M.L., Freeze, M., and Mitchell, A.J. 2011. History of introductions and
382	governmental involvement in promoting the use of grass, silver and bighead carps. In Invasive
383	Asian carps in North America. Edited by D.C Chapman and M.H. Hoff. American Fisheries Society,
384	Bethesda, Maryland. pp. 163-174.
385	Moy, P.B., Polls, I., and Dettmers, J.M. 2011. The Chicago Sanitary and Ship Canal aquatic nuisance
386	species dispersal barrier. In Invasive Asian carps in North America. Edited by D.C Chapman and
387	M.H. Hoff. American Fisheries Society, Bethesda, Maryland. pp. 121-137.
388	National Oceanic and Atmospheric Administration (NOAA). 2015. Earth System Research Laboratory –
389	Global Monitoring Division: Global Greenhouse Gas Reference Network. Available from
390	http://www.esrl.noaa.gov/gmd/ccgg/trends/global.html [Accessed 7 June 2015].
391	Nilsson, G.E., Dixson, D.L., Domenici, P., McCormick, M.I., Sorenson, C., Watson, S., and Munday, P.L.
392	2012. Near-future carbon dioxide levels alter fish behavior by interfering with neurotransmitter
393	function. Nat. Clim. Chan. 2: 201-204. DOI: 10.1038/NCLIMATE1352.
394	Noatch, M.R., and Suski, C.D. 2012. Non-physical barriers to deter fish movements. Env. Rev. 20: 1-12.
395	DOI:10.1139/A2012-001.
396	Occupational Safety and Health Administration (OSHA). 29 CFR 1910.1000. Available from
397	http://www.osha.gov/dts/chemicalsampling/data [Accessed 10 June 2015].
398	Parker, A.D., Glover, D.C., Finney, S.T., Rogers, P.B., Stewart, J.G., and Simmonds, R.L. 2015. Direct
399	observations of fish incapacitation rates at a large electrical fish barrier in the Chicago Sanitary
400	and Ship Canal. J. Gr. Lak. Res. 41 : 396-404. DOI.org/10.1016/j.jglr.2015.03.004.

Page **18** of **22**

401	Perry, S.F., and Abdallah, S. 2012. Mechanisms and consequences of carbon dioxide sensing in fish. Resp.
402	Physiol. Neurobiol. 184 : 309-315. DOI.org/10.1016/j.resp.2012.06.013.
403	Perry, S.F., and Gilmour, K.M. 2006. Acid-base balance and CO_2 excretion in fish: unanswered questions
404	and emerging models. Resp. Physiol. Neurobiol. 154: 199-215. DOI:10.1016/j.resp.2006.04.010.
405	Phelps, Q.E., and Willis, D.W. 2013. Development of an Asian carp size structure index and application
406	through demonstration. N. Am. J. Fish. Manag. 33 : 338-343. DOI:
407	10.1080/02755947.2012.760506.
408	R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for
409	Statistical Computing, Vienna, Austria. R Foundation for Statistical Computing, Vienna, Austria.
410	Reynolds, J.B. 1996. Electrofishing. <i>In</i> Fisheries Techniques 2 nd edition. <i>Edited by</i> B.R. Murphy and D.W.
411	Willis. American Fisheries Society, Bethesda, Maryland. pp. 221-253.
412	Romine, J.G., Jensen, N.R., Parsley, M.J., Gaugush, R.F., Severson, T.J., Hatton, T.W., Adams, R.F., and
413	Gaikowski, M.P. 2015. Response of bighead carp and silver carp to repeated water gun
414	operation in an enclosed shallow pond. N. Am. J. Fish. Manag. 35 : 440-453. DOI:
415	10.1080/02755947.2015.1012279.
416	Ross, R.M., Krise, W.F., Redell, L.A. and Bennett, R.M. 2001. Effects of dissolved carbon dioxide on the
417	physiology and behavior of fish in artificial streams. Envir. Tox. 16 : 84-95.
418	Ruebush, B.C., Sass, G.G., Chick, J.H., and Stafford, J.D. 2012. In-situ tests of sound-bubble-strobe light
419	barrier technologies to prevent expansions of Asian carp. Aquat. Inv. 7 : 37-48.
420	DOI:10.3391/ai.2012.7.1.005.
421	Sampson, S.J., Chick, J.H., and Pegg, M.A. 2009. Diet overlap among two Asian carp and three native
422	fishes in backwater lakes on the Illinois and Mississippi rivers. Biol. Inv. 11 :483-496. DOI
423	10.1007/s10530-008-9265-7.

Page **19** of **22**

- 424 Sass, G.G., Hinz, C., Erickson, A.C., McClelland, N.N., McClelland, M.A., and Epifanio, J.M. 2014. Invasive
- 425 bighead and silver carp effects on zooplankton communities in the Illinois River, Illinois, USA. J.

426 Gr. Lak. Res. **40**: 911-921. DOI: 10.1016/j.jglr.2014.08.010.

- 427 Schwieterman, J.P. 2010. An analysis of the economic effects of terminating operations at the Chicago
- 428 River controlling works and O'Brien Locks on the Chicago Area Waterway System. DePaul
- 429 University. Available from http://www.unlockoutjobs.org/wp-
- 430 content/themes/unlockourjobs/pdf/DePaul_University_Study.pdf [Accessed 27 April 2015].
- 431 Taylor, R.M., Pegg, M.A., and Chick, J.H. 2005. Response of bighead carp to a bioacoustics behavioral fish
- 432 guidance system. Fish. Manag. Ecol. **12**(4): 283-286. DOI: 10.1111/j.1365-2400.2005.00446.x.
- 433 Tukey, J.W., 1977. Exploratory data analysis, 1 edition. ed. Pearson, Reading, Mass.
- Venables, W.N., Ripley, B.D., 2002. Modern applied statistics with S, Statistics and Computing. Springer
 New York, New York, NY.
- 436 Vetter, B.J., Cupp, A.R., Fredricks, K.T., Gaikowski, M.P., and Mensinger, A.F. 2015. Acoustical
- 437 deterrences of silver carp. Biol. Inv. **17**: 3383-3392. DOI:10.1007/s10530-015-0964-6.
- 438 Walleser, L.W., Sandheinrich, M.B., Howard, D.R., Gaikowski, M.P., and Amberg, J.J. 2014. Spatial and
- 439 temporal variation of the gill rakers of gizzard shad and silver carp in three Midwestern rivers. N.
- 440 Am. J. Fish. Manag. **34**: 875-884. DOI: 10.1080/02755947.2014.920740.
- 441 Wickham, H., 2009. ggplot2: Elegant graphics for data analysis. Springer, New York.
- 442 Wittmann, M.E., Cooke, R.M., Rothlisberger, J.D., and Lodge, D.M. 2014. Using structured expert
- judgment of assess invasive species prevention: Asian carp and the Mississippi-Great Lakes
- 444 hydrologic connection. Env. Sci. Tech. **48**: 2150-2156. DOI.org/10.1021/es4043098.
- 445 Wydoski, R., and Emergy, L. 1983. Tagging and marking. *In* Fisheries Techniques. *Edited by* L.A. Nielson
- 446 and D.L. Johnson. American Fisheries Society, Bethesda, Maryland. pp. 215-238.

Page 20 of 22

447

Figure Captions

448	Figure 1:	Outdoor concrete pond setup at the Upper Midwest Environmental Sciences Center in La
449		Crosse, WI during the evaluation of CO_2 as a barrier and deterrent to silver
450		(Hypophthalmichthys molitrix) and bighead carp (H. nobilis) conducted October 15, 2014 –
451		November 1, 2014. Graphical illustration shows setup during Trials 1 and 2. Trial 3 was a
452		reversed setup, with CO_2 injection moved to the opposite side of the center partition. Black
453		triangles show approximate pH and CO_2 spatial sampling locations within the pond: NW
454		(northwest), MW (middle-west), SW (southwest), NE (northeast), ME (middle-east), and SE
455		(southeast).
456		
457	Figures 2,	3: Carbon dioxide (CO ₂) and pH levels in outdoor ponds during the evaluation of CO ₂ as a
458		barrier and deterrent to silver (Hypophthalmichthys molitrix) and bighead carp (H. nobilis)
459		conducted October 15, 2014 – November 1, 2014 at the Upper Midwest Environmental
460		Sciences Center in La Crosse, WI. We observed increases in CO_2 levels (Figure 2) and decreases
461		in pH (Figure 3) throughout the entire pond during the entire 24h that $\rm CO_2$ was injected into
462		the pond. Injection was located at MW during Trials 1 and 2. During Trial 3, CO_2 was injected
463		at ME. Locations where values were recorded in the pond are defined as: NW (northwest),
464		MW (middle-west), SW (southwest), NE (northeast), ME (middle-east), and SE (southeast).
465		Values describe a single measurement at each location and time.
466		
467	Figures 4:	Occupancy and behavior of silver (Hypophthalmichthys molitrix) and bighead carp (H.
468		nobilis) in outdoor ponds. Detections in the High CO_2 Area (top) decreased significantly while
469		CO_2 was injected into the pond, while detections the Low CO_2 Area (middle) increased

Page **21** of **22**

470	significantly. Crosses through the CO_2 injection site were significantly reduced during injection
471	(bottom), but CO_2 was not 100% effective to stop upstream fish passage.
472	
473	Figure 5,6,7: Density plots illustrating the spatial distribution of silver (<i>Hypophthalmichthys molitrix</i>)
474	and bighead carp (<i>H. nobilis</i>) during the evaluation of carbon dioxide (CO_2) as a barrier and
475	deterrent in outdoor ponds. Independent trials 1 (Figure 5), 2 (Figure 6), and 3 (Figure 7) were
476	discretized into three 24h periods: before (PreCO2), during (DuringCO2), and after (PostCO2)
477	CO_2 injection. The red line represents the approximate location of the CO2 barrier.
478	
479	Figure 8: Box-and-whisker plots describing the movement of silver (Hypophthalmichthys molitrix) and
480	bighead carp (<i>H. nobilis</i>) upstream through a CO_2 injection site in outdoor concrete ponds. The
481	effectiveness of lower concentrations (\leq 60 mg/L CO ₂) to impede upstream movement was
482	compared to higher concentrations (> 60 mg/L CO_2). Carp moved upstream significantly fewer
483	times when CO_2 was \geq 60 mg/L CO_2 (p < 0.01) relative to lower concentrations. No differences
484	between species were observed ($p = 0.17$).

