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Abstract In this work we present a new restart technique for iterative projection

methods for nonlinear eigenvalue problems admitting minmax characterization of

their eigenvalues. Our technique makes use of the minmax induced local enumera-

tion of the eigenvalues in the inner iteration. In contrast to global numbering which

requires including all the previously computed eigenvectors in the search subspace,

the proposed local numbering only requires a presence of one eigenvector in the

search subspace. This effectively eliminates the search subspace growth and therewith

the super-linear increase of the computational costs if a large number of eigenvalues

or eigenvalues in the interior of the spectrum are to be computed. The new restart

technique is integrated into nonlinear iterative projection methods like the Nonlinear

Arnoldi and Jacobi-Davidson methods. The efficiency of our new restart framework

is demonstrated on a range of nonlinear eigenvalue problems: quadratic, rational and

exponential including an industrial real-life conservative gyroscopic eigenvalue prob-

lem modeling free vibrations of a rolling tire. We also present an extension of the

method to problems without minmax property but with eigenvalues which have a

dominant either real or imaginary part and test it on two quadratic eigenvalue prob-

lems.
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1 Introduction

In this work we consider a problem of computing a large number of eigenvalues in

an open real interval J ⊂ R and the corresponding eigenvectors of the nonlinear

eigenvalue problem (NEP)

T (λ)x = 0, (1)

where T (λ) ∈ C
n×n is a family of large and sparse Hermitian matrices for every

λ ∈ J . We furthermore assume that the eigenvalues of (1) in J can be characterized

as minmax values of a Rayleigh functional [35]. Such problems routinely arise in

simulation of acoustic properties of e.g.vehicles or their parts in order to minimize the

noise exposure to the passengers as well as to the environment.

The problem of computing a moderate number of eigenpairs of a nonlinear eigen-

value problem at the beginning of the spectrum has been extensively studied. For

minmax admitting problems a Nonlinear Arnoldi method was suggested in e.g. [29]

and the Jacobi-Davidson method in [4]. For more general nonlinear eigenproblems

iterative projection methods were considered in [1,7,11,14–17,19–21,25,31,32,34].

However, the approach in [4,29] hits its limitations if a large number of eigenval-

ues (in particular in the interior of the spectrum) of (1) is needed. To algorithmically

exploit the minmax property, one has to project the problem under consideration onto

a sequence of search spaces, which dimension is growing with the number of the tar-

geted eigenvalue. For a large number of eigenvalues (or eigenvalues in the interior of

the spectrum) this naturally requires an excessive amount of storage and computing

time.

In this work we propose a new restart technique which allows to project the NEP

(1) only onto search spaces of a fixed, relatively small dimension throughout the

iteration. The new restart technique can be integrated with iterative projection methods

such as the Nonlinear Arnoldi or Jacobi-Davidson method making them capable of

computation of a large number of eigenpairs, possibly in the interior of the spectrum.

A preliminary version of the local restart technique was published in [18].

The paper is organized as follows. In Sects. 2 and 3 we recapitulate the variational

characterization for nonoverdamped nonlinear eigenproblems and the iterative projec-

tion methods for their solution. The new restart technique is presented in Sect. 4 along

with a strategy for dealing with spurious eigensolutions which are an intrinsic part of

the interior eigenvalue computation. The resulting framework for restarting of non-

linear iterative projection methods for interior eigenvalue computation is summarized

in Sect. 5. The performance of the restarted methods is demonstrated in Sect. 6 on

a range of nonlinear eigenvalue problems with and without minmax property includ-

ing a real-life industrial gyroscopic eigenvalue problem arising in modeling of the

noise radiation from rotating tires. Section 7 concludes the paper with a summary and

outlook for future research.
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2 Variational characterization of eigenvalues

Definition 1 (Hermitian Nonlinear Eigenvalue Problem) Let T (λ) ∈ C
n×n be a fam-

ily of Hermitian matrices for every λ in an open real interval J . As in the linear case,

T (λ) = λI − A, we call the parameter λ ∈ J an eigenvalue of T (·), whenever Eq. (1)

T (λ)x = 0

has a nontrivial solution x �= 0, which we call an eigenvector corresponding to λ.

It is well known that all eigenvalues of a linear Hermitian problem Ax = λx are

real and if they are ordered, λ1 ≤ λ2 ≤ · · · ≤ λn , it is possible to characterize them

by the minmax principle of Poincaré

Theorem 1 (Minmax principle of Poincaré) Let λ1 ≤ λ2 ≤ · · · ≤ λn be the ordered

eigenvalues of Ax = λx then

λk = min
W∈Sk

max
w∈W1

w∗ Aw, (2)

where Sk denotes the set of all k dimensional subspaces of C
n and W1 := {w ∈ W :

‖w‖2 = 1} is the unit sphere in W .

It turns out, that a similar result holds also for a certain type of nonlinear eigenvalue

problems.

Definition 2 (Rayleigh functional) Let f (λ; x) := x∗T (λ)x be a real function, con-

tinuous in J for every fixed x �= 0. Assume that

f (λ; x) = 0 (3)

has at most one solution p(x) ∈ J , then (3) implicitly defines a functional p on some

subset D of C
n\{0}. We refer to p as a Rayleigh functional, since it generalizes the

notation of the Rayleigh quotient in the variational characterization of the eigenvalues

of the linear problem.

We furthermore require that

f (λ; x)(λ − p(x)) > 0 for every λ ∈ J and x ∈ D with λ �= p(x), (4)

which is a natural generalization of the requirement that B is positive definite for a

linear pencil (A, B).

Under these assumptions a variational characterization in terms of the Rayleigh

functional has been considered by various authors. To mention a few, Duffin [9,10]

and Rogers [24] proved the variational principle for the finite dimensional overdamped

problems, i.e. problems for which the Rayleigh functional p is defined on the entire

space C
n\{0}. Nonoverdamped problems were considered by Werner and the second

author [33,35].
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The key to the variational principle is an adequate enumeration of the eigenvalues. In

general, the natural enumeration, i.e. the first eigenvalue is the smallest one, followed

by the second smallest one etc. is not appropriate (see [33,35]). Instead, the number

of an eigenvalue λ of the nonlinear problem (1) is inherited from the number of the

eigenvalue 0 of the matrix T (λ) based on the following consideration:

Definition 3 (Minmax induced numbering of eigenvalues) Let λ ∈ J be an eigenvalue

of the nonlinear problem (1), then μ = 0 is an eigenvalue of the linear problem

T (λ)x = μx . Therefore there exists k ∈ N such that

0 = max
W∈Sk

min
w∈W1

w∗T (λ)w

or equivalently that 0 is a kth largest eigenvalue of the matrix T (λ). In this case we

call λ a kth eigenvalue of (1).

Remark 1 For T (λ) := λB − A, B > 0 it follows from the minmax characterization

for linear eigenvalue problems that λ is a kth eigenvalue of T (·) if and only if λ is a

kth smallest eigenvalue of the linear problem Ax = λBx .

Remark 2 We note that if T (λ) is differentiable w.r.t. λ and T ′(λ) is positive defi-

nite, then replacing T (λ)x = μx with the generalized eigenvalue problem T (λ)x =

κT ′(λ)x yields the same enumeration. This will be used later in Theorem 2.

With this enumeration the following minmax characterization of the eigenvalues of

the nonlinear eigenproblem (1) was proved in [33,35]:

Theorem 2 (Minmax characterization for eigenvalues of T (·)) For every x ∈ D ⊂

C
n, x �= 0 assume that the real Eq. (3) has at most one solution p(x) ∈ J , and let the

definiteness condition (4) be satisfied.

Then the following assertions hold:

(i) For every k ∈ N there is at most one kth eigenvalue of problem (1) which can be

characterized by

λk = min
W∈Sk ,

W∩D �=∅

sup
w∈W∩D

p(w). (5)

Hence, there are at most n eigenvalues of (1) in J .

(ii) If

λk = inf
W∈Sk ,

W∩D �=∅

sup
w∈W∩D

p(w) ∈ J

then λk is a kth eigenvalue of T (·) and (5) holds.

(iii) Assume that for k < m the interval J contains the kth and the mth eigenvalue λk

and λm , then J contains all the eigenvalues λ j ∈ J, j = k, . . . , m and moreover

it holds λk ≤ λk+1 ≤ · · · ≤ λm .
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(iv) If λ ∈ J and k ∈ N such that problem (1) has a kth eigenvalue λk ∈ J then it

holds that

λ

⎧

⎨

⎩

>

=

<

⎫

⎬

⎭

λk ⇐⇒ μk(λ) := max
W∈Sk

min
w∈W1

w∗T (λ)w

⎧

⎨

⎩

>

=

<

⎫

⎬

⎭

0.

3 Iterative projection methods for nonlinear eigenproblems

For sparse linear eigenvalue problems, Ax = λx , iterative projection methods are

well-established and recognized as a very efficient tool. The key idea is to reduce

the dimension of the eigenproblem by projecting it to a subspace of a much smaller

dimension. The reduced problem is then handled by a fast technique for dense prob-

lems. Of course, this idea can only be successful if the subspace used for projection

has good approximating properties w.r.t. some of the wanted eigenpairs, which trans-

lates to eigenvalues of the projected matrix being good approximations to the wanted

eigenvalues of the large sparse matrix. In iterative projection methods the search sub-

space is expanded iteratively in a way promoting the approximation of the wanted

eigenpairs. The generalizations of iterative projection methods to nonlinear eigenvalue

problems were discussed in [1,4,7,11,15,17,19–21,25,29,31,32,34]. Two represen-

tative examples are the Nonlinear Arnoldi and Jacobi-Davidson methods. Both those

methods extend the search subspace targeting a particular eigenvalue. In fact, there

are no Krylov subspace methods (i.e. methods which as in linear case would admit a

polynomial representation of the search subspace) working directly on the nonlinear

eigenvalue problem without linearization. While applying iterative projection methods

to general nonlinear eigenvalue problems with the objective to approximate more than

one eigenpair, it is crucial to prevent the methods from converging to the same eigen-

pair repeatedly. In the linear case this is readily done by the Krylov subspace solvers or

using partial Schur decomposition [12]. Unfortunately, a similar normal form does not

exist for nonlinear eigenvalue problems. While this paper was in review, we became

aware of a new approach to avoid repeated eigenpair convergence for general nonsym-

metric eigenproblems based on minimal invariant pairs [11]. For nonlinear eigenvalue

problems admitting a minmax characterization, in [4,29] it was proposed to use the

induced eigenvalue ordering to remedy the problem. Algorithm 1 outlines a framework

for iterative projection methods based on enumeration of the eigenvalues as discussed

in Sect. 2.

There are many details that have to be considered when implementing an iterative

projection method as outlined in Algorithm 1. The comprehensive review is out of

scope of this work. Here, we restrict ourselves to only the essentials necessary for

motivation and derivation of the local restart technique in Sect. 4. For more detailed

discussion we refer the reader to [29,31,32].

3.1 Initialization

In order to preserve the numbering of the eigenvalues, the initial basis V has to contain

at least jmin linearly independent vectors. Let W be the invariant subspace of T (λ jmin)
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402 M. M. Betcke and H. Voss

Algorithm 1 Iterative Projection Method

Require:

1: First wanted eigenvalue number j := jmin

2: Initial basis V , V ∗V = I

3: Choose initial shift σ

4: Initial preconditioner K ≈ T (σ )−1, σ close to first wanted eigenvalue, λ jmin
Execute:

5: while j ≤ jmax do

6: Compute the eigenpair (λ̃, y), λ̃ is the j th eigenvalue of the

projected problem TV (λ)y := V ∗T (λ)V y = 0

7: Compute the Ritz pair (λ̃, x̃ := V y) and its residual r = T (λ̃)x̃

8: if (λ̃, x̃) converged then

9: return approximate eigenpair (λ j , x j ) := (λ̃, x̃)

10: j := j + 1

11: optionally choose a new shift σ and recompute K ≈ T (σ )−1, if indicated

12: optionally restart

13: Choose approximation (λ̃, x̃) to the next eigenpair, and compute r = T (λ̃)x̃

14: end if

15: Compute new direction v, e.g., v = Kr

16: Orthonormalize and expand V , v = v − V V ∗v, v = v/‖v‖2, V = [V, v]

17: Reorthogonalize V if necessary

18: Update projected problem TV (λ) := V ∗T (λ)V

19: end while

corresponding to its jmin largest eigenvalues then it holds that z∗T (λ jmin)z ≥ 0 for

every z ∈ W , and therefore by Theorem 2 p(z) ≤ λ jmin for every z ∈ W ∩ D,

and supz∈W∩D p(z) = λ jmin . Hence, λ jmin is a jminth eigenvalue of the orthogonal

projection of T (·) onto W , and a reasonable choice for the initial space V is the cor-

responding invariant subspace of T (λ̃) for some λ̃ close to λ jmin . Likewise, if T (·) is

overdamped, then it holds that z∗T (λ jmin)z ≥ 0 for every z ∈ span{x1, . . . , x jmin},

where x j denotes the eigenvector of T (·) corresponding to λ j , and the subspace

spanned by x j , j = 1, . . . , jmin − 1 and additionally an approximation to x jmin is

also a reasonable choice for the initial search space.

3.2 Solution of a projected nonlinear eigenvalue problem (PNEP)

For nonlinear eigenvalue problem (1) let the columns of V ∈ C
n form a basis of the

current search space V ⊂ C
n . Then it is easily seen that the projected problem

TV (λ)y := V ∗T (λ)V y = 0 (6)

inherits the variational property, i.e. its eigenvalues in J are minmax values of the

restriction of the Rayleigh functional p of T (·) to D ∩ V . Although, in general the

enumeration of the eigenvalues of the original problem and the projected problem may

differ.

There are many methods for solving small and dense nonlinear eigenvalue prob-

lems. For polynomial eigenvalue problems linearization is a natural choice, where

the enumeration of eigenvalues in the sense of Sect. 2 can be deduced from the nat-

ural ordering of the real eigenvalues of the linearized problem. For general nonlinear

123



Restarting iterative projection methods for Hermitian nonlinear… 403

eigenvalue problems safeguarded iteration [23] outlined in Algorithm 2 can be used

for computing the kth eigenvalue of the nonlinear problem.

Algorithm 2 Safeguarded Iteration

Require:

1: Initial approximation ν1 to the kth eigenvalue λk of (1)

Execute:

2: for i = 1, 2, . . . until convergence do

3: Determine eigenvector x̃ i corresponding to the kth largest eigenvalue of T (νi )

4: Evaluate νi+1 = p(x̃ i )

5: end for

3.3 Subspace expansion

In general two approaches to subspace expansion can be found in the literature: Jacobi-

Davidson [4] and Nonlinear Arnoldi [31] type expansion. Both schemes approximate

inverse iteration, which is known to provide a direction with high approximating

potential to the targeted eigenpair (cubical convergence for symmetric nonlinear eigen-

problems if the eigenvalue approximation is updated with the Rayleigh functional).

Let (λ̃k, x̃k) be a currently available approximation to the eigenpair and rk =

T (λ̃k)x̃k its residual. In Jacobi-Davidson the search subspace is expanded by an orthog-

onal direction t ⊥ x̃k obtained from the following correction equation

(

I −
T ′(λ̃k)x̃k x̃∗

k

x̃∗
k T ′(λ̃k)x̃k

)

T (λ̃k)

(

I −
x̃k x̃∗

k

x̃∗
k x̃k

)

t = −rk, t ⊥ x̃k . (7)

If (7) is solved exactly we can expect asymptotically cubic convergence. The conver-

gence rates of inexact Newton and Newton-like methods were studied in [27], and it

is a common experience that even very coarse solution of (7) is sufficient to maintain

a reasonably fast convergence.

The Nonlinear Arnodi method uses the direction of the residual inverse iteration

[22]

v = T (σ )−1T (λ̃k)x̃k,

where σ is a fixed parameter close to the wanted eigenvalue λk . The Nonlinear Arnoldi

method converges linearly, i.e. if x̃ i−1
k and x̃ i

k are two consecutive iterations with

‖x̃ i−1
k ‖ = ‖x̃ i

k‖ = 1 and τ = ‖T (λ̃i
k)x̃ i

k‖2/‖T (λ̃i−1
k )x̃ i−1

k ‖2 then τ = O(|λk − σ |)

(cf. [22]). For Hermitian problems if the eigenvalue approximations are updated with

the value of the Rayleigh functional and σ is updated with the previous approximation

to λk , σ = λ̃i−1
k , [26] the convergence is even quadratic. Moreover, if the linear system

T (σ )v = T (λ̃k)x̃k is too expensive to solve for v we may choose as a new direction

v = K T (λ̃k)x̃k with K ≈ T (σ )−1.
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3.4 Standard restarting based on global numbering

As the subspace expands in the course of the algorithm, the increasing storage and

computational cost of the solution of the projected eigenvalue problem may make it

necessary to restart the algorithm and purge some of the basis vectors. To be able to

continue determining subsequent eigenpairs the correct enumeration has to be enforced

at the restart.

If J contains the first eigenvalue λ1 = minx∈D p(x), then e.g. the safeguarded

iteration for the projected nonlinear problem (6) converges globally, i.e. for any initial

vector x ∈ V ∩ D, to the smallest eigenvalue of (6) [23]. Furthermore, if the eigenvec-

tors x j of the original problem (1) corresponding to the eigenvalues λ j , j = 1, . . . , k,

are contained in V , then λ j is a j th eigenvalue of the projected problem (6), as well.

Hence, expanding the search space V iteratively, and determining the (k + 1)st eigen-

value of the projected problems, one gets a sequence of upper bounds to λk+1 which

(hopefully) converges to λk+1. Thus, the eigenvalues of (1) can be determined quite

safely one after the other by the iterative projection method starting with an approxi-

mation to x1.

If infx∈D p(x) /∈ J we can modify this approach in the following way. Let k

be the smallest integer such that λk ∈ J where k is chosen according to Definition

3. The minimum in (5) is attained by the invariant subspace W of T (λk) spanned

by the eigenvectors corresponding to its k largest eigenvalues. Hence, if the current

search space V satisfies W ⊂ V then it is easily seen that λk is the kth eigenvalue

of the projected problem (6), i.e. again the numbering of the eigenvalues in the pro-

jected and in the original problem coincide, thus the eigenvalues can be determined

successively.

In either case, for the numbering to be preserved, the search subspace after restart

has to contain the eigenvectors corresponding to all the preceding eigenvalues in J and

if infx∈D p(x) /∈ J also appropriate initial vectors, hence the restart requires global

information. Notice that we only restart if an eigenvector has just converged since

a restart destroys information on the eigenvectors and in particular on the currently

iterated one.

3.5 Convergence criterion

In the course of our algorithm we accept an approximate eigenpair (λ̃k, x̃k) as con-

verged, if the residual norm ‖T (λ̃k)x̃k‖2/‖x̃k‖2 is small enough. For a linear eigenvalue

problem this is just the backward error of the eigenpair. For nonlinear holomorphic

eigenvalue problems Szyld and Xue [28] performed a perturbation analysis of simple

invariant pairs and derived an error estimate for their approximation. For algebraically

simple eigenvalues (i.e. det T ′(λ̃k) �= 0) their result essentially states that a small resid-

ual norm indicates a small backward error, as long as the Jacobian of the augmented

system

[

T (λ)x

c∗x − 1

]

= 0
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is not ill-conditioned at the desired eigenpair (λk, xk). Here c ∈ C
n denotes a fixed

vector with c∗xk �= 0.

4 A local restart technique

To overcome the problem of the search subspace dimension growing with the number

of the sought eigenvalue inherent to global restarts (see Sect. 3.4) we propose to replace

the global numbering of the eigenvalues by a local one. As the local numbering is

obtained w.r.t. some chosen eigenvalue, only the corresponding eigenvector has to be

included into the search subspace after a restart rather than the entire set of preceding

eigenvectors or the invariant subspace of T (λk).

4.1 Local numbering of eigenvalues

Assume that we are given an eigenpair (λ̂, x̂), λ̂ ∈ J and x̂ ∈ C
n , of the nonlinear

eigenproblem (1). We refer to such an eigenpair as an anchor. In the following to avoid

unnecessary technicalities we assume that λ̂ is a simple eigenvalue, but all the results

can be generalized to allow λ̂ to be a multiple eigenvalue.

Let V be a subspace of C
n that contains x̂ , and let the columns of V form a basis of V .

Then, along with the original family of matrices T (·), its projection TV (·) := V ∗T (·)V

satisfies the conditions of Theorem 2. Therefore the Ritz values of T (·) with respect

to V , i.e. the eigenvalues of the projected eigenproblem (6)

TV (λ)y := V ∗T (λ)V y = 0,

can be enumerated according to Definition 1. In particular, since x̂ ∈ V , λ̂ is also

an eigenvalue of the projected problem (6), and λ̂ can be assigned a local number

ℓ = ℓ(V) as follows:

λ̂ is the ℓth eigenvalue of the nonlinear problem TV (λ)y = 0

⇔

μ(λ̂) = 0 is the ℓth largest eigenvalue of the linear problem

V ∗T (λ̂)V y = μ(λ̂)y.

The remaining eigenvalues of TV (·) (i.e. the Ritz values of T (·) with respect to

V) are given numbers relative to the anchor number, ℓ(V). We call such a relative

numbering local.

Example 1 Let V := span{x1, x3, x7, x8, x10} where xi is an eigenvector of (1) cor-

responding to the i th eigenvalue λi . Then the projected problem TV (λ)y = 0 has

exactly the eigenvalues λi , i = 1, 3, 7, 8, 10 in J . For the anchor x̂ := x7 it holds that

ℓ = 3, and the local numbers of the subsequent eigenvalues λ8 and λ10 are 4 and 5,

respectively.
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406 M. M. Betcke and H. Voss

Remark 3 Numerically, the local number of the anchor λ̂, can be determined as the

number of the eigenvalue of the linear problem TV (λ̂)y = μ(λ̂)y with the smallest

absolute value: if μ1 ≥ μ2 ≥ · · · are its eigenvalues then

ℓ(V) := arg min
k=1,...,dim V

|μk |.

4.2 Spurious eigenvalues

In Example 1, the search subspace V has been chosen to contain eigenvectors only,

and therefore successive eigenvalues of T (·) with eigenvectors in V have consecutive

local numbers. However, in a course of iteration, the search subspace will also contain

additional vectors besides the eigenvectors which can adversely affect the local num-

bering. Only for the sake of the following argument let us assume that the nonlinear

eigenvalue problem (1) is overdamped such that the Rayleigh functional p is defined

on C
n\{0}. Hence the eigenvectors X := {x1, . . . , xn} of T (·) corresponding to the n

eigenvalues arranged in the ascending order λ1 ≤ λ2 ≤ · · · ≤ λn form a basis of C
n .

Let the current search subspace be Vk , and the anchor pair (λ̂, x̂), x̂ ∈ Vk . Assume

that from the last restart the method has already computed the eigenvalues λ
Vk

ℓ :=

λ̂ < λ
Vk

ℓ+1 ≤ · · · ≤ λ
Vk

ℓ+ j of T (·), which are consecutive eigenvalues of the projected

eigenproblem TVk
(λ)y = 0 with local numbers ℓ, . . . , ℓ + j . After expanding Vk

to Vk+1 := span{Vk, v} =: span{Vk+1} by some vector v, each of λ
Vk

ℓ < λ
Vk

ℓ+1 ≤

· · · ≤ λ
Vk

ℓ+ j remains an eigenvalue of the new projected problem TVk+1
(λ)y = 0.

However, it may happen that TVk+1
(λ)y = 0 has an additional eigenpair (θ, yθ ) such

that λ
Vk

ℓ < θ ≤ λ
Vk

ℓ+ j .

If λ
Vk

ℓ were the smallest eigenvalue of T (·) i.e. λ
Vk

ℓ = λ1, then it would be clear that

at least one eigenvalue is missing in the interval (λ
Vk

ℓ , λ
Vk

ℓ+ j ]. However, with an anchor

in the interior of the spectrum it is possible for the additional Ritz vector, xθ := Vk+1 yθ ,

that its representation with respect to the eigenbasis X of T (·), xθ =
∑

i αi xi , contains

components αi xi such that some of the corresponding eigenvalues λi are smaller than

λ
Vk

ℓ and others are larger than λ
Vk

ℓ+ j (or larger equal if λ
Vk

ℓ+ j is a multiple eigenvalue

of T (·)). We call such a Ritz value θ a spurious eigenvalue of T (·). The presence of

a spurious eigenvalue obviously causes an increase of the local numbers of all the

subsequent eigenvalues.

Remark 4 (The case θ = λ̂) Note that even if θ = λ̂ (up to precision to which the

eigenvalues are computed), xθ �= x̂ . Hence we can identify such a spurious pair (θ, xθ )

(recall we assumed the anchor λ̂ to be simple) and enforce the ordering in which θ

precedes λ̂ so it does not interfere with the local ordering. Therefore, it is sufficient to

consider the case λ̂ < θ .

Our argument took advantage of the existence of an eigenbasis of C
n , which is a

consequence of assuming that the nonlinear eigenvalue problem (1) is overdamped.

It is clear, that the same can happen for nonoverdamped problems. The additional

complication for nonoverdamped problems is that the linear combination can also
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contain vectors not in the domain of definition of the Rayleigh functional p, which

can have the same effect.

Occurrence of spurious eigenvalues is inherent to interior eigenvalue computation.

It also happens for linear problems, when no transformation is applied to the eigen-

problem to map the eigenvalues from the interior to the lower or upper end of the

spectrum. Hence, in order to algorithmically exploit the local numbering we need to

find a way to recognize when the local numbering has been obscured by spurious

eigenvalues and how to effectively restore it.

4.3 Local restart framework

Algorithm 3 outlines one local restart cycle, which we explain in detail below.

Algorithm 3 Restart Framework

Require:

1: Preconditioner K ≈ T (σ )−1 for a suitable pole σ

2: Anchor pair (λi , xi ), an (approximate) eigenpair of T (·)

3: optionally v an approximation to xi+1 otherwise v := rand

Execute:

4: V := [xi ]

5: j := 1

6: while restart condition not satisfied do

7: repeat

8: Expand V := [V, v]

9: Determine the local number of the anchor, ℓ(V )

10: Compute (ℓ + j)th eigenpair (λ̃ℓ+ j , ỹℓ+ j ) of TV (·) := V ∗T (·)V

11: Compute new expansion direction v aiming at the (ℓ + j)th eigenpair (λℓ+ j , xℓ+ j )

12: until eigenpair (λ̃ℓ+ j , V ỹl+ j ) =: (λi+ j , xi+ j ) converged

13: if either (λi+ j , xi+ j ) ∈ {(λi+ j ′ , xi+ j ′ ), 0 < j ′ < j} or λi+ j < λi+ j−1 then

14: m′ := j − j ′, where j ′ is an integer such that λi+ j ∈ (λi+ j ′−1, λi+ j ′ ], 0 < j ′ < j

15: (θs , xs ) := ∅

16: for m = 1, . . . , m′ do

17: Locate suspect eigenvalue θm , and its Ritz vector xm
θ

18: if (θm , xm
θ

) converged then

19: Recover missed out eigenpair (θm , xm
θ

) and adjust numbering

20: Increase local offset j := j + 1

21: else if (θs , xs ) = ∅ then

22: (θs , xs ) := (θm , xm
θ

) {Record first suspect Ritz pair for subspace expansion}

23: end if

24: end for

25: if (θs , xs ) �= ∅ then

26: Compute new expansion direction v aiming at the suspect Ritzpair (θs , xs )

27: else

28: Compute new expansion direction v aiming at the (ℓ + j)th eigenpair (λℓ+ j , xℓ+ j )

29: end if

30: else

31: Increase local offset j := j + 1

32: Compute new expansion direction v aiming at the (ℓ + j)th eigenpair (λℓ+ j , xℓ+ j )

33: end if

34: end while
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Lines (1–5): Initialization Here, the only difference between the local and and

global restarts is the initialization subspace, V0 := span{x̂, v}. For local restarts V0

contains only the eigenvector corresponding to the anchor, x̂ , along with v ∈ C
n an

approximation to the next eigenvector such that TV0
has an eigenvalue ω ∈ J with

ω > λ̂. Starting with V0 we determine approximations to the eigenvalue subsequent

to the anchor λ̂ by projecting the nonlinear eigenvalue problem (1) to a sequence of

subspaces V0 ⊂ V1 ⊂ V2 ⊂ . . . .

Lines (7–12): Computation of the (ℓ + j)th eigenpair (λℓ+ j , xℓ+ j ) Let Vk be the

current search space and ℓ(Vk) the local number of λ̂. Note that the number ℓ(Vk)

of the anchor may change in the course of the iteration hence its dependence on Vk .

Suppose that we have successively computed j eigenvalues of T (·) in J ,

λ̂=λi = λ
Vk

ℓ < λ
Vk

ℓ+1 ≤ · · · ≤ λ
Vk

ℓ+ j−q−1 < λ
Vk

ℓ+ j−q = · · · = λ
Vk

ℓ+ j−1 = λi+ j−1 =: λ̌,

and let X̌ be the 1 ≤ q ≤ j dimensional eigenspace of T (·) corresponding to λ̌. We

are now aiming at the next eigenvalue of T (·). To this end, we compute the eigenpair

(ω, yω), ω ∈ J of the current projected problem TVk
(·) with the local number ℓ(Vk)+ j .

We expand the search space, Vk to Vk+1, by a new search direction v aiming at the

Ritz pair (ω, Vk yω), e.g., v = K T (ω)Vk yω for the Nonlinear Arnoldi method (we

hope that, by using such a strategy, as the iteration progresses the search subspace

will contain an increasingly significant component of the eigenvector xℓ+ j ). We then

solve the new projected eigenproblem TVk+1
(·) for the Ritz pair with the desired local

number ℓ(Vk+1) + j and we repeat this iterative process until the Ritz pair with the

desired local number has converged (yields a sufficiently small eigenresidual norm,

see Sect. 3.5).

Remark 5 If v ∈ C
n in the initial subspace V0 is a poor approximation to xℓ+1 and

TV0
has an eigenvalue ω ∈ J, ω ≤ λ̂ i.e. ℓ(V0) = dim(V0) we return the eigenpair

with the largest number in the subspace (here the anchor itself, (λ̂, x̂)). As (λ̂, x̂) is

accurate up to the computational tolerance, its residual T (λ̂)x̂ , similarly as a random

vector, is expected to be a linear combination of many eigenvectors. The subspace

expansion step, e.g. v = K T (λ̂)x̂ , then amplifies those eigendirections corresponding

to the eigenvalues close to the pole σ (K ≈ T −1(σ )) and within a few steps we expect

the projected problem TV to have an eigenvalue ω > λ̂.

Line 13: Check if a new eigenpair has been computed Ideally, the converged Ritz

pair (ω, xω) is a new eigenpair of the original problem (1). However, it may happen

that the algorithm returns a replicate eigenvalue with number smaller than i + j or a

new eigenvalue λ̂ < λ̄ < λ̌ = λi+ j−1 (eigenvalue which has been previously missed

out).

From the discussion in Sect. 4.2 we infer that such behaviour occurrs due to the

local numbering being altered i.e. one or more additional eigenvalues exist in (λ̂, λ̌]

correspondingly rising the local number of λ̌. Henceforth we will refer to such eigen-

values as “suspect”. All such suspect eigenvalues can be identified and the missed out

eigenvalues can be accepted while the spurious eigenvalues can be treated in the way

described below one after the other.
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Lines (14–29): Restoring local numbering For the sake of the following argument

we assume that the algorithm returned a replicate eigenvalue ω = λ̌, while any other

case follows analogously. Such a repeated convergence of eigenvalues may happen in

two cases: (1) λ̌ has a higher geometric multiplicity than q (at least q + 1), and (2) λ̌

is an eigenvalue with multiplicity q and 1 ≤ m′ ≤ q additional eigenvalues exist in

(λ̂, λ̌].

If λ̌ has multiplicity at least q +1, which can be ascertained as described in Lemma

1, we simply accept (λ̌, xω) as a newly computed eigenpair and proceed to compute

the next eigenvalue whose local number is by 1 larger than the largest local number

of λ̌.

Lemma 1 If the angle between the eigenspace X̌ , dim X̌ = q, and xω is different

from 0 (in the numerical practice, larger than a prescribed small threshold) or if λ̌ is

the (ℓ(V⊥) + j − q)th eigenvalue of the projected problem

V ⊥∗T (λ)V ⊥y = 0, (8)

where V is the current search space, V ⊥ denotes a basis of V⊥ the orthogonal com-

plement of X̌ in V , and ℓ(V⊥) the local number of λ̂, then λ̌ is a multiple eigenvalue

(with multiplicity at least q + 1).

Notice, that the number of columns of V ⊥, dim(V) − q, is usually quite small and

therefore it can be easily verified with safeguarded iteration whether λ̌ is a (ℓ(V⊥) +

j − q)th eigenvalue of the projected eigenproblem (8) or not.

In the second case, there are two possible reasons for the current projected problem

having an additional eigenvalue θ ∈ (λ̂, λ̌] such that the corresponding Ritz pair

(θ, xθ ) �= (λi+ j ′, xi+ j ′), j ′ = 1, . . . , j − 1:

1. Missed out eigenvalue An eigenvalue of the original problem (1) in the interval

(λ̂, λ̌] might have been previously missed out because the corresponding eigen-

vector xθ was not sufficiently present in the initial search space V0 and might not

have been amplified sufficiently in the course of the expansions of V until com-

puting λ̌. Afterwards the component of xθ in the search space V has grown large

enough to produce the additional eigenvalue θ ∈ (λ̂, λ̌], and Algorithm 3 yields

the eigenvalue λ̌ the (q + 1)st time with a different local number.

2. Spurious eigenvalue It might be the case that no eigenvalue of (1) is missing

in (λ̂, λ̌] but the newly produced eigenvalue θ of the projected problem (6) is a

spurious one, i.e. the corresponding Ritz vector xθ is a linear combination of eigen-

vectors of (1) corresponding to eigenvalues less than λ̂ and eigenvalues greater

than λ̌ (or greater equal if λ̌ has a higher geometrical multiplicity than computed so

far) and possibly some vectors outside of the domain of definition of the Rayleigh

functional if the problem is not overdamped.

In both cases we identify the additional eigenvalue θ and its local number ℓ + jθ ,

and we expand the search space aiming at (θ, xθ ) (in other words, we add a new

search direction v, which is either K T (θ)xθ for the Nonlinear Arnoldi method, or the
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approximate solution of the Jacobi–Davidson correction Eq. (7) with right–hand side

−T (θ)xθ ). Then for the projected problem on such extended subspace Vθ

TVθ
(λ)y = 0 (9)

either of the following holds:

• Problem (9) has exactly j − 1 eigenvalues in (λ̂, λ̌], i.e. the additional eigenvalue

has left the interval of interest and the numbering in [λ̂, λ̌] has been restored.

• There are still j eigenvalues in (λ̂, λ̌]. In this case we repeat the expansion of

the subspace until the additional eigenvalue has been moved out from the interval

[λ̂, λ̌] or the sequence of additional Ritz values has converged to a previously

missed out regular eigenvalue, in which case we adjust the enumeration of the

eigenvalues and increase j by 1.

After the enumeration has been restored we continue with the iterative projection

method targeting the eigenvalue with the local number ℓ + j .

Remark 6 In particular if more than one additional eigenvalue exist in (λ̂, λ̌], the

Algorithm 3 will first identify and recover all missed out eigenvalues. Then the first of

the found spurious eigenvalues (i.e. with the smallest local number) will be targeted.

Lines 31–32: Targeting next eigenvalue After convergence of the eigenvalue we

may continue the iterative projection method aiming at the (ℓ(Vk)+ j +1)st eigenvalue

or we may replace the anchor with the newly converged eigenpair and target the

eigenvalues subsequent to the new anchor. Since the current search space contains

useful information about further eigenvalues it is advisable to continue expanding

the search space until the convergence becomes too slow (notice that for the residual

inverse iteration the convergence factor τ depends on the distance between the shift

and the wanted eigenvalue) or the dimension exceeds a given bound.

4.4 Automated local restart

For certain problems, the cost to set up a restart, i.e. time for computing the precondi-

tioner, generating the new search space and the projected problem, is relatively high in

comparison to the remaining computations. We can further improve the performance

allowing the algorithm to balance those time-consuming tasks automatically.

Let tr denote the time for the setup of a restart, and let t
j

e be the time needed for

computing the (ℓ + j)th eigenvalue of problem (1), i.e. j denotes the offset of the

eigenvalue with respect to the anchor after a restart. Then the total time for computing

the first j eigenvalues after the restart is t
j

t = tr +
∑ j

k=1 tk
e , and hence the running

average time for computing one eigenvalue since last restart is t̄
j

e = t
j

t /j . Notice, that

as we compute more and more eigenvalues the setup time per eigenvalue decreases.

Let α ≥ 1 and Nα ∈ N0 be parameters depending on the given problem, and we

initialize nα := Nα . After computing the j th eigenpair since a restart we adjust nα in

the following way
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nα ←

{

min{Nα, nα + 1} if t
j

e ≤ α · t̄
j

e

nα − 1 else

Whenever nα < 0 we restart the method. The presented strategy compares the time

required for convergence of an eigenvalue with the running average time and triggers

a restart when the eigenvalue convergence is repeatedly slower by factor α than in

average. In particular, if Nα = 0 and α = 1 we restart the algorithm straightaway

when the time for convergence to an eigenvalue exceeds the average time for computing

the eigenvalues since the last restart.

5 Framework for restarting nonlinear iterative projection methods

Integrating the local restart with the iterative projection methods, we arrive at the

framework for restarting of nonlinear iterative projection methods summarized in

Algorithm 4.

An initial anchor pair can be determined for instance with an iterative projection

method expanding the search space by K T (σ̃ )x̃k where σ̃ �= σ are both fixed shifts

close to the wanted eigenvalues, K ≈ T (σ )−1 is a preconditioner, and x̃k are the iter-

ates of the projection method aiming at the eigenvalue closest to σ̃ . Alternatively we

could use a direction suggested by the Jacobi Davidson method for the linear eigen-

problem T (σ )x = λT ′(σ̃ )x aiming at its smallest eigenvalue in modulus. Obviously,

no anchor eigenpair is required if inf x∈D p(x) ∈ J and one is looking for eigenvalues

at the lower end of the spectrum as the natural enumeration can be used in the first

interval. After a restart one of the just computed eigenpairs can serve as an anchor.

More general, for nonlinear eigenvalue problems where the minmax induced order-

ing and the natural (here ascending) ordering coincide on [a, b] ⊂ J (e.g. minmax

admitting quadratic eigenvalue problem), it is also possible to use one of the bounds

of the interval of interest [a, b] and enumerate the eigenvalues relatively to this bound

instead of relatively to an anchor. In such case, we compute the eigenvalues of the

projected nonlinear problem TV (·) larger or equal a until the first restart, when the

anchor is reset to an already computed eigenpair. Corollary 1 is a direct consequence

of Theorem 2 and it shows how to locate the first eigenvalue of the projected nonlinear

problem TV (·) larger or equal a.

Corollary 1 Let (λV
m, ym) be the first eigenvalue of the projected nonlinear problem

TV (·) in the interval [a, b]. Then by assumption λV
m−1 < a ≤ λV

m and from Theorem

2 it follows

a > λV
m−1 ⇔ μm−1(a) = max

W∈Sm−1

min
y∈W1

y∗TV (a)y > 0

a ≤ λV
m ⇔ μm(a) = max

W∈Sm

min
y∈W1

y∗TV (a)y ≤ 0.

Thus, the local number, m, of the first eigenpair of TV (·) in the interval [a, b] is the

number of the largest nonpositive eigenvalue, μ(a) ≤ 0, of TV (a).
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Algorithm 4 Framework for Restarting of Nonlinear Iterative Projection Methods
Require:

1: Eigenvalue interval [a, b], optionally a = λi , b = λimax
2: optionally Anchor vector x̂ : (λ̂ := a, x̂) ≈ (λi , xi ), i th eigenpair of T (·)

3: optionally Initial basis V , V ∗V = I

4: Choose initial shift σ close to the lower interval bound, a

5: Compute initial preconditioner K ≈ T (σ )−1

6: optionally v an approximation to xi+1, otherwise v := rand

Execute:

7: if no anchor vector x̂ then

8: anchor_exists := f alse

9: Initial search subspace V := [x̂ := rand]

10: Local offset j := 0

11: else

12: anchor_exists := true

13: Initial search subspace V := [x̂ ≈ xi ]

14: if anchor pair (λ̂, x̂) sufficiently accurate then

15: Local offset j := 1

16: else

17: Local offset j := 0

18: anchor_exists = f alse

19: end if

20: end if

21: while λi+ j < b do

22: while restart condition not satisfied do

23: repeat

24: Expand V := [V, v]

25: if anchor_exists then

26: ℓ(V ) := local number of the anchor λ̂

27: else

28: ℓ(V ) := local number of the first eigenvalue in the interval [a, b]

29: end if

30: Compute (ℓ + j)th eigenpair (λ̃ℓ+ j , ỹℓ+ j ) of TV (·)

31: Compute new expansion direction v aiming at the (ℓ + j)th eigenpair (λℓ+ j , xℓ+ j )

32: until eigenpair (λ̃ℓ+ j , V ỹℓ+ j ) =: (λi+ j , xi+ j ) converged

33: if either (λi+ j , xi+ j ) ∈ {(λ
i+ j ′ , x

i+ j ′ ), 0 < j ′ < j} or λi+ j < λi+ j−1 then

34: m′ := j − j ′ , where j ′ is an integer such that λi+ j ∈ (λ
i+ j ′−1

, λ
i+ j ′ ], 0 < j ′ < j

35: (θs , xs ) := ∅

36: for m = 1, . . . , m′ do

37: Locate suspect eigenvalue θm , and its Ritz vector xm
θ

38: if (θm , xm
θ

) converged then

39: Recover missed out eigenpair (θm , xm
θ

) and adjust numbering

40: Increase local offset j := j + 1

41: else if (θs , xs ) = ∅ then

42: (θs , xs ) := (θm , xm
θ

) {Record first suspect Ritz pair for subspace expansion}

43: end if

44: end for

45: if (θs , xs ) �= ∅ then

46: Compute new expansion direction v aiming at the suspect Ritzpair (θs , xs )

47: else

48: Compute new expansion direction v aiming at the (ℓ + j)th eigenpair (λℓ+ j , xℓ+ j )

49: end if

50: else

51: Increase local offset j := j + 1

52: Compute new expansion direction v aiming at the (ℓ + j)th eigenpair (λℓ+ j , xℓ+ j )

53: end if

54: end while{restart condition not satisfied}

55: Global anchor number becomes i := i + j − 1 − nlocked

56: Reset the anchor to a recently computed eigenvalue, λ̂ := λi
57: anchor_exists := true

58: Reset local offset j := nlocked + 1

59: Choose new shift σ close to the approximation of the next eigenvalue λ̃i+ j

60: Recompute preconditioner K ≈ T (σ )−1

61: Reset search subspace V := orthonormalize([xi , . . . , xi+nlocked
, x̃i+ j ]), where x̃i+ j is an approximation to the xi+ j th eigen-

vector

62: Compute new expansion direction v aiming at the (ℓ + j)th eigenpair (λℓ+ j , xℓ+ j )

63: end while{λi+ j < b}
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Exactly as before we can target the eigenvalue with the local number m and after

it converged, the eigenvalue with the local number m + 1, etc. Theoretically, after

the eigenvalue with the mth local number converged this could be used as an anchor

straight away. However, there is a danger of accepting λV
m as an anchor (hence the

first eigenvalue in [a, b]) prematurely i.e. λV
m is not the first eigenvalue in [a, b] of

the original problem (1) because eigenvalues in [a, λV
m) have been missed out. In this

case the algorithm would continue to compute only the eigenvalues larger or equal λV
m

permanently missing out the eigenvalues in [a, λV
m). This is less likely to happen if

the enumeration w.r.t. the bound a is used until the first restart until when the search

subspace is large and hence hopefully it includes the first and further consecutive

eigenvalues of (1) in [a, b].

We remark, that the missed out eigenvalues and the spurious eigenvalues have

exactly the same effect regardless whether the interval bound a or the anchor λ̂ is

used to relatively enumerate the eigenvalues i.e. the local number of the eigenvalues

following such missed out/spurious eigenvalue is raised. Hence, they can be dealt with

in the same way as described in Sect. 4.3.

Obviously, a very similar strategy can be applied when the anchor pair is not avail-

able to the required precision, i.e. its residual norm is above a set tolerance. We

incorporated both those important cases in the pseudocode in Algorithm 4.

We might want to keep nlocked eigenpairs in addition to the anchor pair at the restart,

to minimize the occurrence of spurious eigenvalues. However the benefits have to be

traded off against increased cost of the solution of the projected problems due to larger

search subspace dimensions.

6 Numerical experiments

In this section we demonstrate the performance of the local restarts on a range of nonlin-

ear eigenvalue problems. All the tests were performed with the QARPACK MATLAB

package [2] on a desktop machine with two quadcore Intel Xeon X5550, 2.67GHz

processors and 48 GB RAM. The LU decompositions and the subsequent system solves

for small problems (small gyroscopic problem, “wiresaw1(2000)”, “wiresaw2(2000)”)

were performed using MATLAB built-in LU and for large problems (large gyroscopic

problem, delay problem, rational problem, “acoustic wave 1d” problem) with the MAT-

LAB’s LU routine with five outputs. For all quadratic problems the projected problems

were solved by linearization while for general nonlinear problems with safeguarded

iteration.

The results are uniformly presented in terms of elapsed CPU times. We precondi-

tioned the Nonlinear Arnoldi method with the LU factorization of the real part of T (σ )

where σ is a shift not too far away from the wanted eigenvalues. We chose to neglect

the imaginary part of T (σ ) since its influence on the action of the preconditioner is

small in our examples, not justifying the extra effort of using complex arithmetic. We

updated the LU factorization at each restart.

Table 1 holds the details of the behavior of the Nonlinear Arnoldi method with

the local restart strategy described in Sect. 4—Nonlinear Restarted Arnoldi (NRA)—

for each of the solved nonlinear eigenvalue problems listed in the first column. The
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other columns of Table 1 from left to right denote: dim: dimension of the eigenvalue

problem; type: type of the eigenvalue problem: gyroscopic, general quadratic,

exponential, rational; R(λ) ∈ [a, b]: interval containing the real part of the wanted

eigenvalues;#λ: number of computed eigenvalues;CPU[s]: CPU time for solution of

the nonlinear eigenvalue problem in seconds; PNEP CPU[s]: CPU time for solution

of the projected nonlinear eigenvalue problems (PNEPs) in seconds; #iter: number

of iterations; #rest: number of restarts. Values for all problems except for the large

tire problem are averaged over 10 runs.

6.1 A conservative gyroscopic eigenvalue problem

We consider a conservative gyroscopic eigenvalue problem

T (λ)x = λ2 Mx − iλGx − K x = 0 (10)

describing for instance the free vibrations of a rolling tire. It is well known that all

its eigenvalues are real and occur in pairs ±λ, the corresponding eigenvectors are

complex conjugate, and the positive eigenvalues 0 < λ1 ≤ · · · ≤ λn satisfy the

minmax characterization [10]

λi = min
W∈Si

max
w∈W1

p(w),

where p(x) is the positive solution of the quadratic equation

x∗T (λ)x = λ2x∗Mx − iλx∗Gx − x∗K x = 0.

6.1.1 Qualitative properties of the method

We start with showing some qualitative behavior of our method on a small example

of a wheel, composed of solid elements with Mooney-Rivlin material, see Fig. 1. The

wheel is pressed on the track and is rotating at a rate of 50Hz. It is discretized with

450 brick elements with 720 nodes yielding after application of boundary conditions,

1728 degrees of freedom.

For the purpose of comparison we computed all the eigenpairs in the interval

[0,16,820] by a globally restarted Nonlinear Arnoldi method. This corresponds to the

smallest 200 eigenvalues. In all experiments an eigenvalue was regarded as converged

if its relative residual norm was smaller than 10−4. The preconditioner was recom-

puted, whenever the ratio τ = ‖T (λ̃s
k)x̃s

k‖/‖T (λ̃s−1
k )x̃s−1

k ‖ with ‖x̃s−1
k ‖ = ‖x̃s

k‖ = 1,

of two successive residual norms in the last two step s − 1, s before convergence of

the eigenpair (λk, xk) exceeded 0.1. Note, that large τ indicates that |σ − λk | is to

large (see Sect. 3.3). To prevent the search subspace from getting arbitrarily large we

used global restarts which were triggered whenever the search subspace dimension

exceeded 230, an absolute threshold on the subspace dimension. In the global restart

technique we restart the Nonlinear Arnoldi method with an orthogonal basis of the

subspace spanned by all eigenvectors computed so far. The total computing time, and
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Fig. 1 Solid rubber wheel

Table 2 Global restarts with absolute and relative threshold

CPU [s] PNEP CPU [s] #LU #rest

gl. rest. abs. thres. 11,883 11,721 8 5

gl. rest. rel. thres. 2941 2782 39 41

Comparison of total CPU time, CPU time for solution of the projected nonlinear eigenvalue problems

(PNEPs), number of LU decompositions and restarts

the time spent on solving the projected nonlinear problems for the wheel problem are

summarized in Table 2.

In the next experiment we used the same global restart technique, but this time the

restart was triggered whenever the dimension of the subspace exceeded the number of

the last converged eigenvalue by 30, a relative threshold on the subspace dimension. In

this way the average dimension of the search spaces and therefore the time for solving

the projected problems were reduced, see Table 2. Plotting the total computing time

and the time for solving the projected nonlinear problems in Fig. 2 reveals a super-

linear growth. In fact, the CPU time spent on solving the projected eigenproblems

itself grows super-linearly, determining the general trend.

Next, we computed the smallest 200 eigenvalues with Nonlinear Restarted Arnoldi.

A restart was triggered whenever the search space dimension exceeded 80 or the con-

vergence rate τ became larger than 0.5. Only the anchor and the current approximation

were kept in the search subspace at restart (nlocked = 0). The experiment was repeated

10 times and the averaged elapsed computing times are shown in Fig. 2. The super-

linear time growth has been effectively eliminated through the local restart strategy.

The zoom into the lower end of the spectrum reveals that the global restart can out-

perform the local restart with fixed search space dimension limit in the initial phase

when all the eigenvalues from the beginning of the spectrum are computed (Fig. 3).

However, as it can be seen in Figs. 4 and 5 the local restart with automatic balancing

outperforms the global restart also in the initial phase.

The outstanding advantage of the local restart strategy is its ability of computing

eigenvalues in an interval in the interior of the spectrum without the need of computing

all the preceding eigenpairs. Using the same local restart strategy we computed all the
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Fig. 2 Global versus local restart for first 200 eigenvalues of the gyroscopic wheel problem
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Fig. 3 Global versus local restart—zoom into the lower end of the spectrum in Fig. 2. When computing

the eigenvalues at the beginning of the spectrum in the initial phase the global restart can outperform the

local restart with fixed search subspace dimension limit

eigenpairs in (λ100 = 11,748, 16,820] which corresponds to λ101, . . . , λ200 using the

eigenpair (λ100, x100) as the initial anchor. Again for reproducibility of the results we

repeated the experiment 10 times. As expected the averaged computing time has been

approximately halved from 700 s to 350 s, Fig. 6. To illustrate typical behavior of the

method in more detail, in Fig. 7 for just one run of the experiment we plotted histograms

of the computed eigenvalues and of the occurrences of the spurious eigenvalues in

each of the intervals between the consecutive restarts. The corresponding eigenvalue
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Fig. 4 Global versus local restart with automatic balancing for first 200 eigenvalues of the gyroscopic

wheel problem
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Fig. 5 Global versus local restart with automatic balancing—zoom into the lower end of the spectrum in

Fig. 4. We observe that the balancing effectively restores the superior performance of the local restart over

the global restart also in the initial phase

convergence history throughout first 500 iterations is depicted in Fig. 8. The dots not

encircled pin down the occurrence of the spurious values during the iteration e.g. in

iterations 98, 159, 213 or 312 in Fig. 8 (cf. histogram in Fig. 7).

The automated restart strategy described in Sect. 4.4, can be used to let the algorithm

balance the limit on the search subspace size on fly. Using the automated restart with

α = 1 and Nα = 1 further reduced the average CPU time to about 130 s, see Fig. 6.
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Fig. 6 Local restart with automatic balancing for eigenvalues in (λ100 = 11,748, 16,820] of the gyroscopic

wheel problem (eigenvalues λ101, . . . , λ200)
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Fig. 7 Histogram of left eigenvalue convergence, right spurious value occurrence per interval between

consecutive restarts in one run of computation of eigenvalues in (11,748, 16,820] of the gyroscopic wheel

problem

Figures 2, 3, 4, 5 and 6 demonstrate that using the local restart technique, the cost

for computing one eigenvalue is approximately the same throughout the iteration, no

matter what is the eigenvalue number. Thus we conclude that the new local restart

technique effectively eliminates the super-linear CPU time growth with the number

of computed eigenvalues and hence constitutes an efficient method for computing

eigenvalues in the interior of the spectrum.

For the purpose of performance comparison of Nonlinear Arnoldi (NA) and Jacobi-

Davidson (JD) type subspace expansions, we computed all the eigenpairs of the wheel

problem in the interval (λ100 = 11,748, 16,820] using both subspace expansions.
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Fig. 8 Eigenvalue convergence history throughout first 500 iterations of NRA while computing eigenvalues

in (11,748, 16,820] of the gyroscopic wheel problem
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Fig. 9 CPU time of NRA and NRJD for computation of eigenvalues in (λ100 = 11,748, 16,820] of the

gyroscopic wheel problem without automatic balancing

Each of the experiments was repeated 10 times and the performance figures were

averaged through 10 runs. The automatic balancing was switched off, to focus on the

effect of subspace expansion only. In both cases the methods consistently found all

eigenvalues. Nonlinear Restarted Arnoldi (NRA) needed on average 1082.6 iterations

and 14 restarts (15 LU factorizations), while Nonlinear Restarted Jacobi-Davidson

(NRJD) 876.9 and 11 (12), respectively. Nonetheless, the NRA variant is still slightly

faster in terms of the total CPU time, see Fig. 9. This is due to an JD expansion step

being more expensive than an NA expansion step.

The here used preconditioner (LU decomposition of K − σ 2 M) remains of rea-

sonable quality in the spectrum of interest. The results are in line with our general

experience that Nonlinear Arnoldi method is faster whenever a good quality precondi-
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Fig. 10 CPU time of NRA for computation of eigenvalues in [317, 629] of the NLEVP “wiresaw1” problem

of dimension 2000

tioner is available, while Jacobi-Davidson method is more robust with respect to poor

preconditioning [34].

6.1.2 NLEVP “wiresaw1” gyroscopic QEP

As a second example we solve the gyroscopic problem arising from the vibration

analysis of a wiresaw, “wiresaw1” from the NLEVP collection [6] of dimension 2000

and with the NLEVP default value of the wire speed parameter v = 0.01. The gyro-

scopic matrix G for this problem is not sparse, hence the moderate choice of problem

dimension. In formulation (10) all the eigenvalues are real, and are growing by approx-

imately π increment from one eigenvalue to the next.

We computed all 100 eigenvalues in the interval [317, 629]. The algorithm was

initialized using the lower bound of the interval rather than an anchor. The relative

residual tolerance was chosen to 10−4, the maximal subspace dimension to 120, the

number of locked eigenvectors after the restart nlocked = 0 and the slowest admissible

convergence rate τ = 0.5. We used automated restarts with α = 1 and Nα = 1. Figure

10 shows the CPU time and the time for solution of the projected nonlinear problems

averaged over 10 runs. The method took on average 1197 iterations with 22 restarts (23

LU decompositions) to compute the 100 eigenvalues. The average total CPU time was

497 s and the time for solution of the nonlinear projected problems 111 s (q.v. Table 1).

6.1.3 Large sparse gyroscopic QEP

Our third example is a tire 205/55R16-91H cf. [19] (see Fig. 11) provided by Conti-

nental AG. The tire is discretized with 39,204 brick elements and 42,876 nodes. The

nodes at the wheel rim are fixed resulting in 124,992 degrees of freedom. To account
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Fig. 11 Continental AG

205/55R16-91H tire

for a complex structure of the tire, 19 different materials are used in the finite element

model. The model includes the stress approximating the air pressure in the tire. The

tire is pressed on the track and is rotating at a rate corresponding to a vehicle speed of

50 km/h.

We used Nonlinear Restarted Arnoldi method with MATLAB’s five output LU

routine as a preconditioner and set the tolerance for the relative residual norm to be

10−6 and the maximal search subspace dimension to 300. After each restart, only the

anchor vector and the next approximation were kept in the subspace (i.e. nlocked = 0).

The preconditioner was recomputed after at most 300 iterations, subject to residual

norm ratio of at most τ = 0.9 and automatic balancing with Nα = 1 and α = 1.

We computed all the eigenvalues in the interval [0, 20,000]. NRA needed 5165 iter-

ations and 22 restarts (23 LU factorizations) to find all 388 eigenvalues in this interval.

Figure 12 shows the total CPU time and the CPU time for solving projected nonlin-

ear eigenvalue problems. We observe a slight increase in CPU time per eigenvalue,

while we compute the eigenvalues at the lower end of the spectrum, which saturates

at about 150th eigenvalue. Here, the reason is an increasing occurrence of spurious

eigenvalues in proportion to the number of computed eigenvalues in the initial phase.

For the eigenvalues higher in spectrum this effect settles, resulting in approximately

constant time per eigenvalue computation. All but one restart were triggered through

our automatic balancing strategy, demonstrating its effectiveness.

In this example we observed an increased occurrence of spurious values after the

restarts. This leads us to believe that retaining some of the previously computed sub-

space after the restart may help to alleviate this effect, like for instance keeping further

nlocked eigenvectors along with the anchor in the local basis. Any benefits however,

have to be traded off against increased computational cost due to larger search space

dimensions.

We believe that the key to the optimal performance is to balance the subspace

growth with the occurrence of spurious eigenvalues. An optimal strategy may include

adapting the number of eigenvectors kept in the local basis along with the anchor,

nlocked , in dependence of e.g. frequency of occurrence of spurious eigenvalues in the

previous interval.
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Fig. 12 CPU time for NRA for eigenvalues in [0, 20,000] of the gyroscopic tire 205/55R16-91H problem

6.2 General nonlinear eigenvalue problems

The following two problems are non-quadratic nonlinear eigenvalue problems. Thus

the projected problems are solved by the safeguarded iteration (Algorithm 2). For a

general nonlinear function, we do not have an explicit formula for its zeros (and hence

for the Rayleigh functional) as it was the case for the quadratic eigenvalue problem

but we have to revert to Newton iteration.

In both cases the method was initialized using the lower bound of the interval. The

relative residual tolerance was 10−6, maximal subspace dimension 80, the slowest

admissible convergence rate τ = 0.5 and the automatic restart parameters α = 1 and

Nα = 1. We report average performance values over 10 runs.

6.2.1 Delay exponential NEP

We consider the following delay differential equation on a square domain [13]

ut (ξ, t) = u(ξ, t) + a(ξ)u(ξ, t) − b(ξ)u(ξ, t − 2), ξ ∈ � := [0, π ]2, t ≥ 0

with Dirichlet boundary conditions u(ξ, t) = 0, ξ ∈ ∂�, t ≥ 0 and a(ξ) =

8 sin(ξ1) sin(ξ2) and b(ξ) = 100| sin(ξ1 + ξ2)|. Using the ansatz u(ξ, t) = eλtv(ξ)

and discretizing the Laplace operator on a uniform grid with step size π/200 by the

5-point stencil finite difference approximation, we obtain the nonlinear eigenvalue

problem

T (λ)x = λx + Ax + e−2λ Bx = 0
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Fig. 13 CPU time of NRA for computation of eigenvalues in [150, 250] of the exponential delay problem

of dimension 39,601

of dimension 39601. B is a diagonal matrix corresponding to values of the function

b(ξ1, ξ2) and A is the negative sum of a diagonal matrix with entries corresponding

to values of the function a(ξ1, ξ2) and the 2-D discrete Laplacian.

Due to the symmetry of the problem in ξ1, ξ2 (Laplacian is symmetric on a square

domain � and a(ξ1, ξ2) = a(ξ2, ξ1), b(ξ1, ξ2) = b(ξ2, ξ1)) the problem has double

eigenvalues. To avoid missing out eigenpairs, at each restart we locked the preced-

ing eigenvector along with the anchor in the search subspace, nlocked = 1. We

computed all 75 eigenvalues in the interval [150, 250]. Figure 13 shows the linear

dependence of the CPU times on the number of computed eigenvalues. On average

NRA method took 485.1 iterations with 8.7 restarts (9.7 LU decompositions) over

247.5 s, 58.2 s of which were spent on solution of the projected problems, Table

1.

For problems with double or higher multiplicity eigenvalues, it may be benefi-

cial to consider extension of the restart strategy to block versions of the nonlinear

Arnoldi and Jacobi-Davidson methods. Block methods by design are well suited for

problems with multiple or clustered eigenvalues, as an entire subspace is iterated

simultaneously. In principle, the local restarts can be used within block methods,

when we simply iterate a number of eigenpairs, q, with consecutive local num-

bers, say k, k + 1, . . . , k + q − 1 instead of one. At each iteration, all the spurious

eigenvalues which disturb the local ordering in the entire interval (λℓ, λℓ+k+q−1]

would have to be removed which again could be done using block operations.

A large number of numerical tests would be necessary to access whether such

restarted block method has a significant advantage over the single vector ver-

sion. A serious discussion of such extension is beyond the scope of the current

paper.
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Fig. 14 CPU time of NRA for computation of eigenvalues in [10, 20] of the rational fluid structure inter-

action problem of dimension 36,040

6.2.2 Fluid structure interaction rational NEP

Our second problem is a rational eigenvalue problem

K x = λMx +

k
∑

j=1

λ

σ j − λ
C j x, (11)

where K , M ∈ R
n×n are symmetric and positive definite, C j ∈ R

n×n are matrices of

small rank r j , and 0 < σ1 < σ2 < · · · < σk are given poles. Problems of this type arise

for example in free vibrations of tube bundles immersed in a slightly compressible

fluid [8].

In each of the intervals J j := (σ j−1, σ j ), j = 1, . . . , k+1 with σ0 = 0, σk+1 = ∞,

problem (11) satisfies the conditions of the minmax characterization and in each

interval the eigenvalues have consecutive numbers [30].

The considered matrix problem is a finite element discretization of an elliptic cavity

with 9 emerged tubes with 36040 degrees of freedom, it has 9 poles, σ j = j, j =

1, . . . , 9 and rank C j = 2, j = 1, . . . , 9 [3].

Using the search subspace with only the anchor locked i.e. nlocked = 0, we com-

puted all 84 eigenvalues in the interval [10, 20]. Figure 14 shows the average total CPU

time and CPU time for solution of the projected nonlinear problems with safeguarded

iteration. The algorithm took on average 464 iterations with 11.6 restarts (12.6 LU

decompositions) over average total CPU time of 275.6 s, 99.1 s of which were spent

on solution of projected nonlinear problems.
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Fig. 15 CPU time of NRA for computation of eigenvalues with real part in [317, 629] of the NLEVP

“wiresaw2” problem of dimension 2000

6.3 Quadratic eigenvalue problems with eigenvalues with dominant real part

The described local restart procedure hinges upon the minmax property of the nonlinear

eigenvalue problem. However, observe that if (λ, x) is an eigenpair of the nonlinear

problem T (λ)x = 0 with a complex eigenvalue, λ ∈ C, it holds that μ = 0 is an

eigenvalue of the linear problem T (λ)x = μx and also of TV (λ)y = μy if x ∈ V . As

there is no natural order in the complex plain, in general we cannot infer the number of

the eigenvalue. However, if the eigenvalues have a dominant real part ℜ(λ) ≫ ℑ(λ) (or

equivalently up to a transformation dominant imaginary part), they can be ordered with

respect to the dominant part. Furthermore, this ordering is inherited by the projected

problem. If we can solve the projected nonlinear problem for the complex eigenpair

(λ, y) (e.g. well known issues with convergence of Newton method for complex zeros)

we can proceed as in the real case but where the eigenvalues are enumerated w.r.t. the

ascending real part. In particular in the polynomial case, the projected polynomial

problems can be effectively solved by linearization.

We used such ordering to solve two quadratic eigenvalue problems from the NLEVP

collection [5] which eigenvalues have a dominant either real or imaginary part. The

projected problems were solved using linerization and the method was initialized using

the lower bound of the interval containing the dominant part of the wanted eigenvalues.

6.3.1 NLEVP “wiresaw2” QEP

We consider a quadratic eigenvalue problem arising from the vibration analysis of a

wiresaw including the effect of viscous damping, “wiresaw2” problem from NLEVP

collection [6]
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T (λ)x = λ2 Mx − iλCx − K x .

We chose the dimension of 2000 and NLEVP default values of the wire speed and

damping parameters, v = 0.01 and η = 0.8, respectively. For this problem both the

matrices C and K are not sparse, hence the relatively small problem dimension. The

real parts of the eigenvalues are approximately equal to the corresponding eigenvalues

of the “wiresaw1” problem with the same dimension and value of the parameter v,

and the imaginary part of all eigenvalues is a constant equal to 0.8.

As for “wiresaw1” problem we computed all 100 eigenvalues with the real part in

the interval [317, 629] using the same initialization and solver parameters. Figure 15

shows the total CPU time and the CPU time for solution of the projected quadratic

problems. While the solution for each complex eigenvalue takes longer than for the

corresponding eigenvalue of the real problem, the qualitative property that the method

needs approximately equal CPU time per eigenvalue regardless of its location in the

spectrum is preserved. On average the solver took 1060 iterations in 851 s, 217 s of

which were spent solving projected quadratic problems with 11.1 restarts correspond-

ing to 12.1 LU factorizations.

6.3.2 NLEVP “acoustic wave 1D” QEP

We consider a quadratic eigenvalue problem

T (λ)x = λ2 Mx + λCx + K x (12)

arising from a finite element discretization of a 1D acoustic wave equation with

mixed Dirichlet and impedance boundary conditions, “acoustic wave 1d” problem

from NLEVP [6]. The matrices K , M are real symmetric and C is a low rank complex

diagonal matrix dependent on the impedance parameter. For the formulation (12) all

the eigenvalues lie in the upper half of the complex plane and have a dominant real

part.

Using NLEVP default value of the impedance parameter ζ = 1 we generated a

matrix problem of dimension 30,000. We computed all 100 eigenvalues with the real

part in the interval [0, 50] (see Fig. 16). The relative residual tolerance was 10−6, the

maximal subspace dimension 120, the slowest admissible convergence rate τ = 0.5,

nlocked = 0 and the automated restart parameters α = 1 and Nα = 1. Figure 17 shows

the total CPU time and the time for solving of the projected quadratic eigenvalue

problems. On average NRA method took 618.1 iterations and 11.1 restarts (12.1 LU

factorizations) in 219.5 s, 67.4 s of which were spent on the solution of the projected

linearized problems.

7 Conclusions

We presented a local restart technique for iterative projection methods for solution

of nonlinear Hermitian eigenvalue problems admitting a minmax characterization of

their eigenvalues. We showed how the proposed technique can effectively eliminate a
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Fig. 16 Eigenvalues with the real part in [0, 50] of the NLEVP “acoustic wave 1d” quadratic eigenvalue

problem of dimension 30,000
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Fig. 17 CPU time of NRA for computation of eigenvalues with real part in [0, 50] of the NLEVP “acoustic

wave 1d” quadratic eigenvalue problem of dimension 30,000

super-linear search subspace growth experienced when computing a large number of

eigenvalues. Properly initialized, the method can be employed for computing eigen-

values in the interior of the spectrum. Iterative projection methods here considered

work directly on the nonlinear eigenvalue problem without increasing its size and

possibly destroying its structure by prior linearization. In this setting we do not have

a transformation, like shift-invert for linear problems, mapping the eigenvalues close

to a chosen shift to the exterior of the spectrum. In the absence of such transforma-

tion, spurious eigenvalues are intrinsic to interior eigenvalue computations and we
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proposed an effective strategy for dealing with such spurious values. We incorporated

the proposed technique in the nonlinear iterative projection methods like the Nonlin-

ear Arnoldi and Jacobi-Davidson methods. We illustrated various aspects of the local

restart technique on numerical examples. The efficiency of the new restart framework

was demonstrated on a range of nonlinear eigenvalue problems: three gyroscopic prob-

lems including a large gyroscopic eigenvalue problem modeling the dynamic behavior

of a rotating tire, one exponential and one rational eigenvalue problem. Furthermore,

we showed on two quadratic eigenvalue problems how the local restart technique can

be extended to problems with complex eigenvalues with a dominant part (either real

or imaginary). All the examples in this paper were solved using MATLAB toolbox

QARPACK [2] containing an exemplary implementation of the locally restarted itera-

tive methods (qra: quadratic, nra: general nonlinear solver). In the future we intend

to extend the local restart technique to problems with more general distributions of

the eigenvalues in the complex plane, close to a line or an a priori known curve.
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