eeeeeeeeeeee

RESTful Java with JAX-RS

Bill Burke
Engineering Fellow
Red Hat

‘! Java Developers’ Day 2010

Agenda

Why REST?
REST Principles

Writing RESTFul Web Services in Java
JAX-RS

‘! Java Developers’ Day 2010

ddddd pressor
re needed to see this picture.

Speaker’s Qualifications

RESTEasy project lead

Fully certified JAX-RS implementation
JAX-RS JSR member

Also served on EE 5 and EJB 3.0 committees

JBoss contributor since 2001
Clustering, EJB, AOP
Published author

Books, articles

‘! Java Developers’ Day 2010

ddddd pressor
re needed to see this picture.

What are the goals of SOA?

‘1 Java Developers’ Day 2010

SOA Goals

Reusable
Interoperable

Evolvable

Versioning
Scalable

Manageable

QuickTime™ and a
decompressor
are needed to see this picture.

‘! Java Developers’ Day 2010

ddddd pressor
re needed to see this picture.

What system has these properties?

‘! Java Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

The Web!

‘1 java Developers’ Day 2010

QuickTime™ and a
eeeeeeeeeeee
are needed to see this picture.

What i1s REST?

REpresentational State Transfer
PhD by Roy Fielding

REST answers the questions of
Why Is the Web so prevalent and ubiquitous?
What makes the Web scale?

How can | apply the architecture of the web to
my applications?

‘! Java Developers’ Day 2010

What i1s REST?

It can mean a simple, “lightweight”, distributed
iInterface over HTTP

REST is really a set of architectural principles
Principles that make the Web unique

REST isn't protocol specific
But, usually REST == REST + HTTP

A different way to look at writing Web Services
Many say it's the anti-WS-*

Rediscovery of HTTP

‘! Java Developers’ Day 2010

Why REST?

HTTP Is everywhere

Zero-footprint clients

A “Lightweight” stack
“Lightweight” interoperability
Evolvability

Link driven systems allow you to redirect easily

Content negotiation allows you to support old and new
formats

10 ‘, J D D
ava Developers’ Day 2010

REST Architectural Principles

Addressable Resources
Representation Oriented
Constrained interface
Hypermedia and Link Driven
Communicate statelessly

11

eeeeeeeeeeee

‘! Java Developers’ Day 2010

12

Let’s build a RESTful interface!

ddddd pressor
re needed to see this picture.

‘! Java Developers’ Day 2010

QuickTime™ and a
eeeeeeeeeeee
are needed to see this picture.

Building a RESTful Interface

We'll build a simple Order Entry System
We’'ll apply each architectural principle as we design
I'll describe the implications of each principle

13 ‘, J D D
ava Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

Simple Order Entry System

Customer
Order -id: int
—id" int ~firstName: String
“total: float | -lastName: 5tring
~date: Date 0.1 1-street String
~customer: customer ~City: String
+ void addLineltem(Lineltem) -state: String
+ void removelineltem{Lineltem) ‘?'_Fﬁt_"“g_
+ Lineltem[] getLineltems() —LUUTRTY. LNy
1..
Lineltemn Product
-id: int -id: int
OrderEntryService —-guantity: int -name: String

+ Order[] getOrders() -product: Product 5 ~| -cost: float
+ Order getOrder{int id) '

+ void submitOrder(Order)
+ void updateQOrder(Qrder)
+ void deleteOrder(int id)
+ void cancelOrder(int id)

. &)DD

va Developers’ Day 2010

eeeeeeeeeeee

Addressable Resources

Resources are our endpoints in a RESTful interface

The things in our object model become resources

Order

Customer
Product

Each resource should have its own URI

15 ‘, J D D
ava Developers’ Day 2010

URI Scheme

/orders

This URI represents all orders
We’'ll be able to query and create orders from this URI
[orders/{id}

This URI represents one order

From this URI, we’ll be able to read, update, and
remove an order

{id} Is a matching pattern. A wildcard.
forders/{id}/lineitems
We may or may not want to make lineitems addressable

16 ‘, J D D
ava Developers’ Day 2010

URI Scheme

Similar URI Scheme for other objects

/customers
[customers/{id}
/products
/products/{id}

17

eeeeeeeeeeee

‘! Java Developers’ Day 2010

Implications of Addressability

Use HTTP’s identification mechanism

WS-* usually has one URI you communicate through

WS-* requires tunnelling additional information about
object identity through SOAP contexts.

Allows for linking
Enables the constrained interface (we’ll see later)

URI schemes should be an implementation detail

They should be opaque
Published via links (we’ll see later)

18 ‘, J D D
ava Developers’ Day 2010

QuickTime™ and a
decompressor

Representation Oriented

Clients and servers exchange representations of a resource through the
uniform interface (which we’ll discuss later)

XML documents

JSON documents

HTTP’s Content-Type header identifies what we're exchanging

This is a familiar data exchange pattern for Java developers

Swing->RMI->Hibernate
Hibernate objects exchanged to and from client and server

Client modifies state, uses entities as DTOs, server merges changes
No different than how REST operates
No reason a RESTFul webservice and client can’t exchange Java objects!

19 ‘, J D D
ava Developers’ Day 2010

Choosing a Representation

We'll choose XML
Can add others as needed

20

eeeeeeeeeeee

‘! Java Developers’ Day 2010

Customer XML

<customer id=%“771">

<first-name>Bill</first-name>
<last-name>Burke</last-name>
<street>555 Beacon Str.</street>
<city>Boston</city>
<state>MA</state>
<zip>02115</zip>

</customer>

21

QuickTime™ and a
decompressor
are needed to see this picture.

‘! Java Developers’ Day 2010

Product XML

<product id="543">
<name>iPhone</name>
<cost>$199.99</cost>

</customer>

22

QuickTime™ and a
decompressor
are needed to see this picture.

‘! Java Developers’ Day 2010

Order XML

<order id=%“133">
<total>$199.99<total>
<date>01/20/2010<date>
<customer id=“771">

<first-name>Bill</first-name>
<last-name>Burke</last-name>
<street>555 Beacon Str.</street>

<city>Boston</city>
<state>MA</state>
<zip>02115</zip>
</customer>
<line-items>
<line-item>
<product id="543">
<name>iPhone</name>
<cost>$199.99</cost>
</product>
</line-item>
</line-items>

</customer>
23

QuickTime™ and a
decompressor
are needed to see this picture.

‘! Java Developers’ Day 2010

eeeeeeeeeeee

Implications of Representations

Each URI can exchange multiple representations

HTTP Content Negotiation allows clients and servers
to choose what'’s best for them

ava Developers’ Day 2010

HTTP Negotiation

HTTP allows the client to specify the type of data it is
sending and the type of data it would like to receive

Depending on the environment, the client negotiates
on the data exchanged

An AJAX application may want JSON

A Ruby application my want the XML representation of
a resource

25 ‘, J D D
ava Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

HTTP Negotiation
HTTP Headers manage this negotiation

ACCEPT: comma delimited list of one or more MIME types the client
would like to receive as a response

In the following example, the client is requesting a customer
representation in either xml or json format

GET /customers/33323
Accept: application/xml,application/json

Preferences are supported and defined by HTTP specification

GET /customers/33323
Accept: text/html;g=1.0,

application/json;g=0.7;application/xml;g=0.5

. (DD
ava Developers’ Day 2010

eeeeeeeeeee

Implications of Representations

Evolvable integration-friendly services

Common consistent location (URI)

Common consistent set of operations (uniform interface)

Interactions defined, formats slapped on as needed
Built-in service versioning

application/customers+xml;version=1
application/customers+xml;version=2

27 ‘, J D D
ava Developers’ Day 2010

Constrained, Uniform Interface

The idea is to have a well-defined, fixed, finite set of operations
Clients can only use these operations
Each operation has well-defined, explicit behavior
In HTTP land, these methods are GET, POST, PUT, DELETE
How can we build applications with only 4+ methods?

SQL only has 4 operations: INSERT, UPDATE, SELECT,
DELETE

JMS has a well-defined, fixed set of operations

Both are pretty powerful and useful APIs with constrained
Interfaces

. (DD
ava Developers’ Day 2010

29

Constrained, Uniform Interface
GET - readonly operation
PUT - used for insert or update of a resource

DELETE - remove a resource

POST - used for creation or as an “anything goes” operation
GET, PUT, DELETE are idempotent

If you invoke same operation more than once, you should get
the same result every time

POST Is not idempotent

Each POST can have a different effect on the resource

‘! Java Developers’ Day 2010

Read a Customer

Request:
GET /customer/771 HTTP/1.1

Response:
HTTP/1.1 200 OK
Content-Type: application/xml

<customer id=“771">
<first-name>Bill</first-name>
<last-name>Burke</last-name>
<street>555 Beacon Str.</street>
<city>Boston</city>
<state>MA</state>
<zip>02115</zip>

</customer>

30

QuickTime™ and a
decompressor
are needed to see this picture.

‘! Java Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

Update a Customer: Change address

Request:
PUT /customer/771 HTTP/1.1
Content-Type: application/xml

<customer id=“771">
<first-name>Bill</first-name>
<last-name>Burke</last-name>
<street>101l Dartmouth Str.</street>
<city>Boston</city>
<state>MA</state>
<zip>02115</zip>

</customer>

31 ‘, J D D
ava Developers’ Day 2010

ddddd pressor
re needed to see this picture.

Creation

There Is a common pattern for creation
POST to a top resource URI

Get back the location (URI) of created resource
Response contains a Location header

. (DD
ava Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

Create a Customer

Request:
POST /customers HTTP/1.1
Content-Type: application/xml

<customer>
<first-name>Monica</first-name>
<last-name>Burke</last-name>
<street>101l Dartmouth Str.</street>
<city>Boston</city>
<state>MA</state>
<zip>02115</zip>

</customer>

Response:

HTTP/1.1 201 Created
Location: http://example.com/customers/2322

33 4!:"1[]'[)
ava Developers’ Day 2010

When 4 methods don’t fit

What operations are required on Orders?
Create - POST on /orders
Read - GET on /orders/{id}
Update - PUT on /orders/{id}

Remove - DELETE on /orders/{id}
Cancel?

34

‘! Java Developers’ Day 2010

eeeeeeeeeeee

Operations modeled as state

Can Cancel be modeled as state?

Yes, cancelled is a state of the order
Let’'s add a <cancelled> element to our representation

The act of cancelling becomes an update of the
representation

. (DD
ava Developers’ Day 2010

Cancel an Order

Request:
PUT /order/331 HTTP/1.1
Content-Type: application/xml

<order id="“331">
<total>$199.99</total>

<date>01/20/2010</date>
<cancelled>true</cancelled>

</order>

36

QuickTime™ and a
decompressor
are needed to see this picture.

‘! Java Developers’ Day 2010

eeeeeeeeeeee

Operations not modeled as state

What if an operation can’t be modeled as state?
Example: order purging

Remove all cancelled orders.
In this case, define a new resource:

forders/purge
POST or PUT to this resource

37 ‘, J D D
ava Developers’ Day 2010

38

Implications of Uniform Interface
Simplified
No stubs you have to generate distribute

Nothing to install, maintain, upgrade
No vendor you have to pay big bucks to

‘! Java Developers’ Day 2010

QuickTime™ and a
eeeeeeeeeeee
are needed to see this picture.

Identity Operations

N/

Complexity

|

Data format

‘! Java Developers’ Day 2010

eeeeeeeeeeee

Implications of Uniform Interface

Interoperability
HTTP a stable protocol
WS-*, again, is a moving target

Ask CXF, Axis, and Metro how difficult Microsoft
Interoperability has been

Focus on interoperability between applications rather
focusing on the interoperability between vendors.

Familiarity

Operations and admins know how to secure, partition,
route, and cache HTTP traffic

Leverage existing tools and infrastructure instead of
creating new ones

ava Developers’ Day 2010

eeeeeeeeeee

Hypermedia, or rather Links

Links drive interactions

When a human uses a browser

No idea what the URI scheme iIs beforehand
Human just follows links

Google follows links to create search indexes

ava Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

Implications of Links

Links allow you to compose data

<order id=%“133">
<total>$199.99%<total>
<date>01/20/2010<date>
<link rel=“customer”
href=“http://example.com/customers/771"” />
<line-items>
<line-item>
<link rel="“product”
href=“http://example.com/products/543” />
</line-item>
</line-items>
</customer>

ava Developers’ Day 2010

Implications of Links

43

Links allow URIs to become opague
URIs become an implementation detall

RESTful systems usually have very few published
URIs

URIs schemes can change without breaking clients

‘! Java Developers’ Day 2010

Implications of Links

44

One URL for Order Entry System
Query base URI, then traverse links to interact

Request:
GET /order-entry-system HTTP/1.1

Response:
HTTP/1.1 200 OK
Content-Type: application/xml

<services>
<link rel=“orders” href=“http://..”/>
<link rel=“customers” href=“http://..”/>
<link rel=“products” href=“http://..”/>
</services

ddddd pressor
re needed to see this picture.

‘! Java Developers’ Day 2010

eeeeeeeeeee

Statel eSS n eSS are needed to see this picture.
A RESTFul web service does not maintain sessions/conversations
on the server

Doesn’t mean a web service can’t have state
REST mandates

That state be converted to resource state

Conversational state be held on client and transferred with
each request

ava Developers’ Day 2010

p
re needed to see this picture.

Statelessness

Sessions are not linkable

You can’t link a reference to a service that requires a
session

A stateless application scales

Sessions require replication
Stateless services only require load balancing

ava Developers’ Day 2010

eeeeeeeeeee

R EST | n CO n C | u S I O n are needed to see this picture.

REST answers questions of
Why does the Web scale?
Why is the Web so ubiquitous?

How can | apply the architecture of the Web to my applications?

Promises
Simplicity
Zero-footprint clients.
Interoperability
Platform independence

Change resistance

47 ‘, J D D
ava Developers’ Day 2010

48

JAX-RS

RESTFul Web Services in Java

eeeeeeeeeeee

‘! Java Developers’ Day 2010

JAX-RS

JCP Specification
Required in Java EE 6

Annotation Framework

Allows you to map HTTP requests to Java method
iInvocations

ava Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

JAX-RS: GET /orders/3323

@Path (“/orders”)
public class OrderResource {

@Path (“/{order-id}”)

QGET

@Produces (“application/xml”)

Order getOrder (@RPathParam(“order-id”) int id) ({

}m

. (DD
ava Developers’ Day 2010

eeeeeeeeeeee
are needed to see this picture.

JAX-RS Annotations

@Path
Defines URI mappings and templates
@Produces, @Consumes

What MIME types does the resource produce and
consume

@GET, @POST, @DELETE, @PUT, @HEAD

Identifies which HTTP method the Java method is
Interested In

51 ‘, J D D
ava Developers’ Day 2010

52

JAX-RS Parameter Annotations

@PathParam

Allows you to extract URI parameters/named URI template
segments

@QueryParam

Access to specific parameter URI query string
@HeaderParam

Access to a specific HTTP Header
@CookieParam

Access to a specific cookie value

‘! Java Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

JAX-RS: GET /orders/3323

@Path (“/orders”)

public class OrderService { (LBaseURIpath toresource)
@Path (“/{order-id}”)
@GET

@Produces (“application/xml”)
Order getOrder (RPathParam(“order-id”) int id) {

}m

. OIDD
ava Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

JAX-RS: GET /orders/3323

@Path (“/orders”)
public class OrderService ({

@Path (“/{order-id}"”)

@GET

@ProduceMime (“application/xml”)

Order getOrder (QRPathParam(“order-id”) int id) {

}m

ava Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

JAX-RS: GET /orders/3323

@Path (“/orders”)

public class OrderService ({ _

@Path (“/{order-id}”)

@GET

@Produces (“application/xml”)

Order getOrder (@PathParam(“order-id”) int id) ({

}m

55 ‘, j D D
ava Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

JAX-RS: GET /orders/3323

@Path (“/orders”)
public class OrderService ({

e L
@GET

@Produces (“application/xml”)
Order getOrder (RPathParam(“order-id”) int id) {

}m

. OIDD
ava Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

JAX-RS: GET /orders/3323

@Path (“/orders”)
public class OrderService ({

@Path (“/{order-id}"”)
Q@GET

@Produces (“application/xml”)

Order getOrder (RPathParam(“order-id”) int id) {

}m

57 " J D D
ava Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

JAX-RS: GET /orders/3323

@Path (“/orders”)
public class OrderService ({

@Path (“/{order-id}”)

@GET

@Produces (“application/xml”)

Order getOrder (@PathParam(“order-id”) int id) {

}m

. OIDD
ava Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

JAX-RS: GET /orders/3323

@Path (“/orders”)
public class OrderService {

@Path (“/{order-id}"”)

@GET

@Produces (“application/xml”)

Order getOrder (@PathParam(“order-id”) int id) {

}m

. OIDD
ava Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

JAX-RS: GET /orders/3323

@Path (“/orders”)
public class OrderService {

@Path (“/{order-id}"”)

@GET

@Produces (“application/xml”)

Order getOrder (@PathParam(“order-id”) int id) {

}m

60 " J D D
ava Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

JAX-RS: POST /orders

@Path (“/orders”)
public class OrderService {

@POST
@Consumes (“application/xml”)
void submitOrder (Order orderXml) {

}m

. OIDD
ava Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

JAX-RS: POST /orders

@Path (“/orders”)
public class OrderService ({

@POST
@Consumes (“application/xml”)
void submitOrder (Order orderXml) ({

}m

62 4!:"I[]'[)
ava Developers’ Day 2010

QuickTime™ and a
decompressor
are needed to see this picture.

JAX-RS: POST /orders

@Path (“/orders”)
public class OrderService ({

@POST
@Consumes (“application/xml”)
void submitOrder (Order orderXml) ({

}m

63 4!:"I[]'[)
ava Developers’ Day 2010

ddddd pressor
re needed to see this picture.

More on Content Handlers

Media type, annotations, object type are all used to
find a handler

@XmlElement
public class Order {

}
@Path (“/orders”)
public class OrderService {

@POST

@Consumes (“application/xml”)
void submitOrder (Order orderXml) ({

}m

64 4‘3’J[:)[)
ava Developers’ Day 2010

More on Content Handlers

65

JAXB and other simple types required by specification
JSON? Jackson project is a great provider

Atom, multipart, XOP and other formats available

You can write your own custom ones

‘! Java Developers’ Day 2010

p
re needed to see this picture.

Response Object

JAX-RS has a Response and ResponseBuilder class

Customize response code

Specify specific response headers
Specify redirect URLs

Work with variants

QGET
Response getOrder () {
ResponseBuilder builder =
Response.status (200, order);
builder. type (“text/xml”)
.header (Y“custom-header”, “33333");
return builder.build() ;

66 ‘, J D D
ava Developers’ Day 2010

ddddd pressor
re needed to see this picture.

JAX-RS Content Negotiation

67

Matched up and chosen based on request ACCEPT header
Accept: application/json;g=1.0,application/xml;q=0.5

@GET
@Produces (“application/xml”)
String getXmlOrder () {..}

@GET

@Produces (“application/json”)
String getJsonOrder () {..}

‘! Java Developers’ Day 2010

ExceptionMappers

Map application thrown exceptions to a Response object

Implementations annotated by @Provider

public interface ExceptionMapper<E>
{

Response toResponse (E exception) ;

}

68

QuickTime™ and a
decompressor
are needed to see this picture.

‘! Java Developers’ Day 2010

69

RESTFul Java Clients

QuickTime™ and a
decompressor
are needed to see this picture.

(0]

DD

va Developers’ Day 2010

ddddd pressor
re needed to see this picture.

RESTFul Java Clients

java.net.URL
Ugly, buggy, clumsy
Apache HTTP Client
Full featured
Verbose

Not JAX-RS aware
Jersey and RESTEasy APIs

Similar in idea to Apache HTTP Client except JAX-RS aware
RESTEasy Client Proxy Framework

Define an interface, re-use JAX-RS annotations for sending requests

70 ‘, J D D
ava Developers’ Day 2010

RESTEasy Client Proxy Framework

@Path (“/customers”)
public interface CustomerService ({

QGET

@Path (“{id})

@Produces (“application/xml”)

public Customer getCustomer (
@PathParam(“id”) String id) ;

CustomerService service =
ProxyFactory (CustomerService.class,
“http://example.com”) ;

Customer cust = service.getCustomer (“3322");

71

QuickTime™ and a
decompressor
are needed to see this picture.

‘! Java Developers’ Day 2010

RESTEasy

72

Embeddable

Spring, EJB, Guice, and Seam integration
Client Framework

Asynchronous HTTP (COMET)

Client and Server Side Caching
Interceptor model

GZIP encoding support

Data format support
Atom, JAXB, JSON, Multipart, XOP

eeeeeeeeeeee

‘! Java Developers’ Day 2010

JAX-RS Conclusions

Mapping HTTP requests using annotations
A la carte HTTP information

Nice content handlers

Nice routing

73

eeeeeeeeeeee

‘! Java Developers’ Day 2010

References

74

Links

O’'Reilly Books

“RESTFul Java with JAX-RS” by me
“RESTful Web Services”
“RESTful Web Services Cookbook”

ddddd pressor
re needed to see this picture.

QuickTime™ and a
decompressor
are needed to see this picture.

‘! Java Developers’ Day 2010

http://jsr311.dev.java.net/
http://jboss.org/resteasy
http://java.dzone.com/articles/intro-rest
http://java.dzone.com/articles/intro-rest
http://java.dzone.com/articles/intro-rest

