To appear in the ACM SIGGRAPH conference proceedings

Responsive Characters from Motion Fragments

James McCann*
Carnegie Mellon University

Nancy Pollard"
Carnegie Mellon University

Figure 1: By modeling user behavior and not thresholding transitions, we create a high overall quality on-line motion generator suitable for
directly controlled characters. Left, a screen capture. Middle, users control the character with a gamepad. Right, characters must respond

immediately to user input, lest they run afoul of environmental hazards.

Abstract

In game environments, animated character motion must rapidly
adapt to changes in player input — for example, if a directional sig-
nal from the player’s gamepad is not incorporated into the char-
acter’s trajectory immediately, the character may blithely run off a
ledge. Traditional schemes for data-driven character animation lack
the split-second reactivity required for this direct control; while
they can be made to work, motion artifacts will result. We de-
scribe an on-line character animation controller that assembles a
motion stream from short motion fragments, choosing each frag-
ment based on current player input and the previous fragment. By
adding a simple model of player behavior we are able to improve
an existing reinforcement learning method for precalculating good
fragment choices. We demonstrate the efficacy of our model by
comparing the animation selected by our new controller to that
selected by existing methods and to the optimal selection, given
knowledge of the entire path. This comparison is performed over
real-world data collected from a game prototype. Finally, we pro-
vide results indicating that occasional low-quality transitions be-
tween motion segments are crucial to high-quality on-line motion
generation; this is an important result for others crafting animation
systems for directly-controlled characters, as it argues against the
common practice of transition thresholding.

CR Categories: 1.3.6 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; E.1 [Data]: Data Structures—
Graphs and Networks

Keywords: motion generation, motion graphs, character control

*e-mail:jmccann@cs.cmu.edu
Te-mail:nsp@cs.cmu.edu

1 Introduction

In a game scenario with direct character control, such as our proto-
type (Figure 1), the character must react rapidly to changing player
inputs. Quick reactions enhance the player’s feeling of immersion
and aid in avoiding environmental hazards. Game engines are able
to enforce this reactivity at a whole-body level by translating and ro-
tating the root of the character to obey the control signals; however,
this does not excuse the pose-level character animation controller
from rapid reaction, since discrepancies between the displayed an-
imation and the character root motion manifest as visual artifacts
like foot-skate.

One effective data-driven approach to this character animation
problem works by stringing together short animation clips from a
motion library; we dub this method fragment-based character an-
imation. This approach is analogous to a motion graph where no
long ‘set-piece’ motions are allowed. In this paper, we improve on
an existing fragment-based animation algorithm ([Schodl and Essa
2000]) by developing a tabular-policy-based controller (Figure 2)
which uses a conditional probability distribution to model user be-
havior. We evaluate our controller by comparing the fragment se-
lections it makes to those of several other policy-based on-line con-
trollers as well as the off-line, optimal selection. Additionally, we
demonstrate that pruning the set of possible next fragments based
on transition continuity, as is done when building motion graphs,
can substantially decrease the overall output quality of on-line con-
trollers such as ours.

2 Related Work

In industry, hand-constructed blend trees are often used to create
on-line character animation [RenderWare 2001]; these trees con-

To appear in the ACM SIGGRAPH conference proceedings

tain carefully synchronized leaves (e.g. walk left, walk right, walk
forward, walk back) which are interpolated by a hierarchy of blend
nodes whose factors are given by player control signals. Some en-
gines use simpler nearest-neighbor methods [Torque 2000]. Again,
a set of synchronized motion loops is required. Instead of blending,
however, each is annotated with an apparent control direction and
only the closest to player input is displayed. The controllers in this
paper produce higher-quality results than nearest-neighbor meth-
ods with comparable runtime CPU usage, while requiring fewer
animator-hours to set up than blend trees.

Constructing fragment-based motions is similar to using a motion
graph [Kovar et al. 2002; Arikan and Forsyth 2002; Lee et al. 2002]
where no long motion segments are allowed and all segments may
transition to all other segments. These modifications were moti-
vated by the observations of Reitsma and Pollard [2004; (in press)],
who explored the responsiveness of motion graphs by unrolling
them into a game environment. By repeatedly sampling states and
performing searches they calculated a mean lag time of over three
seconds between user input and resulting action.

An alternative motion graph formulation emphasizing connectivity
is given in [Gleicher et al. 2003]. This method does enable faster
transitions, but still is unable to cope with immediate responsive-
ness in situations where a visual artifact would be introduced (such
as transitioning from mid-stride to a jump). In contrast, our method
is able to weigh this lack of visual quality against potential benefits
in control-following.

Recently, methods to augment motion graphs using parameterized
motions have been proposed [Shin and Oh 2006; Heck and Gle-
icher 2006]. These methods have been exploited to produce high
quality controllable motion in restricted scenarios, but no full char-
acter controller with high responsiveness has been demonstrated.
In particular, switching rapidly between actions — say, from a run
to a crouch mid-step — is still difficult for these methods. Safonova
[2006; 2007] introduces blending to motion graphs in a different
way by making a graph in the space of (motion;, motion,,blend)
tuples. Her method produces high-quality motion, but is not cur-
rently suited to on-line control because of computational (and mem-
ory) overhead.

Ikemoto el al. [2006] consider the problem of blending between
motions and propose a method of caching the best fixed-length tran-
sitions between any two motions. In their present work, the tran-
sition window is too long (one second) to be considered for direct
control situations; however, if no artifacts are introduced by shrink-
ing this window, then their work may prove the basis of an interest-
ing alternative to our controller.

Our method uses a reinforcement learning algorithm known as
value iteration [Bellman 1957; Kaelbling et al. 1996; Sutton and
Barto 1998]. Reinforcement learning is not new to motion control
in graphics. Lee and Lee [2006; 2004] use reinforcement learning
to create an avatar control model. They, however, prune their mo-
tion graph before planning, which we demonstrate can negatively
impact quality. Ikemoto et al. [2005] use reinforcement learning on
a more complex state space in order to aid a global planner. Their
final controller is thus destination instead of control signal based.
They also prune their motion graph. Schodl and Essa [2000] present
work very close to our steady-state controller in a different control
domain (video sprites). None of these previous methods employ a
user model.

Using learning with a user model is common in other fields (e.g.
[Levin et al. 2000], where a user model aids a dialog system). To
our knowledge, however, such an approach has not been explored
for reactive character animation.

Fragments

Figure 2: Our controller operates by using the current control sig-
nals and previously played fragment to look up the next fragment
in a control policy table.

More complicated reinforcement learning methods exist which
would allow us to learn on the continuous control signals instead
of a discrete approximation [Moore and Atkeson 1995]. Treuille et
al. [2007] explore this possibility, making use of basis functions to
represent value functions over continuous control signals.

Another topic in graphics that deals extensively with user control is
performance animation (e.g. [Shin et al. 2001; Hsu et al. 2004; Chai
and Hodgins 2005; Dontcheva et al. 2003]). These systems provide
fine control over character pose, and often deal with more exotic
input data (e.g. full or partial motion capture), while we focus on
providing control over gross motion with more conventional input
devices.

An attractive alternative to data-driven animation for on-line char-
acter motion generation is to use physics-based controllers. A
framework for composing such controllers is given by Faloutsos
et al. [2001], while Grzeszczuk and Terzopoulos [1995] use learn-
ing to create a physical controller. Van de Panne and his col-
leagues explore interactive control of simulations [Laszlo et al.
2000; van de Panne and Lee 2003; Zhao and van de Panne 2005].
Abe et al. [2004] use momentum to parameterize motions for in-
teractive control. James et al. [2003; 2006] combine physics-based
data with precalculation techniques to create interactive animations
of deformable objects.

3 The Controller

Our character animation controller works by generating a stream of
motion fragments. As each fragment completes, the next fragment
to play is selected based on the current player input and previous
fragment (see Figure 2); these decisions are stored in a tabular con-
trol policy. In this section we discuss how this table is generated.
An overview of the data flow during synthesis is given in Figure 3.
We will motivate and describe each portion of the process below.

The key observation in our generation approach is that if we knew
exactly how the player would change their input in the future, then
we could always make the best possible choice of next fragment.
Failing that perfect foreknowledge, however, we can get some idea
of how players will act by setting up our game environment with
a stand-in for the animated character and collecting example input
streams, henceforth called traces. With these traces we can build a
rough model of player behavior.

One caveat, however, is that control signals generally exist in a con-
tinuous, high-dimensional space. We deal with this by selecting a
set of points in this control space and calling the region of the space
closer to a given point than any other its control bin. (We note here
that this requires a notion of distance in the control space, some-

To appear in the ACM SIGGRAPH conference proceedings

s

o Control \ R

Traces Model imé =

. Expected
I\é\ E@‘: Reward

e ey 4
Control Control ‘t

Bins / Qualities

- < Motion /v

Fragments Qualities

Figure 3: The data flow involved in synthesizing our controller.
Example user inputs (traces), a discretization of control, and a
database of motion fragments are used to calculate a user control
model and matrices of qualities. These intermediate structures are
used by a value iteration process to generate a final policy.

thing we will touch on in Section 4.1.) In our implementation, we
chose these bin centers by hand (Figure 4), though one could con-
ceive of choosing them automatically by using a tactic like vector
quantization on the example traces.

The final input to our synthesis process is, of course, the motion
fragments themselves. The only requirement placed on these frag-
ments is that they be both short and annotated with evident control
— an indication of what control signal they represent.

Now that we have described the inputs to our system, we move on
to the intermediate data (column two of Figure 3). This is the data
we construct so that we can evaluate different policy choices.

The control model, which we mentioned earlier, is the key piece of
intermediate data, since it tells us how player input is expected to
change. We use a table of conditional probabilities 7', where ;.
gives the probability that the next control signal will be in bin ¢/,
given the previous control signal was in bin c¢. This table is com-
puted by performing frequency counts on the example traces. Using
such an elementary model has two advantages. First, it keeps our
policy table small (|control bins| x |motion fragments|), because
each decision only depends on the current input and the previous
fragment. Second, since the model has relatively low representa-
tive power it generalizes well to players for whom we do not have
example traces.

With a control model we can reason about the future impact of de-
cisions. To capture the immediate impact of decisions, we need
to have a notion of the quality of selecting a given next fragment.
This quality will tell us how artifact-free a motion is. We find it
expedient to factor quality:

Quality(f — f’|c) = MotionQuality (f — f’) - ControlQuality(f'|c)

ey
Here, MotionQuality(f — f’) € [0,1] indicates smoothness and
realism of the transition between two fragments f and f/, with
zero being jerky or unrealistic and one being pleasing to the eye.
ControlQuality(f|c) € [0,1] indicates how closely fragment f’s
evident control matches the control signal ¢, with zero being per-
forming the wrong action [e.g., jumping at the wrong time] and
one corresponding to performing the correct action [e.g. walking
in the correct direction]. Our implementations of MotionQuality
and ControlQuality are discussed in Section 4.1. This factorization
allows for a natural trade-off between artifacts introduced through
bad transitions and those introduced through inaccurately following
control-induced character root motion.

We now have all that we need to create our policy: the control bins
and fragments give us a discretized space in which to represent our
decisions, the control model lets us reason about future player in-
puts, and the ControlQuality and MotionQuality functions provide
a means to compute the immediate benefit of decisions.

The only thing that remains is to compute the expected benefit of
each decision. Value iteration is a computational framework that
does just this, computing both optimal behavior and the expected
discounted sum of future rewards given that behavior. By ‘dis-
counted’ we mean that the reward n time steps in the future is mul-
tiplied by A"~ our choice of A is given in Section 4.1.

Value iteration may be succinctly expressed as an expected reward
update rule

Ryc « max; (Q”a“W(f = flle)+4-Y Te ~Rffc’>)

where Ry, is initialized to 0 and stores the expected reward at frag-
ment f with current control signal c¢. Once this update rule has been
iterated until R converges, the policy may be constructed as

Py < argmax p (Quality(f — f'le) +4- Zch’ -Rffcl> 3)

where Py, stores the index of the next fragment to play given pre-
vious fragment f and current control signal c. It is a property of
value iteration that this policy is optimal (given the modeling as-
sumptions). For more information on value iteration we recom-
mend Sutton and Barto’s book [1998].

3.1 Alternate Controllers

Having described our controller, we now briefly describe those con-
trollers which we compare against. With the exception of globally
optimal, all the below controllers result from modification of the
reward update, with the policy still computed as per Equation 3.

Greedy control does not care about future reward, and thus its re-
ward update is simply:

Rye — max Quality(f — f'le))

Steady State control (as per [Schodl and Essa 2000]) assumes that
control signals never change, which eliminates matrix 7 from the
reward update:

Ry« maxyp (Quality(f — f/|C) +A- Rfrc) %)

Spread control eliminates 7 by assuming that control signals
change uniformly:

Rye — max;, (Q“a'ity<f~f'c>+l~|é| 'ZRw) ©)

where |C| is the number of control bins.

Optimal control is possible, given knowledge of the future path.
This restriction makes it unsuitable for on-line control, but we use
it as a point of comparison. We use dynamic programming to build
table V where entry Vif gives the value of choosing fragment f at
step i along the path:

Vl.f<—n}a,1x (Quality(fﬁf/\ci)‘FVii]))

To appear in the ACM SIGGRAPH conference proceedings

Control Bin Centers

r=2.0
Figure 4: Ground-plane velocities (black dots) used for control sig-
nal binning in the example application. Velocities are in body-local
coordinates. Each black dot corresponds to six bin centers, with
different turning rates in {—1,0, 1} and airborne state in {0,1}.

where ¢; gives the control signal at step i along the path and value
Vi, at the last step is set to 0. The optimal path fy,..., f, may then
be read back by selecting the maximum V;) and stepping forward
through time:

fo < argmax; V({ ,

8
firt = argmaxf<Qua|ity(ﬁ—>f\6i)+"ii1) ®

4 Results

4.1 The Scenario

We put our animation controller to work in the context of a simple
sphere-collection game (Figure 1). In this game, players use one
joystick on their gamepad to set ground-plane velocity of the char-
acter, while the other joystick controls the character’s turning rate.
A button is used to jump. Our prototype game fixes the character
root motion to that defined by the control signals in order to pro-
vide perfect responsiveness. Additionally, the engine “cleans up”
the character animation by blending between fragments and adjust-
ing the fragment playback rate to best match the current control
signals; these post-processes are not considered in our evaluation,
since they could be equally well applied to the output of any char-
acter animation controller.

We begin our discussion of the implementation details by reviewing
the inputs to our algorithm.

Traces. Seven minutes of two-player gameplay was recorded us-
ing a dummy character animation controller: the game engine con-
strained the character’s root to follow the user’s control signals ex-
actly, but the character’s pose was not animated. An additional two
minutes of gameplay was recorded in a different session from one
of the players to be used in evaluating the controllers.

Control bins were centered on 150 points selected in the game’s
control space — all possible combinations of ground plane velocities
in three concentric circles (Figure 4), turning speeds in {—1,0,1}
radians per second, and airborne flag in {0, 1}. The velocities are
expressed in character-local coordinates.

Fragments were drawn from approximately five minutes of motion
in the CMU motion capture database [CMU 2001]. This motion
was selected to include walking, running, jumping, and sidestep-
ping. Fragments 0.1 seconds in length were started every 0.05 sec-
ond in each motion. This overlap provides some flexibility in start-

Regular Thresholded
Method | % opt | std.dev. | % opt | std.dev.
model 90 1.9 45 4.1
steady 84 2.6 41 5.1
spread 81 2.4 48 7.1
greedy 46 2.8
opt 91 2.3

Table 1: Summary of quality as a percentage of optimal. Our con-
troller, model, is better than the other controllers in normal opera-
tion. Thresholding causes all of the policy controllers to falter, even
though the optimal path value has only decreased by 9%.

ing positions without generating too many extra fragments. The
fragment pool generated in this manner contained 5934 fragments.

Having described the inputs used in our test scenario, we move on
to describing the intermediate data.

Control Model. The control model is always computed via fre-
quency counting on the traces and so requires no adaption to this
scenario.

Motion Quality was based on the intuition that reflecting a joint
angle at frame i about the joint angle at frame i + j provides a pre-
diction of the future angle at frame i+ 2. (That is, if the elbow is
bent 90° at frame 2 and bent 95° at frame 4, one might reasonably
expect it to be bent 100° at frame 6). Bearing this in mind, let the
quality of transitioning between fragments f and f’ consisting of
poses fi,...,fm and f7,..., f respectively be:

3 -1
MotionQuality(f — f') = (1 +Y o Dis(RefI(]”,,,ai,fm)afé,»)>

i=1

©)
where the weights @ = [0.8,0.5,0.3] and the offsets 6 = [1,2,3]
where chosen by hand to produce good results, Dis(f, f’) takes the
distance between poses by summing euclidean distance between
bone tips, and Refl(f, f/) reflects pose f over pose f’ in angle space.
As a special case, we force MotionQuality(f — f’) = 0 whenever
f' appears within a short window before f in the source motion.
This helps to prevent “stuttering” artifacts.

Control Quality was computed using a distance measure between
the evident control Ev(f) in a fragment (estimated from center-of-
mass motion) and the given control c:

ControlQuality(f|c) = (1 + ControlDis(Ev(f),c¢)) "} (10)

where control distance is a weighted euclidean distance on control
vectors ¢ = (¢y,¢1,¢q):

ControlDis(c,c’) = wy (P(cy) — P(c))2 +wi (e —) +wa(ca—cly)?
(11)

and P(c) projects non-zero velocities into a log-magnitude space:

P(e,) = ot e (12)

levl

(This projection seems to match human perception of changes in
velocity.) We choose w, = 10, w; = 6, and w, = 20 because these
weights give good results in practice.

We have now described all of the intermediate data required for
our algorithm. The only remaining implementation detail is the
discount factor A, which we set to 0.999.

To appear in the ACM SIGGRAPH conference proceedings

Transitions selected by Model Transitions selected by Steady

Transitions selected by Spread

Transitions selected by Greedy Transitions selected by Opt

e Pougp °° ogef oBus o
o ° %8 ° o
o o °
1 ©o o ogoo 2 °
S OPW o o 000 0T g 000
° Bo_O IR

:4{ oo oo
o

o™ o8 78
o ° o

° o

Control Quality (percentile)
Control Quality (percentile)
Control Quality (percentile)

000 ®wm o

© o000 nuonm‘j

1 o :'g‘bung o o @ %0
°
o % o o
° e ° ® o °®o0 © 0%
6 o 9 o s R s e 00 So
o 8 o, o o 98
&0 080 o8 o of
° °% o 0, o
4 48 °
° oo °
8 o o o 8 o °
o °
<
°

Control Quality (percentile)
Control Quality (percentile)

Motion Quality (percentile) Motion Quality (percentile)

Figure 6: Distribution of transitions in motion quality percentile

Motion Quality (percentile)

Motion Quality (percentile) Motion Quality (percentile)

versus control quality percentile space; greedy and spread seem very

concerned with motion quality, while steady favors high control quality. Our controller, model, strikes a similar balance to opt.

Transitions selected by Model Transitions selected by Steady

Frequency
Frequency
Frequency

Transitions selected by Spread

Transitions selected by Greedy Transitions selected by Opt

Frequency
Frequency

Overall Quality Overall Quality

Transitions selected by Model-T Transitions selected by Steady-T

Frequency
Frequency

Frequency

Transitions selected by Spread-T

Overall Quality Overall Quality Overall Quality

Transitions selected by Opt-T

Frequency

(Thresholding does
not affect greedy)

Overall Quality Overall Quality

Figure 7: Distribution of transitions in overall quality; greedy is

Overall Qualiy Overall Quality

clearly the lowest quality, while opt does a very good job of avoiding

low-quality transitions. Both model and steady have similar profiles, but steady is forced to take more low quality transitions because it is
unprepared for changes in user input. Thresholding (bottom row) forces the policy-based controllers to take far more bad transitions.

Comparison of On-Line Motion Generation Algorithms

model
model-t
steady
steady-t
spread
spread-t
greedy
opt-t

Percent of Optimal
0 20 40 60 80

SESE00SE

ANNNNNNNNNNNNNNNNY
ANNNNNNNNNNY]

b
2 %
é é
% %
% %
72 %
72 %
%

% /

ANNNNNNNNNNNN

7
g
g
/)

Trace

Figure 5: Comparison of trace quality as a percentage of optimal.
The model-based controller performs better than a controller with-
out a user model. Thresholding transitions based on motion quality
has a substantial negative impact.

4.2 Evaluation

For the purposes of evaluation, we define nine controllers. We des-
ignate our controller from Section 3 model; the controllers from
Section 3.1 will be designated greedy, steady, spread, and opt. We
also introduce the model-t, steady-t, spread-t, and opt-t variants,
which are the same controllers restricted to only use transitions in
the top 8% by motion quality. (This is akin to the sort of transition
quality thresholding commonly run on motion graphs.) We omit
greedy-t, since it is identical to greedy.

Synthesis of steady, spread, and model controllers took several
hours, while greedy required two minutes to compute. Synthesis
times for ‘-t’ variants were faster (since there were fewer transitions
to consider). Each controller was run over two minutes of example
control signal recordings (traces). These traces were distinct from
those used in building the user model. Runtimes for model, steady,
spread, and greedy were trivial (since policy evaluation is simply a
matter of table lookup), while opt took approximately thirty min-
utes to calculate. Once the controllers finished in their fragment
selection, qualities of the generated paths were calculated using the

Quality function defined earlier.

Results of running the controllers on individual traces are given in
Figure 5, with a summary in Table 1. From this overview, two
conclusions may be drawn: first, the user model is useful — model
performs at 90% of optimal, while steady (the previous state-of-
the-art) achieves 84% and spread achieves 81%. Second, thresh-
olding negatively — and dramatically — impacts the overall quality
of generated motion (model, steady, and spread all lose more than
30% of optimal).

For insight into this second point, consider the individual fragment-
fragment transitions used by the non-thresholded controllers (Fig-
ure 6). With the exception of greedy, all the methods rely, at least
to some extent, on low-motion-quality transitions. An interesting
side-note is that opt is not hampered as severely by the lack of
low motion quality transitions (only an 9% loss); from this we may
conclude that, while reasonably high quality paths still exist in the
thresholded data set, they are much harder to find.

This conclusion is also supported by comparing the overall qual-
ity of chosen transitions before and after thresholding (Figure 7).
Before thresholding, the transition quality histograms of model
and steady appear close to opt (though steady is forced to take
some very low-quality transitions when control signals change); af-
ter thresholding, the transition histograms for model, steady, and
spread seem closer to those for greedy. It is also interesting to
note that while spread does not have as pronounced a high-quality
spike as does model, steady, and opt, it still does quite well before
thresholding.

In order to determine how our user model generalized, we synthe-
sized model using example traces from just the user who did not
perform the evaluation traces, as well as just the user who did. In
both cases it still operated near mean 90% of optimal, with a slightly
higher standard deviation (2.0% vs. 1.7%) when sythesizing with
the user who did not perform the evaluation traces. This seems to

To appear in the ACM SIGGRAPH conference proceedings

indicate that our user model is able to capture broad features of the
control domain without fitting the training data too closely.

Investigating the scaling behavior of our controller, we upped the
number of input fragments from 5934 to 7577 (adding examples of
a motion which the previous controller had performed badly on),
and re-ran the value iteration. This increased the value iteration
step time and memory usage from 22 seconds and 200 megabytes
to 35 seconds and 330 megabytes. (We will discuss theoretical scal-
ing behavior later.) In the presence of these additional fragments,
opt increased by about 1%, while model performed at the same
percentage of this new opt. The new motion was used by the con-
troller. The lack of a larger percentage increase may be due to the
relative infrequency in the example traces of the additional motion
(right-sidestepping).

5 Discussion

In the previous sections we formulated the problem of on-line char-
acter animation control as that of assembling a high-quality se-
quence of motion fragments; we then presented and evaluated an
animation controller for this domain. This controller improved on
previous efforts by modeling user behavior and by considering all
possible transitions, instead of just ones with high motion quality.
Below, we discuss some of the advantages and disadvantages of our
chosen problem formulation and controller.

Fragment-based motion generators as we presented in this paper
have the great advantage of existing in a domain where optimal
paths can be calculated. This allows methods to easily be compared
to optimal, as we did in the results section, and for the complete-
ness of metrics and source data to be vetted by watching optimal
paths. (For if the optimal paths do not look right, what chance does
a mere on-line algorithm stand?) Furthermore, in the case of gener-
ators built around a precomputed control policy, all transitions that
will ever be taken and the circumstances for those transitions are
known before the controller is deployed, so it possible to examine
the worst possible motion — either to determine that no bad surprises
await or that adjustments are required. Additionally, the computed
expected future reward at each (fragment, control bin) pair tells us
what situations are bad to be in not just from an immediate quality
perspective, but in the long term. Finally, if modification is re-
quired, value iteration will converge quickly given a good guess —
for instance, the existing (pre-adjustments) policy. And even when
not fully converged, policies tend to be reasonably close to their
final states. These factors conspire to allow rapid iteration when
users are searching for good parameters and source motions.

A limitation of all fragment-based motion generators is that they
will never be able to respond in less than one fragment’s time; thus
fragment length selection is a trade-off between increased memory
usage and precomputation time and run-time responsiveness, for
which an application-specific balance must be struck. By selecting
only the best motion in a situation, our policy will lose some of the
variation present in the source database. However, one could at-
tempt to amend the policy by keeping a family of good next paths
instead of simply one, then choosing at random to provide vari-
ety. Transitions with high motion quality are sometimes simply not
available, even for the globally optimal motion. We believe this
problem can never be completely solved. For example, a truly “nat-
ural” transition into a jump from the middle of a walking stride
at the speed a gamer would demand may be impossible. How-
ever, blending techniques in [Shin and Oh 2006; Heck and Gleicher
2006; Safonova 2006; Ikemoto et al. 2006] could be combined with
our approach to improve the overall quality of the output motion.

Our algorithm, given |F| fragments and |C| control bins, requires
O(|C|) time per fragment selection (since we perform a linear scan

when finding the proper control bin; temporal locality should allow
this to be amortized to O(1)) and O(|F|-|C|) memory (to store the
policy table). In our example controller, this corresponds to well un-
der 1ms for fragment selection and approximately two megabytes
of memory. Synthesis is more expensive, requiring O(|F|?|C|?)
time per value iteration step (because Equation 2 is executed for
all fragments and control bins and scans all fragments and control
bins), and O(|F|? 4 |C|?) space (in order to store precomputed qual-
ity matrices). Convergence generally requires O(n) steps, where n
is the size of the largest cycle in the optimal controller. For our
example controller this corresponds to roughly 22 seconds per iter-
ation step and 200 megabytes of process memory. While large con-
trollers are feasible at runtime, actually synthesizing them using our
straightforward value iteration becomes infeasible at around 15000
fragments (we run out of memory). With a more advanced policy
selection scheme, one could envision using much larger data sets.

Finally, there are several interesting directions to explore in future
work. First, value iteration is an inherently parallel process and it
should be possible to exploit this to accelerate the synthesis process,
thus providing faster feedback to parameter changes. Second, con-
trol policies are well-suited to evaluation on a GPU and could en-
able large numbers of animated characters to be computed without
CPU load. Third, fragments do not need to be drawn directly from
a motion database, but could instead be synthesized; for instance,
interpolations and simple transformations — reflection, reversing —
of existing fragments could be introduced. This procedure could be
automated to fill deficiencies in the fragment set (missing control
directions, for instance).

6 Conclusion

In this paper we presented and evaluated several policy-based on-
line character animation controllers over real-world example data.
In this way, we demonstrated that a controller generated using value
iteration with a user model was an improvement over previous con-
trollers. We also determined that even relatively conservative trim-
ming of transitions (by motion graph standards, at least) has a dis-
astrous impact on the overall quality of the on-line controllers. This
result demonstrates the need, in data-driven motion generation, to
preserve low motion quality transitions in order to avoid becoming
stuck in low control quality situations.

Acknowledgments

Thanks to Jimmy Andrews for suggestions on metrics, Chris Atke-
son for pointers on value iteration, Christopher Twigg for ma-
trix palette skinning examples, and Irfan Essa for valuable dis-
cussion. Motion data used in this project was obtained from mo-
cap.cs.cmu.edu; this database was created with funding from NSF
EIA-0196217. This research was supported with NSF grants IIS-
0326322 and ECS-0325383.

References

ABE, Y., Liu, C. K., AND PopPovI¢, Z. 2004. Momentum-
based parameterization of dynamic character motion. In SCA
'04: Proceedings of the 2004 ACM SIGGRAPH/Eurographics
symposium on Computer animation, Eurographics Association,
Aire-la-Ville, Switzerland, Switzerland, 173—-182.

ARIKAN, O., AND FORSYTH, D. A. 2002. Interactive motion
generation from examples. ACM Press, New York, NY, USA,
vol. 21, 483-490.

To appear in the ACM SIGGRAPH conference proceedings

BELLMAN, R. 1957. Dynamic Programming. Princeton University
Press, Princeton, NJ.

CHAL J., AND HODGINS, J. K. 2005. Performance animation
from low-dimensional control signals. ACM Transactions on
Graphics 24, 3, 686—-696.

CMU, 2001. http://mocap.cs.cmu.edu.

DONTCHEVA, M., YNGVE, G., AND POPOVIC, Z. 2003. Layered
acting for character animation. ACM Transactions on Graphics
22,3, 409-416.

FALOUTSOS, P., VAN DE PANNE, M., AND TERZOPOULOS, D.
2001. Composable controllers for physics-based character ani-
mation. In Proceedings of ACM SIGGRAPH 2001, ACM Press,
New York, NY, USA, 251-260.

GLEICHER, M., SHIN, H. J., KOVAR, L., AND JEPSEN, A. 2003.
Snap-together motion: Assembling run-time animations. In SCA
'03: Proceedings of the 2003 ACM SIGGRAPH/Eurographics
symposium on Computer animation, ACM Press, New York, NY,
USA.

GRZESZCZUK, R., AND TERZOPOULOS, D. 1995. Automated
learning of muscle-actuated locomotion through control abstrac-
tion. In Proceedings of ACM SIGGRAPH 1995, ACM Press,
New York, NY, USA, 63-70.

HECK, R., AND GLEICHER, M., 2006. Parametric motion graphs.
ACM SIGGRAPH / Eurographics Symposium on Computer An-
imation (Poster), August.

Hsu, E., GENTRY, S., AND PoPOVIC, J. 2004. Example-based
control of human motion. In SCA '04: Proceedings of the 2004
ACM SIGGRAPH/Eurographics symposium on Computer ani-
mation, ACM Press, New York, NY, USA, 69-77.

IKEMOTO, L. K. M., ARIKAN, O., AND FORSYTH, D. A. 2005.
Learning to move autonomously in a hostile world. Tech. Rep.
UCB/CSD-05-1395, EECS Department, University of Califor-
nia, Berkeley.

IKEMOTO, L. K. M., ARIKAN, O., AND FORSYTH, D. 2006.
Quick motion transitions with cached multi-way blends. Tech.
Rep. UCB/EECS-2006-14, EECS Department, University of
California, Berkeley, February 13.

JAMES, D. L., AND FATAHALIAN, K. 2003. Precomputing in-
teractive dynamic deformable scenes. ACM Transactions on
Graphics 22, 3 (July), 879-887.

JAMES, D. L., TWIGG, C. D., COVE, A., AND WANG, R. Y.
2006. Mesh ensemble motion graphs. In SIGGRAPH "06: ACM
SIGGRAPH 2006 Sketches, ACM Press, New York, NY, USA,
69.

KAELBLING, L. P., LITTMAN, M. L., AND MOORE, A. P. 1996.
Reinforcement learning: A survey. Journal of Artificial Intelli-
gence Research 4, 237-285.

KoOVAR, L., GLEICHER, M., AND PIGHIN, F. 2002. Motion
graphs. ACM Press, New York, NY, USA, vol. 21, 473-482.

LASzZLO, J., VAN DE PANNE, M., AND FIUME, E. 2000. Inter-
active control for physically-based animation. In Proceedings of
ACM SIGGRAPH 2001, ACM Press, New York, NY, USA.

LEE, J., AND LEE, K. H. 2004. Precomputing avatar behavior
from human motion data. In ACM SIGGRAPH / Eurographics
Symposium on Computer Animation, 79-87.

LEE, J., AND LEE, K. H. 2006. Precomputing avatar behavior
from human motion data. Graph. Models 68, 2, 158-174.

LEE, J., CHAI J., REITSMA, P. S. A., HODGINS, J. K., AND
POLLARD, N. S. 2002. Interactive control of avatars animated
with human motion data. ACM Press, New York, NY, USA,
vol. 21, 491-500.

LEVIN, E., PIERACCINI, R., AND ECKERT, W. 2000. A stochastic
model of human-machine interaction for learning dialog strate-
gies. IEEE Transactions on Speech and Audio Processing 8, 1,
11-23.

MOORE, A., AND ATKESON, C. 1995. The parti-game algo-
rithm for variable resolution reinforcement learning in multidi-
mensional state-spaces. Machine Learning 21.

REITSMA, P. S. A., AND POLLARD, N. S. 2004. Evaluating mo-
tion graphs for character navigation. In SCA ’04: Proceedings of
the 2004 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation, ACM Press, New York, NY, USA, 89-98.

REITSMA, P. S. A., AND POLLARD, N. S. (in press). Evaluating
motion graphs for character animation. ACM Transactions on
Graphics. in press.

RENDERWARE, 2001. http://www.renderware.com.

SAFONOVA, A., AND HODGINS, J. 2007. Construction and opti-
mal search of interpolated motion graphs. ACM Transactions on
Graphics 26, 3 (Aug.).

SAFONOVA, A. 2006. Reducing the search space for physically
realistic human motion synthesis. PhD thesis, Carnegie Mellon
University, Pittsburgh, PA.

SCHODL, A., AND ESSA, I. A. 2000. Machine learning for video-
based rendering. Tech. Rep. GIT-GVU-00-11, Georgia Institute
of Technology.

SHIN, H. J., AND OH, H. S. 2006. Fat graphs: Construct-
ing an interactive character with continuous controls. In ACM
SIGGRAPH / Eurographics Symposium on Computer Animation,
291-298.

SHIN, H. J., LEE, J., SHIN, S. Y., AND GLEICHER, M. 2001.
Computer puppetry: An importance-based approach. ACM
Transactions on Graphics 20, 2, 67-94.

SUTTON, R. S., AND BARTO, A. G. 1998. Reinforcement Learn-
ing: An Introduction. MIT Press, Cambridge, MA, ch. 4.4.

TORQUE, 2000. http://www.garagegames.com/products/torque/tge/.

TREUILLE, A., LEE, Y., AND PoPovI¢, Z. 2007. Character
animation with continuous user control. ACM Transactions on
Graphics 26, 3 (Aug.).

VAN DE PANNE, M., AND LEE, C. 2003. Ski stunt simulator:
Experiments with interactive dynamics. In Proceedings of the
14th Western Computer Graphics Symposium.

ZHAO, P., AND VAN DE PANNE, M. 2005. User interfaces for
interactive control of physics-based 3d characters. In SI3D ’05:
Proceedings of the 2005 symposium on Interactive 3D graphics
and games, ACM Press, New York, NY, USA, 87-94.

