
Open access to the Proceedings of

the 15th USENIX Symposium on Networked

Systems Design and Implementation

is sponsored by USENIX.

ResQ: Enabling SLOs
in Network Function Virtualization

Amin Tootoonchian, Intel Labs; Aurojit Panda, NYU, ICSI; Chang Lan, UC Berkeley;

Melvin Walls, Nefeli; Katerina Argyraki, EPFL; Sylvia Ratnasamy, UC Berkeley;

Scott Shenker, UC Berkeley, ICSI

https://www.usenix.org/conference/nsdi18/presentation/tootoonchian

This paper is included in the Proceedings of the

15th USENIX Symposium on Networked

Systems Design and Implementation (NSDI ’18).
April 9–11, 2018 • Renton, WA, USA

ISBN 978-1-939133-01-4

ResQ: Enabling SLOs in Network Function Virtualization

Amin Tootoonchian⋆ Aurojit Panda¶‡ Chang Lan† Melvin Walls§

Katerina Argyraki• Sylvia Ratnasamy† Scott Shenker†‡

⋆Intel Labs †UC Berkeley ‡ICSI ¶NYU §Nefeli •EPFL

Abstract

Network Function Virtualization is allowing carriers to re-

place dedicated middleboxes with Network Functions (NFs)

consolidated on shared servers, but the question of how (and

even whether) one can achieve performance SLOs with soft-

ware packet processing remains open. A key challenge is

the high variability and unpredictability in throughput and

latency introduced when NFs are consolidated. We show that,

using processor cache isolation and with careful sizing of

I/O buffers, we can directly enforce a high degree of perfor-

mance isolation among consolidated NFs – for a wide range

of NFs, our technique caps the maximum throughput degra-

dation to 2.9% (compared to 44.3%), and the 95th percentile

latency degradation to 2.5% (compared to 24.5%). Building

on this, we present ResQ, a resource manager for NFV that

enforces performance SLOs for multi-tenant NFV clusters

in a resource efficient manner. ResQ achieves 60%-236%

better resource efficiency for enforcing SLOs that contain

contention-sensitive NFs compared to previous work.

1 Introduction

Modern networks are replete with dedicated “middlebox”

appliances that perform a wide variety of functions. In

recent years, operators have responded to the growing cost

of procuring and managing these appliances by adopting

Network Function Virtualization (NFV). In NFV, middlebox

functionality is implemented using software Network

Functions (henceforth NFs), which are deployed on racks of

commodity servers [18, 36, 38]. This approach offers several

advantages including lower costs, easier deployment, and

the ability to share infrastructure (e.g., servers) between NFs.

However, there is one oft-overlooked disadvantage to

the move to software. Because physical instantiations of

these functions relied on dedicated hardware; they had

well-understood performance properties which allowed

operators to offer performance SLOs [3, 7, 44]. Providing

performance guarantees is harder with software, particularly

when multiple NFs are consolidated on the same server.

While current NFV solutions [28, 41, 47, 49] typically

place NFs on dedicated cores, this is insufficient to ensure

performance isolation. Even when run on separate cores,

NFs share other processor resources such as the last-level

cache (LLC), memory, and I/O controllers (Figure 1),

P
ro
c
e
s
s
o
r

P
ro
c
e
s
s
o
r

DDR DDR

RAMRAM

PCI-E PCI-E

N
IC

N
IC

QPI

Server

… …
Core

Core

Core

Core

LLC

IDI

iMC

DDR

QPI IIO

PCI-EQPI

Processor

Figure 1: High-level view of shared resources inside a server and CPU.

A typical NFV deployment consists of racks of servers interconnected

with a commodity fabric. Each server consists of a set of resources (CPU,

RAM, NIC) interconnected with standard interfaces (QPI, DDR, PCIe). A

modern general-purpose Intel CPU consists of a number of processor cores

all sharing the uncore that includes I/O controller (IIO), integrated memory

controller (iMC), last-level cache (LLC), and in-die interconnect (IDI).

collectively referred to as uncore resources [29]. NFs

contend for these uncore resources and, as we show, such

contention can degrade an NF’s throughput by as much as

40% compared to its performance when run in isolation (§2).

Providing performance guarantees in NFV essentially

boils down to solving the noisy neighbor problem, common

in multi-tenant environments [62]. Traditionally, this problem

has been addressed through resource partitioning. However,

in the NFV context, performance variability primarily stems

from contention for the LLC [10] and, until recently, no

mechanism existed to partition the LLC.1 This changed with

the introduction of processor features – e.g., Intel® Cache

Allocation Technology (CAT) [27] – that provides hardware

mechanisms for partitioning the LLC across cores.

CAT is a mechanism that opens the door to a new approach

for performance isolation in NFV. However, this mechanism

has neither been widely tested in nor applied to the NFV con-

text. Hence, in this paper, we study whether and how CAT can

be applied to support performance SLOs for NFV workloads.

More specifically, we explore the following two questions.

First, we evaluate whether CAT is sufficient to ensure per-

formance isolation across NFs? We show that CAT “out of

the box” does not provide predictable performance: instead,

some NFs’ performance continues to vary (by as much as

14.7%) depending on their neighboring NFs. This contradicts

1Instead, prior work on providing SLOs aimed to predict the impact of

contention on performance [10]. However, such prediction is difficult and,

as we show in §6.2, is no longer accurate with newer hardware and software.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 283

Application Description Mpps Instructions/Cycle L3 refs/Packet L3 hit rate Kilocycles/Packet

Efficuts [61] Efficuts classifier (32k rules) 1.224 0.63 10.23 99.92 1.72

EndRE [1] Click-based WAN optimizer 3.770 1.95 1.54 99.95 0.56

Firewall Click-based classifier (250 rules, sequential search) 0.366 0.59 1.59 99.44 5.74

IPsec Click-based IPsec tunnel using IPsec elements 0.442 3.31 5.13 99.83 4.75

LPM Click-based IP router pipeline with RadixIPLookup 5.475 1.92 3.87 99.80 0.38

MazuNAT Click-based NAT pipeline by Mazu Networks 2.698 1.53 12.14 99.92 0.78

Snort [53] Inline IDS (20k rules [16, 57]) with netmap for I/O 0.683 1.94 25.61 97.03 3.06

Stats Click-based flow stat collection with AggregateIPFlows 3.685 1.28 10.22 99.92 0.57

Suricata [46] Inline IDS (20k rules [16, 57]) with netmap for I/O 0.205 1.61 26.89 98.36 10.

vEPC Standalone software implementation of LTE core network - - - - -

Table 1: Characteristics of NFs used in this work. The performance is measured when the NF is run alone with exclusive access to 45 MB LLC with a

test traffic of min-sized packets sampled from a pool of 100k flows uniformly at random. Snort and Suricata use netmap while the rest use DPDK for

I/O. We do not report these statistics for vEPC due to constraints discussed in §4.1.

prior work [10, 63] which identified cache contention as

the main source of performance variability for NFs. Careful

investigation reveals the cause of this problem: poor buffer

management with Intel Data Direct I/O [31], a processor fea-

ture that enables direct NIC-to-LLC transfers (i.e., bypassing

memory), can lead to a leaky DMA problem in which packets

are unnecessarily evicted from LLC leading to variable

performance. We describe a simple buffer sizing policy that

avoids the leaky-DMA problem and show that, with this

policy, CAT is sufficient to ensure performance isolation

(with performance variability under 3% across all scenarios).

Next, having ensured the robustness of CAT as a

performance isolation knob given proper buffer sizing, we

turn to the question of how to apply CAT in a practical

system. The challenge here lies in designing a scheduler that

assigns resources to NFs in a manner that is accurate (no

SLO violations), efficient (minimizing resource use), and

scalable (so that decisions can be easily adapted to changing

workloads and infrastructure).

We develop ResQ, a cluster resource scheduler that

provides performance guarantees for NFV workloads. ResQ

computes the number of NF instances required to satisfy

SLO terms, and allocates LLC and cores to them. ResQ

balances accuracy and efficiency by first profiling NFs to

understand how their performance varies as a result of LLC

allocation. For scalability, ResQ uses a fastpath-slowpath

approach. We formulate the scheduling problem as a

mixed-integer linear program (MILP) that minimizes the

number of machines to guarantee SLOs. Solving this

MILP optimally is NP-hard and hence ResQ uses a greedy

approximation to schedule NFs upon admission. In the

background, it periodically computes a near-optimal solution,

and only moves from the greedy to this solution when doing

so would lead to a sufficiently large improvement.

We show that ResQ is accurate (with zero SLO violations

in our test scenarios), efficient (achieving between 60–236%

better resource efficiency compared to prior work based on

prediction [10]) and scalable (can profile and admit new

SLOs in under a minute).

To our knowledge, our work is the first to analyze the

efficacy of using CAT to solve the noisy neighbor problem

for a wide range of NFs and traffic types, and ResQ is the

first NFV scheduler to support performance SLOs, showing

that the benefits of NFV need not come with the loss of

what has traditionally been a vital part of carriers’ service

offerings. ResQ is open source and the code can be found

at https://github.com/netsys/resq.

The remainder of this paper is organized as follows:

we start by quantifying the impact of contention on NFV

workloads (§2) and then provide relevant background

information and elaborate on the problem we address

(§3). We study whether CAT is sufficient for performance

isolation in §4, then present the design and evaluation of

ResQ in §5 and §6 respectively. We discuss related work in

§7, and finally conclude.

2 Motivation

A reasonable first question to ask is whether the current

NFV approach of running multiple NFs on shared hardware

results in performance variability, i.e., does the noisy

neighbor problem matter in practice for NFV workloads.

We address this question by evaluating the effects of sharing

resources for a range of NFs (listed in Table 1), and by

comparing their throughput and latency when they are run

in isolation – i.e., on a dedicated server with no other NFs

– to their performance in a shared environment comprising

of a mix of 11 other NFs (see §4.1). In both cases, we run

the NF being evaluated on its own core and allocate the

same set of resource to it, thus avoiding any contention due

to core sharing. We repeat our measurements using both

small (64 B) packets and large (1518 B) packets, and send

sufficient traffic to saturate NF cores. We delay a more in

depth discussion of our experimental setup to §3.

We show the results of our comparison in Figure 2, which

shows the percent degradation in throughput and 95th per-

centile latency. Each bar shows the maximum performance

loss for an NF running on shared infrastructure when com-

pared to the isolated run. We observe that 7 of the NFs we test

demonstrate a performance degradation of more than 10%,

284 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/netsys/resq

while another 5 show a degradation of more than 20%. Some

suffer significant throughput (up to 44.3%) and latency degra-

dation (up to 24.5%) and we find that this holds for both small

and large-packet workloads. We also tested the effect of con-

tention on a virtual Evolved Packet Core (vEPC) system us-

ing a domain specific packet generator, and observed an 80%

degradation in throughput. The vEPC packet generator does

not measure latency, and as a result we do not include these re-

sults in Figure 2. Finally, we expect that NF degradation will

worsen as we increase the number of NFs that share a server.

In conclusion, we find that most NFs suffer significant

degradation due to resource contention – this holds for both

small and large packet traffic.

3 Background and Problem Definition

Next we present some background for our work, focusing in

particular on describing NFV workloads, identifying sources

of contention that affect network functions, evaluating

prior work in this area, and introducing the processor cache

isolation mechanism used by ResQ. Finally, we define the

NFV SLO enforcement problem that we address in the rest

of this paper.

3.1 NFV Workloads

NFV workloads consist of packet-processing applications,

canonically referred to as Network Functions (NFs); they

range from relatively simple with lightweight processing (e.g.,

NAT, firewall) to more heavyweight ones (e.g., vEPC [17]).

NFs may be chained together such that packets output from

one NF is steered to another. For example packets might first

be processed by a firewall and then a NAT.

NF performance can vary – even in the absence of the

noisy neighbor problems, and an individual NF running in iso-

lation will often display variance in performance across runs.

Work over the last decade has led to practices that have been

shown to improve performance stability for software packet

processors and are now widely understood and adopted [11,

13, 42]. The most significant ones include running NFs on

dedicated and isolated cores that use local memory and NICs

(NUMA affinity), maintaining interrupt-core affinity, dis-

abling power saving features (i.e., idle states, core and uncore

frequency scaling), and disabling transparent huge pages. We

adopt the same and, from here on, all our discussion of per-

formance predictability assumes that the above techniques

are already in use. As we shall show, these are necessary but

not sufficient – we still need to address contention for shared

resources, which is our focus in this paper.

3.2 Sources of Contention

Naı̈vely, one might believe that placing NFs on independent

cores ensures that they do not share resources.2 However,

2There may also be contention within the fabric connecting different

servers; that is outside the scope of this paper, but we envisage that standard

fabric QoS and provisioning mechanisms [6, 54] can be applied there.

in modern processors, cores share several resources.

Resources shared across cores include: PCI-e lanes and

CPU’s integrated I/O controller, and memory channels and

CPU’s integrated memory controller, and last-level cache

(LLC) as shown in Figure 1. Currently, most servers do not

oversubscribe PCIe lanes, and NICs do not contend for these

resources. While independent NFs might share PCIe lanes

when sharing NICs using SR-IOV [33] or through a software

switch [25], one can control contention for these resources

by rate limiting ingress traffic received by an interface. As a

result the main resource that NFs in shared infrastructure can

compete on are memory and LLC, and we study the effect

of both in this paper.

3.3 Prior Work (or Lack Thereof) in NFV

To our knowledge, the only work that analyzes the impact

of resource contention on NFV workloads is a work by

Dobrescu et al. [10]. That work proposes using a simple

model for predicting performance degradation due to

contention for the last level cache. However, as shown in

§6.2, the model is inaccurate when tested under newer

hardware and different workloads – e.g., we find that their

model overestimates the impact of contention by as much

as 13% (a relative error of 75%) for newer hardware and

workloads. In addition, that work focuses on predicting

degradation rather than meeting performance guarantees;

consequently, it does not discuss how one can enforce a

desired limit on the level of contention. In contrast, our work

focuses on enforcing SLOs using hardware mechanisms

such as CAT. As we show in §4, ResQ provides robust

performance guarantees for a variety of workloads.

Other work has looked at managing NFV jobs. This

includes works such as E2 [47], Stratos [20], OPNFV [36].

While these systems perform some basic allocation of

resources to NFs, none consider contention nor do they

aim to provide performance guarantees. ResQ can be

incorporated into these systems allowing them to provide

performance guarantees; ResQ is currently under evaluation

for adoption in one commercial orchestrator.

3.4 Hardware Cache Isolation

ResQ’s enforcement relies on recent processor QoS features

implemented in processors that enable monitoring and con-

trol of shared processor resources. For Intel processors, these

features are collectively known as the Intel Resource Director

Technology (RDT) which include Intel Cache Allocation

Technology (CAT) [30]3 and Cache Monitoring Technology

(CMT). They allow users to allocate or monitor the amount

of cache accessible to or used by threads, cores, or processes.

To monitor a set of processes or cores using CMT, the

kernel allocates a resource monitoring ID (RMID) which the

processor uses to collect usage statistics for them. The kernel

3Cache partitioning is also available in other server processors, for ex-

ample Qualcomm’s Amberwing processor [43] which is based on ARM64.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 285

D
e
g

ra
d

a
ti
o

n
 (
p

e
rc

e
n

t)

0

10

20

30

40

50

EffiCuts
EndRE

Firewall
IPsec LPM

MazuNAT
Snort Stats

Suricata

Throughput - 64B
Throughput - 1518B

(a) Maximum throughput drop

D
e
g

ra
d

a
ti
o

n
 (
p

e
rc

e
n
t)

0

6

12

18

24

30

EffiCuts
EndRE

Firewall LPM Snort Stats
Suricata

Small packets

Large packets

(b) Maximum 95th percentile latency increase

Figure 2: Maximum performance degradation for minimum and MTU-sized packets without isolation. Due to interference, throughput and latency degrade

up to 44.3% and 24.5% respectively. Small and large packet trends are similar for all NFs. We do not measure latency for NFs that mangle packets in

a way incompatible with our traffic generator’s timestamp embedding (MazuNAT, IPSec), and vEPC whose domain-specific traffic generator does not

report latency. LPM and Snort do not exhibit sensitivity with large packets due to a testbed limitation: their cores were not saturated at line rate.

updates a core register with this RMID upon context switch

to bind the monitored entities to the RMID. Similarly, when

limiting the cache available to processes or cores, the kernel

first allocates a class of service identifier (CLOS). It then

updates a register to specify the amount of cache accessible

to a CLOS. Finally, the kernel can associate a CLOS with a

process by updating the appropriate register when switching

to the process. Linux allows users to specify the set of

processes to be monitored using a newly introduced RDT

interface. For the evaluation reported in this paper, we used

these features as implemented on the Xeon® processor E5 v4

family which allows users to specify up to 16 cache classes.

The processor we use for our evaluation allows us to enable

access to between 5%–100% of the cache, in 5% increments,

for each CLOS. To our knowledge ResQ is the first research

work that uses CAT to provide performance isolation in NFV.

3.5 Problem Definition

Our goal is to support performance SLOs for NFV work-

loads. The conjecture driving this paper is that CAT gives

us a powerful and practical knob to achieve this. To validate

this conjecture we must answer the following questions:

1. The crux of providing SLOs is knowing how to isolate

different NFs from a performance standpoint. Is CAT

sufficient to ensure performance isolation between NFs

or do we also have to consider contention for other

resources? We study this question in §4.

2. CAT is ultimately just a configuration knob and using

it in a practical system raises a number of questions: what

is a good scheduling algorithm that balances scalability

(scheduling decisions per second), accuracy (minimizing

SLO violations), and efficiency (minimizing use of

server resources)? What is the API for SLOs or contract

between NFs and the NFV scheduler? What information

do we need from NFs to make good scheduling decisions?

We address these through the design, implementation,

and evaluation of ResQ in §5 and §6.

4 Enforcing Performance Isolation

Dobrescu et al. [10] argued that the level of LLC contention

entirely determines NF performance degradation. This obser-

vation would lead one to believe that merely enabling CAT

– which controls the level of cache contention – is sufficient

to ensure performance isolation, i.e., ensure that one NF’s

performance is unchanged due to the actions of any other

colocated NF. In this section we evaluate this hypothesis,

and find that it does not hold; we then explain why this is

the case and present our strategy for mitigating this issue.

4.1 Experimental Setup

NF workloads. We ran our evaluation on a range of

NFs (see Table 1) including: NFs from the research

community (e.g., Efficuts [61], EndRE [1]) and industry

(e.g., Snort [53], Suricata [46], vEPC [17]); NFs with simple

(e.g., Firewall, LPM) and complex (e.g., Snort, Suricata)

packet processing; NFs with small (e.g., IPSec) and large

(e.g., Snort, Stats) working set sizes; NFs using netmap [52]

(e.g., Snort and Suricata) and DPDK [12] (e.g., Efficuts and

Click) for I/O; NFs that are standalone (e.g., Snort) and those

that are built on frameworks like Click (e.g., MazuNAT).

We also evaluated the impact of contention on an industrial

virtual Evolved Packet Core [17] system4 that implements

LTE core network functionality in software. Due to licensing

issues these tests were run on a different testbed, and made

use of a domain-specific commercial traffic generator.

Test setup and CAT configuration. We ran all our

evaluation on a server with an Intel Xeon E5-2695 v4

processor and dedicated 10 Gb/s and 40 Gb/s network ports.

We repeat the same experiments as in §2 after enabling

CAT. We evaluate two scenarios for each NF:

• Solo run, where we run the NF under test on a single core

and CAT is configured to allocate 5% of LLC to the NF

(the smallest allocation with CAT). We run no other NFs

run on the machine. This provides us with a baseline for

4Vendor name anonymized due to licensing requirements.

286 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

how the NF behaves with a specific LLC allocation but

no contention on the other resources.

• Shared runs, where the NF under test is run on a single core

and we use CAT to allocate 5% of LLC to the NF. We run

11 instances of a different competing NF on the remaining

cores, these instances share the remaining 95% of LLC. We

repeat this experiment to analyze the performance impact

of each type of competing NF, i.e., in each iteration we pick

a different NF from Table 1 to use as the competing NF.

Observe that in both cases, the NF under test is allocated

the same number of cores and the same amount of LLC. In

our experiments we measure the target NF’s performance in

terms of throughput and 95th percentile latency, and compute

performance degradation for shared runs compared to a solo

run.

NF Size Degradation LLC Miss Rate (%) Mem BW

(bytes) (%) NF TX RX Util. (%)

MazuNAT
64 2.4 65.5 0.02 8.49 31

1518 12.2 72.9 55.3 88.6 94

Stats
64 0.3 64.5 0.07 8.84 31

1518 14.7 73.1 63.5 89.1 99

Table 2: CAT does not sufficiently isolate NFs in shared runs with large

packets. The culprit is the high memory bandwidth utilization with large

packets which in turn is because the “leaky DMA” issue renders DDIO

ineffective. All numbers are the worst-case numbers for shared runs. TX/RX

LLC miss rate and memory bandwidth utilization are processor-scoped

whereas NF degradation and its LLC miss-rate are NF-scoped.

4.2 Is CAT Sufficient?

Surprisingly, our results were mixed and showed that

CAT is not always sufficient for providing performance

isolation: while CAT was successful at isolating NFs when

processing small (64 B) packets, where throughput and

latency degradation remained below 3%, it could not isolate

all NFs when large (1518 B) packets were used: we observed

degradation of up to 14.7% for some NFs (e.g., MazuNAT

and Stats). This is particularly surprising in light of the fact

that NFs process packets at a higher rate when small packets

are used, as a result, memory accesses should be more

frequent for smaller packets compared to larger packets, and

one would expect greater degradation for smaller packets.

We began our investigation into this anomalous result

by checking whether there was a difference in cache miss

rates between shared and solo runs. Unsurprisingly, we

found no noticeable difference and concluded that CAT was

functioning as expected. Next, we analyzed measurements

from other hardware counters in the platform and found

that memory bandwidth utilization increased substantially

in going from small to large packets (Table 2).

Can memory contention affect NF performance? To

answer this question, we first used the Intel Memory Latency

Checker (MLC) [32] to measure memory access latency as

a function of increasing memory bandwidth utilization. We

plot the memory access speed (i.e., inverse of the latency)

A
c
c
e
s
s
 s

p
e
e
d

 (
p

e
rc

e
n
t)

40

50

60

70

80

90

100

Memory bandwidth utilization (percent)

0 20 40 60 80 100

Figure 3: Memory access speed as a function of load. The memory access

latency increases linearly with load on memory controller up to around 90%

utilization.

in Figure 3 and find that with up to approximately 90% load

on memory channels, the memory access speed degrades

linearly with increase in load, and subsequently experiences

super-linear degradation dropping to 40% of the baseline

value.

Figure 4: Normalized NF throughput for a selection of NFs as a function of

memory load. The curves track the memory access speed curve (Figure 3)

very closely.

Next, we checked whether this observation meant that

NF performance would also degrade with increased memory

contention. We analyzed this by running NFs under the same

environment as was used for the solo runs and running MLC

on the other cores of the same server to generate memory

bandwidth load. We show the results for this experiment

in Figure 4 and find that the added memory contention

does lead to performance degradation for NFs; NFs like

MazuNAT are up to 50% slower with aggressive memory

contention. Note that this is a near worst-case degradation

in response to memory contention – MLC exhibits a more

aggressive memory access pattern when compared to

network functions (and most other applications).

What causes memory contention? We certainly did not

expect to see much memory traffic in our shared workload.

While a single core is capable of inducing around 12 GB/s traf-

fic on the memory controller, we expect cores running NFs to

generate a fraction of this load. That is because, cycles during

which the NF may access state are spaced out by cycles spent

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 287

on compute intensive portions of packet processing including

I/O, framework processing, and stateless portions of the NF

processing. To empirically validate this hypothesis, we wrote

a synthetic NF that accesses DRAM 1000 times per packet

and observe that it can only generate 2.5 GB/s of memory

traffic – we expect a realistic NF to generate far less traffic.

Furthermore, our processor is equipped with Intel Data

Direct I/O (DDIO) technology [31] which lets DMAs for

packet I/O interact with the last level cache rather than

going to DRAM. As a result, we did not expect packet I/O

to contribute to memory contention. However, given our

expectation that NF state accesses should be more frequent

with small packets (due to higher packet rates) we suspected

that some interaction with DDIO might be the root cause

of the substantial increase in DRAM traffic.

4.3 The Leaky DMA Problem

By default, DDIO is limited to using 10% of the LLC. When

a buffer that needs to be DMAed is not present in LLC, it is

first brought into the LLC resulting in memory traffic. We hy-

pothesized that this might be the cause of memory contention

in our system. Furthermore, DMA transfers are mediated by

the processor DMA engine (as opposed to a core), therefore,

cache misses during DMA are not included in the core-based

LLC counters we used when evaluating the efficacy of CAT

above. To test our hypothesis, we looked at CPU perfor-

mance counters that measure PCIe-sourced LLC references

and misses, and found that the I/O-related LLC miss-rates

increased from nearly 0% to around 60% on the TX path and

90% on the RX path when going from small packets to large

packets in the shared runs. This showed that DDIO is ineffec-

tive at preventing memory contention in our system, but why?

The LLC space used by DDIO cannot be partitioned using

CAT, and is shared across NFs. As a result, if the aggregate

number of packet buffers exceed DDIO’s LLC space then

packet I/O can contend for cache space and evict buffers

holding packets being processed. The maximum number of

in-flight packets is bounded by the number of descriptors

available to NIC queues. For the experiments above, NFs

had their own queue each with 2048 descriptors – that is a

total of 24576 buffers for 12 queues. In the shared runs, this

translates to requiring 3 MB of cache space for small packets

(each spanning 2 cache lines), but a whopping 37.5 MB for

large packets (each spanning 25 cache lines).

As noted earlier, we had not observed significant changes

in NF cores’ cache miss rates when comparing solo and

shared runs. This suggested that LLC contention due to

DDIO does not affect parts of the packet that are processed

by the NF. We thus found that DDIO frequently evicts cache

lines belonging to packets that are being processed, and

these are needed soon after eviction for packet TX. Similarly

the RX path frequently needs to fetch buffers that were

previously evicted due to DDIO space contention. Together,

they result in much of the network traffic and stale buffers

to bounce back and forth between LLC and DRAM multiple

times. We refer to this problem as the leaky DMA problem

and identify it as the root cause of performance variability

for NFs when CAT is used.

4.4 Solution: CAT + Buffer Sizing

Fortunately, both DPDK and netmap provide mechanisms

to control the number of DMA buffers used by the system.

In case all DMA buffers are in use, no packets are received

from the NIC. DMA buffers become available once the

packet data contained within them is freed, at which point

new data can be received. Therefore controlling the number

of in-flight buffers allows us to control the efficacy of DDIO.

In ResQ, we restrict the size of the pool from which packet

buffers are allocated based on the aggregate number of MTU

sized packets that can fit in the LLC space reserved for

DDIO, thus avoiding the leaky DMA problem. Note that

NICs also contain a sizeable buffer (4096 packets in Intel

NICs) and as a result this restriction does not result in packet

loss unless the incoming link is congested.

We evaluated the efficacy of using buffer sizing to solve

the leaky DMA problem by rerunning both solo and shared

runs after fixing the number of allocated packet buffers to the

number calculated above. As shown in Figure 5, this resulted

in a situation where for both packet sizes throughput and

latency degradation were less that 3% (including the vEPC

which is not reported in the Figure 5), thus confirming our fix.

Other Resources. Given our experience with memory

contention, one might be concerned about contention on

other resources which we briefly discuss here. We do not

observe notable IOMMU contention [50] since we use

statically-mapped DMA buffers backed by huge pages. The

maximum degradation we observe in a microbenchmark

that maximizes core to IDI traffic is below 4% – in practice,

the IDI utilization is much lower and the degradation

is negligible. IIO throughput in the Haswell/Broadwell

processors is around 160 Gbit/s which may introduce a

bottleneck if all PCIe lanes (40) are more than half utilized.

However, the aggregate traffic per CPU remains below

150 Gbit/s in our experiments; classical QoS mechanisms

would sufficiently address the fair-sharing of this resource.

Consequently, we conclude that contention for these other

resources is not a concern given the current architecture.

Recap. To summarize we found that while memory con-

tention can be a source of performance variability, this is not a

result of NF behavior, but rather because of poor DMA buffer

sizing which can result in the leaky DMA problem. The leaky

DMA problem causes DMA buffers to be repeatedly evicted

from cache which in turn results in high memory bandwidth

utilization. We address the leaky DMA problem by appro-

priately controlling the aggregate number of active DMA

buffers, and find that this, in conjunction with CAT, is suffi-

cient to ensure performance isolation for NFV workloads. Fi-

288 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

D
e
g

ra
d

a
ti
o

n
 (
p

e
rc

e
n
t)

0

0.5

1

1.5

2

2.5

3

3.5

EffiCuts
EndRE

Firewall
IPsec LPM

MazuNAT
Snort Stats

Suricata

Small packets
Large packets

(a) Maximum throughput drop

D
e
g

ra
d

a
ti
o

n
 (
p

e
rc

e
n

t)

0

0.5

1

1.5

2

2.5

3

3.5

EffiCuts
EndRE

Firewall LPM Snort Stats
Suricata

Small packets

Large packets

(b) Maximum 95th percentile latency increase

Figure 5: Maximum degradation in throughput and 95th percentile latency for minimum and MTU-sized packets when target NF is isolated per §4.4. They

are both consistently below 3% across all the experiments. When comparing, note the difference in the y-axis range with Figure 2 and that the results do

not include latency measurements for IPSec and MazuNAT due to traffic generator’s constraints.

nally, our results here show that as opposed to what was found

by Dobrescu et al. [10], issues beyond LLC sizing can affect

NF performance. We believe this is because of changes to

software (e.g., use of DPDK), and hardware architecture (e.g.,

DDIO). Additionally that work considered only small packet

sizes and did not analyze accuracy with MTU-sized packets.

5 ResQ

In this section we present the design and implementation

of ResQ, a cluster resource manager that is designed to

efficiently schedule NFs while guaranteeing that SLOs hold.

We begin by describing ResQ’s design and we focus our

discussion on three aspects:

Service interfaces: Traditionally, network operators have

relied on resource overprovisioning to meet performance

objectives with hardware network appliances. NFV can

allow us to guarantee SLOs while more efficiently utilizing

resources. However, achieving this greater efficiency

requires that tenants provide ResQ with workload and other

information in addition to the NF. We describe ResQ’s

inputs and the types of guarantees it can enforce in §5.1.

NF profiling: Given an input NF, ResQ needs to determine

its resource requirements. These depend on the NF con-

figuration, input traffic, and platform and thus varies across

tenants and operators. In §5.2, we describe ResQ’s efficient

and automatic profiler that measures how NF performance

(both throughput and latency) varies as a function of LLC

allocation. The ResQ profiler minimizes the number of

executions required to collect this information, and can

thus rapidly profile a large set of NFs. The profiler’s output

is a key input to the ResQ scheduler.

NF scheduling: Finally, we present our scheduler in §5.3.

ResQ implements a two-level scheduler that takes as input

NFs, SLO specifications and requirements, and profiling re-

sults and determines (a) the number of NF instances to start,

(b) the server(s) on which these instances must be placed;

and (c) the amount of the LLC to assign to each instance.

5.1 ResQ SLOs

How do we improve efficiency of resource utilization while

continuing to meet performance objectives? Our insight is

that how an NF performs – given a fixed set of resources

– depends on two factors. First, NF configuration such as

rule set of a firewall or an IDS – the size and complexity

of this configuration directly affects performance [4, 15]).

Second, traffic profile which captures characteristics such

as distributions for flow arrival, flow sizes, packet sizes,

and packet interarrivals. NF data sheets often highlight that

performance depends not just on the input traffic rate but also

on factors such as the number of new sessions per second

and traffic mix [48]. ResQ improves scheduling efficiency

by accounting for these factors when allocating resources.

Tenants can specify two types of performance SLOs:

reserved and on-demand, which we explain next.

Reserved SLOs specify the NF or chain, its expected con-

figuration and traffic profile, and its performance target (i.e.,

expected latency and throughput). Given this information,

ResQ profiles (see §5.2) the NF to determine its performance

as a function of resource use, and uses this information to

allocate resources. ResQ does not distinguish between NFs

or chains of NFs and profiles a chain similarly to a single NF.

Since we assume that the traffic profile, configuration, and

maximum input rate (specified as part of the performance

target) do not vary, implementing the computed allocation is

sufficient to satisfy the SLO term. Run-time deviations from

the specified traffic profile or NF configuration may only

violate the corresponding SLO term – it does not affect other

SLOs because ResQ provides sufficient isolation among

SLOs. Tenants are required to submit a new admission

request to ResQ in the event any of these parameters change;

in response, ResQ may either reallocate resources or deny

admission if objectives cannot be met.

ResQ ensures stable resource usage for NFs making use

of reserved SLOs. This simplifies resource provisioning

for the network operator without significantly affecting

efficiency for NFs with stable configuration and input

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 289

Figure 6: Normalized throughput as a function of LLC allocation for a

selection of NFs.

traffic. We envision that, similar to cloud providers, network

operator will encourage the use of reserved SLOs by

providing volume discounts to tenants. Reserved SLOs are,

however, inefficient for NFs with highly variable workloads

– e.g., NFs with high traffic variance – since these must be

overprovisioned to meet worse-case traffic demands. Such

NFs are better suited to use on-demand SLOs.

On-demand SLOs specify the NF and target latency.

ResQ continuously monitors NF latencies and resource

utilization, and dynamically adjusts resource allocations to

meet the target latency independent of the input traffic or

configuration. If the target latency could not be met under

a best-case allocation, ResQ raises an error. Furthermore,

ResQ relies on traffic policing to appropriately reduce input

load if it is unable to meet the total traffic demand – e.g.,

due to lack of resources or reaching a user-specified cap on

resource usage. We provide further details about in §5.3.

5.2 ResQ Profiler

ResQ relies on performance profiles to determine resource

allocation for reserved SLOs. A ResQ profile consists of

throughput-LLC allocation (e.g., Figure 6) and latency-load

(e.g., Figure 7) curves. To construct these curves, the profiler

runs a set of experiments and collects measurements. The

time taken to run one experiment varies depending on the

traffic pattern – it takes around 5 seconds with our sample

traffic profiles. Building a general NF profile that is valid

across all configurations and traffic patterns would likely

require exploring a potentially unbounded space and is

infeasible. Profiles generated by ResQ are, therefore, specific

to not just the NF, but also the configuration and traffic

pattern specified by a reserved SLO. Since our profiles are

quite specific, we might require a large number of profiles for

an NFV cluster; consequently, we must ensure that profile

generation is fast. Furthermore, errors in an NF profile affect

ResQ’s accuracy and efficiency, and therefore we need to

ensure that generated profiles are accurate. We rely on in-

terpolation, with dynamically varying interpolation intervals,

to quickly produce accurate profiles as described below.

The throughput-LLC allocation curve for an NF can

be generated by running it alone on a profiling server

Figure 7: Latency as a function of normalized input traffic load for a

selection of NFs.

and measuring its throughput as the profiler varies the

amount of allocated LLC using CAT §3.4. To generate

the latency-throughput curve (e.g., Figure 6), the profiler

launches the NF with a given LLC allocation and measures

the 95th percentile latency as a function of input traffic rate.

This measurement is repeated for different LLC allocations

to produce a latency-throughput curve. In Figure 7, we show

an example of such curves for a fixed LLC allocation (we

chose to allow NFs to access all of the LLC in this case).

Since the profiler is in the critical path of the admission

control process, naı̈vely running all the required experiments

(400 datapoints for around 20 utilization levels and 20

LLC allocations) delays the process significantly (e.g., 34

minutes with 5 second runs). To alleviate this bottleneck in

the admission control process, we observe that these curves

could be accurately constructed with far fewer datapoints.

We observed that, across a wide range of NFs, the

latency-throughput curves vary only slightly for different

LLC allocations. As a result, we can safely approximate this

curve by measuring an NF’s worst-case latency, which corre-

sponds to the LLC allocation that maximizes NF throughput.

Furthermore, we observed that both sets of curves are mono-

tonically increasing, and that in all cases the throughput-LLC

allocation is concave, while the latency-throughput curve

is convex. This allows us to approximate the curve by

measuring throughput and latency at a few points, and

using linear interpolation to compute values for intermediate

points. We implement our interpolation as follows: the

profiler begins by measuring the minimum, maximum

and midpoint of each curve. It then computes the linear

interpolation error by comparing the interpolated value with

the measured mid-point. If the interpolation error is above

1%, the profiler recursively splits both intervals and repeats

the same procedure. The profiler stops collecting additional

measurements once the interpolation error falls below 1%.

In our experience, each profile required between 8–12

measurements and could be constructed in under a minute.

5.3 ResQ Scheduler

The ResQ scheduler is comprised of two parts:

• A centralized scheduler is responsible for admission

control, placement for all SLOs, resource allocation for

290 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

reserved SLOs, and setting aside resources on individual

servers for on-demand SLOs.

• A server agent that runs on each server and is responsible

for configuring the server, monitoring resource utilization,

and detecting SLO violations. The server agent imple-

ments a local scheduler that is responsible for allocating

resources to NFs with on-demand SLOs that are placed

on the server by the centralized scheduler.

In clusters running ResQ, tenants submit SLO requests to

the centralized scheduler which performs admission control.

For on-demand SLOs, the scheduler checks if the cluster has

sufficient resources available to launch one instance of the

NF (the supplied NF description includes information about

minimum resources required by an instance), and rejects

the SLO should sufficient resources not be available. For

reserved SLOs, the scheduler consults the NF profile (see

§5.2) to determine whether the SLO is feasible; if so, the

scheduler uses a greedy algorithm (see §5.3.1) to compute

NF placement and resource requirements for meeting the

performance objectives. Admission is denied if the greedy

algorithm cannot find a fit, otherwise it notifies the appro-

priate server agents to launch NF instances and allocate the

requested resources to them. The scheduler also programs the

datacenter fabric so as to steer traffic to these NF instances

– similarly to existing NFV schedulers [20, 21, 47, 51], we

assume that the fabric will split traffic across these instances.

While the greedy allocation computed by the central

scheduler is sufficient for meeting the performance

objectives, it might not be optimal in terms of resource use.

Therefore, in the background, ResQ also periodically solves

a mixed-integer linear program (MILP) to find a (near-

)optimal schedule. If the gap in resource usage between this

and the greedy schedules exceeds a configurable threshold,

ResQ migrates running NFs5 to implement the optimal

schedule. Migrating to the optimal schedule frees up more

resources that can be used to accommodate other SLOs.

On-demand SLOs are scheduled locally by server agents.

Upon submission of an on-demand SLO, the centralized

scheduler finds a server that has sufficient resource to run

one instance of the NF and assigns the on-demand SLO to

that server. The server agent uses max-min fair allocation

to partition the on-demand LLC space among such NFs. If

the server agent is unable to meet the NFs latency targets,

it notifies the central scheduler which in turn adds NF

instances to the cluster.

Next we provide more details about the algorithm used

for scheduling both types of NFs.

5.3.1 Reserved SLOs

Computing the optimal schedule for reserved SLOs is an

NP-hard problem. Hence, we develop an online greedy

algorithm for fast admission. After the profile is generated,

5We rely on standard VM migration techniques.

ResQ attempts to greedily bin-pack the NF instances using

a first-fit heuristic, which works as follows.

1. It divides the target throughput by the expected through-

put of a single instance to estimate the number of NF

instances required to meet the objective. The expected

throughput of one instance is what a single instance

can sustain when allocated a fair share of LLC (i.e., the

available LLC divided by the number of cores) such that

its latency does not exceed the target latency.

2. It calculates the minimal LLC allocation for each instance

by iteratively adding a unit of LLC allocation to each

instance in a round-robin fashion until the aggregate

throughput is above the target.

3. It places instances on servers using the first-fit decreasing

heuristic, i.e., places the largest instance first. If this

algorithm succeeds, ResQ launches the instances each

with the computed schedule.

The greedily generated schedule may be suboptimal be-

cause (a) it is online and incremental (does not move running

instances), and (b) uses a heuristic to determine how many

NF instances to run. To improve the placement efficiency,

in the background, ResQ computes an optimal schedule. We

formulate the placement problem as a mixed-integer linear

program whose objective is to minimize the number of

servers used (see Appendix A). We use a MILP solver [24]

to compute the (near-)optimal schedule. In our experiments,

the greedily and incrementally computed schedule’s resource

use is within 20% of the optimal one (see §6).

The solver typically finds near-optimal solution(s) for

inputs which require a cluster size of around 40 servers in

seconds to minutes. To scale to larger-sized clusters, we

partition the SLOs into sets and pass each to a different

solver. The computed schedules are instantiated on different

slices of the cluster. This allows us to trade off computation

time for schedule optimality.

The computed MILP-based schedule might be different

than the running schedule that was greedily updated during

admission. To converge to the new schedule various NFs

must be migrated; this problem has been studied in the

literature in the form of migration of stateful middleboxes

or scaling out NFs [21, 51, 55]. This is likely an expensive

and disruptive process, therefore we migrate only when the

optimality gap is large enough.

Alternatively, a migration avoidance [47] strategy could

be deployed to avoid the disruption or complexity of state

migration. This involves booting up new instances but

leaving old instances (that were to be terminated) running

– the old instances will continue serving their traffic but no

new traffic is directed to them. When their traffic eventually

dies down they will be terminated. This strategy is only

effective when sufficient spare capacity is available to bring

up new instances without terminating the old ones.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 291

5.3.2 On-Demand SLOs

Resource allocation for on-demand SLOs is jointly per-

formed by the local resource scheduler and the centralized

scheduler. The central scheduler is responsible for leasing

dedicated cores and LLC space to local schedulers for

scheduling on-demand SLOs, and for assigning new

NF instances to servers with spare resources. Leases are

dynamically adjusted when reserved SLOs arrive or leave

the system – i.e., beyond configured resources reserved for

on-demand SLOs, the central scheduler may make spare

resources available to local schedulers.

When computing LLC allocations for on-demand SLOs,

NFs are placed in a shared LLC space or dedicated partitions

based on whether or not their latency objectives can be met

with sharing. Sharing LLC space (when possible) helps min-

imize the overhead of LLC partitioning since CAT allocates

LLC space in fixed and relatively large increments. The NFs

that require isolation are put in separate classes. If, despite

isolation, the local scheduler fails to meet an NF’s latency

objective, it notifies the central scheduler which in turn adds

more instances or resources for the failed SLO if possible.

The above-mentioned LLC allocation is computed as fol-

lows. First, all on-demand NFs are placed in a cache class

that includes all the on-demand LLC space leased to the local

scheduler. The server agent waits for a period of time for

NFs to serve traffic before monitoring SLO violations and

LLC occupancies (using Intel CMT – see §3.4) – occupancy

measurements are used to estimate NFs’ LLC demand. If

one or more SLO violations are observed, the local scheduler

continues with a max-min fair allocation of the LLC space.

SLO-compliant NFs and SLO-violating NFs with low cache

miss rates that use less than their fair share of LLC are put

in a shared cache class with an allocation closest to the sum

of their LLC occupancy. SLO-violating NFs with high cache

miss rates that use less than their fair share of LLC are put in

an isolated cache class with an allocation close to their fair

share. The rest remain in the shared cache class whose size

is reduced to the remaining on-demand LLC space. This pro-

cedure is repeated for the shared cache class to completion.

The server agent is responsible for monitoring on-demand

NF instances for SLO violations. Such violations may

occur when traffic pattern or NF configuration changes.

Upon detection of a violation or change in the leased LLC

space size, the local scheduler repeats the LLC allocation

procedure to find whether it could meet the new demand

with local resources and if not would notify the central

scheduler of the new failed SLO.

6 Evaluation

In this section, we address the following questions:

Accuracy: To what extent do contention-agnostic

schedulers violate SLOs? We compare against a simple

bin-packing strategy adopted by current contention-agnostic

schedulers [20, 45, 47]. We compare accuracy both without

CAT and when we use CAT to evenly partition LLC across

NFs.

Efficiency: We compare the efficiency of ResQ’s online

(greedy) and offline (mixed integer program based)

schedulers against a prediction-based online scheduler [10]

and an E2-like scheduler [47] which dynamically scales the

number of NF instances in response to input traffic load.

To answer these questions, we generated three sets of

reservation-based SLOs each with around 200 terms: one

involving only the cache-sensitive NFs; one involving only

the cache-insensitive NFs; and one involving a mixture of

all the NFs. We set the target throughput and latency for

each SLO to 90% and 100% of what a single instance of the

corresponding NF can sustain when run in isolation without

LLC contention. To avoid interfering with DDIO’s reserved

LLC space (10%), ResQ uses only 90% of the available

LLC. To enable comparison with the fair allocation scheme,

we use 9 cores per server so that each core can be allocated

an equal cache partition (10%).

6.1 Accuracy
S

L
O

 v
io

la
ti
o

n
s
 (
p

e
rc

e
n
t)

0

20

40

60

80

100

Shared LLC Equal LLC partitions

100

91

55

11 00

Insensitive

Combination
Sensitive

Figure 8: SLO violations with >5% error for contention-agnostic methods.

Contention-agnostic placement results in throughput and latency SLO

violations. As expected, violations increase with the sensitivity of NFs.

Naı̈vely partitioning LLC has an adverse effect.

If SLO violations were rare, it would be appealing to opt

for a simpler contention-agnostic scheduler. To assess this

choice, we evaluate the ability of current contention-agnostic

schedulers to meet SLOs. To do so, we first run each NF

on a dedicated server without restricting cache access to

determine its throughput and latency. We then use this

information to pack NF instances on the first available server.

We show the results in Figure 8. Unsurprisingly, no SLO

violation are observed for the cache-insensitive workload.

However, SLO violations are common for combination

(11%) and cache sensitive workloads (91%) workloads.

Next, to check whether a naı̈ve cache isolation strategy is

sufficient to reduce violations, we reran the same workload

after using CAT to partition the LLC evenly between all

NFs on a server. The number of violations worsened in

this case: 55% of SLOs are violated in the combination

workload, while all SLOs are violated for the cache-sensitive

case. In the combination case, this difference is due to the

292 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

unavailability of the underutilized dedicated LLC space of

the cache-insensitive NFs to the cache-sensitive ones.

Note that schedules computed by ResQ have no violations

in all cases.

6.2 Efficiency

R
e
q

u
ir
e
d

 m
a
c
h
in

e
s

0

20

40

60

80

100

120

140

ResQ optimal ResQ greedy Dynamic Prediction-based

128

4445
38

48

3535
30

22222222

Insensitive

Combination
Sensitive

Figure 9: Resource efficiency of different schemes and SLO mixes. Not

surprisingly, all methods are similar when NFs are cache-insensitive.

The ResQ’s greedy admission is within 19% of the optimal solution.

The prediction-based scheme uses significantly more servers because it

overestimates degradation.

ResQ builds on availability of a hardware mechanism

(cache isolation) to provide predictable performance regard-

less of contention. Two alternative strategies for getting

predictable performance involve: (a) online scheduling

where one measures NF performance and dynamically

allocates NF instances in response to SLO violations, and

(b) using a performance predictor (e.g., Dobrescu et al.’s

predictor [10]) to predict throughput degradation due to

resource sharing and using its result for scheduling. We

analyze ResQ’s efficiency in contrast to these options next.

ResQ’s efficiency. For reserved SLOs, ResQ implements

both an offline MILP-based scheduler that computes near

optimal schedules and an online greedy scheduler. In

Figure 9, we first evaluate the accuracy gap between these

options. The optimal scheduler performs up to 19% better

than the greedy scheduler. However, as previously noted in

§5.3.1, the optimal scheduler may take much longer than

P
re

d
ic

ti
o

n
 e

rr
o

r
(p

e
rc

e
n

t)

0

2

4

6

8

10

12

14

16

EndRE IDS LPM NAT RE Stat VPN

Figure 10: Error of the throughput degradation prediction method [10].

We observe that errors are significantly higher using the current generation

of hardware than what was previously observed. To follow the original

setup, we use the following chains: EndRE is LPM → Stats → EndRE,

VPN is LPM→Stats→IPsec, IDS is Snort, RE [58] is LPM→Stats→RE,

STAT is LPM→Stats, NAT is MazuNAT, and IP is LPM.

the greedy scheduler, and ResQ can opportunistically move

to using the optimal schedule if warranted.

Comparison with elastic scaling. Systems like E2 [47]

continuously monitor NFs and dynamically add new

instances if demand could not be met. A major drawback

of this approach is that it cannot be used to enforce any

latency SLOs. Despite being dynamic, this approach is not

significantly more efficient than ResQ as seen in Figure 9.

The dynamic approach uses the same number of instances for

both cache-insensitive and combined traffic. It does provide

a small savings of 1 machine (i.e., a 2.2% improvement) for

cache-sensitive workloads. However, this saving comes at the

cost of no SLO isolation (variations in an NF’s behavior may

affect all its neighboring SLOs) and no latency guarantees.

Comparison with the predication-based approach.

Finally, one could use a performance predictor to predict

degradation due to resource sharing; this produces a safe

schedule assuming the predictor never underestimates

degradation. Dobrescu et al. [10] previously proposed such

a predictor. Their predictor works as follows. Each NF is

profiled using a series of synthetic benchmarks with tunable

pressure on the LLC. The result is a curve which one can

use to determine throughput as a function of competing LLC

references. The competing LLC references are approximated

by counting the LLC references of NFs’ solo runs. This

method was reported as being very accurate in 2012.

To study its robustness against significant hardware and

software changes, we reran the experiments on our testbed

using similar NFs and setup (6 competing NFs and 19.5 MB

of LLC). Figure 10 shows the average prediction error in

percentage points. Each bar shows the difference between

predicted and observed performance drop suffered by a target

NF when sharing a processor with 5 identical competing

application instances (9 different sets of NFs for each NF)

similarly to their choice of competitors. We find that this

predictor is conservative and consistently overestimates

degradation by a large margin. Consequently, it can be used

to enforce (throughput) SLOs albeit not efficiently.

We use this predictor to build an online first-fit bin-

packing scheduler. The scheduler packs an instance on the

first server whose existing SLOs do not get affected by the

new instance; it proceeds to pack a second instance if the

predicted throughput is below the target throughput. We ran

all the computed placements and recorded the real through-

put and latency to assess SLO compliance. All schedules

remain SLO compliant regardless of cache sensitivity except

the prediction-based scheduler that violates 0.5% latency

SLOs in the combination case. This is not surprising because

this method does not predict latency degradation.

In Figure 9, we compare the efficiency of ResQ with

the prediction-based method – by efficiency, we mean the

number of CPUs (equivalent to servers for single-CPU

servers) each scheduler needs to satisfy its SLOs. With

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 293

cache-insensitive NFs, all schedulers need the minimum

number of CPUs because consolidation does not affect the

performance. As expected, the efficiency gap widens as the

cache sensitivity of the mix of SLO NFs increases. The gap

between the prediction-based scheduler and ResQ’s greedy

scheduler increases from 37.1% to 184.4%.

The are two reasons for such a sharp increase in

resource usage for the prediction-based scheduler: (a) overly

conservative performance estimate results in more false

positives (mispredicting violations), and (b) lack of a

mechanism to predict how much traffic an NF can handle

without SLO violations. The gap in the sensitive case is due

to the latter reason: individual servers have spare capacity

but the scheduler cannot use any because an NF serving

maximum traffic will violate the existing NFs’ SLOs, but

what if it only serves 20% of its capacity? These issues aside,

scheduling is much simpler in ResQ because isolation is

enforced by hardware regardless of contention.

Based on this result, we conclude that ResQ’s simple

first-fit bin-packing heuristic using CAT (online admission)

is effective in maintaining a resource efficient and SLO-

compliant schedule, while there is opportunity to further

optimize this schedule by periodically running a slow offline

scheduler.

7 Related Work

Performance modeling. Prior work [5, 9, 23, 40, 60] has

investigated modeling and predicting the effect of resource

contention in the context of HPC and datacenter applications.

These models are often useful in contexts where the relative

performance of two settings needs to be compared, e.g.,

when scheduling or placing jobs. However, they are not

accurate enough for our purposes. Dobrescu et al. [10] have

proposed using cache references as a predictor of throughput

with contending processes. While this was highly accurate

given the hardware and software stacks available at the time,

we find that it consistently underestimate throughput (§6.2)

in today’s systems. We showed that a scheduler using this

predictor may consume up to 3× more resources compared

to ResQ (§6.2). Moreover, this work on prediction models

still leaves open the question of enforcement wherein an

NF that deviates from its predicted behavior (whether due

to malicious behavior, configuration changes, or varying

traffic) can impact the performance of its neighboring NFs.

Performance isolation. Packet processing and NFV plat-

forms [28, 41, 47, 49] do not isolate NFs from contending

on uncore resources. Such systems can be extended to use

CAT to provide performance isolation. Our contribution

lies in showing how cache isolation can be used to both

provide performance isolation and guarantee SLOs. Other

systems that provide end-to-end performance guarantees for

multi-tenant networks [2, 39, 56] treat CPUs as independent

resource units and do not account for interference across

cores. DRFQ [22] models a packet-processing platform as

a pipeline of resources where each packet is sequentially

processed by each resource. DRFQ’s primary goal is to

provide per-flow fairness while we focus on SLO guarantees.

Ginseng [19] presents an auction-based LLC allocation

mechanism, but does not offer SLOs. Heracles [37] uses

CAT and other mechanisms to co-locate batch and latency-

sensitive jobs while maintaining millisecond time-scale

latency SLOs; we target more aggressive latency SLOs (high

throughput, microsecond scale).

Mechanisms. The mechanisms and use cases of cache

partitioning have been studied in the past [8, 34, 35]. A rich

body of literature looks at software-only methods for cache

isolation [14, 26, 59, 64]. Their performance implications

have not been studied in the NFV context but they may be

used as an alternative to CAT when hardware support is not

available or more granular allocations are desired. A recent

work [63] has also briefly looked at the benefit of using CAT

to alleviate a specific instance of the noisy neighbor problem.

It focuses on a single workload and demonstrates that, in

one specific case, CAT notably improves performance in

presence of a noisy neighbor problem. By contrast our work

is general (covering a wide range of NFs and workloads),

identifies cases where CAT alone does not sufficiently isolate

NFs, and develops a contention-aware scheduler that uses our

isolation mechanism to provide SLO guarantees for NFs.

8 Concluding Remarks

Despite no algorithmic innovation, ResQ’s simple greedy

scheduler achieves a significantly higher resource efficiency

than prior prediction-based methods and its efficiency is on-

par with elastic schedulers that do not guarantee SLOs. More-

over, despite its hardness, ResQ’s MILP formulation yields

(near-)optimal schedules in a matter of seconds to minutes.

These advances were all made possible because we identified

a technique – building on hardware cache isolation and

proper buffer management – that ensures strong performance

isolation regardless of noisy neighbors. ResQ is open source

and available at https://github.com/netsys/resq.

Acknowledgement

We would like to thank Andrew Herdrich, Edwin Verplanke,

Priya Autee, Christian Maciocco, Charlie Tai, Rich Uhlig,

Michael Alan Chang, Yashar Ganjali, David Lie, Hans-Arno

Jacobsen, our shepherd Tim Wood, and the NSDI reviewers

for their comments and suggestions. This work was funded in

part by NSF-1553747, NSF-1704941, and Intel corporation.

References

[1] B. Aggarwal, A. Akella, A. Anand, A. Balachan-

dran, P. Chitnis, C. Muthukrishnan, R. Ramjee, and

G. Varghese. EndRE: An End-system Redundancy

Elimination Service for Enterprises. In NSDI, 2010.

294 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/netsys/resq

[2] S. Angel, H. Ballani, T. Karagiannis, G. O’Shea, and E.

Thereska. End-to-end Performance Isolation Through

Virtual Datacenters. In OSDI, 2014.

[3] H. Basilier, M. Darula, and J. Wilke. Virtualizing Net-

work Services- The Telecom Cloud. Ericsson Review,

2014. URL: http://tinyurl.com/j5adfts.

[4] Y. Beyene, M. Faloutsos, and H. V. Madhyastha. SyFi:

A Systematic Approach for Estimating Stateful Fire-

wall Performance. In PAM, 2012.

[5] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fe-

dorova. A Case for NUMA-aware Contention Man-

agement on Multicore Systems. In USENIX ATC,

2011.

[6] R. Braden, D. Clark, and S. Shenker. Integrated Ser-

vices in the Internet Architecture: an Overview. RFC

1633.

[7] Broadband Forum. TR-178: Multi-service Broadband

Network Architecture and Nodal Requirements, 2014.

URL: http://tinyurl.com/z7vkk6h.

[8] H. Cook, M. Moreto, S. Bird, K. Dao, D. A. Pat-

terson, and K. Asanovic. A Hardware Evaluation of

Cache Partitioning to Improve Utilization and Energy-

efficiency While Preserving Responsiveness. In ISCA,

2013.

[9] C. Delimitrou and C. Kozyrakis. Paragon: QoS-aware

Scheduling for Heterogeneous Datacenters. In ASP-

LOS, 2013.

[10] M. Dobrescu, K. Argyraki, and S. Ratnasamy. To-

ward Predictable Performance in Software Packet-

processing Platforms. In NSDI, 2012.

[11] T. L. K. Documentation. Reducing OS Jitter Due to

Per-CPU kthreads. URL: http://tinyurl.com/

mpnf4m3.

[12] Data Plane Development Kit (DPDK), 2015. URL:

http://dpdk.org/.

[13] DPDK Performance Tuning Guide, 2016. URL: http:

//tinyurl.com/jkngtok.

[14] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fair-

ness via Source Throttling: A Configurable and High-

performance Fairness Substrate for Multi-core Mem-

ory Systems. In ASPLOS, 2010.

[15] S. Ehlert, G. Zhang, and T. Magedanz. Increasing

SIP firewall performance by ruleset size limitation. In

PIMRC, 2008.

[16] Emerging Threats. Emerging Threats Open Rulesets,

2016. URL: http://tinyurl.com/nppr7ut.

[17] The Evolved Packet Core. URL: http://tinyurl.

com/hvkukyw.

[18] ETSI. Network Functions Virtualisation. URL: http:

//portal.etsi.org/NFV/NFV_White_Paper.

pdf.

[19] L. Funaro, O. A. Ben-Yehuda, and A. Schuster. Gin-

seng: Market-Driven LLC Allocation. In USENIX

ATC, 2016.

[20] A. Gember-Jacobson, A. Krishnamurthy, S. S. John,

R. Grandl, X. Gao, A. Anand, T. Benson, A. Akella,

and V. Sekar. Stratos: A Network-Aware Orches-

tration Layer for Middleboxes in the Cloud. CoRR,

abs/1305.0209, 2013.

[21] A. Gember-Jacobson, R. Viswanathan, C. Prakash, R.

Grandl, J. Khalid, S. Das, and A. Akella. OpenNF:

Enabling Innovation in Network Function Control. In

SIGCOMM, 2014.

[22] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica. Multi-

resource Fair Queueing for Packet Processing. In SIG-

COMM, 2012.

[23] S. Govindan, J. Liu, A. Kansal, and A. Sivasubrama-

niam. Cuanta: Quantifying Effects of Shared On-chip

Resource Interference for Consolidated Virtual Ma-

chines. In SOCC, 2011.

[24] Gurobi Optimization, Inc. Gurobi Optimizer Refer-

ence Manual, 2015. URL: http://www.gurobi.

com.

[25] S. Han, K. Jang, A. Panda, S. Palkar, D. Han, and S.

Ratnasamy. SoftNIC: A Software NIC to Augment

Hardware. Technical report UCB/EECS-2015-155,

EECS Department, University of California, Berkeley,

2015.

[26] A. Herdrich, R. Illikkal, R. Iyer, D. Newell, V.

Chadha, and J. Moses. Rate-based QoS techniques

for cache/memory in CMP platforms. In ICS, 2009.

[27] A. Herdrich, E. Verplanke, P. Autee, R. Illikkal, C.

Gianos, R. Singhal, and R. Iyer. Cache QoS: From

Concept to Reality in the Intel® Xeon® Processor

E5-2600 v3 Product Family. In HPCA, 2016.

[28] J. Hwang, K. K. Ramakrishnan, and T. Wood. NetVM:

High Performance and Flexible Networking Using Vir-

tualization on Commodity Platforms. In NSDI, 2014.

[29] Intel® Xeon® Processor E5 and E7 v4 Families Un-

core Performance Monitoring, 2016. URL: http://

tinyurl.com/zpsj63k.

[30] Introduction to Cache Allocation Technology in the

Intel® Xeon® Processor E5 v4 Family, 2016. URL:

http://tinyurl.com/hasjlm2.

[31] Intel® Data Direct I/O (DDIO), 2014. URL: http:

//tinyurl.com/jlkzvll.

[32] Intel® Memory Latency Checker, 2015. URL: http:

//tinyurl.com/kgroxnw.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 295

http://tinyurl.com/j5adfts
http://tinyurl.com/z7vkk6h
http://tinyurl.com/mpnf4m3
http://tinyurl.com/mpnf4m3
http://dpdk.org/
http://tinyurl.com/jkngtok
http://tinyurl.com/jkngtok
http://tinyurl.com/nppr7ut
http://tinyurl.com/hvkukyw
http://tinyurl.com/hvkukyw
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://portal.etsi.org/NFV/NFV_White_Paper.pdf
http://www.gurobi.com
http://www.gurobi.com
http://tinyurl.com/zpsj63k
http://tinyurl.com/zpsj63k
http://tinyurl.com/hasjlm2
http://tinyurl.com/jlkzvll
http://tinyurl.com/jlkzvll
http://tinyurl.com/kgroxnw
http://tinyurl.com/kgroxnw

[33] I. L. A. Division. PCI-SIG SR-IOV Primer, 2011. URL:

http://tinyurl.com/kt7bwqb.

[34] R. Iyer. CQoS: A Framework for Enabling QoS in

Shared Caches of CMP Platforms. In ICS, 2004.

[35] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D.

Newell, Y. Solihin, L. Hsu, and S. Reinhardt. QoS

Policies and Architecture for Cache/Memory in CMP

Platforms. In SIGMETRICS, 2007.

[36] Linux Foundation. OPNFV, 2016. URL: https://

www.opnfv.org/.

[37] D. Lo, L. Cheng, R. Govindaraju, P. Ranganathan,

and C. Kozyrakis. Heracles: Improving Resource Effi-

ciency at Scale. In ISCA, 2015.

[38] D. Lopez. OpenMANO: The Dataplane Ready Open

Source NFV MANO Stack. In IETF Meeting Pro-

ceedings, Dallas, Texas, USA, 2015.

[39] J. Mace, P. Bodik, R. Fonseca, and M. Musuvathi.

Retro: Targeted Resource Management in Multi-

tenant Distributed Systems. In NSDI, 2015.

[40] J. Mars, L. Tang, R. Hundt, K. Skadron, and M. L.

Soffa. Bubble-Up: Increasing Utilization in Mod-

ern Warehouse Scale Computers via Sensible Co-

locations. In MICRO, 2011.

[41] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M.

Honda, R. Bifulco, and F. Huici. ClickOS and the Art

of Network Function Virtualization. In NSDI, 2014.

[42] Performance Tuning for Mellanox Adapters. URL:

http://tinyurl.com/y8slm66k.

[43] T. P. Morgan. ARM Servers: Qualcomm is Now a

Contender. https://www.nextplatform.com/

2017/08/23/arm- servers- qualcomm- now-

contender/, 2017.

[44] Nokia. Solutions: Residential Services Delivery, 2016.

URL: http://tinyurl.com/h3cwqsy.

[45] T. L. Foundation. ONAP: Open Network Automa-

tion Platform. https://www.onap.org/ retrieved

09/21/2017.

[46] Open Information Security Foundation. Suricata:

Open Source IDS/IPS/NSM engine, 2015. URL: http:

//suricata-ids.org/.

[47] S. Palkar, C. Lan, S. Han, K. Jang, A. Panda, S. Rat-

nasamy, L. Rizzo, and S. Shenker. E2: A Framework

for NFV Applications. In SOSP, 2015.

[48] P. A. Networks. PA-3000 Series Datasheet. https:

/ / www . paloaltonetworks . com / products /

secure - the - network / next - generation -

firewall/pa-3000-series retrieved 09/21/2017.

[49] A. Panda, S. Han, K. Jang, M. Walls, S. Ratnasamy,

and S. Shenker. NetBricks: Taking the V out of NFV.

In OSDI, 2016.

[50] O. Peleg, A. Morrison, B. Serebrin, and D. Tsafrir. Uti-

lizing the IOMMU Scalably. In USENIX ATC, 2015.

[51] S. Rajagopalan, D. Williams, H. Jamjoom, and A.

Warfield. Split/Merge: System Support for Elastic Ex-

ecution in Virtual Middleboxes. In NSDI, 2013.

[52] L. Rizzo. Revisiting Network I/O APIs: The Netmap

Framework. ACM Queue, 10(1), 2012.

[53] M. Roesch. Snort - Lightweight Intrusion Detection

for Networks. In LISA, 1999.

[54] S. Blake and D. Black and M. Carlson and E. Davies

and Z. Wang and W. Weiss. An Architecture for Dif-

ferentiated Services. RFC 2475, 1998.

[55] J. Sherry, P. X. Gao, S. Basu, A. Panda, A. Krishna-

murthy, C. Maciocco, M. Manesh, J. Martins, S. Rat-

nasamy, L. Rizzo, and S. Shenker. Rollback-Recovery

for Middleboxes. In SIGCOMM, 2015.

[56] D. Shue, M. J. Freedman, and A. Shaikh. Performance

Isolation and Fairness for Multi-tenant Cloud Storage.

In OSDI, 2012.

[57] Sourcefire’s Vulnerability Research Team. VRT Rule

Set, 2015. URL: https://www.snort.org/talos.

[58] N. T. Spring and D. Wetherall. A Protocol-

independent Technique for Eliminating Redundant

Network Traffic. In SIGCOMM, 2000.

[59] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm.

RapidMRC: Approximating L2 Miss Rate Curves

on Commodity Systems for Online Optimizations. In

ASPLOS, 2009.

[60] L. Tang, J. Mars, and M. L. Soffa. Compiling for Nice-

ness: Mitigating Contention for QoS in Warehouse

Scale Computers. In CGO, 2012.

[61] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar. Ef-

fiCuts: Optimizing Packet Classification for Memory

and Throughput. In SIGCOMM, 2010.

[62] V. Varadarajan, T. Kooburat, B. Farley, T. Ristenpart,

and M. M. Swift. Resource-freeing attacks: improve

your cloud performance (at your neighbor’s expense).

In CCS, 2012.

[63] P. Veitch, E. Curley, and T. Kantecki. Performance

evaluation of cache allocation technology for NFV

noisy neighbor mitigation. NetSoft, 2017.

[64] X. Zhang, S. Dwarkadas, and K. Shen. Towards Prac-

tical Page Coloring-based Multicore Cache Manage-

ment. In EuroSys, 2009.

296 15th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

http://tinyurl.com/kt7bwqb
https://www.opnfv.org/
https://www.opnfv.org/
http://tinyurl.com/y8slm66k
https://www.nextplatform.com/2017/08/23/arm-servers-qualcomm-now-contender/
https://www.nextplatform.com/2017/08/23/arm-servers-qualcomm-now-contender/
https://www.nextplatform.com/2017/08/23/arm-servers-qualcomm-now-contender/
http://tinyurl.com/h3cwqsy
https://www.onap.org/
http://suricata-ids.org/
http://suricata-ids.org/
https://www.paloaltonetworks.com/products/secure-the-network/next-generation-firewall/pa-3000-series
https://www.paloaltonetworks.com/products/secure-the-network/next-generation-firewall/pa-3000-series
https://www.paloaltonetworks.com/products/secure-the-network/next-generation-firewall/pa-3000-series
https://www.paloaltonetworks.com/products/secure-the-network/next-generation-firewall/pa-3000-series
https://www.snort.org/talos

A MILP Formulation

When a new reserved SLO is submitted, ResQ profiles the

given NF (or chain) and, if admissible, greedily schedules

one or more instances of it. Periodically, ResQ looks for

a more optimal schedule to switch to if this results in

significant resource savings. We formulate this optimal

scheduling as a mixed-integer linear program.

Symbol Type Description

θi Constant Target throughput of SLO i

πil Constant Pivot point of piece l of SLO i

αil Constant Slope of piece l of SLO i

βil Constant Y-intercept of piece l of SLO i

τ Constant Number of cores per machine

φ Constant LLC size per machine

Ui Constant Maximum input load of SLO i

Ii jk Binary Var Instance j of SLO i is assigned to machine k

Nk Binary Var Machine k is active

Ci j Integer Var LLC allocated to instance j of SLO i

λi jl Binary Var Piece l of instance j of SLO i is used

Table 3: List of symbols used in MILP. We use indices i, j,k,l for SLO

terms, instances, machines, and profiles’ linear fit pieces respectively. The

number of variables and constants depend on the size of the cluster, number

of SLO terms, maximum number of instances per SLO term, and number

of pieces of individual profiles.

The objective of the MILP in Listing 1 is to minimize the

number of machines used to satisfy all the SLO terms. As

input, it expects system configuration and profiles, and pro-

duces a schedule as output. For each SLO term, this schedule

provides the number of instances to start, where each instance

should be placed, and the amount of LLC allocated to each in-

stance. We encode the SLO profiles in the form of piecewise

linear approximations of their throughput-LLC curves.

min∑
k

Nk

s.t. ∑
k

Ii jk≤1 ∀i, j (1)

∑
i, j

Ci j.Ii jk≤φ ∀k (2)

Nk≤∑
i, j

Ii jk≤Nk.τ ∀k (3)

θi≤∑
j

[Ui.∑
l

λi jl.[αil.Ci j+βil]] ∀i (4)

∑
l

λi jl.πil ≤Ci j≤∑
l

λi j(l+1).πi(l+1) ∀i, j (5)

∑
l

λi jl =∑
k

Ii jk ∀i, j (6)

Listing 1: Mixed-integer linear program that minimizes the number of

machines used to meet reserved SLOs in ResQ. A brief description of the

symbols appear in Table 3.

We use a set of variables to capture the scheduling results

and constants to encode the system configuration and

profiles:

θi specifies the target throughput for SLO term i.

πil specifies the pivot point for piece l of the throughput-LLC

linear approximation of SLO term i.

αil,βil specify the slope and y-intercept for piece l of the

throughput-LLC linear approximation of SLO term i.

τ,φ specify the number of cores and LLC size available on

each machine.

Ui is the maximum input load level that below which the

latency objective of SLO term i is satisfied across all LLC

allocations.

Ii jk indicates whether instance j of SLO term i is active on

machine k.

Nk is set if and only if machine k is active – i.e., at least one

instance is assigned to it.

Ci j indicates the amount of LLC allocated to instance j of

SLO term i. For an active instance, each such variable takes

a value between the minimum and maximum permissible

LLC allocation.

λi jl indicates whether linear fit l is chosen for instance j of

SLO term i.

Below we briefly describe the goal of each constraint in

the order they appear in Listing 1:

1. An instance runs on at most one machine.

2. The total LLC allocated to instances assigned to a machine

is less than or equal to the machine’s total LLC size (φ).
3. A machine is active when there is at least one instance

running on that machine, and an active machine may host

no more instances than its available cores (τ).
4. The aggregate throughput of instances of each SLO is

greater than or equal to its target throughput (θi).

5. Linear piece l of a profile is chosen if and only if the

LLC allocated to instance j of SLO term i lies in the

range corresponding to piece l of the throughput-LLC

linear approximation.

6. Exactly one linear piece is chosen when instance j of

SLO term i is active, otherwise, none is chosen.

For simplicity, we assume a homogeneous infrastructure

and that each SLO term instance requires a single CPU core;

the MILP could be adjusted to account for differences if nec-

essary. To account for small performance degradation despite

ResQ’s isolation (see §4.4), we include a 3% discount in Ui.

USENIX Association 15th USENIX Symposium on Networked Systems Design and Implementation 297

