
1

QuickTime™ and a
 decompressor

are needed to see this picture.

RESTful Java with JAX-RS

Bill Burke
Engineering Fellow
Red Hat

2

QuickTime™ and a
 decompressor

are needed to see this picture.

Agenda

 Why REST?

 REST Principles

 Writing RESTFul Web Services in Java

 JAX-RS

3

QuickTime™ and a
 decompressor

are needed to see this picture.

Speaker’s Qualifications

 RESTEasy project lead

 Fully certified JAX-RS implementation

 JAX-RS JSR member

 Also served on EE 5 and EJB 3.0 committees

 JBoss contributor since 2001

 Clustering, EJB, AOP

 Published author

 Books, articles

4

QuickTime™ and a
 decompressor

are needed to see this picture.

What are the goals of SOA?

5

QuickTime™ and a
 decompressor

are needed to see this picture.

SOA Goals

 Reusable

 Interoperable

 Evolvable

 Versioning

 Scalable

 Manageable

6

QuickTime™ and a
 decompressor

are needed to see this picture.

What system has these properties?

7

QuickTime™ and a
 decompressor

are needed to see this picture.

The Web!

8

QuickTime™ and a
 decompressor

are needed to see this picture.

What is REST?

 REpresentational State Transfer

 PhD by Roy Fielding

 REST answers the questions of

 Why is the Web so prevalent and ubiquitous?

 What makes the Web scale?

 How can I apply the architecture of the web to
my applications?

9

QuickTime™ and a
 decompressor

are needed to see this picture.

What is REST?

 It can mean a simple, “lightweight”, distributed
interface over HTTP

 REST is really a set of architectural principles

 Principles that make the Web unique

 REST isn’t protocol specific

 But, usually REST == REST + HTTP

 A different way to look at writing Web Services

 Many say it’s the anti-WS-*

 Rediscovery of HTTP

10

QuickTime™ and a
 decompressor

are needed to see this picture.

Why REST?

 HTTP is everywhere

 Zero-footprint clients

 A “Lightweight” stack

 “Lightweight” interoperability

 Evolvability

 Link driven systems allow you to redirect easily

 Content negotiation allows you to support old and new
formats

11

QuickTime™ and a
 decompressor

are needed to see this picture.

REST Architectural Principles

 Addressable Resources

 Representation Oriented

 Constrained interface

 Hypermedia and Link Driven

 Communicate statelessly

12

QuickTime™ and a
 decompressor

are needed to see this picture.

Let’s build a RESTful interface!

13

QuickTime™ and a
 decompressor

are needed to see this picture.

Building a RESTful Interface

 We’ll build a simple Order Entry System

 We’ll apply each architectural principle as we design

 I’ll describe the implications of each principle

14

QuickTime™ and a
 decompressor

are needed to see this picture.

Simple Order Entry System

15

QuickTime™ and a
 decompressor

are needed to see this picture.

Addressable Resources

 Resources are our endpoints in a RESTful interface

 The things in our object model become resources

 Order

 Customer

 Product

 Each resource should have its own URI

16

QuickTime™ and a
 decompressor

are needed to see this picture.

URI Scheme

 /orders

 This URI represents all orders

 We’ll be able to query and create orders from this URI

 /orders/{id}

 This URI represents one order

 From this URI, we’ll be able to read, update, and
remove an order

 {id} is a matching pattern. A wildcard.

 /orders/{id}/lineitems

 We may or may not want to make lineitems addressable

17

QuickTime™ and a
 decompressor

are needed to see this picture.

URI Scheme

 Similar URI Scheme for other objects

 /customers

 /customers/{id}

 /products

 /products/{id}

18

QuickTime™ and a
 decompressor

are needed to see this picture.

Implications of Addressability

 Use HTTP’s identification mechanism

 WS-* usually has one URI you communicate through

 WS-* requires tunnelling additional information about
object identity through SOAP contexts.

 Allows for linking

 Enables the constrained interface (we’ll see later)

 URI schemes should be an implementation detail

 They should be opaque

 Published via links (we’ll see later)

19

QuickTime™ and a
 decompressor

are needed to see this picture.

 Clients and servers exchange representations of a resource through the

uniform interface (which we’ll discuss later)

 XML documents

 JSON documents

 HTTP’s Content-Type header identifies what we’re exchanging

 This is a familiar data exchange pattern for Java developers

 Swing->RMI->Hibernate

 Hibernate objects exchanged to and from client and server

 Client modifies state, uses entities as DTOs, server merges changes

 No different than how REST operates

 No reason a RESTFul webservice and client can’t exchange Java objects!

Representation Oriented

20

QuickTime™ and a
 decompressor

are needed to see this picture.

Choosing a Representation

 We’ll choose XML

 Can add others as needed

21

QuickTime™ and a
 decompressor

are needed to see this picture.

Customer XML

<customer id=“771”>

 <first-name>Bill</first-name>

 <last-name>Burke</last-name>

 <street>555 Beacon Str.</street>

 <city>Boston</city>

 <state>MA</state>

 <zip>02115</zip>

</customer>

22

QuickTime™ and a
 decompressor

are needed to see this picture.

Product XML

<product id=“543”>

 <name>iPhone</name>

 <cost>$199.99</cost>

</customer>

23

QuickTime™ and a
 decompressor

are needed to see this picture.

Order XML

<order id=“133”>

 <total>$199.99<total>

 <date>01/20/2010<date>

 <customer id=“771”>

 <first-name>Bill</first-name>

 <last-name>Burke</last-name>

 <street>555 Beacon Str.</street>

 <city>Boston</city>

 <state>MA</state>

 <zip>02115</zip>

 </customer>

 <line-items>

 <line-item>

 <product id=“543”>

 <name>iPhone</name>

 <cost>$199.99</cost>

 </product>

 </line-item>

 </line-items>

</customer>

24

QuickTime™ and a
 decompressor

are needed to see this picture.

Implications of Representations

 Each URI can exchange multiple representations

 HTTP Content Negotiation allows clients and servers
to choose what’s best for them

25

QuickTime™ and a
 decompressor

are needed to see this picture.

HTTP Negotiation

 HTTP allows the client to specify the type of data it is

sending and the type of data it would like to receive

 Depending on the environment, the client negotiates

on the data exchanged

 An AJAX application may want JSON

 A Ruby application my want the XML representation of

a resource

26

QuickTime™ and a
 decompressor

are needed to see this picture.

 HTTP Headers manage this negotiation

 ACCEPT: comma delimited list of one or more MIME types the client
would like to receive as a response

 In the following example, the client is requesting a customer
representation in either xml or json format

 Preferences are supported and defined by HTTP specification

GET /customers/33323

Accept: application/xml,application/json

GET /customers/33323

Accept: text/html;q=1.0,

 application/json;q=0.7;application/xml;q=0.5

HTTP Negotiation

27

QuickTime™ and a
 decompressor

are needed to see this picture.Implications of Representations

 Evolvable integration-friendly services

 Common consistent location (URI)

 Common consistent set of operations (uniform interface)

 Interactions defined, formats slapped on as needed

 Built-in service versioning

 application/customers+xml;version=1

 application/customers+xml;version=2

28

QuickTime™ and a
 decompressor

are needed to see this picture.Constrained, Uniform Interface

 The idea is to have a well-defined, fixed, finite set of operations

 Clients can only use these operations

 Each operation has well-defined, explicit behavior

 In HTTP land, these methods are GET, POST, PUT, DELETE

 How can we build applications with only 4+ methods?

 SQL only has 4 operations: INSERT, UPDATE, SELECT,
DELETE

 JMS has a well-defined, fixed set of operations

 Both are pretty powerful and useful APIs with constrained
interfaces

29

QuickTime™ and a
 decompressor

are needed to see this picture.Constrained, Uniform Interface

 GET - readonly operation

 PUT - used for insert or update of a resource

 DELETE - remove a resource

 POST - used for creation or as an “anything goes” operation

 GET, PUT, DELETE are idempotent

 If you invoke same operation more than once, you should get
the same result every time

 POST is not idempotent

 Each POST can have a different effect on the resource

30

QuickTime™ and a
 decompressor

are needed to see this picture.

Read a Customer

Request:

GET /customer/771 HTTP/1.1

Response:

HTTP/1.1 200 OK

Content-Type: application/xml

<customer id=“771”>

 <first-name>Bill</first-name>

 <last-name>Burke</last-name>

 <street>555 Beacon Str.</street>

 <city>Boston</city>

 <state>MA</state>

 <zip>02115</zip>

</customer>

31

QuickTime™ and a
 decompressor

are needed to see this picture.

Update a Customer: Change address

Request:

PUT /customer/771 HTTP/1.1

Content-Type: application/xml

<customer id=“771”>

 <first-name>Bill</first-name>

 <last-name>Burke</last-name>

 <street>101 Dartmouth Str.</street>

 <city>Boston</city>

 <state>MA</state>

 <zip>02115</zip>

</customer>

32

QuickTime™ and a
 decompressor

are needed to see this picture.

Creation

 There is a common pattern for creation

 POST to a top resource URI

 Get back the location (URI) of created resource

 Response contains a Location header

33

QuickTime™ and a
 decompressor

are needed to see this picture.

Create a Customer

Request:

POST /customers HTTP/1.1

Content-Type: application/xml

<customer>

 <first-name>Monica</first-name>

 <last-name>Burke</last-name>

 <street>101 Dartmouth Str.</street>

 <city>Boston</city>

 <state>MA</state>

 <zip>02115</zip>

</customer>

Response:

HTTP/1.1 201 Created

Location: http://example.com/customers/2322

34

QuickTime™ and a
 decompressor

are needed to see this picture.

When 4 methods don’t fit

 What operations are required on Orders?

 Create - POST on /orders

 Read - GET on /orders/{id}

 Update - PUT on /orders/{id}

 Remove - DELETE on /orders/{id}

 Cancel?

35

QuickTime™ and a
 decompressor

are needed to see this picture.

Operations modeled as state

 Can Cancel be modeled as state?

 Yes, cancelled is a state of the order

 Let’s add a <cancelled> element to our representation

 The act of cancelling becomes an update of the
representation

36

QuickTime™ and a
 decompressor

are needed to see this picture.

Cancel an Order

Request:

PUT /order/331 HTTP/1.1

Content-Type: application/xml

<order id=“331”>

 <total>$199.99</total>

 <date>01/20/2010</date>

 <cancelled>true</cancelled>

 …

</order>

37

QuickTime™ and a
 decompressor

are needed to see this picture.

Operations not modeled as state

 What if an operation can’t be modeled as state?

 Example: order purging

 Remove all cancelled orders.

 In this case, define a new resource:

 /orders/purge

 POST or PUT to this resource

38

QuickTime™ and a
 decompressor

are needed to see this picture.Implications of Uniform Interface

 Simplified

 No stubs you have to generate distribute

 Nothing to install, maintain, upgrade

 No vendor you have to pay big bucks to

39

QuickTime™ and a
 decompressor

are needed to see this picture.

Identity Operations

Complexity

Data format

40

QuickTime™ and a
 decompressor

are needed to see this picture.Implications of Uniform Interface

 Interoperability

 HTTP a stable protocol

 WS-*, again, is a moving target

 Ask CXF, Axis, and Metro how difficult Microsoft
interoperability has been

 Focus on interoperability between applications rather
focusing on the interoperability between vendors.

 Familiarity

 Operations and admins know how to secure, partition,
route, and cache HTTP traffic

 Leverage existing tools and infrastructure instead of
creating new ones

41

QuickTime™ and a
 decompressor

are needed to see this picture.

Hypermedia, or rather Links

 Links drive interactions

 When a human uses a browser

 No idea what the URI scheme is beforehand

 Human just follows links

 Google follows links to create search indexes

42

QuickTime™ and a
 decompressor

are needed to see this picture.

Implications of Links

 Links allow you to compose data

<order id=“133”>

 <total>$199.99<total>

 <date>01/20/2010<date>

 <link rel=“customer”

 href=“http://example.com/customers/771”/>

 <line-items>

 <line-item>

 <link rel=“product”

 href=“http://example.com/products/543”/>

 </line-item>

 </line-items>

</customer>

43

QuickTime™ and a
 decompressor

are needed to see this picture.

Implications of Links

 Links allow URIs to become opaque

 URIs become an implementation detail

 RESTful systems usually have very few published
URIs

 URIs schemes can change without breaking clients

44

QuickTime™ and a
 decompressor

are needed to see this picture.

Implications of Links

 One URL for Order Entry System

 Query base URI, then traverse links to interact

Request:

GET /order-entry-system HTTP/1.1

Response:

HTTP/1.1 200 OK

Content-Type: application/xml

<services>

 <link rel=“orders” href=“http://…”/>

 <link rel=“customers” href=“http://…”/>

 <link rel=“products” href=“http://…”/>

</services

45

QuickTime™ and a
 decompressor

are needed to see this picture.

Statelessness

 A RESTFul web service does not maintain sessions/conversations
on the server

 Doesn’t mean a web service can’t have state

 REST mandates

 That state be converted to resource state

 Conversational state be held on client and transferred with
each request

46

QuickTime™ and a
 decompressor

are needed to see this picture.

Statelessness

 Sessions are not linkable

 You can’t link a reference to a service that requires a
session

 A stateless application scales

 Sessions require replication

 Stateless services only require load balancing

47

QuickTime™ and a
 decompressor

are needed to see this picture.

REST in Conclusion

 REST answers questions of

 Why does the Web scale?

 Why is the Web so ubiquitous?

 How can I apply the architecture of the Web to my applications?

 Promises

 Simplicity

 Zero-footprint clients.

 Interoperability

 Platform independence

 Change resistance

48

QuickTime™ and a
 decompressor

are needed to see this picture.

JAX-RS

RESTFul Web Services in Java

49

QuickTime™ and a
 decompressor

are needed to see this picture.

JAX-RS

 JCP Specification

 Required in Java EE 6

 Annotation Framework

 Allows you to map HTTP requests to Java method

invocations

50

QuickTime™ and a
 decompressor

are needed to see this picture.

JAX-RS: GET /orders/3323

@Path(“/orders”)

public class OrderResource {

 @Path(“/{order-id}”)

 @GET

 @Produces(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

51

QuickTime™ and a
 decompressor

are needed to see this picture.

JAX-RS Annotations

 @Path

 Defines URI mappings and templates

 @Produces, @Consumes

 What MIME types does the resource produce and
consume

 @GET, @POST, @DELETE, @PUT, @HEAD

 Identifies which HTTP method the Java method is
interested in

52

QuickTime™ and a
 decompressor

are needed to see this picture.JAX-RS Parameter Annotations

 @PathParam

 Allows you to extract URI parameters/named URI template
segments

 @QueryParam

 Access to specific parameter URI query string

 @HeaderParam

 Access to a specific HTTP Header

 @CookieParam

 Access to a specific cookie value

53

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @Path(“/{order-id}”)

 @GET

 @Produces(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

Base URI path to resource

JAX-RS: GET /orders/3323

54

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @Path(“/{order-id}”)

 @GET

 @ProduceMime(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

Additional URI pattern

that getOrder() method maps to

JAX-RS: GET /orders/3323

55

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @Path(“/{order-id}”)

 @GET

 @Produces(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

Defines a URI path segment pattern

JAX-RS: GET /orders/3323

56

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @Path(“/{order-id}”)

 @GET

 @Produces(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

HTTP method Java getOrder() maps

to

JAX-RS: GET /orders/3323

57

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @Path(“/{order-id}”)

 @GET

 @Produces(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

What’s the CONTENT-TYPE

returned?

JAX-RS: GET /orders/3323

58

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @Path(“/{order-id}”)

 @GET

 @Produces(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

Inject value of URI segment into the

id Java parameter

JAX-RS: GET /orders/3323

59

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @Path(“/{order-id}”)

 @GET

 @Produces(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

Automatically convert URI string

segment into an integer

JAX-RS: GET /orders/3323

60

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @Path(“/{order-id}”)

 @GET

 @Produces(“application/xml”)

 Order getOrder(@PathParam(“order-id”) int id) {

 …

 }

}

Content handlers can convert from

Java to Data Format

JAX-RS: GET /orders/3323

61

QuickTime™ and a
 decompressor

are needed to see this picture.

JAX-RS: POST /orders

@Path(“/orders”)

public class OrderService {

 @POST

 @Consumes(“application/xml”)

 void submitOrder(Order orderXml) {

 …

 }

}

What CONTENT-TYPE is this method

expecting from client?

62

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @POST

 @Consumes(“application/xml”)

 void submitOrder(Order orderXml) {

 …

 }

}

Un-annotated parameters assumed

to be incoming message body.

There can be only one!

JAX-RS: POST /orders

63

QuickTime™ and a
 decompressor

are needed to see this picture.

@Path(“/orders”)

public class OrderService {

 @POST

 @Consumes(“application/xml”)

 void submitOrder(Order orderXml) {

 …

 }

}

Content handlers can convert from

data format into Java object

JAX-RS: POST /orders

64

QuickTime™ and a
 decompressor

are needed to see this picture.

More on Content Handlers

 Media type, annotations, object type are all used to
find a handler

@XmlElement

public class Order {

…

}

@Path(“/orders”)

public class OrderService {

 @POST

 @Consumes(“application/xml”)

 void submitOrder(Order orderXml) {

 …

 }

}

65

QuickTime™ and a
 decompressor

are needed to see this picture.

More on Content Handlers

 JAXB and other simple types required by specification

 JSON? Jackson project is a great provider

 Atom, multipart, XOP and other formats available

 You can write your own custom ones

66

QuickTime™ and a
 decompressor

are needed to see this picture.

Response Object

 JAX-RS has a Response and ResponseBuilder class

 Customize response code

 Specify specific response headers

 Specify redirect URLs

 Work with variants

@GET

Response getOrder() {

 ResponseBuilder builder =

 Response.status(200, order);

 builder.type(“text/xml”)

 .header(“custom-header”, “33333”);

 return builder.build();

}

67

QuickTime™ and a
 decompressor

are needed to see this picture.

JAX-RS Content Negotiation

 Matched up and chosen based on request ACCEPT header

 Accept: application/json;q=1.0,application/xml;q=0.5

@GET

@Produces(“application/xml”)

String getXmlOrder() {…}

@GET

@Produces(“application/json”)

String getJsonOrder() {…}

68

QuickTime™ and a
 decompressor

are needed to see this picture.

ExceptionMappers

 Map application thrown exceptions to a Response object

 Implementations annotated by @Provider

public interface ExceptionMapper<E>

{

 Response toResponse(E exception);

}

69

QuickTime™ and a
 decompressor

are needed to see this picture.

RESTFul Java Clients

70

QuickTime™ and a
 decompressor

are needed to see this picture.

RESTFul Java Clients

 java.net.URL

 Ugly, buggy, clumsy

 Apache HTTP Client

 Full featured

 Verbose

 Not JAX-RS aware

 Jersey and RESTEasy APIs

 Similar in idea to Apache HTTP Client except JAX-RS aware

 RESTEasy Client Proxy Framework

 Define an interface, re-use JAX-RS annotations for sending requests

71

QuickTime™ and a
 decompressor

are needed to see this picture.RESTEasy Client Proxy Framework

@Path(“/customers”)

public interface CustomerService {

 @GET

 @Path(“{id})

 @Produces(“application/xml”)

 public Customer getCustomer(

 @PathParam(“id”) String id);

}

CustomerService service =

 ProxyFactory(CustomerService.class,

 “http://example.com”);

Customer cust = service.getCustomer(“3322”);

72

QuickTime™ and a
 decompressor

are needed to see this picture.

RESTEasy

 Embeddable

 Spring, EJB, Guice, and Seam integration

 Client Framework

 Asynchronous HTTP (COMET)

 Client and Server Side Caching

 Interceptor model

 GZIP encoding support

 Data format support

 Atom, JAXB, JSON, Multipart, XOP

73

QuickTime™ and a
 decompressor

are needed to see this picture.

JAX-RS Conclusions

 Mapping HTTP requests using annotations

 A la carte HTTP information

 Nice content handlers

 Nice routing

74

QuickTime™ and a
 decompressor

are needed to see this picture.

References

 Links

 http://jsr311.dev.java.net/

 http://jboss.org/resteasy

 http://rest-star.org

 O’Reilly Books

 “RESTFul Java with JAX-RS” by me

 “RESTful Web Services”

 “RESTful Web Services Cookbook”

QuickTime™ and a
 decompressor

are needed to see this picture.

http://jsr311.dev.java.net/
http://jboss.org/resteasy
http://java.dzone.com/articles/intro-rest
http://java.dzone.com/articles/intro-rest
http://java.dzone.com/articles/intro-rest

