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ABSTRACT: In this study a new pH-responsive nanogel
probe containing a complementary nonradiative resonance
energy transfer (NRET) fluorophore pair is investigated and
its ability to act as a versatile probe of network-related changes
in three hydrogels demonstrated. Fluorescent sensing using
NRET is a powerful method for studying relationships
between Angstrom length-scale structure and macroscopic
properties of soft matter. Unfortunately, inclusion of NRET
fluorophores into such materials requires material-specific
chemistry. Here, low concentrations of preformed nanogel
probes were included into hydrogel hosts. Ratiometric
photoluminescence (PL) data for the gels labeled with the
nanogel probes enabled pH-triggered swelling and deswelling
to be studied as well as Ca2+-triggered collapse and solute release. PL measurements during compression of a nanogel probe-
labeled nanocomposite gel demonstrated mechanochromic behavior and strain sensing. The new nanogel probes have excellent
potential for investigating the internal structures of gels and provide a versatile ratiometric fluorescent platform for studying pH
and strain.

H ydrogels1−7 are one of the most actively studied classes of
soft matter due to their excellent potential for

applications involving drug delivery,3 sensing,8 biological
function mimicry,9 regenerative medicine,10 water purifica-
tion,11 and optical switching.12 Well-studied conventional
hydrogels include those based on polyethylene glycol13 and
polyamides.14,15 However, conventional gels are intrinsically
brittle due to a nonuniform distribution of elastically effective
chain lengths. To overcome this problem high ductility gels
(with greater structural complexity) were introduced such as a
double network,5 nanocomposite,16,17 slide ring,18 and doubly
cross-linked gels.19 While gel swelling behaviors and mechanical
properties are well understood,6 the internal structures of gels
can be challenging to study. Understanding the internal
structure is especially important for gels with complex
structures.5,16,17,19 Hence, improving the understanding of the
relationship between the internal structure of gels and
macroscopic gel properties is a key challenge for polymer and
biomaterials science.20 Techniques typically used to address this
challenge involve small-angle scattering21 and SEM.22 However,

these techniques either require expensive equipment and large
facilities (e.g., synchrotrons) or may introduce artifacts. Here,
we report an alternative and versatile approach for studying the
internal structure and environment in gels. We introduce new
pH-responsive nanogel probe particles and show that they can
be used to fluorescently sense the local environment (e.g., pH)
and structural changes (e.g., local network collapse) in three
different “host” hydrogels. The nanogel probe is easily
constructed and small (<50 nm diameter) with relatively bright
photoluminescence (PL) intensity. The nanogel probe is
cytocompatible and robust and can innocuously probe the
internal structure of gels and sense changes with high fidelity.
The nanogels studied here are cross-linked polymer colloid

nanoparticles with titratable −COOH groups. The nanogels
swell due to −COO− formation which become dominant when
the pH exceeds the apparent pKa.

23 The nanogel probes
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(NGPh/An, Scheme 1a) were prepared by copolymerization of
methyl methacryate (MMA), methacrylic acid (MAA), ethylene
glycol dimethacrylate (EGDMA), (9-phenanthryl)methyl
methacrylate (Ph), and (9-anthryl)methacrylate (An). Ph
(donor) and An (acceptor) are complementary nonresonance
energy transfer (NRET) pairs. NRET is a nonradiative and
distance-dependent energy transfer process that occurs between
a photoexcited fluorophore (donor) and a ground-state
fluorophore (acceptor).24,25 Energy transfer can occur via
dipole-induced dipole coupling when the donor emission and
acceptor absorption overlap which enables use as a
spectroscopic ruler.26 We hypothesized that incorporation of

a complementary NRET fluorophore pair into a pH-responsive
nanogel particle would provide a preformed nanoprobe that
could sense the internal pH or strain within a “host”
macroscopic gel. In contrast to earlier temperature-responsive
microgels containing Ph and An24 the new nanogel probe
particles reported here were pH responsive.
Scheme 1b−d depicts the three hydrogel “hosts” studied. We

assembled pH-responsive hydrogels of covalently interlinked
(nonlabeled) nanogel particles23 (Scheme 1b) and used
NGPh/An to sense pH and gel collapse. These gels contained
intra- and inter-cross-linked poly(MMA-MAA-EGDMA) nano-
gel particles and are termed doubly cross-linked nanogels (DX

Scheme 1. (a) pH-Responsive Nanogel Probes (NGPh/An) and Small Amounts of NGPh/An Were Included within (b) a Doubly
Cross-Linked Nanogel (DX NG), (c) a Poly(acrylamide) Gel, and (d) a Nanocomposite Gela

aMBAAm and LAP are N,N′-methylenebis(acrylamide) and laponite RD, respectively.

Figure 1. (a) Variation of z-average diameter (dz) and PL intensity ratio of the donor and acceptor peaks (ID/IA) with pH for an NGPh/An dispersion.
(b) PL spectra for the NGPh/An dispersions. The inset shows cuvettes of the dispersions irradiated with UV light. The pH values are shown. (c)
Variation of ID/IA with dz. The inset shows the calculated average separation between the Ph and An. (d) Data from repeated cycling between pH 6.0
and 8.0.
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NGs).27 They have potential application as an injectable gel for
intervertebral disc (IVD) repair.28 The NGPh/An probes were
also included during synthesis of poly(acrylamide) (PAAm)
hydrogel (Scheme 1c) and a tough nanocomposite gel (Scheme
1d).
The nanogel probe particles (NGPh/An) were synthesized

using emulsion polymerization (Supporting Information) and
were pH-responsive. They had an average diameter of 16 nm
based on TEM (Figures S3a and Table S2). The particles
contained Ph (0.42 mol %) and An (0.59 mol %) as determined
by UV−visible spectroscopy (see Figure S2) and swelled when
the pH increased beyond 5.4 (Figure 1a) (see Supporting
Information for other characterization data.) The PL spectra
obtained from the NGPh/An dispersions were highly sensitive to
pH (Figure 1b). As the pH increased from 4.5 to 9.0 the
intensity of the Ph donor band (ID) at 366 nm increased,
whereas the intensity of the An acceptor band (IA) at 414 nm
decreased. Furthermore, the NGPh/An dispersion changed from
blue to violet when illuminated with UV light (Figure 1b,
inset). The ID/IA ratio increased with increasing pH (Figure 1a)
because of decreased resonance energy transfer between Ph and
An due to their increased separation as a consequence of
particle swelling. PL spectra for control of NGPh and NGAn

dispersions (Figure S7) confirmed that the I366/I414 ratio could
only be used for ratiometric detection when the nanogel
particles contained both Ph and An (Figure S8). The quantum
yield at pH 8.0 for the NGPh/An particles was 13%, which
indicates that the nanoprobes had a reasonably bright PL
emission.29 The ability of fluorescent nanogel probes to report
pH and/or strain in load-bearing tissue is potentially important
for future biomaterial applications.30 The NGPh/An particles
were not cytotoxic as judged by cell challenge data obtained
using human nucleus pulposus (NP) cells and a NGPh/An

concentration that was high enough for well-resolved PL
spectra to be recorded (Figure S9).
The ID/IA ratio increase that is apparent with increasing pH

(Figure 1a) occurred af ter the increase of the dz values. This
result indicates that the PL and DLS data originated from
dif ferent particle regions. A plot of ID/IA against dz (Figure 1c)

shows two linear regions with a discontinuity at dz ∼ 36 nm.
NRET efficiencies calculated from the PL spectra for NGPh/An

and NGPh (Figure S7) enabled calculation of the average
donor−acceptor distance (r) (see Supporting Information).
Figure 1c (inset) shows the variation of r with dz. A linear
relationship between r and dz can be expected if nanoscale and
macroscale swelling follow affine swelling.31 We ascribe the two
linear regions that are evident to two-stage nanogel swelling.
This behavior is likely due to shell swelling at lower pH values
and core swelling at higher pH. Electrophoretic mobility data
(Figure S5) support this new structural insight for nanogels
(see additional core−shell NGPh/An discussion in the Support-
ing Information). The reversibility of the ID/IA changes was
probed by cycling the dispersion pH between 6.0 and 8.0
(Figure 1d). While the ID/IA ratios showed reversibility after
the first cycle, the dispersions began to aggregate slightly due to
the increased ionic strength associated with buffer changing.
The fact that the ID/IA values were not signif icantly af fected by
dispersion aggregation is potentially advantageous for future
nanogel probe applications. The effects of added Ca2+ on ID/IA
and dz for an NGPh/An dispersion at pH 9.0 were also studied
(Figure S10). The ID/IA ratio decreased at concentrations of
0.020 M or more and stabilized at 0.57. This result shows that
particle collapse occurred (from Figure 1a). However, the dz
values increased due to aggregation because of electrostatic
screening and ionic cross-linking.32 These two examples
demonstrate that ratiometric PL intensity data enabled study
of NGPh/An particle size in conditions where DLS was not
suitable. The stability of both the dz and ID/IA values for the
NGPh/An nanoprobes as a function of time was investigated at
selected pH values in the range of 4.5−10.8 (Figure S11). The
dz and ID/IA values changed by an average of less than 10% over
a 10 day period and demonstrated good stability.
We investigated the ability of NGPh/An to act as a nanogel

probe for swelling/deswelling transitions within an injectable
pH-responsive DX NG gel (Scheme 1b). This injectable gel
was assembled from swollen vinyl-functionalized poly(MMA-
MAA-EGDMA) NG particles27 and very small proportions of
NGPh/An particles (ranging from 0.02 to 0.50%) as depicted in

Figure 2. (a) Variation of the average linear swelling ratio (α) and ID/IA with pH for DX NG(NGPh/An)0.50. (b) PL spectra for DX NG(NGPh/An)0.50.
The inset shows the gel images obtained with UV light. Scale bar: 10 mm. (c) Variation of ID/IA with α for DX NG(NGPh/An)x gels (x values are
shown). (d) Data obtained for the gels by cycling the pH between 6.0 and 8.0.
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Scheme S1c. The viscous dispersions transformed into elastic
gels due to inter-NG linking via free-radical coupling of the
pendent vinyl groups. These DX NG(NGPh/An)x gels contained
less than one NGPh/An probe particle per 20 covalently
interlinked NG matrix particles and were transparent in visible
light (Figure S12). The average linear swelling ratio (α = Q1/3,
where Q is the volume swelling ratio) for the DX
NG(NGPh/An)0.50 gels increased as the pH increased (Figure
2a) due to swelling of the constituent NG particles (Figure 1a).
PL spectra for the gels were pH-dependent (Figure 2b). The
ID/IA ratio increased with increasing pH due to gel swelling.
Additionally, the pH increase caused the gels to change from
blue to violet (Figure 2b, inset). These results show that pH-
triggered swelling of the NGPh/An particles occurred within the
DX NG(NGPh/An)0.50 gel. Because the NGPh/An particles did not
alter the pH-dependent α values significantly (Figure S13), they
behaved as innocuous probes. The latter result is potentially
beneficial for future gel studies.
The intensity of the DX NG(NGPh/An)x PL spectra (Figure

S14) and ID/IA fidelity (Figure 2c) increased with increasing x.
The latter trend is due to the increased dominance of the
NRET-based ID and IA changes compared to the PL intensity
changes associated with pH-dependent light scattering from the
DX NG matrix. The minimum ID/IA ratio of 0.53 corresponded
to almost complete collapse from comparison with the
ratiometric PL data for dispersed NGPh/An (Figure 1a). Cyclic
gel swelling studies were also conducted between pH 6.0 and
8.0 (Figure 2d) which demonstrated excellent reversibility of
the ID/IA (and α) response. Hence, the nanogel probes
successfully reported gel swelling/deswelling.
The nanogel probe was able to report collapse of a DX

NG(NGPh/An)0.10 gel due to Ca2+ (Figure 3a) (see Figure S15
for the PL spectra.) A major decrease of α and ID/IA occurred
for Ca2+ concentrations of 0.020 M or higher due to
electrostatic screening and ionic cross-linking of the COO−

groups by Ca2+. Comparing the minimum ID/IA and α values to
those shown in Figure 2c (x = 0.10) shows that more
pronounced gel deswelling was caused by Ca2+ (at pH 8.9) than
occurred in its absence at pH 4.5. This result demonstrates the
ability of Ca2+ to extinguish electrostatic repulsion.
The nanogel probe also enabled simultaneous monitoring of

pH-triggered swelling and solute release. For this study DX
NG(NGPh/An)0.10 gel was prepared containing RBITC
(structure shown in Figure S16f). The latter model solute has
an emission maximum at 581 nm (Figure S16b). Figure 3b
shows the pH-triggered changes of the relative PL intensity for
RBITC (I581/(ID + IA)) from the RBITC-loaded DX NG-

(NGPh/An)0.10 gel. The I581/(ID + IA) value decrease (from
RBITC release) closely followed the ID/IA ratio increase (due to
gel swelling). (Figure S16 of the Supporting Information shows
the spectra, calibration, and release data.) Because this family of
injectable gels has potential application for IVD repair,28 we
studied its mechanical properties using uniaxial compression
(Figure S17). The modulus and yield strain were 19 kPa and
47%, respectively (Table S3). The former value is comparable
to the complex modulus reported for human NPs.33 The DX
NG(NGPh/An)0.10 gel was not cytotoxic to NP cells (Figure
S18). These data demonstrate the ability of using NGPh/An to
simultaneously monitor solute release and swelling/deswelling
changes of an injectable pH-responsive gel with potential
biomaterial use.
The ability of NGPh/An particles to act as a probe within a

conventional (non-pH-responsive) PAAm-MBAAm gel
(Scheme 1c) was investigated. The gel was prepared by free-
radical solution polymerization at pH 5.6 in the presence of a
low concentration of NGPh/An (see Supporting Information).
The minimum ID/IA ratio of 0.51 (Figure 4a) matches that

shown in Figure 1a and confirms the nanogel probes were
collapsed. As the pH of the PAAm(NGPh/An)0.10 gel increased
the ID/IA ratio also increased and reached 0.91 at pH 10.8
(Figure S19 shows the PL spectra). This value corresponds to
dz = 38 nm (Figure 1c) and implies that the particles did not
fully swell. We attribute this behavior to physical constraint of
the nanogel probe particles by the PAAm-MBAAm matrix.
Nevertheless, the PL changes were sufficiently strong for the gel
to change from blue to violet as the pH increased (Figure 4a).
Because the α values confirm this gel did not change its swelling
with pH (as expected) the nanogel probe signal was decoupled
from the gel swelling. Images of these gels containing universal
indicator (Figure S20) confirm that the internal pH values of

Figure 3. (a) Effect of added CaCl2 on α and ID/IA for DX NG(NGPh/An)0.10. The pH was 8.9. The gel images were obtained using UV light. Scale
bar: 10 mm. (b) Variation of I581/(ID + IA) and ID/IA with pH for DX NG(NGPh/An)0.10 containing RBITC. The inset shows the PL spectra for the
gel at pH 4.5 and 8.0.

Figure 4. (a) Effect of pH on α and ID/IA for PAAm-MBAAm-
(NGPh/An)0.10 gel. (b) Variation of stress and ID/IA with strain for a
PAAm-LAP(NGPh/An)0.03 nanocomposite gel. The gel images were
obtained in UV light. Scale bar: 10 mm.
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the gels matched those of the buffer solutions. Hence, NGPh/An

reported the internal gel pH.
A low concentration of NGPh/An particles (0.03 wt %) was

included during the preparation of a tough PAAm-LAP
nanocomposite gel (Scheme 1d). The gel was synthesized by
free-radical polymerization of AAm in the presence of LAP
which acted as a cross-l inker.16 The PAAm-LAP
((NGPh/An)0.03) gel changed from violet to blue when
compressed and was mechanochromic (inset of Figure 4b)
(Figure S21 shows the PL spectra). The high gel pH (10.7) and
absence of an organic cross-linker, such as MBAAm, ensured
the NGPh/An particles swelled fully prior to deformation. The
ID/IA ratio decreased from 1.25 to 0.85 as the macroscopic
strain increased from 0% to 72%. These ID/IA values
correspond to spherical equivalent dz values of 41 and 38
nm, respectively, from Figure 1c and demonstrate for the first
time the ability of nanoprobe gel particles to act as a strain
sensor within a gel to the best of our knowledge.
This study has introduced a versatile pH-responsive nanogel

probe particle (NGPh/An) which, when included into three host
gels, enabled ratiometric sensing of either internal pH, gel
collapse, or both as well as Ca2+, pH-triggered release of a
fluorescent solute or strain. The ratiometric PL response could
be tuned using nanogel probe concentration, and the changes
due to pH were reversible. This new approach to conferring
ratiometric sensing properties to gels required only nanogel
probes dispersed in the reactant mixture used to construct the
gels and should therefore be generally applicable. The NGPh/An

particles enabled ratiometric PL intensity detection at very low
concentrations and have good potential to act as innocuous
probes for studying internal structures, pH, and swelling for
other hydrogels. The construction approach used for the
nanogel probes should also be suitable for other NRET pairs.
Furthermore, nanogel probes loaded into DX NG gels, or other
injectable gels, may lead to load-supporting gels with built-in
fluorescent strain reporting for next-generation biomaterials.
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