
Genomics has a robust culture of data sharing. We are 
now nearing the two- decade mark of strong expectations 
for sharing genome- wide transcriptomic assays and 
associated metadata1. This wealth of data has enabled 
new approaches that rely on the analysis of very large 
collections of public data by investigators who were not 
involved in the original data collection2–7. It is also possible 
to assay genotypes8,9, methylation10 and many other fea-
tures of a sample at a genome- wide level, which presents  
considerable opportunities for secondary analysis.

With proof-of-concept studies showing the potential 
to uniquely identify an individual in ever-widening types 
of detailed data sets, the sharing process has become 
murkier11,12. As expression profiling has switched from 
array-based profiling to sequencing-based profiling, the 
reidentification risk from human-derived samples has 
also increased13–15. For genetic data, the risk of reidentifi-
cation has led to controlled-access sharing, which is medi-
ated via services such as the database of Genotypes and 
Phenotypes (dbGaP)16. However, genotype-related data 
that contain aggregated estimates, such as variant-level 
association statistics, pose some risk that individuals 
could be reidentified17.

Investigators, funders and other stakeholders sup-
porting responsible data sharing must consider both 
the risks and benefits to participants as well as other 
individuals who could be affected positively or nega-
tively by sharing a research data set in different ways. 
In addition to ethical concerns, it is important to consi-
der the impact of data sharing practices on the overall 
research ecosystem. Genomic profiling technologies 
are now ubiquitously available and are becoming widely 
used in fields with different cultures of sharing. Funders 
and publishers must balance multiple considerations to 
develop appropriate policies. For example, adding data 

sharing requirements, particularly as unfunded man-
dates, could hamper the establishment of a pro- sharing 
culture by creating resentment around reuse18. However, 
early genomic scientists recognized the potential for 
high- dimensional profiling to lead to irreproducible results 
and spurious findings if source data were not shared19. 
Funders and publishers ultimately must take steps to 
foster a robust, responsible data sharing culture to sup-
port rigorous research with high- dimensional genomic 
profiling technologies.

Investigators who have shared data well increase 
the impact of their research: publications linked to a 
data repository or persistent identifier are more cited20.  
In this Review, we first outline types of data, metadata 
and frameworks for sharing. We next describe the steps 
that researchers can take to assess risks and respon-
sibly share data derived through genome- wide profiling 
technologies. We discuss the rationale for specific data 
shar ing practices. For some data types, there are no 
widely recogni zed single point- of- truth repositories, and  
these principles can guide researchers’ current decision-  
making. For data types with widely used reposi tories, 
we provide more detailed guidance. We extensively 
cover privacy challenges posed by individual- level data 
derived from human samples because these data pose 
the most substantial challenges, but we recognize that 
many types of genomic data, such as those derived from 
model organisms, pose little to no risk and should be 
publicly shared in appropriate repositories. Although 
we focus on genomic profiling, the underlying prin-
ciples apply to other data- intensive research projects  
as well. We also note the roles that other stakeholders, 
including funders and publishers, can play in the pro-
cess to enhance the pace of discovery, ultimately helping 
patients. We identify practical changes that could better 
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align researcher incentives and support the efficient 
enforcement of sharing for valuable research products.

What are research data?

Research data in genomics are of many different classes 
and types. We can divide data by the types of biomole-
cules that they represent. For example, certain assays 
measure RNA in a sample21, and others measure DNA22, 
protein23, or metabolite24 content. We can also divide 
data by the type of measurement technology used to 
gather them. For example, RNA assays could be based on  
microarray or sequencing profiling25. A sample itself 
could be derived from a single organism or many26:  
it could be a cell line with a treatment27, a human tissue 
sample28 or a population of organisms gathered from 
an ocean location29. For the purposes of this Review, 
we consider genomic data to be those that include the 
potential to profile the genes or gene products for most of 
an organism’s genes or a collection of organisms’ genes.

We also consider derived data that are intermediate 
between the raw data produced by an instrument and a 
finding to be research data. In the terminology used in 
this Review, we consider read files produced by an RNA 
sequencing (RNA- seq) experiment and represented in 
FASTQ format30 to be raw data, we consider gene expres-
sion estimates to be intermediate data and we consider 
the findings to be plots, figures and underlying statistics 
produced by analysis of the gene expression data. There 
could be multiple intermediate data representations 
between raw data and a finding. Researchers sequencing 
paired tumour and normal samples to identify somatic 
and germline variants would be likely to produce FASTQ 
files for each tumour and normal sample, variant call 
format (VCF) files for each sample, separate mutation 
annotation format (MAF) files for the germline and 
somatic variants, and, finally, summary results and fig-
ures. In this case there could be hundreds of intermedi-
ate VCF files and two separate MAF files between the 
raw data and the findings. We provide recommendations 
for how investigators can select which items from raw 
data to findings should be archived and how they can 
best be shared.

An increasingly common type of derived data is a 
model produced by machine-learning methods applied 
to genomic data. Researchers can download publicly 
available data or process data associated with their study, 
analyse those data with neural networks31,32 or other 
approaches33,34, and then use those models to either infer 
something about the biological system that generated the 
data6, to better understand the methods themselves35 or 
to develop a deeper understanding of a related disease  
or process7. Machine- learning models can often be 
repurposed in much the same way as underlying data. 
For example, Gulshan et al.36 took a model trained on 
generic images and fine- tuned it to detect diabetic 
retino pathy. In genomics, Kelley et al.37 demonstrated 
that a model trained on a collection of data from certain 
cell types could quickly and accurately be adapted to 
a new cell type. Because machine- learning models are 
executable, they can also be automatically tested38. New 
repositories, such as Kipoi, have been designed to sup-
port and automatically test such models39, providing 

downstream researchers with a library of working 
models.

Throughout this Review we maintain these distinc-
tions between raw data, intermediate data and findings, 
and provide specific sharing recommendations for each. 
We also discuss why certain data are more or less likely 
to identify a study participant and how sharing is con-
trolled for certain high- risk data. In the interests of pro-
viding a review that is as broadly applicable as possible, 
we also describe the principles that underlie specific rec-
ommendations. For data modalities that are either not 
discussed within this Review or that are developed in the 
future, we expect that these principles can be applied to 
develop an appropriate sharing plan.

What are research metadata?

Research metadata are the data that describe research 
data. If a biospecimen’s genomic sequence data are 
represented in raw form by a FASTQ file, information 
about the biospecimen is metadata. This could include, 
for example, a coded identifier, the tissue from which 
a biospecimen was taken, information about the han-
dling of the biospecimen, information extracted from an 
electronic health record describing the individual from 
which the biospecimen was taken and more.

We divide our consideration of research metadata 
into information about the subject of study, which we 
term ‘sample metadata’, and information about a sample’s 
handling and processing, which we term ‘handling 
metadata’. This framing is aligned with how the influen-
tial minimum information about a microarray experi-
ment (MIAME)1 recommendations can be applied to 
non- microarray settings. It is also aligned with how 
these types of resources are represented in major data-
bases: for example, in the BioSample database, frequently 
reused biospecimens such as cell lines or references are 
designated a single, reusable identifier with additional 
sample metadata40. For derived data, the sample’s meta-
data would often remain unchanged whereas the hand-
ling metadata would differ based on the computational 
processing steps; however, this distinction begins to blur 
for intermediate forms that integrate multiple samples, 
such as machine- learning models.

Metadata are provided with a level of detail that can 
be high or low. The fields that are included as metadata 
can enhance or reduce the level of detail. For example, 
a hypothetical sample41 could be described as ‘tumour’ 
or as ‘tumour from an 18- month- old male’. The latter 
has additional age and gender information, which are 
akin to additional fields. The level of specificity for each 
field also affects the level of detail of the metadata: the 
same sample could be described as ‘malignant peripheral 
nerve sheath tumour from an 18- month- old male’.

Metadata can be structured or unstructured. Struc-
tured metadata could be represented as a tab- delimited 
text file containing a unique identifier and experimental 
factor ontology (EFO)42 terms relevant to a sample or its 
handling. Unstructured metadata could be a paragraph in 
a manuscript describing the experiment. In our example 
above, derived from Kudesia41, ‘malignant periphe-
ral nerve sheath tumour from an 18- month- old male’ 
is an unstructured description of a sample. Databases 
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designed to store research data often include fields that 
allow highly structured information, such as ontology 
terms that apply to a sample, to be provided alongside 
fields that are relatively unstructured. For example, 
the EFO term for malignant peripheral nerve sheath 
tumour is EFO:0000760, age is EFO:0000246 and male, 
which is included in EFO from the phenotype and trait 
onto logy (PATO), is term PATO:0000384. The meta-
data that describe most repository- stored genomic data 
are available with some structured and other relatively 
unstructured elements.

How are data shared?

Genomic data are shared in many ways. We distinguish 
between public, controlled- access, clique and upon-  
request sharing approaches (FIG.  1). Data  are also 

shared on many different platforms, from investigator- 
specific solutions to those that are purpose- built for a 
data type to general- purpose repositories that support 
many data types.

Public data sharing (FIG. 1a) occurs when data are 
released for reuse without barriers (beyond any appli-
cable ethical considerations and laws, with which the 
user is expected to be familiar). This level provides 
the lowest barrier to entry for reuse as researchers can 
probe the data to gain an understanding of its character-
istics. Public data sharing combined with detailed sample 
and handling metadata can allow researchers to answer 
numerous questions. The Cancer Genome Atlas (TCGA) 
data set provides somatic mutation, gene expression 
estimates, a limited set of clinical metadata and certain 
other profiling information, which were made available 
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Fig. 1 | Diverse types of data sharing. a | In public sharing, researchers make data broadly available without restrictions 

on use. b | In controlled- access data sharing, researchers place some conditions on access and reuse but ideally do not 

discriminate on the basis of individual projects or proposers. c | Clique sharing occurs when researchers form consortia 

and share within the consortia (data sharers within the clique are shown with a pink background) but have very restrictive 

policies for external sharing, which hampers engagement and impact. d | Sharing upon request offloads the burden for 

negotiating sharing procedures until there is demand, but when there are multiple requests this approach can become 

time consuming to manage.
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in a fully- open form and available for publication by 
anyone after an embargo period43. TCGA has become 
a remark ably successful example of a public, reusable 
data resource laying the groundwork for numerous 
discoveries44. At a smaller scale individually — although 
covering more biological samples — microarray gene 
expression data sets are also publicly shared in data 
type- specific reposi tories, such as ArrayExpress45 and 
the Gene Expression Omnibus (GEO)46.

Controlled- access sharing (FIG. 1b) occurs when data 
are available for reuse if some fixed criteria are met. 
These criteria may include a review of protocols, a com-
mitment to use data only for health- related research 
or other elements that affect how one obtains and uses 
the data but are not applied differently to different 
requesters. This level usually provides a modest barrier 
to entry for reuse efforts and is currently the favoured 
approach for de- identified genomics data that pose 
significant reidentification concerns. We discuss such 
data sets as high risk. The UK Biobank47 is an example 
of a resource that is made available under such criteria. 
A similar effort is underway in the United States via the 
All of Us project48. Making data sets available in this 
way allows data set developers to confirm that adequate 
oversight structures are in place for research that could 
potentially lead to reidentification of a study participant.

Clique sharing (FIG. 1c) and sharing upon request 
(FIG. 1d) occur when investigators join a consortium or  
make individual arrangements to share data. These  
mechanisms place substantial burdens on data request-
ers, and those within the clique or who hold data sets 
can select which requesters will be disadvant aged. Data 
ostensibly made available upon request are not widely 
shared in practice49,50. In these cases, the data sharing 
decisions at each point come down to individual sci-
entists. There may be a mismatch between researchers’ 
perceptions of their own sharing behaviour and their 
practices. Even when the commitment to share is 
strong, failure to quickly deposit data in a repository may 
degrade the investigator’s ability to share as personnel 
come and go from the laboratory, as data are likely to be 
managed less reliably than they would be in established 
repositories. Earlier- career scientists report being the 
most enthusiastic about sharing, and senior research-
ers report the most reticence51. In the same survey, 
early- career researchers report worse sharing behavi-
ours than more senior ones51; however, Campbell et al.52 
made data requests and found better sharing behaviours 
among early- career scientists. These seemingly contra-
dictory results suggest that early- career researchers may 
hold themselves to a higher standard for sharing. For 
the purposes of this Review on behaviours supporting 
an ecosystem that accelerates discovery, we focus on 
public or controlled- access sharing because of the con-
siderable limitations of clique- based and request- based 
approaches.

Although the type of sharing influences the extent 
to which sharing efforts will enhance the impact of the 
work, it is not the sole factor. For example, Learned 
et al.53 describe efforts to access and compile publicly 
available genomic data into a reusable resource for the 
paediatric cancer community. Even among public data, 

the authors found barriers to using some of the data: 
samples that were mislabelled, purportedly uploaded 
data that were missing or, in certain cases, a requirement 
that they would have to use a proprietary cloud platform 
for analysis at a substantial cost. In subsequent sections 
we describe potential risks as well as principles and prac-
tices that can help investigators maximize the impact of 
their data through effective sharing.

Data have variable levels of risk

Although we focus a considerable amount of atten-
tion in this Review on the risks associated with sharing 
certain data, in many cases sharing data poses little to 
no risk. Many experiments involve genomic assays of 
model organisms, cell lines, environmental samples or 
agricultural subjects. In other cases, the measurement 
technology may not be capable of revealing individual 
characteristics or the assay may provide information that 
is transient and thus poses little risk. Other data clearly 
identify the individual from which the data were derived, 
either through the data themselves or the metadata that 
describe them.

Data that accurately describe a person for long peri-
ods of time typically carry a greater privacy risk com-
pared with information that is only transiently true. For 
example, the sequence of our genome is with us for our 
lifetime whereas triglyceride levels may fluctuate with 
fasting. The risk of reidentification is also related to the 
extent to which the data modality uniquely identifies 
individuals. The idea of an equivalence class can help to 
develop an intuitive understanding of risk: consider an 
equivalence class to be the number of people for whom 
a set of values would be true. A measure of the risk of 
reidentification, given those values, can be considered to 
be 1 / (number of people in that equivalence class)54,55. 
In general, the richer the data elements, the smaller the 
equivalence classes. Transformations of the data can alter 
the size of equivalence classes; using the decade of life 
rather than age increases the size of many equivalence 
classes. However, the effect is not uniform across the 
data set: equivalence classes can remain very small for 
those at the extremes of age. Although it is not possible 
to exhaustively enumerate data types and their associ-
ated risk levels, we provide certain examples (TAble 1) 
and a fuller discussion of risk levels in the following 
subsections.

Other types of data encountered in genomic research 
could also pose risks when shared for reasons other 
than identification. Certain data, such as the genome 
sequences of particular pathogens, could pose biosafety 
concerns. Data that inadvertently disclose the location of 
endangered species could facilitate poaching. We expect 
these cases to be rare. In the absence of a clear overriding 
concern of this type, data not derived from participants 
should be considered low risk.

Genomic variants are one path to risk. Certain types of 
genomic data, such as those directly assaying numerous 
variants across the genome, cannot be de- identified. For 
other data types, de- identification can be attempted but 
may not succeed, and as with other data types the key 
points to consider are the duration and uniqueness.
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Certain types of genomic data are designed to reveal 
many of an individual’s genetic variants: whole- genome 
sequencing, high- density genotyping array profiling 
and whole- exome sequencing. Germline genetic var i-
ants accurately describe a person for long periods of time 
and, with modest numbers of variants, produce very 
small equivalence classes. Genomic data sharing beacons 
were an attempt to share only limited, summary- level 
genomic information to control risks, but equivalence 
classes are so small that querying beacons for modest 
numbers of variants was often sufficient to reidentify 
an individual as a member of a beacon56. The clearest 
avenue to risk is with high- density germline variant 
calls57. Even noisy variant information can be readily 
cross-referenced with study participants to reidentify 
an individual58. In addition, systems for storing genomic 
data have, at times, permitted queries of the data-
base using uploaded sequences. Such systems make 
it possible to find indivi duals related to an unknown 
person, given that unknown person’s DNA sequence. 
Law- enforcement entities have used these systems to 
solve previously unsolved cases, including that of the 
Golden State Killer59. One database has sought to use an 
opt- in preference from data contri butors to control what 
can be searched; however, a court has recently ruled that 
with a search warrant, a police agency can search this 
database without regard for the opt-in preference of 
the data contributors60. The extent to which data can be 
accessed and obtained in this manner depends greatly 
on the legal jurisdictions that apply.

Sequencing-based assays are one avenue of risk. 
Sequencing-based assays can reveal the genetic variants 
that characterize an individual, even if that was not an 
intended portion of the experiment. Sequencing can-
cer genomes with the goal of identifying somatic vari-
ants reveals both germline and somatic variants. Even 
if the goal is to simply measure gene expression with 
RNA- seq, an experiment on normal human tissue that 
captures a large fraction of messenger RNA and long 
non- coding RNAs with high sequencing depth is likely 
to contain sufficient sequencing depth to call genetic  

variants13–15. The RNA isolation strategy and sequencing 
depth will affect the windows of the genome in which 
variants could be revealed. For certain body sites, a sub-
stantial fraction of metagenomic reads intended to mea-
sure our microbiomes align to a human reference61. On 
the other hand, highly targeted sequencing technologies 
may assay only small portions of the genome. The key 
question in each case is whether or not the technology 
reveals enough variants to identify an individual12.

Array- based assays can also reveal genetic variants. 
This can occur intentionally: single- nucleotide pol-
ymorphism (SNP) genotyping arrays are specifically 
designed to capture inter- individual differences in the 
allele present at a locus. This can also occur unintention-
ally: DNA methylation profiling with dense arrays can 
reveal genotypes at roughly 1,000 loci62, those for which 
some people have genetic variants that directly overlap 
with the profiled positions. In many cases, data from 
microarray- based transcriptomic profiling technologies 
are currently considered low risk. For any array- based 
technology, the more of the genome that is assayed and 
the more sensitive probes are to short mismatches, the 
more risk there is of revealing genomic variants.

Especially in the case of genomic data, the probabil-
ity of reidentification is not static over time and changes 
based on what other resources are available. Genetic 
measurements of many individuals provide sufficient 
information to design artificial queries against data 
resources that could reveal alleles of interest63. As our 
understanding of the interrelatedness of genotype and 
molecular phenotypes grows, it will become easier to 
identify alleles that underlie high- dimensional data that 
do not directly measure genotypes64. As more data are 
made available, it becomes easier to find individuals 
who are closely enough related to a target individual 
to identify that participant. The observation that cer-
tain genetic variants affect gene expression has led to 
reports of a related risk for gene expression micro array 
data, but the accuracy of the imputed genotypes is cur-
rently relatively low64. We find the considerations in 
NOT- OD-19-023 from the US National Institutes of 

Table 1 | Genomic data types and levels of risk

Data type Usual risk level Sharing to minimize risk

RNA- seq reads of model organisms None Public access

Whole- genome sequencing reads of 
endangered species

Usually none, although 
location metadata could 
put species at risk

Public data but controlled- access metadata

RNA- seq reads of human tissue 
samples

High Public gene expression estimates

Controlled- access for sequencing reads

Whole- exome sequencing reads of 
cancerous tissue samples

High Public access for somatic variant data, but 
controlled access for germline variant data

Potential summary- level queries of germline variants

Exome sequencing of non- cancerous 
human tissue samples

High Public summary- level information aggregated 
across many individuals

High- density DNA methylation array 
of human tissue

High Remove data from probes that contain common 
variants before public sharing

Controlled access for full data set

RNA- seq, RNA sequencing.
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Health (NIH) for genomic summary results (GSR) to 
be particularly helpful for data with theoretical risks 
but limited current danger65. This policy favours broad 
sharing except in the case of “studies for which there are 
particular sensitivi ties, such as studies including poten-
tially stigmatizing traits, or with identifiable or isolated 
study populations”.

Metadata can confer risk. Submitters should supply 
metadata at the highest level of detail that is ethically and 
legally feasible. Certain identifiers are direct identifiers. 
Others may not be direct identifiers but may produce 
small enough equivalence classes to make reidentifi-
cation possible. Although defining which entities or 
research projects are covered by the Health Insurance 
Portability and Accountability Act (HIPAA) of 1996 is 
beyond the scope of this Review, the law defines useful 
concepts regarding data sharing and privacy, particularly 
as it relates to metadata. The HIPAA privacy rule provides 
two approaches for de- identification of a data set: expert 
determination and the ‘safe harbour’ method66. The 
expert determination method requires that a person with 
appropriate knowledge certifies the risk of reidentifying 
an individual as ‘very small’. The safe harbour method 
requires removal of 18 HIPAA- specified potentially 
identifying pieces of information from the data. These 
types of identifiers pose an avenue of risk and include 
specific geographic locations tied to an indivi dual, 
absolute dates and times, and other elements. In these 
cases, it can be helpful to remove absolute dates and 
times and replace the date and time fields with intervals. 
In any case where certain metadata fields introduce risk, 
we recommend that these fields should be separated — 
low- risk elements are shared openly whereas high- risk 
fields are shared only via controlled access in accordance 
with legal and ethical guidelines.

Machine- learning models can confer risk. Machine- 
learning models are an emerging form of derived 
research data that often poses little to no risk. Models 
trained on publicly available data do not pose a risk 
above and beyond the data themselves. Models with 
few parameters relative to the number of subjects also 
pose less risk. However, models with many parameters 
that are trained on individual- level genomic data or 
metadata could reveal detailed information about study 
participants. Certain attacks have been described that 
are capable of extracting substantial information about 
training examples from models or, in certain cases, even 
the predictions from models67. In some cases, models 
can be trained using techniques such as differential 
privacy that allow investigators to manage this risk68,69. 
Such techniques should be considered if sensitive data 
from human study participants are used during model 
training. We recommend that high- dimensional models 
trained on sensitive data without any form of protection 
should be treated as high risk.

The principles that guide best practices

Data sharing is simply a means to an end. The goal of 
research with genomic data is often to improve human 
health or to better understand a biological process. For 

such research, stakeholders often include foundations 
and their donors, taxpayers, study participants who are 
each dedicating personal or financial resources to these 
ends and patients who could someday benefit from 
the research. Participants in clinical trials overwhelm-
ingly want their data to be shared with other academic 
researchers70. Researchers generating genomic data 
should be driven to responsibly advance the aims of 
these stakeholders as well as their own. We begin from 
the premise that the goal of sharing is to enhance the 
overall pace of research in an ethical manner.

Where feasible, data should be shared through data 
type- specific repositories that are widely used within a 
field. Existing data type- specific repositories are ideal 
data warehouses because they have the following four 
properties. First, they support publicly available or 
controlled- access sharing, thus increasing the speed at 
which data can be requested and obtained. Second, they 
provide long- term access to the data through provision of 
a persistent ID, such as a digital object identifier (DOI), 
and archiving. Third, they lower the costs of research by 
making large collections of similar data available in a 
consistent place, which can reduce redundant work and 
encourage the generation of new hypotheses from sec-
ondary analyses. Last, they allow data to be cited, which 
lets scientists generating data accrue credit for sharing 
data sets71. For controlled- access data sets, these repos-
itories provide a consistent request approach. In certain 
circumstances, particularly early in the development of a 
data modality, there may be no such repository. In these 
cases, investigators should choose the last- resort option of 
placing data in general purpose archiving platforms, such 
as Figshare or Zenodo, along with metadata that precisely 
describe the included files and their format. For data 
that cannot be publicly shared due to privacy concerns, 
Synapse provides a similar general- purpose archiving 
platform that supports controlled- access sharing.

Principles that should guide sharing of data with reduced 

risk. The lowest risk data, including those derived from 
model organisms or experiments not involving humans, 
should be maximally shared with minimal restric-
tions. Investigators should apply a licence to public 
data sets to provide certainty that they can be reused: 
Creative Commons Public Domain Dedication (CC0) allows 
for data to be freely used, and Creative Commons Attribution 
(CC BY) allows reuse as long as the data sources are 
attributed. Failure to apply a licence can create substan-
tial barriers to reuse for other researchers72,73. In coun-
tries that separate the copyright status of facts from those 
on creative works, it is possible that much genomic data 
already fall into the public domain but applying a CC0 
licence makes the intent to promote reuse clear. We rec-
ommend CC0 for all public data. Certain licences create 
particular challenges for reuse efforts74. Additionally, 
academic norms require attribution, so CC BY adds 
barriers but is unlikely to change behaviour. Finally, in 
the event that someone violates a CC BY licence it seems 
unlikely that investigators would pursue legal action to 
enforce a citation requirement. For these reasons, we 
suggest that CC0 is the most appropriate choice for 
genomic data that are intended to be public.

Direct identifiers
Information that is replicable, 

distinguishable and knowable, 

and that can identify 

individuals uniquely.

HIPAA privacy rule
The standards for privacy of 

individually identifiable health 

information introduced in the 

Health Insurance Portability 

and Accountability Act (HIPAA) 

of 1996. The rule introduces 

the concepts of expert 

determination and ‘safe 

harbour’ as a means of 

de- identifying data.

De- identification
As defined by the Health 

Insurance Portability and 

Accountability Act (HIPAA), 

data that have been processed 

by the expert determination 

method or the ‘safe harbour’ 

method.

Safe harbour
A Health Insurance Portability 

and Accountability Act 

(HIPAA)- designated method  

of de- identification that relies 

on the removal of identifiers  

of the individual, or of relatives, 

employers or household 

members of the individual.  

To achieve this method of 

de- identification, 18 different 

types of identifiers including 

e- mail addresses, social 

security numbers, all elements 

of dates directly related to  

an individual, except year for 

individuals 89 years of age  

and younger, and many other 

elements must be removed.

Creative Commons Public 
Domain Dedication
(CC0). A licence designed  

to allow a data generator to 

waive all rights to the extent 

allowable by law, enabling any 

recipient to reuse the content 

to which it is applied without 

asking permission or meeting 

other terms. The current 

version of the licence is 1.0 

and is sometimes referred  

to as CC0 1.0.

Creative Commons 
Attribution
(CC bY). A licence designed to 

enable reuse and sharing as 

long as the person sharing 

provides appropriate credit,  

a link to the licence and a 

notice of whether or not  

any changes were made. 

The current version of the 

licence is 4.0 and is sometimes 

referred to as  

CC bY 4.0.
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Sample metadata should be provided in as struc-
tured a form as possible. Unstructured text elements 
should be used only when a structured representa-
tion is not supported by the database. Well- structured 
metadata maximize the value for downstream use and 
also make it easier to verify that metadata do not inad-
vertently reveal a participant’s identity. In data type-  
specific databases (box 1), structured fields are often in 
place for metadata related to sample hand ling. Some,  
such as ArrayExpress, provide entries for commonly 
used protocols that can be reused45. Using existing 
entries makes it easier to add new experiments and 
allows subsequent users to select all experiments that 
follow a specific protocol. For handling metadata, 

unstructured fields should be used sparingly and may  
not need to be used at all for very common analytical  
strategies.

Principles that should guide sharing of data with ele-

vated risk. The vast majority of clinical trial participants 
favour data sharing despite potential privacy risks70. 
These privacy risks of data sharing scale according to 
the chance of one or more parties reidentifying a person 
in the data set and, also, the potential consequences of 
reidentification. Successful de- identification is key to 
reducing the chance of reidentification, and investi gators 
should take care to avoid identifier leakage, which is a 
particular risk with metadata elements.

Box 1 | Repositories for sharing genomic data

Repository selection process

There are numerous data type- specific repositories for sharing genomic data. Investigators should prioritize 

repositories that are likely to be maintained: these include those built by the National Center for Biotechnology 

Information (NCBI) in the United States and the European Bioinformatics Institute (EBI) in Europe. We discuss major 

NCBI and EBI repositories below. For data modalities for which no data type- specific repositories are maintained by 

these or similar organizations, investigators should prioritize repositories that are well- adopted within the focused 

research community. In such cases, and also in cases for which no such repositories exist, investigators should archive 

their data in general purpose repositories.

The NCBI SRA

The Sequence Read Archive (SRA) supports read- level sequencing data. This includes RNA sequencing (RNA- seq), 

chromatin immunoprecipitation followed by sequencing (ChIP- seq), assay for transposase- accessible chromatin 

sequencing (ATAC- seq), whole- exome sequencing, whole- genome sequencing and the results of other such assays. The 

repository is primarily intended to support US National Institutes of Health (NIH)- funded research; however, data sets less 

than 1 TB in size may be uploaded without cost. Only data that are intended to be public should be uploaded directly to 
the SRA submission system. This repository still holds controlled- access data, but the upload process is managed via the 

database of Genotypes and Phenotypes (dbGaP), which is discussed below.

The EBI ENA

The European Nucleotide Archive (ENA) also supports public read- level sequencing data and the same data types as the 

SRA. This database shares a data model with the SRA, including the BioProject and BioSample concepts. Uploaded public 

data are mirrored across both systems. We recommend that investigators in Europe or those without NIH funding use  

the ENA as a mechanism to publicly disseminate sequencing data. Controlled- access data should be uploaded to the 

European Genome–phenome Archive (EGA).

The NCBI dbGaP

The dbGaP is designed to support the controlled- access sharing of genomic data for NIH- funded projects. Access is 

managed through a data access committee (DAC). The dbGaP shares data from genetic association studies, studies of 

methylation and other individual- level data that are high risk. In the case of raw sequencing data, the data are housed  

at the NCBI SRA but access and upload are managed through the dbGaP.

The EBI EGA

The EGA holds individual- level genetic data similarly to the dbGaP. Access is also managed by a DAC. The EGA also holds 

controlled- access sequencing data. We recommend it as the primary choice for investigators working in Europe.

The NCBI GEO

The Gene Expression Omnibus (GEO) holds array- based profiling data intended for public release as well as summary-  

level data from sequencing experiments. Essentially, if the results of an assay can be expressed as a level of observation 

for a gene, probe or other such entity, then it can be housed here. For microarray- based experiments, raw data should be 

uploaded directly to the GEO. For sequencing data, raw data should be uploaded to the SRA and summary- level data 

should be supplied to the GEO.

The EBI ArrayExpress

ArrayExpress is the EBI repository that parallels the GEO. For many years, ArrayExpress also imported nearly all GEO data, 

making it the easiest way to gain access to high- throughput profiling data. Data sets that were imported in the past still 

exist and have E- GEOD- prefixes on their identifiers. However, ArrayExpress no longer imports GEO data so investigators 

seeking to query these resources will need to query both or a meta- repository that contains the contents of both.

Kipoi

The Kipoi model repository is a recently developed repository for storing machine- learning models that operate over 

genomic sequences. The models are regularly tested and paired with an application program interface (API) that 

facilitates their reuse. We recommend that investigators developing models compatible with Kipoi upload them there. 

For models not yet compatible with Kipoi, we recommend that investigators use general purpose repositories.
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The 2015 Institute of Medicine consensus report enti-
tled ‘Sharing Clinical Trial Data: Maximizing Benefits, 
Minimizing Risk’54 is a uniquely comprehensive discus-
sion of the risks of data sharing, and the steps that can 
be taken to mitigate those risks. Although not specific 
to genomic data, much of the report applies to genomic 
data. Among the principles identified in the consensus 
report is that the context must be considered when 
thinking about risks of data sharing. If data sharing is via 
controlled access, then the risks of data sharing are miti-
gated to some extent. The privacy risks of sharing data 
sets that focus on rare diseases are generally greater than 
for common diseases, but not necessarily too great to 
undertake. To identify risks that could be deemed accept-
able requires selecting a way to measure the reidentifica-
tion risk and selecting an appropriate threshold of risk, 
and finally measuring the risk in the actual data to be 
shared. The report encourages investigators to consider 
the maximum risk to an individual when calculating the 
risks of publicly shared data sets, and the average risk to 
individuals for controlled- access data sets.

The risk–benefit ratio of data sharing will look dif-
ferent to different study participants because of varying 
levels of tolerance for risk and individual reasons for par-
ticipating in the study. Consent to share de- identified 
data for secondary analyses can be obtained by design. 
This approach demonstrates the highest regard for 
study participants’ interest in the issue of data sharing54. 
However, other, less clear forms of consent language 
have also been used, with varying degrees of consider-
ation for the privacy of the participants. The approach 
that is most invasive of participants’ privacy is neither to 
obtain consent for data sharing up front nor to notify the 
participants that the de- identified data are being shared. 
Researchers owe it to their participants to make sure 
that the impact of the data is maximized within ethical 
and legal constraints. We recommend that researchers 
ensure that informed consent language explicitly allows 
for data to be shared and to “promote research initia-
tives at other institutions” to maximize the impact of 
participants’ data75.

In many cases it is possible to produce low- risk 
derivatives or views of high- risk data that retain much 
of the utility while mitigating much of the risk (FIG. 2). 
Methods include presenting only summary- level 
data (FIG. 2a), and potentially adding noise (FIG. 2b). 
The Exome Aggregation Consortium (ExAC) and 
Genome Aggregation Database (gnomAD) browsers 
focus on germline exome and whole- genome sequenc-
ing data, and yet are relatively low risk to participants, 
even though the underlying data are not, by providing 
summary information and limiting the complexity of 
queries76,77. Other methods of risk mitigation include 
redacting data (FIG. 2c) or generating synthetic data that 
preserve certain statistical properties (FIG. 2d). Given  
that participants often want their data shared, research-
ers should aim to identify methods to share valuable 
derivatives while guarding participant privacy, such as 
the step of removing human reads performed by the 
Human Microbiome Project before public sharing.

Investigators who wish to maximize the impact of 
their research projects should always share findings-level 

data publicly unless they pose some risk. In many cases 
it is also possible to responsibly share intermediate- level 
data publicly as well. Public sharing reduces the barrier 
to entry for reanalysis and reduces the chance that a 
request for data will be received years after the work is 
done: such requests can be time consuming to answer, 
and the risk of data being irretrievable increases over 
time. Finally, data that cannot be responsibly shared 
in a public manner should be shared through a 
controlled- access repository.

Privacy is a non- renewable resource

Data have been said to be the new oil, the fuel that will 
power the economic engine of the twenty-first cen-
tury78–80. However, the metaphor is imperfect; in stark 
contrast to oil, data are not lost when shared and are not 
destroyed when used. On the other hand, privacy is a 
resource that can be lost, and once it is lost, it cannot be 
regained. Although fully open data sharing would be ideal 
from the perspective of the pace of scientific discovery,  
it is important to consider the privacy costs of sharing 
study participants’ data.

In general, measurements that are transient are of a 
lower risk than information that rarely or never changes. 
For example, sharing metadata that reveals participants’ 
white blood cell count — which can transiently increase 
for many reasons — would impose less of a privacy risk 
than sharing participants’ HIV status. Certain meas-
urements also pose additional concerns: HIV infection 
has unfortunately been the focus of stigmatization. 
Information associated with social stigma has a greater 
risk when sharing data.

The potential for someone to cross- reference informa-
tion in a de- identified database with other data sources 
expands the possible threats to privacy81. Suppose a per-
son tweets that she is proud to have volunteered for a 
clinical study at a medical school on a particular date, 
but chooses not to disclose which study. A data analyst 
may accidentally or intentionally become aware that a 
particular row of data fits that person’s data due to the 
date of the tweet. Cross- referencing risk and rare obser-
vation risk can be interactive. In a different example,  
if the date of a visit to the research facility is shared, and 
the research community is aware that only two families 
in the United States have a particular disorder, the par-
ticipant’s home state and decade of life could be suffi-
cient to identify the participant. In general: the rarer a 
measurement, the more risk it poses for privacy.

For newly designed studies, researchers should 
plan for sharing at the outset. Ultimately, we need to 
be guided by the feelings of participants, and most par-
ticipants do want to see data sharing among academic 
scientists70. Still, careful consideration should be given to 
what certain technologies, especially sequencing- based 
technologies, can reveal. In many cases it may not cur-
rently be possible to reidentify individuals from a certain 
data type, but this is a function of other data available for 
cross- referencing, the computational methods and hard-
ware available, and other factors: future risks for reiden-
tification are difficult or impossible to predict. Consent 
forms should clearly discuss how data will be shared and 
the known associated risks, including the caveat that for 
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genomic data there is significant risk that data that are 
not currently identifiable can become so in the future. 
Mechanisms for dynamic consent may be helpful in 
some regards82, but the control that they promise must 
be carefully considered alongside the potential future 
risk of reidentification due to new analytical methods.

Making repositories the single point of truth

In software engineering, the concept of a single point 
of truth can reduce errors83, and similar considerations 
emerge for research involving genomic data. Data and 
metadata accumulate during the course of a study, 
and, ideally, they are stored in one place with one set 

{
“participant_id” : “1”,
“age” : “34 years”,
“eye_color” : “Brown”,
“sex” : “male”,
“zipcode” : “59448”
},
{
“participant_id” : “2”,
“age” : “44 years”,
“eye_color” : “Blue”,
“sex” : “female”,
“zipcode” : “43001”
} ......

{
“average_age” : “60 years”,
“eye_colors” {
     “Brown” : “4”,
     “Green” : “8”,
     “Blue” : “4”,
     },
“sex” {
     “male” : “8”,
     “female” : “8”,
     },
“zipcode” : {
     “59448” : “6”,
     “43001” : “10”
     }
}

{
“average_age” : “56 years”,
“eye_colors” {
     “Brown” : “2”,
     “Green” : “4”,
     “Blue” : “2”,
     },
“sex” {
     “male” : “4”,
     “female” : “4”,
     },
“zipcode” : {
     “59448” : “3”,
     “43001” : “5”
     }
}

{
“participant_id” : “1”,
“age” : “34 years”,
“eye_color” : “Blue”,
“sex” : “female”,
“zipcode” : “59448”
},
{
“participant_id” : “2”,
“age” : “44 years”,
“eye_color” : “Green”,
“sex” : “female”,
“zipcode” : “43001”
} ......

{
“participant_id” : “1”,
“age” : “34 years”,
“eye_color” : “Brown”,
“sex” : “male”,
“zipcode” : “59448” “state” : “Montana”
},
{
“participant_id” : “2”,
“age” : “44 years”,
“eye_color” : “Blue”,
“sex” : “female”,
“zipcode” : “43001” “state“: “Ohio”
} ......

Participant data

a  Summarized participant data b  Summarized participant data with noise

d  Synthetic participant datac  Redacted participant data

Fig. 2 | Strategies for de-risking data. Participant data (centre) can be modified or reported in certain ways to minimize 

risk. a | The data can be reported only at the summary level. b | Those summaries can include added noise to make it difficult 

or impossible to determine the membership of an individual in an aggregate membership. c | The data can have identifying 

fields redacted. d | In certain cases, the data can be replaced with entirely synthetic data that have many of the same 

statistical properties but none of the original individuals.
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of metadata descriptors. At this stage it is particularly 
important for scientists to have procedures in place to 
track the single point of truth for the data and metadata.

Depositing data into a repository as soon as possible 
offloads responsibility to the repository and prevents 
knowledge about the data, including metadata, from 
atrophying84. Depositing data in an accepted repository 
during a study reduces the risk of turnover leading to 
lost critical knowledge: with the passage of time, scien-
tists generating data may not remember where the data 
sets are located and the details describing the data75. 
The repositories also frequently support versioning, 
allowing researchers to track the state of data over time. 
Repositories typically do not require that data are made 
public immediately after they are added: most allow 
investigators to deposit the data and release them once 
they are suitably complete and validated for public use.

The concept of a single point of truth also has impli-
cations for efforts to construct study- specific data por-
tals or ‘data commons’. For such efforts, it is helpful to 
first deposit data and metadata in data type- specific 
repositories that are widely used by the biomedical com-
munity and then to construct the metadata summaries 
and derivative files made available on a data commons 
from these single points of truth.

Repositories for sharing high- risk data. For genomic 
data, the primary repositories for sharing high- risk data 
support controlled access. Genetic data, raw RNA- seq 
reads from human samples and other related data types 
can often be shared through the same repositories as 
low- risk data, but with an access control mechanism. 
As an example, consider the National Center for Bio-
technology Information (NCBI) Sequence Read Archive 
(SRA): access for certain data sets is controlled by the 
dbGaP. For this database, access is controlled by a data 
access committee (DAC). Investigators who wish to use 
such data submit a project description, and the request is 
submitted by an institutional signing official. This con-
firms that the host institution is aware of the research 
and has given ethical approval. The DAC examines the 
project description and assesses the extent to which 
the described analysis aligns with the consent that was 
granted. If an investigator’s access is approved, they are 
then able to access the data.

What if there are no standard repositories? In some cases, 
there will be no standard repository for the data type. For 
example, there is not currently a controlled- access reposi-
tory for machine-learning models trained on clini cal data 
that may leak information about indivi duals. If there are 
no standard repositories for the data type, investi gators 
may consider a controlled-access general purpose reposi-
tory: two primary repositories for public access data 
are Figshare and Zenodo, and one of the primary such 
reposi tories for controlled access data is Synapse, pro-
duced by Sage Bionetworks. All general- purpose reposi-
tories somewhat hamper reuse. It is harder for users to 
perform consistent analyses across the contents of the 
repository, and more onus is on the uploaders to fully 
document their data formats, metadata and other ele-
ments. Because this form of sharing requires more effort 

from both sharers and requesters, it should be only used 
in the case of last resort.

Benefits that accrue to good sharers

Sharing research outputs benefits the scientific commu-
nity and increases transparency with the public, who pre-
dominantly fund the work, through taxpayer dollars as 
well as charitable giving to non- profit funders85. Sharing 
research outputs promotes reproducible science, with 
fewer unintentionally duplicate studies allowing research 
dollars to be put to maximal use. Effective sharing should 
also accelerate the pace of discovery. Even though sharing 
benefits the community, it is not necessarily appa rent to 
the scientists generating the data how sharing can bene fit 
them and their careers directly, and this, in particular, is 
crucially important to address in order to increase their 
willingness to share high- quality data.

Science progresses by building upon the work of 
others. Sharing outputs openly leads to better utility 
and visibility of the research, which leads to more cita-
tions of that work71,86. For example, publications with 
preprints are more cited than those without preprints87 
and publications with data in openly accessible reposi-
tories are more cited when compared with those without 
accessible data88.

To empower the sharing ecosystem, researchers 
recently created awards to recognize those who share 
data as well as those who reanalyse publicly avail-
able data. The Research Symbiont Awards founded by 
J.B.B. are given annually to researchers who share data 
beyond the expectation of their field89. The compa-
nion award to the Research Symbiont is the Research  
Parasite Award, founded by C.S.G., which honours those 
who conduct rigorous secondary analysis of existing 
data90. The goal of these awards is to publicly celebrate 
those who are committed to sharing and reusing data in 
a way that contributes to a greater understanding of the 
world around us.

Open data empower researchers with the ability 
to pool data, effectively increasing the sample size for 
appropriately powered studies91. Furthermore, open 
data facilitate linking — for example, genomic and 
epige nomic data with clinical and environmental 
exposure data — for a greater understanding of dis-
ease biology92. To further illustrate the power of open 
data, Milham et al.91 recently compared the publications 
resulting from the use of the International Neuroimaging 
Data- sharing Initiative (INDI) repository by those who 
contributed data with those who did not. They found 
that 90.3% of publications resulting from reanalysis 
of the data in the repository were authored by teams 
without any data contributions, suggesting that clique/
consortium models that only allow access to the data for 
those who contribute are missing out on bringing new 
expertise and collaborators into their field who are able 
to reanalyse the data with fresh perspectives91.

Funding practices that support sharing

Funders of biomedical research can play a large role 
in shifting scientific sharing practices. In the absence 
of sharing requirements, researchers can be reticent to 
share, but sharing mandates can increase data sharing 
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prevalence93–95. Funders should promote a culture of 
sharing, and in particular a data sharing culture that 
builds upon FAIR data standards: ensuring that data 
are findable, accessible, interoperable and reusable96. 
Barriers to sharing among researchers are multifacto-
rial. Some barriers are practical: researchers may lack 
the time, funding or understanding of how and where 
to share. Others are cultural, and may include the lack 
of adoption in a field, concerns with data misuse or 
reproducibility and disincentives for sharing related to 
the potential loss of future publications derived from the 
data set97,98. We strongly recommend that funders require 
that data are deposited into standard repositories that 
provide identifiers to enable output tracking. However, 
we expect that this alone will not be enough because the 
quality of data sharing can vary widely53. Hence, there 
must also be practical ways in which funders can incen-
tivise a greater researcher focus on effective sharing, 
which we describe next.

A fundamental challenge with incentivising greater 
sharing is that resources, including data, may not be 
obviously valuable until a major discovery is made from 
them (FIG. 3a). However, once a discovery is made, credit 
for the discovery accrues to the researchers who made 
that discovery and not necessarily to those who built 
and publicly shared the resources that enabled it (FIG. 3b). 
This practice disadvantages sharers: those who share 
well would do better to hold on to resources and only 
trade them in the context of a negotiated contract that 
provides part of the share of the discovery credit (FIG. 3c). 
Funders have the ability to break this state of poor 
incentives by considering the applicants’ track record of  
sharing by asking reviewers to consider the evidence 
of prior sharing. In particular, manuscripts written by 
unrelated groups using the shared data set can provide 
primae facie evidence of the sharing reputation of the 
researcher under consideration for funding. If funding 
decisions are positively influenced by a strong track 
record, the reputational benefit for sharing can have 
concrete value that supersedes the value of refusing 
to share (FIG. 3d). Rewarding open sharing by assess-
ing sharing reputations in funding decisions has the 
potential to reduce the friction of contract negotiation 
and accelerate the pace of discovery. Alex’s Lemonade 
Stand Foundation, a leading funder of paediatric cancer 
research in the United States, is one of the few funders 
requiring and reviewing prior sharing histories as part 
of resource sharing plans for all grant applicants, where 
resource sharing is inclusive of all research outputs, 
including data90,99.

When funders collectively require and review shar-
ing plans, they provide an amplified voice to this issue 
that helps to shape sharing practices in the long term. 
To increase transparency and compliance in data shar-
ing, funders should consider releasing the sharing plans 
to the public so that the scientific and lay communities 
know what was promised to be shared, especially when 
the projects are publicly funded, such as work sup-
ported by the NIH97. Funders should also require clear 
statements of when data will be made available.

Although it is important for funders to ask for 
resource sharing plans, it is also equally important that 

funders support the budgeting of reasonable costs for 
sharing. Sharing effectively requires knowledge, time 
and money, and funders must be willing to support these 
costs in order to ensure compliance with sharing poli-
cies. For example, Couture et al.84 found that compliance 
with data sharing mandates, despite being higher than 
that without sharing requirements, is still low: 26% of 
data were recovered even when required to be shared 
by a funder mandate. Funders must provide monetary 
support for high- quality data deposition so that the com-
munity does not end up with ‘data dumpsters’ containing 
data that are difficult to use due to lack of metadata or 
meaningful documentation100.

Funders should also promote the use of university 
libraries as a resource for the development and imple-
mentation of data sharing plans and may consider sup-
porting infrastructure grants that allow for the hiring 
of personnel devoted to data management or, where 
needed, support repository formation and/or main-
tenance101,102. Funders may also consider offering or 
funding research data management training work-
shops101. Funders should consider supporting the use of 
existing tools for the creation of data management plans, 
including California Digital Library’s DMPTool103 and 
Digital Curation Centre’s DMPonline104, which provide 
templates for data sharing plans75.

In summary, funder policies and practices have the 
potential to dramatically shift the data sharing land-
scape. Funders should make clear through their actions 
and funding decisions that they value all research out-
puts, including data sets, as important scientific contri-
butions105,106. For this to be feasible, unique research 
outputs should have persistent identifiers that allow 
them to be cited, highlighting the key importance of 
sharing via repositories that we emphasize in this Review. 
Additional open science practices, such as research out-
put sharing, open access publishing and preprinting105, 
can help to support this transition. Ultimately, funders 
should move to establish funding policies based in part 
on a past track record of effective sharing: this pro-
motes the proactive sharing of high- quality outputs to 
create an ecosystem where researchers compete to share 
the highest quality data possible by the most effective 
method possible.

Publishing practices that support sharing

Journals play a key role in requiring microarray- based 
gene expression data to be made available at the time 
of publication107. Publishers must similarly require 
that data described in publications are made available. 
Reviewers should be asked specifically if any data or 
data sets should be made available. Before an article is 
published, journal staff should check not only that an 
accession number is present but also that the accession 
number resolves to a resource that contains the data 
described in the published work53. This would avoid 
certain cases where data that are shared are not as they 
are described53.

The complement to requiring data availability is 
ensuring that usage is responsible. Investigators have 
published research108 using controlled- access data 
resources such as the UK Biobank where the research 

FAIR data
Data that are findable, 

accessible, interoperable and 

reusable; however, there is  

no precise definition for each  

of these criteria, so this is an 

aspirational goal as opposed  

to a specific standard.
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questions were at best tangentially related to the under-
lying data access request109. Journals should require 
investigators using controlled- access data resources to 
provide the description of the proposed work as supple-
mentary materials. Reviewers should be asked whether 

the study in question aligns with the proposed work. 
Editors should also use their expert judgement dur-
ing the editorial review process to assess the extent to 
which the work described in the manuscript aligns with 
the underlying request. Journals should refuse to publish 
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a b
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Fig. 3 | How funders consider resources can affect sharing cultures. a | Researcher work products from multiple groups 

need to be combined to produce a discovery that improves human health. b | In a system of open sharing, if funders allocate 

credit without considering sharing behaviour, much of the credit and funding can accrue to the researcher who brings the 

final component that enables translation. c | Researchers can restrict sharing and negotiate agreements through cliques to 

enhance the equity of credit distribution, but negotiating agreements is time consuming and may delay or prevent advances. 

d | Funders who consider the value of shared resources when assessing impact provide a benefit not only to the researcher 

bringing the final component but also all others on the value chain.
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work if the data were obtained under pretences that do 
not match the results.

Perspectives

Investigators must simultaneously balance the wishes 
of participants to participate in impactful research 
with the informed risks that participants take in doing 
so. For genomic data in particular, the risks of partici-
pation are not static over time. Our understanding  
of underlying biological mechanisms, the presence of 
other complementary data types and the power of our 
analytical approaches all affect the risk of reidentifica-
tion. Research is needed on processes that can generate 
derivatives that maximize reuse value while mitigating 
the reidentification risk for as long as is possible. Still, 
because perfect risk reduction is likely to be impossi-
ble, researchers should not consent participants under 
promises that genomic data will be made de- identifiable. 
Certain efforts are underway to create computing 
environments that expose data for analysis but that limit 
risk, but guidance from the trajectory of beacons110,111 
to reidentification56 suggests that technical solutions 
may be insufficient. In an era when we can expect those 
interested in reusing data to aim to train high- parameter 
machine- learning models, investigators should take 
guidance in designing consent processes from the limi-
ted number of efforts that intended to publicly release 
variant- level data. For the 1000 Genomes Project112,113 
and the Harvard Personal Genome Project114, partici-
pants consented to have their germline genetic data 
openly shared. In a pilot programme in Texas, many 
patients with cancer elected to have both germline 
and somatic variants shared openly115. It is clear that 
at least some are willing to participate in research, 
even if this leads to the public release of their germline 
genetic variants. Even for projects where the primary 
sharing mecha nism is intended to be controlled access, 

investigators may wish to offer participants the oppor-
tunity to become ‘data donors’ whose data would be 
publicly shared.

Researchers recruiting participants must also make 
every effort to ensure that data sharing and consent 
processes do not marginalize certain participants or 
groups of individuals. The overwhelming presence of 
individuals of European descent in genetic databases 
has been widely documented116,117. A fuller communi-
cation of the potential risks of participating could dis-
courage individuals from certain groups, particularly 
those who have been minoritized, from participating. 
Researchers have a responsibility to make sure that bene-
fits of research accrue broadly to society: an increased 
proportion of individuals who decline to participate in 
genomic research should not be an acceptable excuse for 
disparities in the extent to which research benefits the 
members of that group.

Researchers who generate genomic data can take cer-
tain steps to make those data as impactful as possible: 
adding key metadata elements, sharing the data with 
the fewest restrictions possible and putting data in data 
type- specific repositories. However, creating a respon-
sible culture of data sharing that accelerates research is 
more than just the responsibility of those who generate 
data in the course of their research. For controlled- access 
human study participants’ data, those analysing the data 
have a responsibility to do so in accordance with the con-
sent of participants and supplied study plans. Journals 
have a responsibility to decline to publish analyses that 
are not conducted in accordance with ethical research 
practices. Funders have a responsibility to support 
ethical research in diverse populations while preferen-
tially supporting those who have established exemplary 
records of generating widely reused resources.
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