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Abstract A fundamental question concerning the way the visual world is represented

in our brain is how a cortical cell responds when its classical receptive field contains

a plurality of stimuli. Two opposing models have been proposed. In the response-

averaging model, the neuron responds with a weighted average of all individual stim-

uli. By contrast, in the probability-mixing model, the cell responds to a plurality of

stimuli as if only one of the stimuli were present. Here we apply the probability-

mixing and the response-averaging model to leaky integrate-and-fire neurons, to de-

scribe neuronal behavior based on observed spike trains. We first estimate the param-

eters of either model using numerical methods, and then test which model is most

likely to have generated the observed data. Results show that the parameters can be

successfully estimated and the two models are distinguishable using model selection.
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CDF Cumulative distribution function

QQ Quantile–quantile

KS Kolmogorov–Smirnov

DIC Deviance information criterion

AIC Akaike information criterion

BIC Bayesian information criterion

1 Introduction

The receptive field of a neuron in the visual system can be defined as the spatial area in

which stimulation changes the firing pattern of the neuron. In primary visual cortex,

receptive fields are small, with typical values of, for example, 0.5–2 deg of visual

angle near the fovea. Moving up the hierarchy of extrastriate visual areas along either

the dorsal [1] or the temporal [2] pathway, receptive field sizes grow substantially

[3, 4], reaching, for example, a value of about 30 deg in the inferotemporal cortex.

A plausible explanation is that since these areas process more complex aspects of the

visual environment, information has to be integrated over larger spatial areas, such

as when encoding faces [5] in the ventral pathway or optic flow patterns [6] in the

dorsal one. Typically, receptive fields that are so big will contain a plurality of distinct

stimulus objects rather than just a single stimulus object [7]. The way a cortical cell

responds when its classical receptive field contains a plurality of stimuli is a basic

question concerning the way the visual world is represented in our brain.

1.1 Probability-Mixing and Response-Averaging

In a pioneering study, Reynolds et al. [8] found that a typical cell in visual area V2

or V4 in monkeys responded to a pair of objects in its classical receptive field by

adopting a rate of firing which, averaged across trials, equaled a weighted average of

the responses to the individual objects when these were presented one at a time, with

greater weight on an object the more attention was directed to the object. Reynolds

et al. accounted for their data by proposing that on each individual trial, the firing

rate of a cell to a plurality of stimulus objects equaled a weighted average of the

firing rates to the individual objects when these were presented alone. Bundesen et al.

[9, 10] proposed an alternative explanation of the data of Reynolds et al. by pointing

out that the effects observed in firing rates that were averaged across trials could be

explained by assuming that on each individual trial, when a plurality of objects were

presented, the cell responded as if just one of the objects was presented alone, so that

across trials, the response of the cell was a probability mixture of the responses to the

individual objects when these were presented alone.

In the response-averaging model proposed by Reynolds et al. [8] (see also [11–

18]), the neuron responds with a weighted average of the responses to single stimuli.

By contrast, in the probability-mixing model proposed by Bundesen et al. [9], the

neuron responds at any given time to only one of the single stimuli with certain prob-

abilities. Suppose the stimulus S(t) presented to the neuron consists of K separated

single stimuli, denoted by S1(t), . . . , SK(t). In the response-averaging model, the



Journal of Mathematical Neuroscience  (2016) 6:8 Page 3 of 33

neuron responds with a weighted average of responses to single stimuli,
∑

k βkIk(t),

with βk being the weights, and
∑

k βk = 1. Here Ik(t) denotes the effects that Sk

has on the spiking neuron model, which we set to be the stimulus current. In the

probability-mixing model, the response of the neuron equals one of the responses

the neuron would have had if only a single stimulus was presented according to a

probability mixture with probabilities α1, . . . , αK , and
∑

k αk = 1.
In our previous study [19], we compared the abilities of the probability-mixing

model and the response-averaging model to account for spike trains (i.e., times of

action potentials obtained from extracellular recordings) recorded from single cells

in the middle temporal visual area (MT) of rhesus monkeys. Point processes were
employed to model the spike trains. Results supported the probability-mixing model.

In this article, we combine the probability-mixing and the response-averaging

model with the leaky integrate-and-fire (LIF) model, to describe neuronal behavior

based on observed spike trains. This is cast in a general setting, where the stimulus
S(t) is represented as an input current to the neuron. The spike train data are simu-

lated using the LIF model, responding either to a single stimulus or to a stimulus pair.

In the case of stimulus pair, both response averaging and probability mixing are used.

The first goal of the paper is to estimate parameters of either of the two models from
spike train data. The second goal is to test which of the two models are most likely to

have generated the observed data.

1.2 The Leaky Integrate-and-Fire Model

The LIF models have been extensively applied to model the membrane potential evo-

lution in single neurons in computational neuroscience (for reviews, see [20, 21]).
The model has some biophysical realism while still maintaining mathematical sim-

plicity. The simplest LIF model is an Ornstein–Uhlenbeck (OU) process with con-

stant conductance, leak potential, and diffusion coefficient. More biophysical real-

ism can be obtained by allowing for post-spike currents generated by past spikes
[22]. Here we use post-spike currents generated via three types of kernels [23, 24]:

bursting, decaying, and delaying kernel, all modeled by the difference between two

decaying exponentials, but any kernel could be used.

1.3 Temporal Stimulus

Constant stimuli are simple to handle and are widely used in both experiments and

modeling work. However, real world stimuli are generally time varying. If they for

example contain oscillatory components, the generated spike trains might also con-

tain oscillations in the firing rates. Here we use three types of stimuli: oscillatory
stimuli described by sinusoidal functions, pulsing stimuli modeled by piecewise con-

stant functions, and stochastic stimuli described by OU processes.

1.4 Method Summary

We combine the models describing neuronal response to a plurality of stimuli, namely
the probability-mixing model and the response-averaging model, with the LIF frame-

work, for different types of stimuli and response kernels. Parameter estimation is
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done by maximum likelihood using first-passage time probabilities of diffusion pro-

cesses [25]. We solve the first-passage time problem by numerically solving either a

partial differential equation (PDE), the Fokker–Planck equation, or an integral equa-

tion (IE), the Volterra integral equation. Numerical solutions of these equations have

been extensively explored and applied in the computations of neuronal spike trains

[26–28]. Inspired by these previous studies, we apply four numerical methods, in-

cluding two Fokker–Planck related PDEs and two kinds of Volterra IEs, and com-

pare the performance of the four methods. We also describe and compare two al-

ternative methods for maximizing the likelihood function of the probability-mixing

model, which are direct maximization of the marginal likelihood and the expectation–

maximization (EM) algorithm. Finally, we show that the probability-mixing model

and the response-averaging model can be distinguished in the LIF framework, by

comparing parameter estimates and through uniform residual tests.

2 Leaky Integrate-and-Fire Model with Stimuli Mixtures

The evolution of the membrane potential is described by the solution to the following

stochastic differential equation:

dX(t) = b
(

X(t), t
)

dt + σ dW(t)

=
(

−γ
(

X(t) − μ
)

+ I (t) + H(t)
)

dt + σ dW(t),

X(0) = x0; X
(

t+j
)

= x0,

tj = inf
{

t > tj−1 : X(t) = xth

}

for j ≥ 1, t0 = 0,

(1)

where t+j denotes the right limit taken at tj . The drift term b(·) contains three cur-

rents: the leak current −γ (X(t) − μ), where γ is the decay rate and μ is the reversal

potential, the stimulus-driven current I (t), and the post-spike current H(t). The po-

tential X(t) evolves until it reaches the threshold, xth, where it resets to x0. Since the

membrane potential X(t) is not observed, but only the spike times d = (t1, t2, . . .),

we can use any values for threshold and reset suitable for the numerical calculation.

The noise is described by the standard Wiener process, W(t), and the diffusion pa-

rameter, σ . The interspike intervals (ISIs) are defined by tj+1 − tj .

The stimulus current I (t) is shaped from the external stimulus current through a

stimulus kernel ks(t) as I (t) =
∫ t

−∞ ks(t −s)S(s) ds, where S(s) denotes the external

current at time s. Similarly, the post-spike current arises from past spikes through a

response kernel kh(t) by H(t) =
∫ t

−∞ kh(t − s)I(s) ds. Here I(s) =
∑

τ∈d δ(s − τ)

describes the spike train, where δ(·) denotes the Dirac delta function.

In this work, the stimulus kernel is assumed without memory, such that ks(t) =
δ(t). Then the stimulus current I (t) is completely determined by the stimulus at

time t , e.g., I (t) = S(t). The response kernel is assumed to be the difference of two

exponentials decaying over time,

kh(t) = η1e
−η2t − η3e

−η4t (2)
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Fig. 1 Realization of spike trains for different combinations of response kernels and stimuli. Top panels

show the three stimulus types; sinusoidal, piecewise constant and Ornstein–Uhlenbeck process. Left panels

show the burst, decay and delay response kernels. The nine middle panels illustrate spike train patterns for
the different combinations of response kernels and stimuli. The patterns produced by each response kernel
are apparent; the bursts of spikes for the burst kernel, the firing rate adaptation of the decay kernel, and the
refractory period by the delay kernel (no short ISIs). Likewise, the patterns produced by each stimulus are
apparent; periodicity by the sinusoidal, abrupt changing intensities by the piecewise constant, and slowly
fluctuating changes in intensity by the random stimulus

with four positive parameters, η = (η1, η2, η3, η4). By adjusting the parameters, dif-

ferent kernels are obtained. Note that in practice the four parameters are not identi-

fiable, because different parameter sets can result in very similar kernels. Therefore,

when we later verify parameter estimates we will not check each individual estimate,

but only plot the estimated shape of the kernel function, which is the quantity of

interest.

Three types of kernels are used, shown in the left panels of Fig. 1. The bursting

kernel is characterized by being positive in the beginning, then turning negative, and

finally converging toward 0, which happens when η1 > η3 and η2 > η4. It follows

that the most recent spikes have excitatory effects for the current spike probability,

but the accumulation of past spikes has inhibitory effects, resulting in rhythmic spik-

ing with bursts. The decaying kernel only has one negative exponential by setting

η1 = 0. The parameters η3 and η4 are small such that the inhibitory effects are small

but long-lasting, making the firing rate decay slowly over time. The delaying ker-

nel has parameters η1 < η3 and η2 < η4. It is negative in the beginning, then turns

positive, and finally converges to 0. The most recent spikes have inhibitory effects,
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neutralized later on by the accumulation of excitatory effects, resulting in delaying

the immediate formation of a new spike after a spike, preventing short ISIs, which

models the refractory period. In the center panels example spike trains for the differ-

ent kernels and different stimuli are illustrated.

2.1 Current from Stimulus Mixture

Suppose that inside the receptive field of the neuron there are at least two separated

non-overlapping stimuli, which we will call a stimulus mixture. According to the

probability-mixing model [9], the neuron responds to only one stimulus at any given

time with certain probabilities. Thus, for a total of K stimuli, the stimulus-driven

current, I (t), follows a probability mixture:

I (t) = Sk(t), with probability αk (3)

for k = 1, . . . ,K and
∑K

k=1 αk = 1. Recall that the stimulus kernel ks(t) = δ(t) and

thus, the current caused by the kth stimulus Ik(t) = Sk(t). According to the response-

averaging model [11], the current is a weighted average of all stimuli currents:

I (t) =
K

∑

k=1

βkSk(t). (4)

The leak current and the spike response current do not depend on the stimuli.

In the top panels of Fig. 1 three types of stimuli are illustrated. A sinusoidal stim-

ulus is defined by

S(t) = s1 sin(s2t + s3) + s4 (5)

with four parameters ssin = (s1, s2, s3, s4) describing the stimulus. Note that it also

covers a constant stimulus for s1 = 0. A piecewise constant stimulus is defined by

S(t) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

s1, t1 ≤ t < t2,

s2, t2 ≤ t < t3,

. . . ,

sn, tn ≤ t < tn+1,

(6)

with parameters spw = (s1, s2, . . . , sn, t1, t2, . . . , tn+1). A stochastic stimulus is given

by an OU process described by the SDE:

dS(t) =
(

s1 − S(t)
)

dt + s2 dW(t) (7)

with two parameters sOU = (s1, s2). We assume throughout that the stimuli currents

are known. Spike patterns from combinations of different types of stimuli and re-

sponse kernels are shown in Fig. 1. Clear bursting, decaying and delaying effects can

be seen.

Two example spiking patterns together with their voltage traces generated from

either a sinusoidal or a constant stimulus together with a bursting post-spike kernel

are shown in Fig. 2. There are bursts of spikes occasionally even under constant
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Fig. 2 Illustration of voltage
traces resulting from a bursting
response kernel and sinusoidal
stimuli. (a) Bursting response
kernel in Eq. (2) with
parameters η = (50,25,40,15).
(b) Examples of sinusoidal
stimuli in Eq. (5). Blue: constant
with s0 = (0, ·, ·,60). Red:
s1 = (10,12,1,50). Green:
s2 = (20,8,0,50). (c) An
example realization of
membrane potential evolution,
Eq. (1), responding to the
sinusoidal signal s1 , and
(d) responding to the constant
signal s0

stimulus caused by the bursting response kernel. A sinusoidal stimulus causes long

bursts, and in addition, the bursting kernel causes a clear separation of small burst

periods also within the long bursting period.

3 Maximum Likelihood Estimation Using First-Passage Time

Probabilities

Our objective here is to estimate the parameters μ and σ from (1), the response kernel

function kh in (2) represented by the parameter vector η, and either the probability

vector of the stimuli in the mixture, α = (α1, . . . , αK), under the probability-mixing

model, or the vector of weights in the average, β = (β1, . . . , βK), in the response-

averaging model. The estimation of the decay rate γ is difficult when there is no

access to the membrane potential, but only spike times are observable, as discussed in

[29, 30]. We therefore assume γ is known. The vector of all parameters in the model is
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thus θ , where θ = (μ,σ,η,α) in the probability-mixing model, and θ = (μ,σ,η,β)

in the response-averaging model. The stimulus is assumed known and the stimulus

parameter vector s is therefore not estimated.

A similar LIF model with different stimulus and response kernels on single piece-

wise constant stimuli was used in Paninski et al. [24]. They showed that parameters

can be estimated using MLE by solving the Fokker–Planck equation, covering also

discussion of non-white noise and interneuronal interactions. The model was later

applied to experimental data collected from retina of macaque monkeys [31]. Here

we estimate parameters in the LIF model for various temporal stimuli and differ-

ent response kernels, using four different numerical methods to calculate the likeli-

hood function, within the framework of either the probability-mixing or the response-

averaging model.

Suppose we observe N spike trains, D = (d1, . . . , dN ), all responding to the

same stimulus mixture, where the ith spike train consists of Ni spike times, di =
(t i1, . . . , t

i
Ni

). The j th ISI of the ith spike train is then given by t ij+1 − t ij . Assume that

each measured spike train, i.e., each trial, is sufficiently short, such that, under the

probability-mixing model, the neuron is only responding to one stimulus within the

stimulus mixture, not switching the response within the trial.

3.1 First-Passage Times and Probability Distributions

Modeling the spike train data as threshold crossings of the underlying diffusion pro-

cess representing the unobserved membrane potential belongs to the so-called first-

passage time problem [32, 33]. For models with no effects from past spikes, such that

ISIs are assumed i.i.d., one approach is to build loss functions using the Fortet equa-

tion [29, 30]; see also [34]. A more general method, which allows for the post-spike

effects in model (1), is to use maximum likelihood estimation (MLE) from numer-

ical solutions of PDEs or IEs for the conditional distribution of the spike times or

equivalently, the ISIs.

We use the following notation for the probability density functions (PDFs) and

cumulative distribution functions (CDFs) of interest:

f
(

x, t |Ht , θ, S(t)
)

(time-evolving PDF of the membrane potential),

F
(

x, t |Ht , θ, S(t)
)

(time-evolving CDF of the membrane potential),

g
(

t |Ht , θ, S(t)
)

(PDF of the spike time),

G
(

t |Ht , θ, S(t)
)

(CDF of the spike time).

All the above distributions depend on the spike history up to time t , denoted by

Ht , the parameter vector θ and the stimulus S(t). In the following, we sometimes

suppress these dependencies in the notation for readability. We write gk(t; θ) =
g(t |Ht , θ, Sk(t)) for the probability density of the spike time when the neuron is

only presented with the single stimulus k.

The probability that the neuron has not yet fired at time t , 1 −G(t), is equal to the

probability that the membrane potential has not yet reached xth, F(xth, t). Thus, the
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probability density of a spike time is given by [24, 27, 35]

g(t) = −
∂

∂t
F (xth, t) = −

∂

∂t

∫ xth

−∞
f

(

x′, t
)

dx′. (8)

The solution of the Fokker–Planck equation provides f (x, t) and F(x, t), and
therefore also g(t). The solution of the Volterra integral equation directly provides
g(t) [36]. Calculating g(t) enables us to do MLE, as explained in Sects. 3.5 and 3.6
below.

3.2 Fokker–Planck Equation

The PDF of Xt in Eq. (1) with a resetting threshold, f (x, t), solves the Fokker–Planck
equation, defined by the following PDE [21, 27, 33]:

∂tf (x, t) = −∂x

(

b(x, t)f (x, t)
)

+
σ 2

2
∂2
xxf (x, t), (9)

with absorbing boundary condition f (xth, t) = 0 and initial condition f (x,0) =
δ(x − x0). To solve the equation numerically we also impose a reflecting bound-
ary condition at a small value x = x−, where the flux equals 0: J (x−, t) =
−b(x−, t)f (x−, t) + σ 2∂xf (x−, t)/2 = 0. We call this method the Fokker–Planck
PDF method.

Another approach is to formulate the PDE for the CDF, i.e., F(x, t) [27, 35] (see
Appendix A.2):

∂tF(x, t) = −b(x, t)∂xF(x, t) +
σ 2

2
∂2
xxF(x, t), (10)

with equivalent boundary conditions: ∂xF(xth, t) = 0, F(x−, t) = 0, and initial con-
dition: F(x,0) = H(x − x0), where H(·) is the Heaviside step function. This is then
called the Fokker–Planck CDF method.

Both PDEs are solved numerically using the Crank–Nicholson finite difference
method, together with the Thomas algorithm efficiently solving tridiagonal systems
[37]. Whichever method we use, we can always obtain the PDF (CDF) from the CDF
(PDF) by numerical differentiation (integration).

3.3 Volterra Integral Equation

The first-kind Volterra IE (Fortet equation) combines the first-passage time PDF g(t)

with the threshold-free membrane potential PDF f ∗(x, t |v, s) using the law of total
probability [29, 30]:

f ∗(xth, t |x0,0) =
∫ t

0
f ∗(xth, t |xth, s)g(s) ds. (11)

For the OU model (1), the threshold-free PDF f ∗(x, t |v, s) is Gaussian [33, 38]:

f ∗(x, t |v, s) =
1

√
2πV (t |s)

exp

{

−
(x − M(t |v, s))2

2V (t |s)

}

, (12)
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with mean

M(t |v, s) = ve−γ (t−s) +
∫ t

s

Itotal(u)e−γ (t−u) du (13)

and variance

V (t |s) =
σ 2

2γ

(

1 − e−2γ (t−s)
)

. (14)

The total current is denoted by Itotal(t) = γμ + I (t) + H(t).

The initial condition for the IE is g(0) = 0. Using this, we can solve the equation

recursively and obtain g(t).

The second-kind Volterra IE is defined by [39]

g(t) = −2ψ(xth, t |x0,0) + 2

∫ t

0
ψ(xth, t |xth, s)g(s) ds, (15)

where

ψ(x, t |v, s) = ∂t

∫ x

−∞
f ∗(x′, t |v, s

)

dx′

= f ∗(x, t |v, s)

[

γ x − Itotal(t) − σ 2

2V (t |s)
(

x − M(t |v, s)
)

]

. (16)

A modification of ψ(x, t |v, s) is proposed to avoid a singularity when t → s [36, 39]

(see Appendix A.3):

φ(x, t |v, s) =
1

2
f ∗(x, t |v, s)

[

γ x − Itotal(t) −
σ 2

V (t |s)
(

x − M(t |v, s)
)

]

. (17)

The second Volterra IE can also be solved numerically. It requires more computation

time than the first-kind, but has higher accuracy.

3.4 Computational Time Complexity

For both the Fokker–Planck PDE and the Volterra IE methods, the time complexity is

directly related to the grid size for the numerical solution. Specifically, suppose that

the grid size of the time discretization is n and the size of the space discretization

is m. Then the Fokker–Planck method has complexity on the order of O(mn) and the

Volterra method is on the order of O(n2) (native implementation requires O(n3), but

techniques are applied to reduce the complexity to O(n2); see [36]). Furthermore,

the computation is largely affected by the response kernel used. A discretization is

applied to approximate the nonlinear kernel by a piecewise constant function with

sufficiently small segmentation length. The values of the constant segments are cal-

culated and stored in a data vector when the parameters are updated. Then inside an

optimization loop, the kernel function is evaluated by referring to this data vector.
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3.5 Marginal Likelihood of the Probability-Mixing Model

Under the probability-mixing model, the marginal likelihood function of the ith spike
train di = (t i1, . . . , t

i
Ni

) for a mixture of K stimuli is given by

L(θ;di) =
K

∑

k=1

αk

Ni
∏

j=1

gk

(

t ij ; θ
)

, (18)

and thus the marginal log-likelihood of all N spike trains D = (d1, . . . , dN ) is

ℓ(θ;D) =
N

∑

i=1

log

(

K
∑

k=1

αk

Ni
∏

j=1

gk

(

t ij ; θ
)

)

. (19)

Marginal refers to the observed data D; see Sect. 3.5.1 below for a definition of the
full data. MLEs are then obtained by maximizing (19). The log-likelihood function
consists of logarithms of sums, and the calculations are prone to encounter numerical
over- or underflow issues. To overcome this, we apply the log-sum-exp formula [37].

3.5.1 Optimizing the Likelihood Using the Expectation-Maximization Algorithm

As an alternative to optimizing directly the log-likelihood function (19), the EM al-
gorithm [40] is well suited to solve optimization problems for mixture models and is
simple to implement. The EM algorithm treats the unknown stimulus mixture com-
ponent which the neuron responds to as unobserved data, or latent variables. We write
Y = (y1, . . . , yN ) where yi ∈ {1,2, . . . ,K}, for the latent variables indicating which
single stimulus each spike train is responding to. The full data then include both the
observed spike trains D and the unobserved stimuli response Y .

The EM algorithm is an iterative procedure. In each iteration, the expectation of
the full data log-likelihood conditional on the parameters from the previous iteration,
is maximized to obtain the optimal parameters for the current iteration. The algorithm
runs until convergence, i.e., the difference of parameter estimates is sufficiently small
between two adjacent iterations. We use the notation θ for the current parameter to
estimate, and θ−1 for the parameter estimated in the previous iteration, and likewise
for the components of the probability vector α, i.e., αk and (αk)−1.

In each iteration, the conditional expectation of the full data log-likelihood is (see
Appendix A.1 for the derivation),

Q(θ |θ−1) = E
[

logLc(θ;D,Y)|θ−1,D
]

=
N

∑

i=1

[

K
∑

k=1

P(yi = k|θ−1, di)

(

logαyi
+

Ni
∑

j=1

logg
(

t ij |yi, θ
)

)]

, (20)

where the conditional probability is obtained using the Bayes formula:

P(yi = k|θ−1, di) =
(αk)−1

∏Ni

j=1 g(t ij |yi = k, θ−1)
∑K

l=1(αl)−1
∏Ni

j=1 g(t ij |yi = l, θ−1)
. (21)
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The EM algorithm requires the calculation of the likelihood of the spike train for all

components in the mixture. Thus, the EM algorithm has (approximately) the same

time complexity regarding the number of evaluations of density functions as the cal-

culation of the marginal likelihood.

3.6 Likelihood of the Response-Averaging Model

In the response-averaging model, the neuron responds to a weighted average of stim-

uli, and the model does not follow a probability mixture. The likelihood is given by

L(θ;D) =
N
∏

i=1

Ni
∏

j=1

g
(

t ij ; θ
)

, (22)

where g(t) is now the probability density of spiking at time t when the neuron is

responding to a weighted average of all K stimuli,
∑K

k=1 βkSk(t).

3.7 Model Checking: Uniformity Test

The goodness-of-fit can be verified by uniformity tests using the CDF G(t) for all

spike times in D. If the model perfectly describes the data, then the residuals

zi
j = G

(

t ij
)

(23)

follow a standard uniform distribution, zi
j ∼ U(0,1). We then merge all the residuals

for a specific model, and test the residuals against the uniform distribution. Quantile–

quantile (QQ) plots and the Kolmogorov–Smirnov (KS) test can be employed to

check for uniformity.

4 Simulation Study

To illustrate the approach, we first detail the simulation study of the bursting kernel

and the sinusoidal stimulus. Then results using the other types of kernels and stimuli

are briefly illustrated and summarized.

Traces from model (1) using the bursting response kernel shown in Fig. 2(a), and

one of the two sinusoidal stimuli shown in Fig. 2(b) or a mixture thereof was simu-

lated according to the Euler–Maruyama scheme with a time step size of 0.1 ms. The

process was run until reaching the threshold xth where the time was recorded. The

process was then reset to x0 and started again, while the stimulus continued without

any interruption, and the previously recorded spike times entered in the calculation

of the post-spike currents. This was continued until the spike train was 4 s long, con-

taining around 60 to 70 spikes. Table 1 shows the values of the parameters used for

simulation and numerical computation.

Parameter estimation was split in two, in agreement with how a typical experiment

would be conducted. First we simulated spike trains responding to single stimuli.

Note that in this case the probability-mixing and the response-averaging models are
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Table 1 Parameter values used in the simulation study

Category Parameter Value Explanation

Sinusoidal stimulus s1 (10,12,1,50) First stimulus

s2 (20,8,0,50) Second stimulus

Unknowns to estimate η (50,25,40,15) Bursting response kernel

α (0.4,0.6) Probability mixing

β (0.4,0.6) Response averaging

μ 0.5 Reversal potential

σ 1 Diffusion parameter

Numerical computation �t 0.002 Time discretization

�x 0.02 Space discretization

x− 0 Lower reflecting boundary

Neuronal characteristics x0 0.4 Reset potential

xth 1 Spike threshold

γ 100 Decay rate

the same, and α = β = 1 are one-dimensional. The data set contains 10 spike trains,

with five attending the first single stimulus and the other five attending the second

single stimulus. Using this data set, we estimated parameters of the response kernel,

η, and parameters of the diffusion model, μ and σ .

Second, we simulated spike trains using a mixture of the two sinusoidal stimuli.

Two data sets were simulated, one data set consisting of 10 spike trains following the

probability-mixing model, and another data set consisting of 10 spike trains following

the response-averaging model. To check if the two models could be distinguished,

we fitted the data using the probability-mixing model and the response-averaging

model on both data sets, resulting in four combinations. During this stage, we fixed

the response kernel parameters η to values estimated in the first step, and estimated

again μ, σ , as well as α or β , depending on the model. There are therefore two sets

of estimates of μ and σ for each trial. The purpose is threefold; first of all, these

parameters might slightly drift in a real neuron when changing the stimulus (even if

we do not change them in the simulation); second, it is of interest to understand the

statistical accuracy and uncertainty of these parameter estimates when inferred in the

two experimental settings; and third, comparing estimates from both single stimulus

and stimulus mixtures can serve as model control, as explained below. When fitting

the probability-mixing model on the data generated from this same model, we used

both the marginal MLE and the EM algorithm. The above simulation and estimation

procedure was repeated 100 times, generating 100 sets of estimates.

The simulation study serves different purposes. First, the four numerical meth-

ods to obtain the PDFs of the spike times, namely the first Volterra, second Volterra,

Fokker–Planck PDF, and Fokker–Planck CDF, should be evaluated and compared.

This is done on single stimulus spike train data. Second, the quality of the parameter

estimates should be assessed, as well as how important it is to use the correct model

for the estimation. This is conducted using spike trains simulated from stimulus mix-
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Fig. 3 Four example ISI probability density functions, g(t), calculated with four methods using different
grid sizes. The column panels show the four different ISIs, with the spike history indicated in the top (with
different times axes) of each column, and the sinusoidal stimulus for the corresponding time periods. The
panels in the four lower rows show solutions of the different PDEs and IEs using increasing grid sizes in
each row. In the three lower rows, the density function from the panels above using the second Volterra
method with high accuracy is plotted as the reference line. As expected, the solutions become less accurate
as the grid size increases. The second row from the bottom, indicated with a star in the upper right corner,
shows the grid size used for estimation in the main analysis, which leads to decent approximations for all
four methods

tures. Also the performance of the marginal MLE and the EM algorithm in the case

of the probability-mixing models should be compared. Third, it should be evaluated

if it is possible to detect which of the two models generated the data. Results from

these three analyses are presented in the following.

4.1 Numerical Solutions of the Partial Differential and Integral Equations

Figure 3 shows the PDFs of four example ISIs, i.e., for four different histories of

past spikes, calculated by the four numerical methods, first Volterra, second Volterra,

Fokker–Planck PDF and Fokker–Planck CDF, under single stimulus trials. Time has
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been set to 0 at the last spike time. The examples are taken from a spike train attending

to the single stimulus s1. Each column shows one example ISI, with the spike history

indicated above the column (with different time axes) and the corresponding sinu-

soidal stimulus (same time axes as the PDFs), for four different grid sizes. The four

boxed panels in each column show the solutions of the PDEs and the IEs for the ISI

on top. A reference dashed black line obtained with high accuracy has been added in

all panels for comparison. The grid size is given by �t for the time discretization, and

�x for the space discretization, and varies from row to row. As expected, for large

grid sizes (small number of bins), the performance of the four methods differ (see the

three lower rows of boxed panels), but the four results converge for decreasing grid

sizes (see the upper row of boxed panels). We find that the first Volterra method is

more sensitive to the grid size, while the Fokker–Planck PDF method is the most ro-

bust. In the parameter estimation below, we use �t = 0.002 s and �x = 0.02 shown

in the row indicated with a star.

Figure 4(a) and (b) show the time-evolving PDF and CDF of Xt from the numeri-

cal solutions of the Fokker–Planck equation, for the ISI of the first column of Fig. 3.

Time has been set to 0 at the last spike time. At 0, the PDF equals the (discretized)

Dirac delta function, and the CDF equals the Heaviside step function, since at spike

times, the voltage always resets to a fixed value, x0. As time increases, the PDF shows

how the probability flows out at the threshold; and the CDF at the voltage threshold

illustrates the survival probability.

Figure 4(c) shows in the upper panels three examples of spike times PDFs, g(t),

and the lower panels show a corresponding example trace for each, plotted on top of

their time-evolving PDFs of X(t), f (x, t), as heat-images. The three ISIs are taken

from the left, middle left, and middle right panels of Fig. 3.

4.2 Results from Single Stimulus Trials

Parameter estimates of μ and σ from the 100 repetitions are shown in Fig. 5 as box-

plots. In the lower panels, the time elapsed and the number of loops for optimization

are also plotted. The means and standard deviations of parameter estimates are given

in Table 2. The first Volterra method is less stable and less accurate, which is expected

due to the lower accuracy in solving the spike time PDFs shown in Fig. 3. The second

Volterra performs best for the estimation of σ , and the Fokker–Planck PDF performs

best for μ, while the Fokker–Planck CDF does not perform as well as any of the two.

On the other hand, the first Volterra and the Fokker–Planck CDF are less computa-

tional expensive. The Fokker–Planck CDF method is used in later analysis of stimulus

mixtures, considering both accuracy and efficiency, though the Fokker–Planck PDF

with a finer grid is used when performing KS-tests for model selection below. We

also find that different methods result in different systematic estimation bias. When

estimating μ some methods tend to overestimate and others tend to underestimate,

whereas when estimating σ all methods have a tendency to overestimate.

In Fig. 6, the 100 estimated response kernels from the four methods are plotted

together as colored lines. The parameters of the kernel are in practice not identifiable,

so we evaluate by plotting the shape of the kernel function. All methods achieved
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Fig. 4 Solutions of the PDEs and the IEs and example traces. The time-evolving (a) PDF, f (x, t), and
(b) CDF, F(x, t), from the solutions of the Fokker–Planck equation for the ISI in the left column of Fig. 3.
(c) Three example ISIs taken from the left, middle left and middle right columns of Fig. 3. The upper

panels show the PDFs with red lines indicating the spike times. The lower panels show the time-evolving
voltage PDFs as a heat image together with the realization of the voltage path. The brighter region in the
heat image corresponds to larger PDF values. The time when the voltage trace hits the threshold in the heat
image corresponds to the spike time shown in the upper panel as a red line. Note that in the upper panel,
the time intervals with larger ISI PDF values are where the probability (bright region) flows faster out of
the threshold in the lower panel

good results, capturing the overall shape. The two PDE methods obtained slightly

better results, whereas the IE methods are systematically biased.

In Fig. 7(a) are QQ-plots of the uniform residuals calculated using the transforma-

tion from Eq. (23) for the four methods. The uniform residuals are pooled together

from all 100 repetitions. Again, all four methods are competitive but biased, with a

different bias for PDE methods and for IE methods. This bias, arising from the nu-

merical approximations, has to be taken into account when later testing which model

generated the data, forcing us to use a finer and computationally more expensive grid

size.
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Fig. 5 Parameter estimates and computational time. Upper panels: Box-plots of parameter estimates for
μ (left) and σ (right) from 100 repetitions of single stimulus data. The red lines are the true values used in
the simulations. Lower panels: The time elapsed and number of loops for the optimization

Table 2 Average ± standard
deviation of 100 parameter
estimates from single stimulus
data

μ σ

True value 0.5 1

First Volterra 0.4800 ± 0.01095 1.076 ± 0.06913

Second Volterra 0.5066 ± 0.01287 1.020 ± 0.07281

Fokker–Planck PDF 0.4981 ± 0.00730 1.060 ± 0.04567

Fokker–Planck CDF 0.4889 ± 0.00698 1.065 ± 0.04442

4.3 Distinguishing Between Response-Averaging and Probability-Mixing

The following results show that the two models can be distinguished for parameter

values such that the two models are sufficiently different, which will be defined be-

low in Sect. 4.6. Each model is fitted using the Fokker–Planck CDF method, both

on data simulated according to the correct model as well as the wrong model. Fig-

ure 8 shows the estimation of μ, σ , and α or β , depending on the model, and Ta-

ble 3 reports the means and standard deviations of estimates. Accurate estimation is

achieved only if we apply the correct model to the corresponding data, the wrong

model fitted to data generated by the other model clearly shows bad results. This

implies that it is important to use the correct model for reliable inference, but we
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Fig. 6 Estimates of the
response kernel from 100
simulated data sets fitted to
single stimulus data with the
four numerical methods, each
method has its own color. The
dashed black curve is the true
kernel used in the simulations

Fig. 7 Model control. (a) QQ plots of the uniform residuals calculated using the transformation in Eq. (23)
for the four methods fitted on single stimulus data and a grid size of �t = 0.002 s and �x = 0.02. The
uniform residuals are pooled together from all 100 repetitions of the simulations. The bias is different for
PDE methods and for IE methods, seen from how the points deviate from the identity line. (b) QQ plots of
the uniform residuals of the probability-mixing (PM) model and the response-averaging (RA) model fitted
on data simulated from both models responding to a stimulus mixture. For example, RA fitted on PM data
means fitting the response-averaging model to data simulated from the probability-mixing model. From
the QQ-plots a wrong model can be rejected

Fig. 8 Parameter estimates of the probability-mixing (PM) model and the response-averaging (RA) model
fitted to data simulated from both models responding to a stimulus mixture. For example, PM-RA means
parameter estimates of the probability-mixing model fitted to data simulated from the response-averaging
model
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Table 3 Average ± standard deviation of 100 parameter estimates using the response-averaging (RA)
model and the probability-mixing (PM) model on data sets simulated according to the two models

μ σ α1 (PM)/β1 (RA)

True value 0.5 1 0.4

RA on RA data 0.4876 ± 0.00658 1.067 ± 0.04441 0.3888 ± 0.01564

PM on RA data 0.3553 ± 0.01087 2.077 ± 0.06482 0.0017 ± 0.00467

RA on PM data 0.3288 ± 0.01191 2.429 ± 0.09216 0.3098 ± 0.02161

PM on PM data (Marginal) 0.4891 ± 0.00844 1.062 ± 0.05609 0.4013 ± 0.01636

PM on PM data (EM) 0.4889 ± 0.00813 1.063 ± 0.05410 0.3988 ± 0.01012

Fig. 9 Estimates of μ and σ estimated from stimulus mixture data under either the probability-mixing or
the response-averaging model plotted against the estimates from single stimulus data, for 100 repetitions.
The straight lines are identity lines, the dashed lines are the true values used in the simulations. Different

colors differentiate which model is fitted on which data for the stimulus mixture. The estimates from a
stimulus mixture differ significantly from the estimates from a single stimulus when the model is wrong

can also use this to distinguish the two models. If estimates of μ and σ change con-

siderably from estimation on single stimulus data to estimation on stimulus mixture

data, then one should suspect that the used model is wrong. This is illustrated in

Fig. 9, where scatterplots of estimates from stimulus mixture data assuming a spe-

cific model is plotted against estimates from single stimulus data. The straight lines

are identity lines. When the correct model is used, estimates are clustered around

the identity line, but clearly separated away from the identity line if the model used

for fitting is wrong. To formalize the model selection procedure, QQ plots of uni-

form residuals using Eq. (23) from all 100 repetitions are shown in Fig. 7(b), where

points away from the identity line indicate the model is wrong. The lines for the

wrong model selections are clearly worse than the correct models, but even the cor-

rect models show a significant deviation from the identity lines, which would turn

out as also the correct model being rejected in a KS-test. This is most probably due

to the numerical approximations, as also seen in Fig. 7(a). To check this, we con-

ducted the same estimation procedure with the Fokker–Planck PDF method using

a finer grid of �t = 0.0005 s and �x = 0.01, and repeated for 20 times. Results

are reported in Table 4, where it is clear that with a finer grid, the KS-test works
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Table 4 Rejection (p < 0.05) rate based on the Kolmogorov–Smirnov test for uniformity done on each
repetition

Method Low accuracy* High accuracy**

RA on RA data 32/100 1/20

RA on PM data 100/100 20/20

PM on RA data 100/100 20/20

PM on PM data 32/100 0/20

*Fokker–Planck CDF method with �t = 0.002 s and �x = 0.02

**Fokker–Planck PDF method with �t = 0.0005 s and �x = 0.01

Fig. 10 Scatter plots of the estimates using the EM algorithm against MLE with the marginal probability
for 100 repetitions. The dashed lines are the true values used in the simulations. The two methods give
almost the same results for μ and σ , whereas some zero-mean random fluctuations are seen for α. In this
case, the EM algorithm appears to be the most precise

as desired with high power to detect deviations from the correct model. We sug-

gest that for parameter estimation a very fine grid is not needed, whereas for model

control, the numerical approximation of the spike time PDF has to be precise. To

conclude, the two models are distinguishable for the parameter settings explored

here.

4.4 Probability-Mixing with EM

In the previous section, the marginal MLE was used when fitting the probability-

mixing model. Here we compare the performance of the marginal MLE and the EM

algorithm on the probability-mixing model fitted to the corresponding data. Figure 10

shows scatterplots of estimates obtained by the two methods, and the last two rows

in Table 3 show the means and standard deviations. The two methods provide similar

results, and have the same accuracy for all three parameters. However, the variance

of the EM algorithm is slightly smaller, particularly for α. The computational burden

in one loop of the numerical optimization for the two methods is approximately the

same.
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Fig. 11 Parameter estimates of single stimuli for different combinations of response kernels and stimuli.
Top panels show the estimates of μ (left) and σ (right) as box plots. The x-axis shows the nine combi-
nations, for example Burst-Const means the burst kernel with a piecewise constant stimulus, Delay-OU
means the delay kernel with a stochastic stimulus generated by the OU process, and so on. The delay
kernel induces the largest variance in parameter estimates. Middle and bottom panels show the estimates
of the three types of response kernels. Different colors distinguish between the three stimulus types

4.5 Generalizations

In this section we only apply the Fokker–Planck CDF method and analyze the model

for different types of response kernels and stimuli.

Single stimulus. We analyze nine combinations of response kernels and stimuli.

For each combination we simulate 10 spike trains following one single stimulus. Fig-

ure 1 shows the combinations and the realizations of spike trains. On these spike

trains parameters and response kernels are estimated. The simulations are then re-

peated 100 times. For the stochastic stimulus, we use a single realization so that the

stimulus is identical in all repetitions and the statistical performance of the estima-

tors can be assessed. The estimates of parameters and response kernels are shown in

Fig. 11. The estimates using the delay kernel have larger variance, possibly due to our

specific choice of kernel parameters that makes the spiking rate less sensitive to stim-

ulus strength (see bottom panels of Fig. 1). The estimates of parameters and kernels

for all combinations are acceptable. The parameters used for the response kernels and

stimuli are shown in Table 5.
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Table 5 Parameter values for all response kernels and stimuli used in the single stimulus study for the
generalized analysis

Category Parameter value

Stimulus, s Sinusoidal (10,12,1,50)

Piecewise constant (50,70,50,30,50,60,0,1.3,1.7,2.3,2.7,3.8,5)

OU process (50,20)

Response kernel, η Bursting (50,25,40,15)

Decay (0,0,2,0.5)

Delay (20,8,50,15)

Fig. 12 Realization of spike trains for a stimulus mixture consisting of two OU processes for three types of
response kernels, assuming either probability-mixing (left) or response-averaging (right). In the top panels,
the left shows the two stimuli, and the right shows the weighted average of the two. For the 10 spike trains
simulated from the probability-mixing model, four respond to the same stimulus and six respond to the
other

Stimulus mixtures. We use two OU processes as stimuli, and apply all three types

of response kernels. The top panels of Fig. 12 show the two stochastic stimuli,

and their weighted average. The latter is what neurons respond to according to the

response-averaging model. For each combination, we simulate 10 spike trains, using
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Fig. 13 Parameter estimates for a stimulus mixture consisting of two OU processes for three types of
response kernels, assuming either probability mixing or response averaging. In the left panel is shown
the estimates of the OU-based LIF model, and in the right panel is shown the Feller-based LIF model.
In both left and right panels, the x-axis shows 12 cases combining response kernels, probability mixing
and response averaging. For example, Decay, PM-RA means fitting the probability-mixing model to data
simulated from the response-averaging model, using the decay kernel

identical stimuli in each repetition. Results are shown in the left panels of Fig. 13,

where both the probability-mixing (PM) model and the response-averaging (RA)

model are fitted to data generated from both models. When fitting the probability-

mixing model, only the EM algorithm is applied. We employ the same strategy as in

the main analysis: we first estimate parameters on data generated from single stochas-

tic stimuli, and then fix the response kernel and estimate the other parameters on data

generated from stochastic stimulus mixture. The results for all three kernels on a

stochastic stimulus mixture are the same as the main analysis above using the burst-

ing kernel and sinusoidal stimuli: we obtain accurate estimates of all parameters only

if we apply the correct model to the corresponding data.

State dependent noise. Finally, the diffusion term in the LIF model (1) was modi-

fied to include the square root of X(t) as in the Feller model [41–43], yielding

X(t) =
(

−γ
(

X(t) − μ
)

+ I (t) + H(t)
)

dt + σ
√

X(t) dW(t). (24)
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Fig. 14 Difference of DIC between correct and incorrect models. We calculate the difference of DIC
between fitting the correct model to the corresponding data and fitting the incorrect model to the same
data, and plot the difference as box-plots for 100 repetitions. The x-axis shows different combinations of
kernel and data. For example, Burst, PM means the difference of DIC between using correct model (PM)
and incorrect model (RA) on PM data, under the burst kernel. Likewise, Delay, RA means the difference
of DIC between using correct model (RA) and incorrect model (PM) on RA data, under the delay kernel.
Blue stands for the OU-based LIF model and red stands for the Feller-based model. A difference of −10
is shown as a dashed line. A difference greater than ±10 is regarded as strong evidence of supporting one
model over the other [44]

Table 6 Rejection (p < 0.05) rate based on the Kolmogorov–Smirnov test for uniformity, using different
response kernels with the mixture of stochastic stimuli

RA-RA RA-PM PM-RA PM-PM

OU Burst 22/100 99/100 100/100 19/100

Decay 1/100 100/100 83/100 1/100

Delay 30/100 77/100 97/100 34/100

Feller Burst 23/100 100/100 95/100 22/100

Decay 0/100 100/100 81/100 1/100

Delay 30/100 84/100 100/100 37/100

Results of both the OU-based and the Feller-based LIF models are shown

The same analysis as in the previous section was repeated using two OU processes as

stimuli and three types of response kernels. Results are shown in the right panels of

Fig. 13, which are almost the same as the results using the original LIF model shown

in the left panels.

Model selection. In stimulus mixture analysis, model selection is conducted for

both the OU-based and the Feller-based LIF models. In Fig. 14 we compare the de-

viance information criterion (DIC) between the correct and the incorrect model. The

DIC difference equals −2 times the difference of the log-likelihoods, because the

two models have the same number of parameters. The correct model is strongly sup-

ported in every case. Table 6 shows rejection (p < 0.05) ratios using KS-tests for all

combinations in the stimulus mixture analysis. We also tried other pairs of stochastic
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stimulus mixtures (results not shown) and found that the more similar the two stim-
uli are, the more the rejection ratios tend to decrease, whether using the correct or
the incorrect model, and if two stimuli are more different, all rejection ratios tend to
increase, including rejections of the true model. Finally, as expected the KS-test re-
jection ratio is sensitive to data size: using smaller number of spike trains reduces the
rejection ratio. In particular, the rejection of fitting the PM model to RA data (PM-
RA) with the decay kernel, and fitting the RA model to PM data (RA-PM) with the
delay kernel, is extremely sensitive to similarity of stimuli and data size. This makes
the KS-tests less robust. Thus, we recommend using the KS-tests together with other
model selection methods for more reliable conclusions.

4.6 Model Selection Accuracy

The results above show that parameters can be inferred and the correct model can be
determined for the specific parameter choices used in the simulations. Here we ex-
plore the model selection accuracy for varying parameter values including the weight,
stimulus dissimilarity, stimulus strength and number of spike trains. In the following
analysis, we use the bursting response kernel, a mixture of two stochastic stimuli and
the Fokker–Planck CDF method. To introduce a stimulus dissimilarity, a sinusoidal
perturbation is added to one of two identical OU processes, S̃(t) = S(t) + a sin(10t),
where t is measured in seconds and a is the perturbation size. To change the stimulus
strength, the OU processes are linearly scaled using S̃(t) = bS(t) where b denotes
the scaling size.

We focus on model selection accuracy without reporting parameter estimates.
Model selection is denoted successful if the DIC for the true model is more than 2
smaller than the wrong model. This is the value suggested in [44] to indicate substan-
tial empirical support for the selected model compared to the other model. Figure 15
explores model selection results as a function of parameter values, and provides an
overall picture how these parameters affect model selection. The conveyed message
verifies our intuition: model selection is more reliable if the stimuli are more differ-
ent, the weights are more even, the stimulus difference is stronger or the sample size
is larger (a larger number of spike trains). The first three make the responses of the
two models more different, and the last provides more statistical power. Furthermore,
the thresholds of these parameter values in terms of successful model selection are
surprisingly low. A weight value of 0.2 and a perturbation size around 6 (i.e., around
10 % of the stimulus strength) are sufficient to ensure a decent selection. For a more
even weight of 0.4, only a perturbation size of 3 (around 5 %) is necessary to pro-
vide good model selection for both RA and PM data. Indeed, 5 % perturbation in a
stimulus is undetectable by a simple graphical inspection of the spike trains (bottom
panels in the figure), but the finer statistical analysis can detect the difference between
the models. Even with small weight and stimulus dissimilarity, model selection can
be improved by using stronger stimuli or enlarging the sample size with more spike
trains. Note that these analyses are easily generalized for a given problem at hand
by first estimating the response kernel of a given neuron under a given stimulus, and
then simulating data with this response kernel and stimulus, varying parameters of
the two models. That will indicate for which parameter values the model selection
can be trusted.
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Fig. 15 Model selection accuracy. Successful selection is defined as a DIC difference greater than 2, and
the proportion of correctly identified models is calculated over 100 repetitions. Note that a not correctly
identified model in most cases means that the DIC difference was smaller than 2, not that the wrong
model was selected. Top left: proportion of correctly identified models with weights from 0.1 to 0.5 and
perturbation size from 1 to 10 for RA data, using 10 spike trains. Top right: the same for PM data. Middle

left: proportion of correctly identified models for number of spike trains of 6 to 18 and stimulus scaling
from 0.6 to 1.4 for RA data, using a weight of 0.3 and a perturbation size of 3, shown in green in the
top panels. Middle right: the same for PM data. Bottom left: the two stimuli curves (black and red) with
perturbation size 3 (sinusoidal curve shown in blue) used for the cases shown in green in top panels.
Bottom right: example spike trains following either RA or PM, using the two stimuli shown in the left,
with weight 0.3

5 Discussion

5.1 Estimation of the Decay Rate

We have shown that parameter inference can be successfully conducted for the

probability-mixing and the response-averaging model on corresponding data incor-

porating different response kernels for LIF neurons. The decay rate γ has been as-

sumed known. We also attempted to estimate all parameters including γ (results not

shown), but the optimization often finds local minima and leads to low accuracy. The

estimation of γ seems to suffer from identifiability problems, due to only observing

spike times and not the underlying membrane potential. Nevertheless, to estimate γ

we may fix it at different values and run the optimization procedure for the rest of
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the parameters, and then compare the model fit for the different γ values. This is not

pursued here.

5.2 Bias of the Numerical Methods

We found that the parameter estimates and the QQ plots from the four methods suf-

fer from over- and underestimation issues. The MLE is based on the first-passage

time probabilities, which we obtain using four numerical methods, Fokker–Planck
PDF, Fokker–Planck CDF, first Volterra and second Volterra. Because of the intrinsic

differences between these methods, discretization leads to different biases of the cal-

culated spike time PDFs. As seen from Fig. 3, when increasing the grid size, the first

Volterra and the Fokker–Planck CDF methods tend to increase the PDF value in the
beginning of the ISI, while the second Volterra tends to slightly decrease it. The low

accuracy of the first Volterra method arises from a singularity of f ∗(x, t |v, s) when

v = x and t → s. However, by removing the singularity the second Volterra is more

accurate for numerical computations.

5.3 Efficiency of Numerical Methods

We choose the Fokker–Planck CDF method for estimation of mixtures, because it

achieves a well-behaved balance between accuracy and computational burden. Ta-

ble 2 also shows that this method has the smallest variance on parameter estimates.

Although the first Volterra method is the computationally fastest, it has poor con-
vergence, as seen from the number of loops in the bottom right panel in Fig. 5. Over-

all, the PDE methods tend to converge faster than the IE methods.

The performance is affected by the grid size. The estimates in Fig. 5 uses �t =
0.002 s and �x = 0.02. This discretization setting generally achieves acceptable
computation times and statistical accuracy, but as shown in Sect. 4.3, a finer grid is

needed for model selection. One may tweak the grid sizes in order to obtain separate

settings for each of the four methods to obtain comparable efficiency and accuracy.

However, considering that in practical data the errors come from many sources like
measurement errors and approximate modeling, the optimal discretization on simu-

lated data is of less importance and interest. Thus, we suggest the current setting as

providing a generally good balance, and we will not investigate this further.

5.4 EM for Better Estimation of Mixture Probabilities

Figure 10 shows that the estimation of the mixture probability parameter α is slightly

less stable for the marginal MLE than for the EM algorithm. The EM algorithm im-

plicitly enlarges the data size by using latent variables for the mixture probability, re-

ferred to as data augmentation [45]. The complete-data log-likelihood function used
in the M step does not contain logarithms of sums, making the estimation more stable.

By iteratively updating the expectation in the E step and obtaining stable estimation

in the M step, the EM algorithm improves the stability when inferring the probability-

mixing model, and in general, mixture models.
Although the EM algorithm performs better, it is only slightly better for α and the

improvement is negligible or non-existent for μ and σ . This is because we only use
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two components in the mixture, which does not generate notable differences between
the marginal MLE and the EM algorithm. A larger advantage of the EM algorithm
can be expected under more complex stimulus mixtures. Furthermore, the response
kernel is fixed, and the two methods use the same initial values for μ and σ (obtained
from the single stimulus trials) in the optimization procedure, which also contributes
to the similarity of results between the two methods.

5.5 Extension of Noise

In this paper a one-dimensional stochastic differential equation model driven by a
Wiener process for the membrane potential has been considered, which arises as an
approximation to Stein’s model [46], leading to the OU model, or to the extended
model including reversal potentials, proposed by Tuckwell [41], leading to the Feller
model [42]. The model does not take into account specific dynamics of synaptic input
or ion channels, which affects the dynamics, see, e.g., [47–49], where the autocorre-
lations of the synaptic input is shown to be an important factor. This is partially ac-
counted for in our model through the memory kernels. Incorporating autocorrelated
synaptic input or ion channel dynamics would lead to a multi-dimensional model.
In principle, the first-passage time probabilities could then be obtained by solving
multi-dimensional Fokker–Planck equations [24]. However, the statistical problem is
further complicated by the incomplete observations, since typically only the mem-
brane potential is measured, as studied in [50]. In even more realistic models non-
Gaussian noise can be included, for example combining the diffusion process with
discrete stochastic synaptic stimulus arrivals, leading to a jump-diffusion process,
whose Fokker–Planck equation is generalized as an integro-differential equation [51].
Solving multi-dimensional or generalized Fokker–Planck equations are significantly
more expensive and exact MLE becomes less appealing. This is not pursued here.

5.6 The Response-Averaging Model

The response-averaging model used here is slightly different from the response-
averaging model by Reynolds et al. [8]. In our model the average is calculated over
the currents for each stimulus, while in their model the average is calculated over the
firing rates for each stimulus. The reason is as follows. In a spiking neuron model like
the LIF model, the generation of each single spike rather than the firing rate is mod-
eled. Whether in the probability-mixing model, the response-averaging model or any
other model, the spiking is affected by stimuli only through currents. Our model is
formulated based on this idea, using a unified spike-generating mechanism for both
the probability-mixing and the response-averaging model. The resulting firing rate
averaged over a time window from a weighted average of single stimuli, will also be
a weighted average of firing rates from single stimuli but with different weights. Our
response-averaging model therefore provides the same consequence in terms of firing
rates as the model by Reynolds et al.

5.7 Model Selection of Probability-Mixing and Response-Averaging

We finish by addressing the possible model selection methods for probability mix-
ing and response averaging on real data. We have shown that the probability-mixing
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and the response-averaging models can be clearly distinguished if fitted on simulated

data. However, real data will likely not follow exactly one of the two models, but one

of the models might give a better description of the data than the other. We might

need to design more sophisticated methods for model checking and model selection.

Apart from conducting uniformity tests based on the uniform residuals from the trans-

formation (23), such as the KS-test as we have done, we can compare the Akaike

information criterion (AIC) and Bayesian information criterion (BIC) between the

two models. We have used a unified DIC method due to equal number of parameters,

but AIC and BIC should be used if two models have differing numbers of parame-

ters. Furthermore, the model can also be checked by evaluating the performance of

prediction (of spikes) and decoding (of stimuli), using methods such as root mean

squared deviation (RMSD) between empirical and predicted values. See [19] for the

use of these approaches to distinguish between the two models on experimental data

from the middle temporal visual area of rhesus monkeys.
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Appendix

A.1 The EM Algorithm for Stimulus Mixtures

The complete likelihood for the full data (D,Y ) is

Lc(θ;D,Y) =
N
∏

i=1

Ni
∏

j=1

g
(

t ij , yi |θ
)

=
N
∏

i=1

P(yi |θ)

Ni
∏

j=1

g
(

t ij |yi, θ
)

=
N
∏

i=1

αyi

Ni
∏

j=1

g
(

t ij |yi, θ
)

. (25)
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A.1.1 Expectation Step

The expectation of the full data log-likelihood conditional on the previous parameters

θ−1 and the observed data D is

Q(θ |θ−1) = E
[

logLc(θ;D,Y)|θ−1,D
]

= E

[

N
∑

i=1

(

logαyi
+

Ni
∑

j=1

logg
(

t ij |yi, θ
)

)

∣

∣

∣
θ−1,D

]

=
N

∑

i=1

[

E

(

logαyi
+

Ni
∑

j=1

logg
(

t ij |yi, θ
)

∣

∣

∣
θ−1,D

)]

=
N

∑

i=1

[

K
∑

k=1

P(yi = k|θ−1, di)

(

logαyi
+

Ni
∑

j=1

logg
(

t ij |yi, θ
)

)]

. (26)

The conditional probability of the latent variable is obtained from Bayes formula:

P(yi = k|θ−1, di) =
P(yi = k|θ−1)

∏Ni

j=1 g(t ij |yi = k, θ−1)
∑K

l=1 P(yi = l|θ−1)
∏Ni

j=1 g(t ij |yi = l, θ−1)

=
(αk)−1

∏Ni

j=1 g(t ij |yi = k, θ−1)
∑K

l=1(αl)−1
∏Ni

j=1 g(t ij |yi = l, θ−1)
. (27)

A.1.2 Maximization Step

In the Maximization step, the new parameter θ is obtained by optimizing the condi-

tional expectation Q(θ |θ−1). A new iteration is then initiated using θ as the previous

parameter. The loops run until θ and θ−1 are sufficiently close.

A.2 The Fokker–Planck CDF Method

Plugging f (x, t) = ∂xF(x, t) into the Fokker–Planck PDE

∂tf (x, t) = −∂x

(

b(x, t)f (x, t)
)

+
σ 2

2
∂2
xxf (x, t) (28)

gives

∂t∂xF(x, t) = −∂x

[

b(x, t)∂xF(x, t) −
σ 2

2
∂x∂xF(x, t)

]

. (29)

Integrating both sides w.r.t. x yields

∂tF(x, t) = −b(x, t)∂xF(x, t) +
σ 2

2
∂2
xxF(x, t) + C(t). (30)
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Recall the lower reflecting boundary at x = x−, where F(x−, t) = 0 and thus

∂tF(x, t)|x=x− = 0. We also see that the flux equals 0, so

J
(

x−, t
)

= −b
(

x−, t
)

f
(

x−, t
)

+
σ 2

2
∂xf (x, t)|x=x−

= −b(x, t)∂xF(x, t)|x=x− +
σ 2

2
∂2
xxF(x, t)|x=x−

= 0. (31)

Thus, C(t) = 0, and we obtain the PDE for F(x, t):

∂tF(x, t) = −b(x, t)∂xF(x, t) +
σ 2

2
∂2
xxF(x, t). (32)

A.3 Removing the Singularity in the Second-Kind Volterra Equation

The singularity arises because f ∗(x, t |v, s) diverges when v = x and t → s. This can

be resolved by the method proposed by [39]. Note that the substitution of ψ(x, t |v, s)

in Eq. (15) with any function of the form

φ(x, t |v, s) = ψ(x, t |v, s) + λ(t)f ∗(x, t |v, s) (33)

will also satisfy the second Volterra equation, since

p(t) = −2ψ(x, t |v, s) − 2λ(t)f ∗(x, t |v, s) + 2

∫ t

0
ψ(xth, t |xth, s)p(s) ds

+ 2λ(t)

∫ t

0
f ∗(xth, t |xth, s)p(s) ds

= −2ψ(x, t |v, s) + 2

∫ t

0
ψ(xth, t |xth, s)p(s) ds, (34)

where we have applied the first Volterra equation, Eq. (11).

We then set φ(x, t |v, s) to 0 as t → s by letting

λ(t) = − lim
t→s

ψ(x, t |v, s)

f ∗(x, t |v, s)

= − lim
t→s

[

γ x − Itotal(t) −
σ 2

2V (t |s)
(

x − M(t |x, s)
)

]

= −γ x + Itotal(t) + lim
t→s

[

γ
x − xe−γ (t−s) −

∫ t

s
Itotal(u)e−γ (t−u)du

1 − e−2γ (t−s)

]

= −γ x + Itotal(t) + γ lim
t→s

[

gxe−γ (t−s) − Itotal(t)e
−γ (t−t)

2γ e−2γ (t−s)

]

=
Itotal(t) − γ x

2
. (35)
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Then we have

φ(x, t |v, s) =
1

2
f ∗(x, t |v, s)

[

γ x − Itotal(t) −
σ 2

V (t |s)
(

x − M(t |v, s)
)

]

, (36)

and the singularity will be removed when v = x and t → s.
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