
e for
n of
in a
stic
rms.
ased
the

g to
ler is
ever,
along
To
and
f the
que
via
M. Benosman
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Rest-to-Rest Motion for Planar
Multi-Link Flexible Manipulator
Through Backward Recursion
In this work is considered the problem of rest-to-rest motion in a desired pre-fixed tim
planar flexible manipulators. We introduce a simple idea permitting the minimizatio
end-effector residual vibration when reaching a desired angular equilibrium position,
pre-fixed desired travelling time. The results hold without considering internal ela
damping effect, using a classical controller with feedforward plus joint feedback te
The new approach concerns the computation of the feedforward control, which is b
on backward integration of the elastic dynamics, starting from a rest position of
flexible arms. This backward integration yields basically elastic trajectories permittin
reach the final desired end-effector position without oscillation. The feedback control
then used to stabilize locally the actual states along these desired trajectories. How
for fast rest to rest motion, the feedback compensator fails to drive the system states
the desired trajectories, this being due to the relatively large initial elastic error.
overcome this limitation, proper joint motion is planned between the desired initial
final positions through optimization techniques, the goal being the minimization o
initial elastic error associated to these joint trajectories. The optimal planning techni
is formulated as a Pontryagin optimal control problem. This scheme is validated
numerical tests as well as experiments on a flexible two-link planar manipulator.
@DOI: 10.1115/1.1649976#
o

n

r
o
i

s
h

m
r

o

a

t

ab-
to a

is a
sure

are

ys-
. In
lti-

ic
or

tech-
red

s of
full
on a
te
ates,

d.
ual
is
nal
mal

the
eri-
in

ired
rs

ard
e
nt

T

0

1 Introduction
For flexible multi-link manipulators, three interesting contr

problems hold. The first one concerns the point to point motion
a pre-fixed time, where the final joint position should be reach
in a desired finite time both with cancellation of residual tip o
cillations~this differs from the regulation problem, where the tim
motion is not constrained!. The second one concerns the tracki
of a desired angular trajectory, together with the constraints
eliminating or at least minimizing the residual elastic deflection
the end-effector. The last problem is more challenging and c
cerns the tracking of desired end-effector operational trajecto
in this case, the end-effector to joint torque model owns a n
minimum phase property, that is well-known to make invers
model a difficult problem.

In this paper, we concentrate on the first problem and propo
solution based on joint trajectory control, avoiding this way t
non-minimum phase problems appearing when dealing with e
effector output to joint torque plant controllers.

Many strategies exist for the position control of such syste
Firstly, the regulation problem has been treated by numbe
authors whom have used simplifiedlinear models, for a one-link
flexible arm. For example, in@1#, a method based on control inpu
shaping is presented on spring-mass oscillating systems.
method called ‘‘ramped sinusoids forcing function’’ amounts to
decomposition of the input signal in sine, cosine and ramp fu
tions bases. The coordinates of the decomposition are then c
puted via minimization of the controller energy during the moti
and the elastic acceleration at the end of the desired motion
@2#, the oscillating system of spring-mass is also considered
present an optimal shaped trajectory approach. The desired tr
tories are shaped such that minimal elastic velocity, accelera
and jerk hold. A novel regulation strategy has been recently in
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duced in@3#. The scheme is based on wave propagation and
sorption techniques, and has been successfully applied
lumped-parameter mass-spring model. We also cite@4#, where it is
shown that an open-loop strategy based on shaped-input filters
simple method to reduce the end-effector vibrations and en
good performance even when the actual system frequencies
imprecisely known. We refer also to@5# for a linear model based
design of input shaper controllers robust with respect to the s
tem natural frequencies and damping coefficients variations
@6#, the authors treat the regulation problem, for the class of mu
link manipulator with one flexible link, using dominant elast
vibration frequencies filters added to simple rigid controllers. F
the same manipulator class, we refer also to@7,8# for a vibration
suppression scheme, based on a closed-loop input shaping
nique. The rest to rest problem in fixed desired time is conside
in @9#, where a full state based controller is used. The dynamic
the system are linearized around an equilibrium point and a
state regulator is then computed. Good results are obtained
two-link manipulator with flexible forearm. However, a full sta
feedback needs measurement or estimation of the elastic st
which is not straightforward for practical implementation~see also
@10,11# for elastic measurement feedback based schemes!. In @12#,
two algorithms yielding optimal joint trajectories are presente
The obtained rigid trajectories lead to small final elastic resid
vibrations. In@13#, a method based on the travelling time tuning
presented. Basically, the motion time is augmented until the fi
deflection remains under a given threshold. A nearby time opti
bang-bang control has been presented in@14#. The control signal
is based on a modification of the bang-bang form, where
abrupt variations have been replaced by linear functions. Exp
mental results on a two-link flexible arm testbed are reported
@15#, where the rest to rest motion problem is treated. The des
joint point to point motions are firstly shaped via linear filte
~computed using the input shaping techniques!, the obtained
‘‘shaped’’ joint motions are then used to compute a feedforw
control torque~obtained via a classical ‘‘rigid’’ computed torqu
technique!, finally, this torque law is added to a feedback joi
friction compensator~based on a sliding mode controller!. This
3.
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‘‘three stage’’ controller leads to good tracking of the desired jo
trajectory, with the persistence of small tip oscillations. In@16#,
the point to point end-effector motion has been treated for
linear model of one-link arm. The authors searched for a pro
end-effector trajectory cancelling the effect of the unstable ze
corresponding to the joint torque to end-effector transfer functi
yielding stable inversion of this non-minimum phase dynamics
@17#, the authors proposed a closed-form solution for the poin
point motion in fixed time problem when dealing with the line
model of a one-link robot. The scheme used is based on the
rametrization of linear differential operators. We cite also t
work @18#, where the rest to rest motion in fixed time has be
treated for a linear one-flexible link model. The idea is based
the design of an auxiliary output such that the associated tran
function has no zeros. The same approach has been extend
@19# to the particular nonlinear case of a two-link robot with
flexible forearm, when considering one elastic vibration mode
model the arm flexibility. The authors searched for a set of t
outputs with respect to which the system has no zero dynam
leading then to a closed-form solution for the rest to rest mot
problem.

The above mentioned works are based either on linear mo
theories~i.e., most of the shaped inputs works!, or on particular
nonlinear models~i.e., multi-link rigid robots with a flexible fore-
arm!, and allow to minimize the residual tip vibrations in th
case. However, no one permits to cancel these vibrations
significant manner on a flexible multi-link testbed, using on
joint measurements.

In this work is proposed a simple nonlinear model based s
tion to the rest to rest motion in fixed time problem for multi-lin
flexible planar manipulators. The idea is based onbackward inte-
gration of the nonlinear elastic dynamics, starting from the de-
sired final rest position. Then, the elastic states obtained are
to compute a feedforward control, which is added tosimple joint
state feedback~ensuringlocal exponential stability of the erro
dynamics equilibrium point!. The whole controller is able to drive
the system along the desired states, solving directly the rest to
motion in fixed time problem when dealing with relatively slo
joints motions. However, for faster joint positioning, the initi
desired elastic states obtained through backward integration
come large. Thus, the local controller fails to stabilize the sys
dynamics along the desired states. To overcome this limita
without introducing elastic state feedback~i.e., keeping the same
simple locally stabilizing feedback!, we propose to shape the join
trajectory, through an optimal planning technique, the goal be
the minimization of the initial elastic states. The nice behavior
this approach is illustrated by the numerical simulation and
periments on a flexible two-link manipulator.

The paper is organized as follows. Section 2 recalls briefly
dynamics of planar multi-link flexible manipulators. In Sec. 3, t
proposed scheme is presented. Section 4 is devoted to the nu
cal and experimental results obtained for the two-link case.
nally, conclusions are driven out in Sec. 5.

2 Dynamic Modeling
We recall in the following the general model form for plan

arms, without going deeply into the model derivation. For deta
we refer the reader to@20# for small elastic displacement fiel
models and@21# for large elastic displacements models. We co
sider a multi-body system composed ofn flexible links
S1 , . . . ,Sn loaded by a rigid bodySn11 . The baseS0 is supposed
to be rigid as well as then joints. A reference frameFi , i
P$1, . . . ,n11% is rigidly attached to each body, to describe
position in the motion plant~Fig. 1!. The elastic deformation in
Si , i P$1, . . . ,n% is represented as:

v i~x,t !5f i~x!Qi~ t ! (1)

with, f i the row vectors of shape functions~for detailed discus-
sion about shape functions choice see~@20,22#! andQi the column
116 Õ Vol. 126, MARCH 2004
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vector of elastic coordinates. Lagrangian formulation can be u
to determine the final equations of motion, which are of the f
lowing general form:

M ~q!q̈1hc~q,q̇!1Kq5Wu (2)

where,q5(u1 , . . .un ,q11, . . . ,q1m1
, . . . ,qn1 , . . .qnmn

)T is the

vector of generalized coordinates,u5(u1 , . . . ,un)T the vector of
joint torques,M the positive definite symmetric inertia matrix,hc
the vector of Coriolis and centrifugal forces,K the stiffness matrix
and W the input weighting matrix which, due to the choice
clamped shape functions, assumes the form@ I n3n,0n3ne

#T ~where
ne5m11 . . . 1mn and I is the identity matrix1!.

Remark. We point out at this level that, contrary to som
available methods~e.g., the shaped input technique!, we do not
need to take into account the elastic damping terms. This yie
more interest to the obtained results, firstly because of the ide
fication difficulties of these coefficients, leading to uncertain v
ues@5#, and secondly if the control scheme is able to damp out
residual oscillation without internal damping, things can not
worst with the presence of this damping effect in the simulat
model and in the real system.

The mass matrixM, the stiffness matrixK and the Coriolis and
centrifugal vectorhc can be partitioned consistently with the de
nition of q as:

M5S Mrr Mre

Mre
T Mee

D K5S 0 0

0 Kee
D

hc5~hr ,he!
T (3)

then, the dynamics can be rewritten separately for the rigid
flexible parts as follows:

Mrr Q̈1MreQ̈1hr~Q,Q,Q̇,Q̇!5I n3n•u (4)

Mre
T Q̈1MeeQ̈1he~Q,Q,Q̇,Q̇!1KeeQ50 (5)

whereI n3n is then3n identity matrix.
and:

Q5~u1 , . . .un!T

Q5~q11, . . . ,q1m1
, . . . ,qn1 , . . .qnmn

!T

In the following section, we state the control problem as well
the solutions we are proposing both for slow and fast jo
motions.

1In the following,An3m denotes a matrix withn lines,m columns.

Fig. 1 Planar multi-link flexible manipulator
Transactions of the ASME
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3 The Control Scheme

3.1 Rest to Rest Motion Problem Statement. Given a set
of desired initial and final angular positions:

Qd~ t0!5~ud1
~ t0! . . . udn

~ t0!!T

Qd~ t f !5~ud1
~ t f ! . . . udn

~ t f !!T (6)

where t0 ,t f are respectively the fixed initial and final motio
times, find a control law such that:

5
Q~ t !5Qd~ t0! for t<t0 , Qd~ t !5Qd~ t f ! for t>t f

Q̇~ t0!50n31 , Q̇~ t f !50n31

Q~ t !50ne31 for t<t0 , Q~ t !50ne31 , for t>t f

Q̇~ t0!50ne31 , Q̇~ t f !50ne31

(7)

Namely, we are searching for a causal control, implying a mot
between the equilibrium points (Q(t0),Q(t0))5(Qd(t0),0ne31),
(Q(t f),Q(t f))5(Qd(t f),0ne31), in a desired fixed timet f .

3.2 Proposed Solution for Slow Motion. The control law
used here is basically a feedforward plus feedback term base
the joint states. The main contribution of this work concerns
construction of the feedforward term. Considering a desired se
initial-final angular positions given by Eq.~6!, this set can be
interpolated through a fifth order polynomial trajectory:udi

(t)

5udi
(t f)(10(t/t f)

3215(t/t f)
416(t/t f)

5), i P$1 . . .n% satisfying
the following classical velocity and acceleration constraints:

H Qd
~1!~ t0!5Qd

~1!~ t f !50n31

Qd
~2!~ t0!5Qd

~2!~ t f !50n31
(8)

Let:

Qd~ t !5~ud1
~ t ! . . . udn

~ t !!T, tP@ t0 t f # (9)

represent the vector of the obtained joint trajectory. Then, us
~9! the feedforward control can be directly obtained from Eq.~4!,
and writes:

uf f5Mrr
d Q̈d1Mre

d Q̇d1hrd~Qd ,Qd ,Q̇d ,Q̇d! (10)

where:

Mrr
d 5Mrr ~Qd ,Qd!

Mre
d 5Mre~Qd ,Qd!

andQd represents the desired elastic vector associated to the
sired joint trajectory and satisfies the following equation:

~Mre
d !TQ̈d1Mee

d Q̈d1hed~Qd ,Qd ,Q̇d ,Q̇d!1KeeQd50
(11)

with,

Mee
d 5Mee~Qd ,Qd!

The idea we introduce here is the following: since the goal
control is joint motion between two equilibrium points set wi
elimination of the elastic vibration at the end of the desired m
tion, we propose to proceed through backward integration of
elastic dynamics Eq.~11!, starting from the desired rest configu
ration, namely:

Qd~ t f !50ne31 , Q̇d~ t f !50ne31 (12)

the corresponding final conditions differential equation system
then solved to obtain the desired elastic trajectoryQd(t). It is
expected then thatQd(t),Q̇d(t) assume non zero initial condition
Qd(t0),Q̇d(t0), leading then to initial state error. However, th
actual trajectory will be driven to reach the computed desired o
using an angular feedback regulator. The final control writes:
Journal of Dynamic Systems, Measurement, and Control
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ucl~ t !5uf f~ t !1K~ t !e~ t ! (13)

where e(t)5(Qd(t)2Q(t),Q̇d(t)2Q̇(t))T and K(t) is a time
dependent diagonal gain matrix, which is computed such a
ensure local stability of the linearized system along the des
state trajectory~this is possible due to the local controllabilit
property of planar flexible arms@23#!. When this holds and unde
sufficiently slow motion, local uniform exponential stability i
ensured for the nonlinear system along the desired states~@24#, pp.
242, 246 and@25#!.

Remarks. 1-Even if exponential convergence to the desir
state trajectory is obtained for the system dynamics, it is clear
one would not be able to satisfyexactly the final time elastic
constraints of system Eq.~7!. However, the final elastic state va
ues will be close to zero, leading then to negligible residual os
lations ~see Sec. 4!.

2-As we have explained before, this scheme does not nee
take into account the damping terms, to reach the desired co
goals. However, we should underline that when introducing lin
elastic damping terms in the elastic dynamics Eq.~11!, the back-
ward integration could become critical. In fact, the linear damp
terms yield asymptotic vanishing of the elastic trajectory, wh
integrated forward in time. Then, the backward integration w
lead to unstable trajectory, if important damping terms are con
ered. However, when dealing with realistic damping coefficie
values, their effect on the bounded integration domain@ t0 ,t f # re-
mains small, yielding bounded feasible elastic states~refer to@26#
for some numerical results!. We insist then on the fact that thes
damping terms are absolutely not necessary to the control de
we propose here so that we can make them vanish without w
rying about.

The solution proposed above is appropriate when dealing w
slow joint motions. The problem remains for fast motion. In fa
in this case system vibrations are expected to be more impo
and thus the elastic position and velocityQd(t0),Q̇d(t0) to have
large values, since the joint feedback ensures only local stab
of the error dynamics equilibrium point, the actual system sta
could then drift off from the desired trajectory. To overcome th
problem,keeping nevertheless the simple joint feedback, we pro-
pose to search for a proper angular trajectory such that it m
mizes the initial elastic position and velocityQd(t0),Q̇d(t0). In
the following we present how to generate these optimal joint
jectories.

3.3 Optimal Joint Trajectory Generation for Fast Rest-to-
Rest Motion

3.3.1 Formulation as Pontryagin Optimal Problem.We are
searching for a joint trajectory satisfying the constraints Eq.~6!,
Eq. ~8! and minimizing the costJ:

J5
1

2
~Qd~ t0!T.K1 .Qd~ t0!1Q̇d~ t0!T.K2 .Q̇d~ t0!! (14)

whereK1 ,K2 are two positive definite matrices.
To solve this problem we define a general polynomial form

the joint trajectory:

udk
~ t !5(

i 50

i 56

ai .~ t/t f !
i1(

j 51

j 5m

bj .~ t/t f !
~ j 16!,

kP$1 . . .n%, mPN* (15)

The udk(t) can be expressed as functions of the (bi) coefficients
by substituting Eq.~15! into Eq. ~6!, Eq. ~8! and solving for the
(ai) vector. Using the obtained joint trajectoryudi(t,B) ~where
B5(b1 . . . bm)), together with Eq.~11! we can formulate the
optimization problem presented above as the following Pontr
gin optimal control problem~@27#, p. 315!:
MARCH 2004, Vol. 126 Õ 117
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~X1~ t0!T.K1 .X1~ t0!1X2~ t0!T.K2 .X2~ t0!! D

Ẋ5F~ t,X,B!, X~ t f !50ne31 , BPRm,
c
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~ t,X!P@ t0 ,t f #3R2.ne (16)

where

X5~X1 ,X2!5~Qd~ t !,Q̇d~ t !!T
F~ t,X,B!5S X2

~Mee
d !21~ t,X1 ,B!~2Mre

d ~ t,X1 ,B!TQ̈d~ t,B!2hed~ t,X,B!2KeeX1! D
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andB is considered as a constant control vector over@ t0 ,t f #, to be
determined such that minimizing the costJ. We refer to@26#, for a
solution existence analysis.

When the optimal trajectory has been obtained, one can pro
through backward integration as explained in Sec. 3.2. Since
trajectory has been designed such as to minimize the initial ela
states, a simple joint feedback will be enough to drive the sys
from the desired point to the goal through the optimal trajecto

In the following section we present numerical as well as exp
mental results obtained for a two-link flexible arm.

4 Simulation and Experimental Results

4.1 Testbed Description. The arm~see Fig. 2! is character-
ized by mechanical properties summarized in Table 1. It is dri
by D.C. servo motors. For real time law computation a PC 48
used, with 12 bit A/D and D/A boards. The sampling period us
is 5 ms. The angular positions are measured by encoder of 14
points and 2000 points for the first and second joint respectiv
The angular velocity is computed through basic numerical diff
entiation and filtering. Strain gauges are used to measure th
elastic displacements.

4.2 Simulation Results. The dynamical model of the arm
described above has been computed using two clamped mode
each arm. First, we start by testing the proposed approach

Fig. 2 The two-link flexible arm testbed

Table 1 Mechanical properties of the arm

Property First Link Second Link

Length. L~m! 1.005 0.52
Mass density.r ~kg/m! 2.032 0.706
Rigidity. EI ~N.m2! 47.25 1.749
Tip-load mass.mtip ~kg! 7.66 0.51
Tip-load inertia.Jtip ~kg.m2! 171e23 623e27
Hub inertia.Jh ~kg.m2! 1.8e23 225e26
Arm thickness.d ~mm! 3 1
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relatively slow motion. We have chosen as desired angular e
librium pointsQ05(0)(2,1)rad, Q f5(p/2,p/2)Trad.

Let us recall that by relatively slow, we mean motions slo
enough in order that the initial elastic states, that will hold af
the backward integration, remain small. To determine, at le
numerically, a threshold for such a value of the time motion,
have computed the square of the elastic vector (Qd(t0),Q̇(t0))
norm, as a function of the final motion timet f . The obtained
result is displayed in Fig. 3. One can see that the valuet f53 s
seems to be a critical one. To begin with, we test a slow trajec
~Fig. 4!, fixing t f55 s. We pursue by testing a faster motion co
responding to the critical valuet f53 s.

The procedure described in Sec. 3.2 has been run to com
the elastic trajectory associated to the joint desired motion. F
ures 5 and 6 display the joint trajectory tracking obtained fo
nominal simulation plant,without introducing elastic damping co
efficients in the simulation model. It is clear that the angular fina
position is reached with small error. The tip elastic displaceme
are displayed in Figs. 7 and 8. One can see that these deflec

Fig. 3 Initial elastic vector Euclidian norm square zez2 as func-
tion of t f

Fig. 4 Time scheduling gain, slow motion t fÄ5 s
Transactions of the ASME
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are damped out at the end of the desired rigid motion. Even if
discussed in Sec. 3.2, the tip oscillations do not exactly vanis
the final instant, these residual amplitudes are quite negligi
The corresponding smooth closed-loop torques are given in F
9 and 10. These torques do not vanish at the initial instant: th
due to the nonzero elastic positions and velocities initial val
obtained through the backward integration, yielding via Eq.~10!
to a nonzero initial feedforward. Figure 4 displays the obtain
time varying gain (k̃(t), s.t., K in Eq. ~13! writes K5 k̃(t)
3@ I n3n,0.5I n3n#), computed such that at each time sample,
linearized error dynamics be stable~see discussion in Sec. 3.2!. It
is clear that the local stability does not require high gain valu
which is quite important for practical implementation. We ha
also done some simulations including perturbations with resp
to model parameters, initial values uncertainties and measure
noises, by introducing the following disturbances:

Fig. 5 First joint motion, desired „continuous line … and actual
„dashed line … motion, slow motion t fÄ5 s, simulation results

Fig. 6 Second joint motion, desired „continuous line … and
actual „dashed line … motion, slow motion t fÄ5 s, simulation
results

Fig. 7 First arm tip-deflection, slow motion t fÄ5 s, simulation
results
Journal of Dynamic Systems, Measurement, and Control
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• dmtip15dmtip25110% ~more loaded arms!
• dEI15dEI25220% ~more flexible rigid arms!
• 1.05 cm and 0.6 cm of initial tip-displacements for the fir

and second link respectively~corresponding todu1(t0)5du2(t0)
51022 rad and,dq11(t0)5dq21(t0)51023, dq12(t0)5dq22(t0)
50).

• Angular position and velocity measurements noises, m
elled by a random variable uniformly distributed betwe
61.61025. The desired joint positioning constraints are still sa
isfied as displayed in Figs. 11 and 12. However, tip vibratio
appear for the second arm~see Figs. 13 and 14!, but remain small
~keeping in mind that no elastic damping has been introduc!.
The feasible closed-loop controls are given in Figs. 15 and
The collocated feedback seems to give robustness to the w
controller with respect to the considered uncertainties. Howe
for larger disturbances one should think about an adaptive ver
of this scheme, e.g.@28#.

Fig. 8 Second arm tip-deflection, slow motion t fÄ5 s, simula-
tion results

Fig. 9 First closed-loop torque, slow motion t fÄ5 s, simula-
tion results

Fig. 10 Second closed-loop torque, slow motion t fÄ5 s, simu-
lation results
MARCH 2004, Vol. 126 Õ 119
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Consider now a faster motion case, namely the travelling t
t f53 s. To display the necessity of the optimal trajectory shap
introduced in Sec. 3.3, we first report the obtained results ass
ated to a direct application of the backward integration approa
with the fifth order polynomial joint trajectory~i.e., without tra-
jectory planning!. Figure 17 shows the first angular motion. A
expected~see Sec. 3! the joint constraints of the rest to rest pro
lem Eq.~7! are not achieved with good precision. We turn then
the application of the optimal planning scheme presented in S
3.3 and search for an optimal joint vector trajectory Eq.~15! solv-
ing the problem defined by Eq.~16!. To display the effect of the
vectorB dimension on the optimal trajectory, we have compa
the trajectories obtained for different values of indexm. It is clear
from Fig. 18 that changing the number of optimization parame
does not affect significantly the obtained optimal trajectory.
have kept then the dimensionm55 ~which seems to yield a lowe
optimization time!. The optimal problem has been solved usi
the Nelder-Mead simplex method, a nonlinear unconstrai

Fig. 11 First joint motion, desired „continuous line … and actual
„dashed line … motion, disturbed plant

Fig. 12 Second joint motion, desired „continuous line … and
actual „dashed line … motion, disturbed plant

Fig. 13 First link tip deflection, disturbed plant
120 Õ Vol. 126, MARCH 2004
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minimization code, based on a direct search method~see for eg.
@29#!. The obtained simulation results on the nominal plant
given in Figs. 19 to 24. Figures 19 and 20 display the obtain
joint motions. In Figs. 21 and 22, we can see that the ela
displacement of the end-effector vanishes at the end of the mo
The corresponding closed-loop control torques and varying g
are given in Figs. 23, 24 and 25. The maximum torque values
clearly ~and logically! larger than those obtained for the first m
tion. This can be enhanced by choosing a less demanding
trajectory or with a slight modification of the optimization cost.
fact, following e.g.@30,14#, one can replace the polynomial join
trajectory Eq.~15! with a near bang-bang function~i.e., bang-bang
acceleration with smooth commutation functions!, this allows to
realize the same joint motions with lower requested torques,
being due to the uniform acceleration distribution~see@30# for
more details!. Another classical solution could proceed throu
the modification of the optimization cost Eq.~14! as follows@31#:
J̃5J11/t f*0

t f( i 51
i 5n(ui(t)/ui max)

2 dt, whereJ is given by Eq.~14!,
and ui max,iP$1..n% are the maximal acceptable torque value

Fig. 14 Second link tip deflection, disturbed plant

Fig. 15 First closed-loop torque, disturbed plant

Fig. 16 Second closed-loop torque, disturbed plant
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Fig. 17 Desired and actual „dashed line … motion, fast motion
t fÄ3 s without optimal trajectory planning

Fig. 18 Optimal trajectories for different m values

Fig. 19 First joint motion, desired „continuous line … and actual
„dashed line … motion, fast motion t fÄ3 s, simulation results

Fig. 20 Second joint motion, desired „continuous line … and
actual „dashed line … motion, fast motion t fÄ3 s, simulation
results
Journal of Dynamic Systems, Measurement, and Control
Fig. 21 First link tip deflection, fast motion t fÄ3 s, simulation
results

Fig. 22 Second link tip deflection, fast motion t fÄ3 s, simula-
tion results

Fig. 23 First closed-loop torque, fast motion t fÄ3 s, simula-
tion results

Fig. 24 Second closed-loop torque, fast motion t fÄ3 s, simu-
lation results
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Fig. 25 Time scheduling gain, fast motion t fÄ3 s

Fig. 26 First joint motion, desired „continuous line … and actual
„dashed line … motion, slow motion t fÄ5 s, experimental test

Fig. 27 Second joint motion, desired „continuous line … and
actual „dashed line … motion, slow motion t fÄ5 s, experimental
test

Fig. 28 First arm tip-deflection, slow motion t fÄ5 s, experi-
mental test
122 Õ Vol. 126, MARCH 2004
Through the minimization ofJ̃ one can minimize the initial elastic
coordinates as well as the torque values along the optimal j
trajectory.

4.3 Experimental Results. In this section are presented th
experimental results. The rest to rest motion tested is chara
ized by a fifth order polynomial joint trajectory between the tw
equilibrium Q05(0)(2,1)rad, Q f5(p/2,p/2)T rad with a time
motion of 5 s~i.e., the first simulation test!. Due to PC memory
constraints, we have replaced the varying gain with the cons
joint gain feedback:Ku1

513 N.m/rad, K u̇1
50.2 N.m.s/rad,Ku2

510 N.m/rad, K u̇2
50.2 N.m.s/rad. The good tracking perfo

mances obtained are displayed in Figs. 26 and 27. Furtherm
the elastic tip vibrations have been effectively damped out at
end of the desired motion~Figs. 28 and 29!. The causal closed-
loop torques are presented in Figs. 30 and 31 and show a sm

Fig. 29 Second arm tip-deflection, slow motion t fÄ5 s, experi-
mental test

Fig. 30 First closed-loop torque, slow motion t fÄ5 s, experi-
mental test

Fig. 31 Second closed-loop torque, slow motion t fÄ5 s,
experimental test
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behavior, with non zero initial values, due to the feedforward p
~as explained in the previous section!. Also, contrary to the simu-
lation results, the practical torques present a small static va
due to the unmodeled joint frictions.

5 Conclusion
In this work is introduced a simple idea to solve the problem

rest to rest motion in fixed desired time for multi-link planar fle
ible manipulators. This problem amounts to realize joint mot
between two equilibrium points in fixed desired time togeth
with cancellation of the tips oscillations at the end of the desi
joint motions. The solution proposed here achieves these two
jectives and this,without any internal elastic damping. This
scheme is based on backward integration of the elastic dyna
along the joint desired trajectory, starting from the desired r
position. Furthermore,the unique required measurements (f
feedback purposes) are the joint states. The proposed scheme pe
mits to directly achieve these goals, when dealing with slow m
tions. However, for fast joint trajectories, the direct application
the method did not show to be efficient. We have then propose
optimal trajectory planning to overcome this limitation. The op
mization planning statement has been formulated as a clas
Pontryagin optimal control problem, yielding direct optimal sol
tion existence. Numerical and experimental tests on a flex
two-link manipulator have shown the good behavior of the p
posed ideas.
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