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Abstract 
Causality is typically treated an all-or-nothing con­
cept; either A is a cause of B or it is not. We extend 
the definition of causality introduced by Halpern 
and Pearl 2001a to take into account the degree of 
responsibility of A for B. For example, if someone 
wins an election 11-0, then each person who votes 
for him is less responsible for the victory than if he 
had won 6-5. We then define a notion of degree 
of blame, which takes into account an agent's cpis-
temic state. Roughly speaking, the degree of blame 
of A for D is the expected degree of responsibil­
ity of A for B, taken over the epistemic state of an 
agent. 

1 Introduction 
There have been many attempts to define causality going back 
to Hume 1739, and continuing to the present (see, for exam­
ple, [Collins et al, 2003; Pearl, 2000] for some recent work). 
While many definitions of causality have been proposed, all 
of them treat causality is treated as an all-or-nothing concept. 
That is, A is either a cause of B or it is not. As a consequence, 
thinking only in terms of causality docs not at times allow us 
to make distinctions that we may want to make. For example, 
suppose that Mr. B wins an election against Mr. G by a vote 
of 11-0. Each of the people who voted for Mr. B is a cause of 
him winning. However, it seems that their degree of respon­
sibility should not be as great as in the case when Mr. B wins 
6-5. 

In this paper, we present a definition of responsibility that 
takes this distinction into account. The definition is an ex­
tension of a definition of causality introduced by Halpern and 
Pearl 2001a. Like many other definitions of causality going 
back to Hume 1739, this definition is based on counterfactual 
dependence. Roughly speaking, A is a cause of B if, had 
A not happened (this is the counterfactual condition, since A 
did in fact happen) then B would not have happened. As is 
well known, this naive definition does not capture all the sub­
tleties involved with causality. In the case of the 6-5 vote, it 
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is clear that, according to this definition, each of the voters 
for Mr. B is a cause of him winning, since if they had voted 
against Mr. B, he would have lost. On the other hand, in the 
case of the 11-0 vote, there are no causes according to the 
naive counterfactual definition. A change of one vote does 
not makes no difference. Indeed, in this case, we do say in 
natural language that the cause is somewhat "diffuse". 

While in this case the standard counterfactual definition 
may not seem quite so problematic, the following example 
(taken from [Hall, 2003]) shows that things can be even more 
subtle. Suppose that Suzy and Billy both pick up rocks and 
throw them at a bottle. Suzy's rock gets there first, shattering 
the bottle. Since both throws are perfectly accurate, Billy's 
would have shattered the bottle had Suzy not thrown. Thus, 
according to the naive counterfactual definition, Suzy's throw 
is not a cause of the bottle shattering. This certainly seems 
counter to intuition. 

Both problems are dealt with the same way in [Halpern and 
Pearl, 2001a]. Roughly speaking, the idea is that A is a cause 
of B if B counterfactually depends on C under some con­
tingency. For example, voter 1 is a cause of Mr. B winning 
even if the vote is 11-0 because, under the contingency that 
5 of the other voters had voted for Mr. G instead, voter 1 's 
vote would have become critical; if he had then changed his 
vote, Mr. B would not have won. Similarly, Suzy's throw is 
the cause of the bottle shattering because the bottle shattering 
counterfactually depends on Suzy's throw, under the contin­
gency that Billy doesn't throw. (There are further subtleties 
in the definition that guarantee that, if things are modeled ap­
propriately, Billy's throw is not a cause. These are discussed 
in Section 2.) 

It is precisely this consideration of contingencies that lets 
us define degree of responsibility. We take the degree of re­
sponsibility of A for B to be 1/(N + 1), where N is the 
minimal number of changes that have to be made to obtain a 
contingency where B counterfactually depends on A. (If A 
is not a cause of B, then the degree of responsibility is 0.) In 
particular, this means that in the case of the 11-0 vote, the de­
gree of responsibility of any voter for the victory is 1/6, since 
5 changes have to be made before a vote is critical. If the vote 
were 1001-0, the degree of responsibility of any voter would 
be 1/501. On the other hand, if the vote is 5-4, then the 
degree of responsibility of each voter for Mr. B for Mr. B's 
victory is 1; each voter is critical. As we would expect, those 
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merman, 1988]). Our definitions, by design, do not take 
into account intentions or possible alternative actions, both 
of which seem necessary in dealing with moral issues. For 
example, there is no question that Truman was in part respon­
sible and to blame for the deaths resulting from dropping the 
atom bombs on Hiroshima and Nagasaki. However, to decide 
whether this is a morally reprehensible act, it is also necessary 
to consider the alternative actions he could have performed, 
and their possible outcomes. While our definitions do not di­
rectly address these moral issues, we believe that they may be 
helpful in elucidating them. 

The rest of this paper is organized as follows. In Sec­
tion 2 we review the basic definitions of causal models based 
on structural equations, which are the basis for our defi­
nitions of responsibility and blame. In Section 3, we re­
view the definition of causality from [Halpern and Pearl, 
2001a], and show how it can be modified to give a defi­
nition of responsibility. In Section 3.3, we give our def­
inition of blame. In Section 4, we discuss the com­
plexity of computing responsibility and blame. Proofs of 
the theorems can be found in the full paper, available at 
http://www.cs.cornell.edu/home/halpern/papers/blame.ps. 
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voters who voted for Mr. G have degree of responsibility 0 
for Mr. B's victory, since they are not causes of the victory. 
Finally, in the case of Suzy and Billy, even though Suzy is 
the only cause of the bottle shattering, Suzy's degree of re­
sponsibility is 1/2, while Billy's is 0. Thus, the degree of 
responsibility measures to some extent whether or not there 
are other potential causes. 

When determining responsibility, it is assumed that every­
thing relevant about the facts of the world and how the world 
works (which we characterize in terms of what are called 
structural equations) is known. For example, when saying 
that voter 1 has degree of responsibility 1/6 for Mr. B's win 
when the vote is 11-0, we assume that the vote and the pro­
cedure for determining a winner (majority wins) is known. 
There is no uncertainty about this. Just as with causality, there 
is no difficulty in talking about the probability that someone 
has a certain degree of responsibility by putting a probability 
distribution on the way the world could be and how it works. 
But this misses out on important component of determining 
what we call here blame: the epistemic state. Consider a doc­
tor who treats a patient with a particular drug resulting in the 
patient's death. The doctor's treatment is a cause of the pa­
tient's death; indeed, the doctor may well bear degree of re­
sponsibility 1 for the death. However, if the doctor had no 
idea that the treatment had adverse side effects for people 
with high blood pressure, he should perhaps not be held to 
blame for the death. Actually, in legal arguments, it may not 
be so relevant what the doctor actually did or did not know, 
but what he should have known. Thus, rather than considering 
the doctor's actual epistemic state, it may be more important 
to consider what his epistemic state should have been. But, 
in any case, if we are trying to determine whether the doctor 
is to blame for the patient's death, we must take into account 
the doctor's epistemic state. 

We present a definition of blame that considers whether 
agent a performing action b is to blame for an outcome 
The definition is relative to an epistemic state for a, which is 
taken, roughly speaking, to be a set of situations before ac­
tion b is performed, together with a probability on them. The 
degree of blame is then essentially the expected degree of re­
sponsibility of action b for (except that we ignore situations 
where was already true or b was already performed). To 
understand the difference between responsibility and blame, 
suppose that there is a firing squad consisting of ten excel­
lent marksmen. Only one of them has live bullets in his rifle; 
the rest have blanks. The marksmen do not know which of 
them has the live bullets. The marksmen shoot at the prisoner 
and he dies. The only marksman that is the cause of the pris­
oner's death is the one with the live bullets. That marksman 
has degree of responsibility 1 for the death; all the rest have 
degree of responsibility 0. However, each of the marksmen 
has degree of blame 1/10.1 

While we believe that our definitions of responsibility and 
blame are reasonable, they certainly do not capture all the 
connotations of these words as used in the literature. In the 
philosophy literature, papers on responsibility typically are 
concerned with moral responsibility (see, for example, [Zim-

1 We thank Tim Williamson for this example. 
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While the equations for a given problem are typically ob­
vious, the choice of variables may not be. For example, con­
sider the rock-throwing example from the introduction. In 
this case, a naive model might have an exogenous variable 
U that encapsulates whatever background factors cause Suzy 
and Billy to decide to throw the rock (the details of U do not 
matter, since we are interested only in the context where U's 
value is such that both Suzy and Billy throw), a variable ST 
for Suzy throws (ST = 1 if Suzy throws, and ST = 0 if she 
doesn't), a variable DT for Billy throws, and a variable BS 
for bottle shatters. In the naive model, whose graph is given 
in Figure 1, BS is 1 if one of ST and BT is 1. (Note that the 
graph omits the exogenous variable U, since it plays no role. 
In the graph, there is an arrow from variable X to variable Y 
if the value of Y depends on the value of X.) 

AC1 just says that A cannot be a cause of B unless both A 
and B are true, while AC3 is a minimality condition to pre­
vent, for example, Suzy throwing the rock and sneezing from 

3 Causality and Responsibility 
3.1 Causality 
We start with the definition of cause from [Halpern and Pearl, 
2001a]. 
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being a cause of the bottle shattering. Eiter and Lukasiewicz 
2002b showed that one consequence of AC3 is that causes can 
always be taken to be single conjuncts. Thus, from here on in, 

3.2 Responsibil i ty 

The definition of responsibility in causal models extends the 
definition of causality. 

Example 3.4 It is easy to see that Suzy's throw has degree of 
responsibility 1/2 for the bottle shattering both in the naive 
model described in Figure 1 and the "better" model of Fig­
ure 2 in the context where both Suzy and Billy throw. In both 
cases, we must consider the contingency where Billy docs 
not throw. Although Suzy is the only cause of the bottle shat­
tering in the latter model, her degree of responsibility is still 
only 1 / 2 , since the bottle would have shattered even if she 
hadn't thrown. This is a subtlety not captured by the notion 
of causality. 

Interestingly, in a companion paper [Chockler et al, 2003] 
we apply our notion of responsibility to program verification. 
The idea is to determine the degree of responsibility of the 
setting of each state for the satisfaction of a specification in a 
given system. For example, given a specification of the form 
Op (eventually p is true), i f / ; is true in only one state of the 
verified system, then that state has degree of responsibility 1 
for the specification. On the other hand, if p is true in three 
states, each state only has degree of responsibility 1/3. Expe­
rience has shown that if there are many states with low degree 
of responsibility for a specification, then either the specifica­
tion is incomplete (perhaps p really did have to happen three 
times, in which case the specification should have said so), or 
there is a problem with the system generated by the program, 
since it has redundant states. 

The degree of responsibility can also be used to provide 
a measure of the degree of fault-tolerance in a system. If a 
component is critical to an outcome, it wil l have degree of 
responsibility 1. To ensure fault tolerance, we need to make 
sure that no component has a high degree of responsibility 
for an outcome. Going back to the example of O P,, the degree 
of responsibility of 1/3 for a state means that the system is 
robust to the simultaneous failures of at most two states. 



3.3 Blame 
The definitions of both causality and responsibility assume 
that the context and the structural equations are given; there 
is no uncertainty. We are often interested in assigning a de­
gree of blame to an action. This assignment depends on the 
epistemic state of the agent before the action was performed. 
Intuitively, if the agent had no reason to believe that his action 
would result in a certain outcome, then he is not to blame for 
the outcome (even if in fact his action caused the outcome). 

To deal with the fact that we are considering two points 
in time—before the action was performed and after—we add 
superscripts to variables. We use a superscript 0 to denote the 
value of the random variable before the action was performed 
and the superscript 1 to denote the value of the random vari­
able after. Thus, Y0 = 1 denotes that the random variable 
Y has value 1 before the action is performed, while Y1 = 2 
denotes that it had value 1 afterwards. If ψ is a Boolean com­
bination of (unsuperscripted) random variables, we use ψ° 
and ψ1 to denote the value of ψ before and after the action is 
performed, respectively. 

There arc two significant sources of uncertainty for an 
agent who is contemplating performing an action: 

• what the true situation is; for example, a doctor may be 
uncertain about whether a patient has high blood pres­
sure. 

• how the world works; for example, a doctor may be un­
certain about the side effects of a given medication. 

In our framework, the "true situation" is determined by 
the context and "how the world works" is determined by the 
structural equations. Thus, we model an agent's uncertainty 
by a pair (AC, Pr), where AC is a set of pairs of the form (A/, a), 
where M is a causal model and u is a context, and Pr is 
a probability distribution over AC. Following [Hlalpern and 
Pearl, 2001b], who used such epistemic states in the defini­
tion of explanation, we call a pair (A/, u) a situation. 

Roughly speaking, the degree of blame that setting X to 
x has for ψ is the expected degree of responsibility of X = 
x for ψ, taken over the situations , where 

Our actual definition of blame is just 
this definition, except that, when computing the expectation, 
we do not count situations in AC where ψ was already true or 
X was already x. To understand why, suppose that we are 
trying to compute the degree of blame of Suzy's throwing the 
rock for the bottle shattering. Assume that we are interested 
in a period in a bottle in the period between time 0 and time 1, 
and the bottle was actually shattered at time 1. We certainly 
don't want to say that Suzy's throw was to blame if Suzy 
didn't throw between time 0 and time 1 or if the bottle was 
already shattered at time 0. So suppose that Suzy does in fact 
throw between time 0 and time 1, and at time 0, she considers 
the following four situations to be equally likely: 

• (M 1 , u 1 ) , where the bottle was already shattered before 
Suzy's throw; 

• (M2,u2), where the bottle was whole before Suzy's 
throw, and Suzy and Billy both hit the bottle simulta­
neously (as described in the model in Figure 1); 

• (M 3 , u 3 ) , where the bottle was whole before Suzy's 
throw, and Suzy's throw hit before Billy's throw (as de­
scribed in the model in Figure 2); and 

• (M4,u4), where the bottle was whole before Suzy's 
throw, and Billy did not throw. 

To compute the degree of blame assigned to Suzy's throwing 
the rock for the bottle shattering, we ignore (A/, u1), because 
the bottle is already shattered in (M,u1) before Suzy's ac­
tion. The degree of responsibility of Suzy's throw for the 
bottle shattering is 1/2 in (M2,u2) and (M 3 , u 3 ) , and is 1 
in (M4,7/4). It is easy to see that the degree of blame is 

Example 3.6 Consider again the example of the firing squad 
with ten excellent marksmen. Suppose that marksman 1 
knows that exactly one marksman has a live bullet in his rifle. 
Thus, he considers 10 situations possible, depending on who 
has the bullet. Let pL be his prior probability that marksman 
i has the live bullet. Then the degree of blame of his shot for 
the death is pi. The degree of responsibility is cither 1 or 0, 
depending on whether or not he actually had the live bullet. 
Thus, it is possible for the degree of responsibility to be 1 and 
the degree of blame to be 0 ( i f he ascribes probability 0 to his 
having the live bullet, when in fact he does), and it is possi­
ble for the degree of responsibility to be 0 and the degree of 
blame to be 1 ( i f he mistakenly ascribes probability 1 to his 
having the bullet when he in fact does not). 

Example 3.7 The previous example suggests that both de­
gree of blame and degree of responsibility may be relevant in 
a legal setting. Another issue that is relevant in legal settings 
is whether to consider actual epistemic state or to consider 
what the epistemic state should have been. The former is rel­
evant when considering intent. To see the relevance of the 
latter, consider a patient who dies as a result of being treated 
by a doctor with a particular drug. Assume that the patient 
died due to the drug's adverse side effects on people with 
high blood pressure and, for simplicity, that this was the only 
cause of death. Suppose that the doctor was not aware of the 
drug's adverse side effects. (Formally, this means that he docs 
not consider possible a situation with a causal model where 
taking the drug causes death.) Then, relative to the doctor's 
actual epistemic state, the doctor's degree of blame will be 
0. However, a lawyer might argue in court that the doctor 
should have known that treatment had adverse side effects 
for patients with high blood pressure (because this is well 
documented in the literature) and thus should have checked 
the patient's blood pressure. If the doctor had performed this 
test, he would of course have known that the patient had high 
blood pressure. With respect to the resulting epistemic state, 
the doctor's degree of blame for the death is quite high. Of 
course, the lawyer's job is to convince the court that the lat­
ter epistemic state is the appropriate one to consider when 
assigning degree of blame. 
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4 The Complexity of Computing 
Responsibility and Blame 

In this section we present complexity results for computing 
the degree of responsibility and blame for general recursive 
models. 

4.1 Complexi ty of responsibil i ty 
Complexity results for computing causality were presented 
by Eiter and Lukasiewicz 2002a; 2002b. They showed that 
the problem of detecting whether X — x is an actual cause 
of ψ is -complete for general recursive models and NP-
complete for binary models [Liter and Lukasiewicz, 2002b]. 
(Recall that is the second level of the polynomial hierar­
chy and that binary models are ones where all random vari­
ables can take on exactly two values.) There is a similar gap 
between the complexity of computing the degree of responsi­
bility and blame in general models and in binary models. 

For a complexity class A, consists of all func­
tions that can be computed by a polynomial-time Turing ma­
chine with an oracle for a problem in A, which on input x asks 
a total of queries (cf. [Papadimitriou, 1984]). We 
show that computing the degree of responsibility of X = x 
for ψ in arbitrary models is -complete. In [Chock-
ler et al., 2003], we show that computing the degree of re­
sponsibility in binary models is -complete. 

Since there are no known natural -complete 
problems, the first step in showing that computing the de­
gree of responsibility is -complete is to define an 

-complete problem. We start by defining one that 
we call MAXQSAT2. 

Recall that a quantified Boolean formula [Stock meyer, 
1977] (QBF) has the form . .ψ. , where X1, X2,... 
are propositional variables and ψ is a propositional formula. 
A QBF is closed if it has no free propositional variables. 
TQBF consists of the closed QBF formulas that are true. For 
example, As shown by Stock­
meyer 1977, the following problem QSAT2 is -complete: 

That is, QSAT2 is the language of all true QBFs of the form 
where ψ is a Boolean formula in 3-CNF. 

A witness f for a true closed is an as­
signment / to X under which is true. We define 
MAXQSAT2 as the problem of computing the maximal num­
ber of variables in X that can be assigned 1 in a witness 
for Formally, given a d e f i n e 

to be k if there exists a witness for that 
assigns exactly k of the variables in X the value 1, and every 
other witness for assigns at most k' < k variables in A' the 
value 1. 

Theorem 4.1 

The proof of Theorem 4.1 shows explicitly how to reduce 
the computation of any problem to MAXQSAT2. 
Given a polynomial-time Turing machine M with oracle in 

that on an input of size 7/. makes 0( log u) oracles queries, 
we construct a formula is a Boolean 
formula in 3-CNF such that given we can 
compute the output of M in polynomial time. Essentially, 
the formula ψ describes the output of M for all possible se­
quences of answers for oracle queries and 
gives the correct sequence of answers. Since the total number 
of oracle queries is , the number of all possible se­
quences of answers is polynomial in the size of the input, and 
thus the size of is also polynomial in the size of the input. 
The construction is somewhat complicated; see the full paper 
for details. 

Similarly to MAXQSAT2, we define 
to be the minimum number of 

variables in X that can be assigned 1 in a witness for 
if there is such a witness, and otherwise. It 

is easy to see that MINQSAT2 has the same complexity as 
MAXQSAT2, since 

where (0) is obtained from ψ by replacing each propositional 
variable with its negation. 

Using a reduction from MINQSAT2, we can prove the de­
sired complexity result. 

Theorem 4.2 The degree of responsibility is 
complete for general recursive causal models. 

Proof: Due to lack of space, we present the proof here in a 
somewhat abridged form. Membership in can be 
proved using an argument similar to the one used in [Chockler 
et al, 2003] to prove membership of the degree of responsi­
bility for binary causal models in 

The proof that computing the degree of responsibility 
is -hard essentially follows from an argument in 
[Eiter and Lukasiewicz, 2002a] showing that QSAT2 can be 
reduced to the problem of detecting causality. In fact, their ar­
gument actually provides a reduction from MINQSAT2 to the 
degree of responsibility. Given a QBF of the form ψ 
Eiter and Lukasiewicz construct a causal model M whose en­
dogenous variables include X', Y, and a fresh variable X*. 
They consider a context u in which all variables in X' get 
the value 0. They show that is true iff X'* = 0 
is a cause of ψ in ( M , u). If X* = 0 is indeed a cause, 
then the set W in AC2 must be a subset of X. That is, if 
there is a partition (W,Z) and a setting (x'.w') satisfying 
AC2 showing that X* = 0 is a cause of ψ, then W must 
be a subset of X. Moreover, the variables in W that change 
value from 0 to 1 in w' are precisely those such that an as-
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4.2 Complexi ty of blame 
Given an epistemic state (K, Pr), where K consists of N pos­
sible situations, each with at most n random variables, the 
straightforward way to compute is by 
computing for each 
such that , . , , and then computing the 
expected degree of responsibility with respect to these situa­
tions, as in Definition 3.5. Recall that the degree of respon­
sibility in each model is determined by using a binary search 
thus uses queries in each model in K. Since the 
number of models is N, we get a polynomial time algorithm 
with N log n oracle queries. The type of oracle depends on 
whether the models are binary or general. For binary models 
it is enough to have an NP oracle, whereas for general mod­
els we need a We do not have a matching lower 
bound but, as we show in the full paper, any binary-search 
style algorithm for computing the degree of blame requires 

oracle queries, for N — o(n). 
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