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1 Introduction duced in[3]. The scheme is based on wave propagation and ab-
For flexible multi-link manipulators, three interesting contro orption_techniques, and has been successfully appllgq o a
mped-parameter mass-spring model. We also[ditewhere it is

problems hold. The first one concerns the point to point motion !sPhown that an open-loop strategy based on shaped-input filters is a

a pre-fixed time, where the final joint position should be re‘"’lCh%(ljmple method to reduce the end-effector vibrations and ensure

e e o e ooy ey 00d peromance sven when e actal sysiem feduencie are
9 P X mprecisely known. We refer also {&] for a linear model based

g}ogoge'ssirggt g(rznzigilT?;g:tirseigngtﬁgre v%ﬁﬂcfr:gscg}fstt{:ﬁﬁ;n% sign of input shaper controllers robust with respect to the sys-
g J y, o9 m natural frequencies and damping coefficients variations. In

eliminating or at least minimizing thg residual elastic Fjeflection;ﬁ’h]’ the authors treat the regulation problem, for the class of multi-
the end-ef‘fecto.r. The Iasp problem is more challgnglng gnd ce ink manipulator with one flexible link, using dominant elastic
cermns the tracking of desired end_—e_ffector operational trajectoriGay ation frequencies filters added to simple rigid controllers. For
|n.th|s case, the end-effector tq joint torque model OWNS a NOtha same manipulator class, we refer als¢#@| for a vibration
minimum phase property, that is well-known to make InVers'OQuppression scheme, based on a closed-loop input shaping tech-
model a difficult problem. ) nigue. The rest to rest problem in fixed desired time is considered
In .th's paper, we concentrate on the first problgm an_d Proposg, 9], where a full state based controller is used. The dynamics of
solutlo_n_based on joint trajectory cont_rol, avoiding t_h|s way ﬂ?%e system are linearized around an equilibrium point and a full
non-minimum phase problems appearing when dealing with eng e regulator is then computed. Good results are obtained on a
effector output to joint torque plant controllers. two-link manipulator with flexible forearm. However, a full state
‘Many strategies exist for the position control of such systemMg.eqhack needs measurement or estimation of the elastic states,
Firstly, the regulation problem has been treated by number Ofch is not straightforward for practical implementatisee also
authors whom have used ;lmpllfledear models for a one-Il_nk [10,11] for elastic measurement feedback based schermed 2],
flexible arm. For example, ifiL], a method based on control inputyyg aigorithms yielding optimal joint trajectories are presented.
shaping is presented on spring-mass oscillating systems. Hig obtained rigid trajectories lead to small final elastic residual
method called “ramped sinusoids forcing function” amounts 10 giprations. In[13], a method based on the travelling time tuning is
decomposition of the input signal in sine, cosine and ramp fungresented. Basically, the motion time is augmented until the final
tions bases. The coordinates of the decomposition are then cQffiection remains under a given threshold. A nearby time optimal
puted via minimization of the controller energy during the mOt'OBang-bang control has been presenteftll. The control signal
and the elastic acceleration at the end of the desired motion.idNpased on a modification of the bang-bang form, where the
[2], the oscillating system of spring-mass is also considered 4@rypt variations have been replaced by linear functions. Experi-
present an optimal shaped trajectory approach. The desired trajggmtal results on a two-link flexible arm testbed are reported in
tories are shaped such that minimal elastic velocity, acceleratigs]’ where the rest to rest motion problem is treated. The desired
and jerk hold. A novel regulation strategy has been recently intar-nt point to point motions are firstly shaped via linear filters
(computed using the input shaping techniquethe obtained
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“three stage” controller leads to good tracking of the desired joint ¥
trajectory, with the persistence of small tip oscillations.[116], Ve i
the point to point end-effector motion has been treated for the i a

linear model of one-link arm. The authors searched for a proper
end-effector trajectory cancelling the effect of the unstable zeros
corresponding to the joint torque to end-effector transfer function,
yielding stable inversion of this non-minimum phase dynamics. In
[17], the authors proposed a closed-form solution for the point to
point motion in fixed time problem when dealing with the linear
model of a one-link robot. The scheme used is based on the pa-
rametrization of linear differential operators. We cite also the
work [18], where the rest to rest motion in fixed time has been
treated for a linear one-flexible link model. The idea is based on *
the design of an auxiliary output such that the associated transfer”
function has no zeros. The same approach has been extended in . o . )

[19] to the particular nonlinear case of a two-link robot with a Fig. 1 Planar multi-link flexible manipulator

flexible forearm, when considering one elastic vibration mode to

model the arm flexibility. The authors searched for a set of two

outputs with respect to which the system has no zero dynamics,

leading then to a closed-form solution for the rest to rest motidféctor of elastic coordinates. Lagrangian formulation can be used
problem. to determine the final equations of motion, which are of the fol-

The above mentioned works are based either on linear modtglging general form:
theories(i.e., most of the shaped inputs woyksr on particular - )
nonlinear modelsi.e., multi-link rigid robots with a flexible fore- M(q)d+hc(q,q) +Kg=Wu 2
arm), and allow to minimize the residual tip vibrations in this _ T
case. However, no one permits to cancel these vibrations inWQere’q_(al' <00y Qa1s - Oamgy - Ot - 'q"mn) is the
significant manner on a flexible multi-link testbed, using onlyector of generalized coordinates= (uy, . . . u,)" the vector of
joint measurements. joint torques M the positive definite symmetric inertia matrix,

In this work is proposed a simple nonlinear model based solthe vector of Coriolis and centrifugal forces the stiffness matrix
tion to the rest to rest motion in fixed time problem for multi-linkand W the input weighting matrix which, due to the choice of
flexible planar manipulators. The idea is basedankward inte- clamped shape functions, assumes the f[)lr,l;g}n,onxne]T (where
gration of the nonlinear elastic dynamicstarting from the de- n,=m,+ ...+m, and! is the identity matri%).
sired final rest position. Then, the elastic states obtained are used ) )
to compute a feedforward control, which is addedsimple joint ~ Remark. We point out at this level that, contrary to some
state feedbackensuringlocal exponential stability of the error available methodse.g., the shaped input techniqueve do not
dynamics equilibrium point The whole controller is able to drive Need to take into account the elastic damping terms. This yields
the system along the desired states, solving directly the rest to r@tre interest to the obtained results, firstly because of the identi-
motion in fixed time problem when dealing with relatively slowfication difficulties of t.hese coefficients, qudlng to uncertain val-
joints motions. However, for faster joint positioning, the initiatl€S[5], and secondly if the control scheme is able to damp out the
desired elastic states obtained through backward integration Fesidual oscillation without internal damping, things can not be
come large. Thus, the local controller fails to stabilize the systeWPrst with the presence of this damping effect in the simulation
dynamics along the desired states. To overcome this limitatighodel and in the real system. _ o
without introducing elastic state feedbagle., keeping the same  The mass matrid, the stiffness matrix and the Coriolis and
Simp|e |Oca||y Stab|||z|ng feedbaaz,kvve propose to Shape the jointc-e.ntnfugal VeC'[OIhC can be pal’tltloned ConSIStent|y with the defi-
trajectory, through an optimal planning technique, the goal beirtion of g as:
the minimization of the initial elastic states. The nice behavior of
this approach is illustrated by the numerical simulation and ex- M= My Mre _ 0 0
periments on a flexible two-link manipulator. n |\/|rTe M e 10 Kee

The paper is organized as follows. Section 2 recalls briefly the
dynamics of planar multi-link flexible manipulators. In Sec. 3, the he=(h, ,he)T 3)
proposed scheme is presented. Section 4 is devoted to the numeri-
cal and experimental results obtained for the two-link case. Rhen, the dynamics can be rewritten separately for the rigid and
nally, conclusions are driven out in Sec. 5. flexible parts as follows:

yutl

]

2 Dynamic Modeling M ®+MQ+h(0,Q,0,Q)=I,u 4)

We recall in the following the general model form for planar T - - _
arms, without going deeply into the model derivation. For details Me®+MeeQ+he(0,Q,0,Q)+KeeQ=0 ®)
we refer the reader t920] for small elastic displacement field wherel ., is thenx n identity matrix.
models and21] for large elastic displacements models. We congpq: nxn
sider a multi-body system composed of flexible links

S, ...,S, loaded by a rigid bodys, . ;. The base, is supposed O=(0y,...6)7

to be rigid as well as then joints. A reference framd-;, i

e{1,... n+1} is rigidly attached to each body, to describe its Q=(011s - - - A1+ - - - Ants - - -Onm) "

position in the motion plantFig. 1). The elastic deformation in ! "

S, ie{l,...n}is represented as: In the following section, we state the control problem as well as
W (0= ()QI(1) @ tmhgtics)ggutions we are proposing both for slow and fast joint

with, ¢i the row vectors of shape functiofffor detailed discus-
sion about shape functions choice g&,22)) andQ' the column 1 the following, A, denotes a matrix witi lines, m columns.
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3 The Control Scheme Ug () =ug (1) +K(t)e(t) (13)
3.1 Rest to Rest Motion Problem Statement. Given a set where e(t)=(04(t) — 0 (t),04(t)—O(t))" and K(t) is a time

of desired initial and final angular positions: dependent diagonal gain matrix, which is computed such as to
(to)=(0q.(to) 0y (to))" ensure local stability of the linearized system along the desired
Q4 ditt0 dn' "0 state trajectory(this is possible due to the local controllability
Ou(t)=(04.(t;) ... 04 (t)T (6) property of planar flexible arm{23]). When this holds and under
1 n

sufficiently slow motion, local uniform exponential stability is
where ty,t; are respectively the fixed initial and final motionensured for the nonlinear system along the desired sf&éls pp.
times, find a control law such that: 242, 246 and25]).

O(1)=04(ty) for t<t,, O4t)=04t;) for t=t; Remarks. 1-Even if exponential convergence to the desired
O(tg)=0 O(t)=0 state trajectory is obtained for the system dyn_amics_, it is clea_lr that
0 nxi f nx1 @) one would not be able to satisfgxactly the final time elastic

Q()=0n 1 for t<to, Q(1)=0px1, for t=t constraints of system E(7). However, the final elastic state val-
Q(te)=0p x1, Q(t)=0, x1 ues will be close to zero, leading then to negligible residual oscil-
e lations (see Sec. ®#
Namely, we are searching for a causal control, implying a motion 2-As we have explained before, this scheme does not need to
between the equilibrium points®((ty),Q(to)) = (O4(to),0, x1), take into account the damping terms, to reach the desired control
(O(t1),Q(t)) = (04(t1),0, «1), in a desired fixed time; . ‘ goals. However, we should underline that when introducing linear
¢ elastic damping terms in the elastic dynamics @&d), the back-

3.2 Proposed Solution for Slow Motion. The control law ward integration could become critical. In fact, the linear damping
used here is basically a feedforward plus feedback term basedterms yield asymptotic vanishing of the elastic trajectory, when
the joint states. The main contribution of this work concerns thstegrated forward in time. Then, the backward integration will
construction of the feedforward term. Considering a desired setlefd to unstable trajectory, if important damping terms are consid-
initial-final angular positions given by Ed6), this set can be ered. However, when dealing with realistic damping coefficients
interpolated through a fifth order polynomial trajectom; (t) values, their effect on the bounded integration doni&nt;] re-

_ 3_ 4 5y i v mains small, yielding bounded feasible elastic statefer to[26]
0a (1) (100/t7) "~ 15(t/ty) " +6(t/ty)"), 1€ {1 .. .n} satisfying for some numerical resultsWe insist then on the fact that these

the following classical velocity and acceleration constraints: damping terms are absolutely not necessary to the control design

0P (te)=0M(t)=0,y1 we propose here so that we can make them vanish without wor-
02 (ty)=0?(t)=0 (8) rying about._ _ . . .
d A0 d nx1 The solution proposed above is appropriate when dealing with
Let: slow joint motions. The problem remains for fast motion. In fact,
T in this case system vibrations are expected to be more important
O4(1)=(0q,(1) ... 04 (1), telty t] (®)  and thus the elastic position and veloc®y(to),Q4(ts) to have

ge values, since the joint feedback ensures only local stability
of the error dynamics equilibrium point, the actual system states
could then drift off from the desired trajectory. To overcome this

represent the vector of the obtained joint trajectory. Then, usi
(9) the feedforward control can be directly obtained from &),

and writes: problem,keeping nevertheless the simple joint feedbagk pro-
uff:M?r®d+ M?eQd+ hra(®4,Qq ’(;)d ’Qd) (10) pose to se_ar_c_h for a proper _angular trajec_tory such that it mini-
. mizes the initial elastic position and velociQy(tg),Qq(to). In
where: the following we present how to generate these optimal joint tra-
M =M (©4.Qu) Jectories.

MEL=M(Og, : . . .
e re(®4:Qa) 3.3 Optimal Joint Trajectory Generation for Fast Rest-to-
and Qq represents the desired elastic vector associated to the Best Motion

sired joint trajectory and satisfies the following equation: . . .
J J y geq 3.3.1 Formulation as Pontryagin Optimal ProblemWe are

(Mfe) 04+ MgQq+hed(©4,Q4,04,Qu) +KedQu=0 searching for a joint trajectory satisfying the constraints @g.
(11) Eqg. (8) and minimizing the cosi:

with, 1 . .
J=5(Qq(to) ".K1.Qq(to) + Qqlto) ".K5.Qq(to))  (14)
Med ©4,Qq) 2
The idea we introduce here is the following: since the goal sfhereK; K, are two positive definite matrices. _
control is joint motion between two equilibrium points set with To solve this problem we define a general polynomial form for
elimination of the elastic vibration at the end of the desired mdhe joint trajectory:
tion, we propose to proceed through backward integration of the s -
elastic dynamics Eq.11), starting from the desired rest configu-
ration, namely: 2 () + 2 b; .(t/t;)17©),

Qq(t)=0p 1, Qu(t)=0pn 1 (12) ke{l...n}, meN* (15)

the corresponding final conditions differential equation system e g,,(t) can be expressed as functions of tie) (coefficients
then solved to obtain the desired elastic trajectQy(t). It is  py substituting Eq(15) into Eq. (6), Eq. (8) and solving for the
expected then thay(t), Qd(t) assume non zero initial conditions (a;) vector. Using the obtained joint trajectos;(t,B) (where
Qq(to).Qq4(to), leading then to initial state error. However, theB=(b; ...b.,)), together with Eq.(11) we can formulate the
actual trajectory will be driven to reach the computed desired omptimization problem presented above as the following Pontrya-
using an angular feedback regulator. The final control writes: gin optimal control problent[27], p. 315:
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, 1 (t,X) e[tg,t;] X R?Me (16)
min| 3= 3 (Xa(to) -K1.X1(to) + Xa(to)-Kz. X (to) o
B where

X=F(LXB). X(t)=Oppa, BeRY, X=(X1, %) = Q) Qu(0)

Xz

F(t’X’B)Z((MSQl(t,xl,Bx—M?eu,xl,B)T@d(t,B)—hed<t,x,B>—Kee><l)

andB is considered as a constant control vector ¢¥gyt;], to be relatively slow motion. We have chosen as desired angular equi-
determined such that minimizing the cdst\e refer to[26], for a  librium points © o= (0), yrad, O (= (m/2,7/2) rad.
solution existence analysis. Let us recall that by relatively slow, we mean motions slow

When the optimal trajectory has been obtained, one can procesmugh in order that the initial elastic states, that will hold after
through backward integration as explained in Sec. 3.2. Since tite backward integration, remain small. To determine, at least
trajectory has been designed such as to minimize the initial elastiemerically, a threshold for such a value of the time motion, we
states, a simple joint feedback will be enough to drive the systafave computed the square of the elastic VeC@E((O)vQ(tO))
from the desired point to the goal through the optimal trajectoryiorm, as a function of the final motion timtg. The obtained

In the following section we present numerical as well as expefiesult is displayed in Fig. 3. One can see that the vajee3 s
mental results obtained for a two-link flexible arm. seems to be a critical one. To begin with, we test a slow trajectory

(Fig. 4), fixing t;=5s. We pursue by testing a faster motion cor-
; : ; responding to the critical valug=3s.

4 Simulation and Experimental Results The procedure described in Sec. 3.2 has been run to compute

4.1 Testbed Description. The arm(see Fig. 2is character- the elastic trajectory associated to the joint desired motion. Fig-
ized by mechanical properties summarized in Table 1. It is driveties 5 and 6 display the joint trajectory tracking obtained for a
by D.C. servo motors. For real time law computation a PC 486 i®minal simulation plantithout introducing elastic damping co-
used, with 12 bit A/D and D/A boards. The sampling period usegfficients in the simulation modsdt is clear that the angular final
is 5 ms. The angular positions are measured by encoder of 144@ition is reached with small error. The tip elastic displacements
points and 2000 points for the first and second joint respectiveBre displayed in Figs. 7 and 8. One can see that these deflections
The angular velocity is computed through basic numerical differ-
entiation and filtering. Strain gauges are used to measure the tip
elastic displacements.

80

4.2 Simulation Results. The dynamical model of the arm
described above has been computed using two clamped modes for
each arm. First, we start by testing the proposed approach for 50

L L L L
3 35 4 45 5
sec

Fig. 3 Initial elastic vector Euclidian norm square |e|? as func-
tion of t;
“ A
7
Fig. 2 The two-link flexible arm testbed 6 / \
5
Table 1 Mechanical properties of the arm k(l‘)4 — FL/ \
Property First Link Second Link 3 &M \\ /F
Length. L(m) 1.005 0.52 A
Mass densityp (kg/m) 2.032 0.706 \ /
Rigidity. EI (N.m?) 47.25 1.749 1 ——
Tip-load massmy;, (kg) 7.66 0.51
Tip-load inertia.J;; IT&kg.mz) 171e-3 623e-7 o \ > s N .
Hub inertia.J,, (kg.nt) 1.8e-3 225e-6 sec

Arm thicknessd (mm) 3 1

Fig. 4 Time scheduling gain, slow motion  t;=5s
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7 wtt

sec sec

Fig. 5 First joint motion, desired  (continuous line ) and actual Fig. 8 Second arm tip-deflection, slow motion t;=5s, simula-
(dashed line ) motion, slow motion t;=5 s, simulation results tion results

are damped out at the end of the desired rigid motion. Even if, as® My, = 6Myp= +10% (more loaded arms

discussed in Sec. 3.2, the tip oscillations do not exactly vanish at SEl;=6El,= —20% (more flexible rigid armp

the final instant, these residual amplitudes are quite negligible.> 1.05 cm and 0.6 cm of initial tip-displacements for the first

The corresponding smooth closed-loop torques are given in Figgd second link respectivelgorresponding tas6;(to) = 66,(to)

9 and 10. These torques do not vanish at the initial instant: this4s10 2 rad and, 5q4(to) = 6021(to) =10 3, 8q1x(te) = 5024(to)

due to the nonzero elastic positions and velocities initial valuesO0).

obtained through the backward integration, yielding via &d) e Angular position and velocity measurements noises, mod-

to a nonzero initial feedforward. Figure 4 displays the obtaineglled by a random variable uniformly distributed between

time varying gain k(t), s.t, K in Eq. (13) writes K=k(t) *+1.610°°. The desired joint positioning constraints are still sat-

X[1hxn0.5hxn]), computed such that at each time sample, thefied as displayed in Figs. 11 and 12. However, tip vibrations

linearized error dynamics be stalfee discussion in Sec. 3.2t  appear for the second arfsee Figs. 13 and 14but remain small

is clear that the local stability does not require high gain valuegkeeping in mind that no elastic damping has been introduced

which is quite important for practical implementation. We havé&he feasible closed-loop controls are given in Figs. 15 and 16.

also done some simulations including perturbations with respeldte collocated feedback seems to give robustness to the whole

to model parameters, initial values uncertainties and measurememntroller with respect to the considered uncertainties. However,

noises, by introducing the following disturbances: for larger disturbances one should think about an adaptive version
of this scheme, e.d28].

/ A

1/ WA

sec -6
Fig. 6 Second joint motion, desired (continuous line ) and
actual (dashed line ) motion, slow motion t=5s, simulation Fig. 9 First closed-loop torque, slow motion t~=>5s, simula-
results tion results

e /I

R, \L/
N

sec sec

Fig. 7 First arm tip-deflection, slow motion t;=5s, simulation Fig. 10 Second closed-loop torque, slow motion t/=5s, simu-
results lation results
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Fig. 11 First joint motion, desired  (continuous line ) and actual
(dashed line ) motion, disturbed plant

Fig. 14 Second link tip deflection, disturbed plant

. . .. minimization code, based on a direct search metfsee for eg.
Consider now a faster motion case, namely the travelling ti

. ) ; - IM89g]). The obtained simulation results on the nominal plant are
t;=3s. To display the necessity of the optimal trajectory shaping,,

en in Figs. 19 to 24. Figures 19 and 20 display the obtained
introduced in Sec. 3.3, we first report the obtained results assqgg! g g ey

. o : : iht motions. In Figs. 21 and 22, we can see that the elastic
ated to a direct application of the backward integration approadfjspjacement of the end-effector vanishes at the end of the motion.
with the fifth order polynomial joint trajectoryi.e., without tra-

. . . i - The corresponding closed-loop control torques and varying gain
jectory planning. Figure 17 shows the first angular motion. As;re given in Figs. 23, 24 and 25. The maximum torque values are
expectedsee Sec. Bthe joint constraints of the rest to rest prob<|early (and logically larger than those obtained for the first mo-

lem Eq.(7) are not achieved with good precision. We turn then tgo,  This can be enhanced by choosing a less demanding joint

X o X %Gjectory or with a slight modification of the optimization cost. In
3.3 and search for an optimal joint vector trajectory B) SOV- 50t following e.g.[30,14), one can replace the polynomial joint
ing the problem defined by Eql6). To display the effect of the yqiactory Eq(15) with a near bang-bang functidghe., bang-bang
vector B dimension on the optimal trajectory, we have comparegceleration with smooth commutation functiprthis allows to

the trajectories obtained for different values of indext is clear reajize the same joint motions with lower requested torques, this
from Fig. 18 that changing the number of optimization paramet&feing due to the uniform acceleration distributicsee[30] for
does not affect significantly the obtained optimal trajectory. Weore details Another classical solution could proceed through

have kept then the dimension=5 (which seems to yield a lower ¢ mogification of the optimization cost E44) as follows[31]:
optimization timg. The optimal problem has been solved usmgi\Hl/t ftfzi:n(u_(t)/u_ Y2dt, whered is given by Eq.(14)
the Nelder-Mead simplex method, a nonlinear unconstraing€d flo=i=1\HMi I'ma i 9 Yy EQ! !

d U; maxsi €{1.n} are the maximal acceptable torque values.

\

/

sec -6

Fig. 12 Second joint motion, desired (continuous line ) and

actual (dashed line ) motion, disturbed plant

i
VA

By

oo

sec

Fig. 13 First link tip deflection, disturbed plant
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Fig. 15 First closed-loop torque, disturbed plant

Nm
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Fig. 16 Second closed-loop torque, disturbed plant
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Fig. 17 Desired and actual (dashed line ) motion, fast motion
t;=3 s without optimal trajectory planning

Fig. 18 Optimal trajectories for different ~ m values
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Fig. 19 First joint motion, desired
(dashed line ) motion, fast motion

(continuous line ) and actual
t/=3 s, simulation results

-0.2

Fig. 20 Second joint motion, desired  (continuous line ) and

actual (dashed line ) motion, fast motion t;=3s, simulation
results
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Fig. 22 Second link tip deflection, fast motion
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Fig. 23 First closed-loop torque, fast motion
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Fig. 24 Second closed-loop torque, fast motion
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Fig. 25 Time scheduling gain, fast motion t;=3s
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(continuous line ) and actual

Fig. 26 First joint motion, desired
t;=5s, experimental test

(dashed line ) motion, slow motion
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Fig. 27 Second joint motion, desired
t;=5s, experimental
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Fig. 31 Second closed-loop torque, slow motion t;=5s,

experimental test

Through the minimization o one can minimize the initial elastic
coordinates as well as the torque values along the optimal joint

trajectory.

4.3 Experimental Results. In this section are presented the
experimental results. The rest to rest motion tested is character-
ized by a fifth order polynomial joint trajectory between the two
equilibrium ©4=(0),,yrad, O¢=(m/2,m/2)" rad with a time
motion of 5 s(i.e., the first simulation testDue to PC memory
constraints, we have replaced the varying gain with the constant
joint gain feedbackK(,l:13 N.m/rad, Ky, =0.2 N.m.s/rad,K(,2
=10 N.m/rad, Ky,=0.2 N.m.s/rad. The good tracking perfor-
mances obtained are displayed in Figs. 26 and 27. Furthermore,
the elastic tip vibrations have been effectively damped out at the
end of the desired motiofFigs. 28 and 2P The causal closed-
loop torques are presented in Figs. 30 and 31 and show a smooth
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