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Resting brain dynamics at different timescales
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Linking human behavior to resting-state brain function is a central question in systems

neuroscience. In particular, the functional timescales at which different types of behavioral

factors are encoded remain largely unexplored. The behavioral counterparts of static func-

tional connectivity (FC), at the resolution of several minutes, have been studied but beha-

vioral correlates of dynamic measures of FC at the resolution of a few seconds remain

unclear. Here, using resting-state fMRI and 58 phenotypic measures from the Human

Connectome Project, we find that dynamic FC captures task-based phenotypes (e.g., pro-

cessing speed or fluid intelligence scores), whereas self-reported measures (e.g., loneliness

or life satisfaction) are equally well explained by static and dynamic FC. Furthermore,

behaviorally relevant dynamic FC emerges from the interconnections across all resting-state

networks, rather than within or between pairs of networks. Our findings shed new light on the

timescales of cognitive processes involved in distinct facets of behavior.
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B
rain activity is highly organized in space and in time, even
in resting-state conditions1. This intrinsic organization,
classically evaluated from resting-state functional con-

nectivity2 (FC), has been shown to encode various behavioral
aspects such as integration of cognition and emotions3, mon-
itoring of external environment4, intellectual performance5,6, and
emergence of stimulus-independent thoughts7. FC has also been
also used as a neuroimaging marker of several pathologies,
including Alzheimer’s disease8,9, major depressive disorders10,
Parkinson’s disease11, schizophrenia12, and autism13. More
recently, the advent of large neuroimaging and behavioral data-
sets has allowed the further exploration of the FC behavioral
counterparts, showing intricate contributions of cognitive, emo-
tional, social, and demographic aspects14.

Importantly, all these studies use static measures of FC, which
reflect the average functional organization of entire neuroimaging
recordings typically running over several minutes. However, there
is recent converging evidence, suggesting that the resting brain
navigates through different functional connectivity configurations
at much faster timescales on the order of seconds15,16. Therefore,
new dynamic measures of resting-state FC exploiting these faster
changes have been proposed17 and their behavioral counterparts
have in turn been explored, showing links to cognitive flex-
ibility18, drug use19, and mind-wandering20. Yet, the comparison
of static and dynamic measures of FC has only been proposed in
specific applications such as temporal lobe epilepsy21 or the
description of eating behaviors22, and a comprehensive analysis
exploring which types of behavioral features emerge from func-
tional interactions at different timescales is missing.

We explore this question using a discovery dataset (N= 419)
and a replication dataset (N= 328), comprising high-resolution
resting-state functional magnetic resonance imaging (fMRI) time
series and 58 behavioral measures spanning cognitive, emotional,
social, and personality traits from the Human Connectome
Project23 (HCP). First, we compare the extent to which static and
dynamic FC capture behavioral information. We then investigate
whether the behavioral relevance of FC markers is preferentially
encoded in within- or between- network connectivity. Finally, we
test if static and dynamic FC capture complementary behavioral
information. FC dynamics are evaluated using a first-order
autoregressive (AR-1) model of resting-state fMRI data24,25. AR-1
models exploit the temporal ordering of fMRI time series to
capture dynamic FC happening at a resolution of a few seconds to
which static approaches are blind16, without suffering from the
limitations of classical sliding window methods26,27. FC dynamics
are then linked to the 58 behavioral measures using a variance
component model28. This model has been extensively used in
genome-wide complex trait analyses and was recently applied to
study the neuroanatomical signatures of traits such as cognitive
or clinical measures29.

We find that FC dynamics specifically encode behavioral
measures evaluating performance in tasks, whereas self-reported
measures are explained equally well by static and dynamic FC.
We argue that this reflects the nature of the functional processes
involved in the corresponding behavioral experiments. On the
one hand, task-based metrics engage cognitive processes at
timescales on the order of a few seconds that can be captured by
FC dynamics. On the other hand, self-reported measures might
reflect trait-like properties that are less likely to change over a few
seconds, therefore being equally well explained by functional
patterns averaged over longer periods as encoded in static FC.
Furthermore, our results also suggest that task-performance
scores are defined by whole-brain FC dynamics involving the
interaction between multiple resting-state networks. Overall,
more than providing a mere statistical marker of task-perfor-
mance, these findings offer new insights into the timescales of the

cognitive processes involved in the execution of various
tasks30–32, thereby also supporting the ‘networked-brain’’ para-
digm that has emerged in recent years33.

Results
Behavioral counterparts of static and dynamic FC. We used
data from 419 unrelated HCP subjects34 to explore the extent to
which behavioral information is encoded in dynamic markers of
resting-state functional connectivity (FC), beyond classical static
measures of FC. We selected 58 behavioral measures from the
HCP dataset covering cognitive, social, emotion, and personality
traits (see Supplementary Table 2) from which age, gender, race,
education, and motion (mean FD) were regressed.

FC markers were estimated from the HCP resting-state fMRI
dataset. Classical preprocessing was performed, followed by a
parcellation into 400 cortical regions of interest (ROIs) and
19 subcortical ROIs35. Subject-specific static FC markers were
computed by averaging correlation matrices of fMRI time series
across runs. Dynamic FC markers were defined from an AR-1
model identified from the concatenation of the runs for each
subject (Methods). We chose to represent FC dynamics using an
AR-1 model for several reasons. First, we have shown recently
that AR-1 models, by exploiting the statistical link between
successive time points, capture FC dynamics significantly better
than a hidden Markov model explicitly representing switches
between different states with an equivalent number of para-
meters16. Second, the hierarchical organization of brain network
dynamics was found to be reproduced by an AR-1 model of fMRI
time series36. Finally, lag threads, which also exploit the
sequential ordering information of time series (although they
focus on identifying temporal sequences of propagated activity
rather than connectivity patterns) were shown to provide
meaningful markers of intrinsic brain function37.

The link between FC markers and behavioral measures was
studied using a variance component model28,38. The model
inputs are (i) a matrix containing the 58 behavioral measures for
the N= 419 subjects and (ii) at least one N ×N matrix, called a
similarity matrix and denoted by K, whose i,j-th entry encodes
the similarity between (static or dynamic) FC of subjects i and j.
Note that static FC matrices are symmetric, whereas dynamic FC
matrices are non-symmetric. The model estimates the level of
behavioral variability that is explained by FC variability, both on
average over all behavioral measures, as well as for each
behavioral measure (Methods38).

Dynamic FC markers encode more behavioral information. We
first compared the level of behavioral variance explained by static
and dynamic FC markers. To this end, we ran the multivariate
variance component model twice: once using a similarity matrix
encoding the inter-subject similarity of static FC patterns, and
once using similarity of dynamic FC patterns.

Figure 1a shows that on average over the 58 behavioral
measures, dynamic FC markers capture more behavioral variance
than static FC (p= 8.31 × 10−4; two-tailed t-test), and Fig. 1b
presents the results for eight individual phenotypic measures.
Results for the 50 remaining HCP measures are found in
Supplementary Fig. 1.

Dynamic FC specifically encodes task-based measures. Even if
dynamic FC encodes more behavioral information than static FC
on average, results of Fig. 1b show that some behavioral measures
are not better explained by dynamic FC (e.g., Meaning of Life,
Loneliness or Perceived Stress). In order to explore whether FC
dynamics specifically capture certain types of behavioral mea-
sures, we ranked the 58 HCP measures based on the extent to
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which dynamic FC better explain their variability, as compared to
static FC. To this end, we repeated the procedure for the 58
measures and computed 58 t-statistics, denoted by T, of the dif-
ference between behavioral variance explained by static and
dynamic FC for each measure (Supplementary Methods). Nega-
tive values of t-statistics indicate that static FC tends to better
explain the measure, whereas behavioral measures with positive
statistics are better explained by dynamic FC, as indicated in
Fig. 2a.

This ranking seems to draw a dichotomy between “task-
performance” and “self-reported” measures. On the one hand, the
first category includes metrics that use participant’s performance
in a task to assess a trait (e.g., working memory, spatial
orientation) and are marked with green dots in Fig. 2a. On the
other hand, “self-reported” measures (orange dots in Fig. 2a) rely
on subjective appraisal of traits (e.g., loneliness, life satisfaction).
No label was attached to the measures with no clear classification
in one of these categories. We find that dynamic FC better

explained task-performance measures (p= 1.75 × 10−3, Fig. 2c),
whereas no statistically significant difference could be found in
the capacity of both markers to explain self-reported measures
(Fig. 2b). We also find that the difference of the differences
between static and dynamic explained variances observed in
Fig. 2b, c is itself different from zero (p= 3.62 × 10−3; two-tailed
t-test). This interaction effect confirms that the difference
observed in Fig. 2c is related to the task condition and not only
driven by the main effect shown in Fig. 1a. Moreover, the result of
Fig. 2c is reproduced using subcategories of task-based measures
(Supplementary Fig. 3). Overall, the better average capacity of
dynamic FC to explain behavioral measures seems to be driven by
its increased capacity to explain task-based measures.

Behavior-related FC dynamics arise from network interactions.
Functional interactions between brain networks have been shown
to play a key role during the execution of tasks39 and in the
description of traits40. We tested whether interaction between
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resting-state networks were also critical for extracting behavioral
information from FC. To this end, the same model as described
above was used but similarity matrices were not computed from
the whole static or dynamic FC matrices. Instead, only sub-blocks
of the FC matrices corresponding to (pairs of) well-known rest-
ing-state networks were used. In other words, we tested how
behavioral variability is encoded in the variability of (pairs of)
resting-state networks connectivity patterns. We used a common
partition in seven cortical resting-state networks41 and included
subcortical areas (Methods), as shown in Fig. 3.

The average behavioral variance explained by static and
dynamic FC restricted to within or between networks is under
10% for almost all the pairs of networks. Not surprisingly this is
lower than the behavioral variance explained from the whole-
brain connectivity patterns (19% for static FC and 37% for
dynamic FC), as anticipated from previous findings showing that
individual FC fingerprinting is distributed throughout the
brain42. More unexpected is the fact that FC dynamics do not
seem to carry more behavioral information than static FC. On the
contrary, on average over all inter-network connections (Fig. 3,
unshaded diagrams), static FC explained more behavioral
variance than dynamic FC (p= 8.31 × 10−3; two-tailed t-test),
whereas no statistically significant difference was found for
within-networks connections (Fig. 3, shaded diagrams).

Testing complementarity between static and dynamic FC. We
have shown that on average FC dynamics encode more behavioral
information than static FC (Fig. 1), especially for task-
performance measures (Fig. 2). However, this does not mean
that static FC is not capturing any additional behavioral infor-
mation not encoded by dynamic FC. To test this, we used a
generalized version of the multivariate variance component
model that takes multiple similarity matrices -in our case two: the
ones computed from static and dynamic FC- as inputs and esti-
mates the level of behavioral variance explained by the combi-
nation of these similarity matrices (Supplementary Methods).

The average behavioral variance explained by combining static
and dynamic FC is shown in dark blue in Fig. 4a. Results for eight
representative measures are shown in Fig. 4b and results for the
50 remaining traits are found in Supplementary Fig. 2. In Fig. 4a,
the combined value is significantly higher than static FC (p=
4.73 × 10−4; two-tailed t-test), confirming the fact that FC
dynamics contains information above and beyond static FC.
However, no statistical difference was found between average
combined results and dynamic FC (p > 0.10, see Supplementary
Table 1 for details), which suggests that the information encoded
by static FC is largely encoded in dynamic FC.

Dynamic FC interactions driving task-performance. We now
explore which dynamic FC interactions contribute to the overall
association with task-performance (Fig. 2c). We used a refor-
mulation of the variance component model defined in Eq. (2) that
revealed the relative contribution of the interaction between each
pair of (sub)networks to the overall explained variance (Supple-
mentary Eq. (10)). The results are shown in Fig. 5. It can be seen
that default C and frontoparietal C, together with the subcortical
regions, are contributing the most to the association between
dynamic FC and task-performance.

Replication dataset. The findings shown in Figs. 1–4 were
replicated in a second group of 328 unrelated HCP subjects. More
precisely, all significant differences found in Figs. 1–4 were also
found to be significant in the replication dataset (more details are
found in Supplementary Figs. 5–9 and Supplementary Table 1).
The replication dataset was composed of the second subject of
each HCP family containing more than one person. We note that
it is therefore not completely independent from the discovery
dataset.

Additional control analyses. We performed a series of control
analyses to evaluate the impact of various processing steps in our
baseline analysis. More specifically, we tested the impact of (i)
including the variance of the mean cortical grayordinate signal as
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a covariate in the variance component model, (ii) evaluating the
static and dynamic FC matrices from fMRI time series from
which the mean cortical grayordinate signal was not regressed,
(iii) including head motion metrics as covariates in the variance
component model, (iv) evaluating the static and dynamic FC
matrices from full (i.e., uncensored) fMRI time series, (v) the
number of behavioral measures considered in the variance
component model, and (vi) the relative contributions of static and
dynamic FC to the overall variance explained within the com-
bined variance component model. The variance component
model appeared to be robust to these changes and in each case,
our main findings were reproduced (Supplementary Figs. 10–12).

Discussion
Exploring how resting-state functional organization is linked to
various behavioral traits is a central neuroimaging research
question. This organization is classically evaluated from

functional connectivity (FC), and recent evidence has shown that
exploiting the dynamical properties of FC instead of the classical
static FC metrics could open new avenues to interpret brain
functioning at different timescales. In this study, we aim at
refining our understanding of the behavioral information carried
by FC dynamics. To this end, we explored the extent to which
resting-state static and dynamic FC measures relate to a large
repertoire of measures covering cognitive, social, emotion, and
personality traits. We first show that, on average over 58 selected
behavioral measures, FC dynamics encode significantly more
behavioral information than a common static FC metric. This
confirms current findings that have highlighted the advantage of
resting-state dynamic FC measures over their static counterparts
in describing mindfulness43, disease21, and eating behaviors22.

Interestingly, FC dynamics within well-known resting-state
networks, or between pairs of networks, did not capture more
behavioral information than static FC in the same networks
(Fig. 3). For example, static inter-network FC was shown to
explain more behavioral variance than dynamic inter-network FC
on average. These results might seem counter-intuitive at first
sight and suggest that similarity measures derived from local
patterns of FC do not complement each other in the same way in
the static and dynamic cases. In other words, the advantage of
dynamic FC in explaining the behavioral information observed in
Fig. 1 is encoded in the global dynamic FC interaction patterns.
From a methodological point of view, this also indicates that even
if dynamic FC uses richer statistical information than static FC by
relaxing the static assumption associated to this metric, dynamic
FC should not a priori and automatically be considered as a better
neuroimaging marker than static FC.

In Fig. 2, we show that FC dynamics specifically encode
measures of performance in a task, such as working memory
tasks, whereas static and dynamic FC explain self-reported
measures, such as the perception of loneliness, equally well. This
additional information is found to be encoded in the global
dynamic FC patterns, and not confined to single areas or net-
works (Fig. 3). More precisely, Fig. 5 suggests that the default
mode and frontoparietal networks drive the integration of the
dynamic FC coming from other networks. This is in line with
previous findings identifying these areas as hubs of the dynamic
functional connectome44, and further supports the importance of
coupled default network and frontoparietal activities during task-
performance45.
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Taken together, these results support the line of current find-
ings indicating that different phenotypic measures such as pain40,
perception46, and vigilance47 are encoded in dynamic interactions
between multiple areas and not within single networks. Then,
even if they concern interactions between resting-state networks,
our results interestingly echo the nature of network interactions
involved in task-based conditions. Indeed, the execution of tasks
relies on a coordinated activation of different networks at faster
timescales that can be captured by dynamic FC31,32, and to which
static measures of FC are blind. On the contrary, self-reported
measures could be considered as trait-like properties that might
therefore be explained equally well by average FC patterns
encoded in static FC. Converging results also suggest that simple
tasks exhibit segregated activation patterns whereas complex tasks
involving multiple cognitive processes (e.g., working memory or
visuospatial attention) require an integrated activation of multiple
intrinsic networks39,48,49 and activate flexible brain regions such
as connector hubs50,51. It does not seem unreasonable to assume
that task-performance measures, in which subjects are incited to
reach a high score in a test that often involves multiple or
coordinated actions, capture more complex behavioral traits -as
defined above- than self-reported measures. More generally, these
results constitute empirical evidence supporting the ‘networked-
brain’’ paradigm that has emerged in recent years. This paradigm
essentially views the brain as a multiscale network producing
complex spatio-temporal activity patterns rather than an
ensemble of neuronal populations with localized
specification33,52,53.

The fact that FC dynamics seem to capture more complex
network interactions than static FC is also supported by the links
that have been drawn between FC and the underlying brain
anatomy, or structural connectivity (SC). As static FC is on
average closer to SC, the dynamic FC repertoire also captures
excursions from SC that are characterized by higher efficiency
and lower modularity54. These fluctuations of modular organi-
zation, encoded in FC dynamics, were shown to operate at dif-
ferent timescales30 and to support the periodic (de)coupling of
resting-state networks55, possibly constituting a signature
of consciousness56 and allowing for a more efficient transfer of
neuronal information57.

Other converging findings suggest that the amplitude of FC
dynamics variability decreases during task as compared to
resting-state58,59. Altogether with the results of Figs. 2 and 3
indicating that task-based behavioral measures are specifically
encoded by resting-state FC dynamics, we might hypothesize that
there exists a resting-state ‘dynamic reservoir’’ that is recruited
when leaving rest and, which defines task-performance. This
dynamic reservoir, encoded by FC dynamics and not by simpler
static FC markers as shown in Fig. 4, emerges from highly inte-
grated connections involving multiple intrinsic networks. As
such, we could also interpret this dynamic connectivity structure
as a signature of the human connectome evolution that tends to
attain efficient organizations to perform complex tasks60.

The dichotomy of behavioral measures proposed in Fig. 2 is
motivated by the statistical difference between static and dynamic
FC that seems to capture distinct behavioral properties. This
dichotomy presents some limitations. First, the classification of
behavioral measures in one of the two proposed categories, ‘task-
performance’’ or ‘self-reported’’, was not always straightforward.
For example, the Delay Discounting task measure was left
unclassified as one could argue that it is not capturing a perfor-
mance, associated with an underlying truth or optimal score, in
the same way a classical task such as the Working Memory task
is. For the same reason, other measures (grip strength, odor
identification, walking speed, contrast sensitivity, taste intensity,
and walking endurance) were not classified (Supplementary

Table 2). However, we note that classifying these measures in one
or the other category did not significantly change the results in
Fig. 2. That said, considering only two categories of behavioral
measures disregards the multifactorial nature of behavior and the
repertoire of behavioral measures could be approached using
other classification criteria such as trait vs. state61 or intrinsic vs.
extrinsic62.

We referred to the AR model of BOLD time series as ‘dynamic’’
following the systems theory literature63. This nomenclature is
motivated by the fact that such models, by accounting for the
memory present in the time series (i.e., xt depends on xt−1), are
able to reproduce empirical fluctuations in the multivariate time
series of interest much better than memoryless (or ‘static’’, fol-
lowing the same nomenclature) models16. The AR model is also
used to compute the dominant dynamic modes shaping resting-
state brain function64. Overall, this model can be seen as a
compact way to summarize the temporal fluctuations of BOLD
and FC time series that are directly exploited by time-varying
models17,65.

In summary, static measures of FC provide a measure of brain
function averaged over several minutes. This is an over-
simplification and new dynamic measures capturing the temporal
changes of brain function on the order of a few seconds have been
proposed. While these new measures were shown to capture more
statistical properties of fMRI data, their behavioral relevance
above and beyond static FC remains unclear. Here, we have
shown using 747 HCP subjects and 58 behavioral measures that
FC dynamics specifically capture measures of performance in
tasks by leveraging the dynamic information encoded in multiple-
network interactions. On the contrary, self-reported measures are
equally well explained by static and dynamic measures of FC.
Overall, we believe our work opens up future possibilities to a
better characterization of the cognitive processes shaping the
various facets of human behavior.

Methods
Data and preprocessing. We used data of the HCP 1200-subjects release com-
prising structural MRI, resting-state functional MRI, and behavioral measures of
young (ages 22–35) and healthy participants drawn from a population of siblings23.
All imaging data were acquired on a 3-T Siemens Skyra scanner using a multi-band
sequence. Functional images have a temporal resolution of 0.72 s and a 2-mm
isotropic spatial resolution whereas structural images are 0.7-mm isotropic. For
each subject, four 14.4 min runs (1200 frames) of functional time series were
acquired34. Resting-state fMRI data was projected to the fs_LR surface space using
the multimodal surface matching method (MSM-All23,66. Both cortical and sub-
cortical data were cleaned using the ICA-FIX method67,68 and saved in CIFTI
grayordinate format. This cleaning procedure included the regression of 24
motion-related parameters (six classical motion parameters, their derivatives, and
the squares of these 12 parameters). Motion censoring was then applied by
removing frames with FD > 0.2 mm or DVARS > 75, as well as one frame before
and two frames after these frames69,70. Remaining segments containing less than
five frames were also removed and runs with >50% of censored frames were
discarded. Linear trends and mean cortical grayordinate signal were regressed and
censored frames were ignored to compute regression coefficients. Mean cortical
grayordinate signal regression was performed because this step was shown recently
to strengthen the association between FC metrics and behavioral measures71.
However, we note that not regressing mean cortical grayordinate signal yielded
similar conclusions (Supplementary Fig. 10). Finally, fMRI time series were par-
cellated into 419 regions of interest (ROIs) comprising 400 cortical areas35 and
19 subcortical areas defined in Freesurfer. Static functional connectivity was
obtained for each subject based on the pearson’s correlation matrices, computed
from uncensored frames for each run, which were Fisher z-transformed, averaged
over runs and transformed back to r-space. Dynamic functional connectivity
measures were estimated from the model parameter of a first-order autoregressive
representation of fMRI time series:

xt ¼ A � xt�1 þ ϵt ð1Þ

where xt 2 RNR ´ 1 represents the fMRI time series in the NR= 419 ROIs at time t,
A 2 RNR ´NR is the model parameter that encodes the linear relationship between
successive time points, and εt 2 RNR ´ 1 are the residuals of the model16. The model
parameter A was identified from the concatenation of the uncensored sections of
the different runs, while ignoring transitions between uncensored sections and
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transitions between runs. The proportion of variance explained by this model,

defined as R2 ¼ 1� jjCovðεt ÞjjF
jjCovðxt ÞjjF

analogous to the definition of R2 for univariate AR

models, and where ||⋅||F denotes the Frobenius norm72, is 69.3% ± 11.2% (com-
puted over all subjects, including the replication dataset).

We selected 58 behavioral measures, including cognitive, social, emotion and
personality traits (Supplementary Table 2). These measures consist of metrics from
the NIH Toolbox and some well-known non-NIH measures (e.g., NEO-FFI).
Details about behavioral measures can be found in HCP S1200 Data Dictionary
and Barch et al.73. These measures were classified either as ‘task-performance’’,
‘self-reported’’, or ‘unclassified’’ if no clear belonging to one of the first two
categories applied (Supplementary Table 2).

Among the HCP 1200-subjects release, 1029 subjects had at least one run that
was not discarded after applying the preprocessing rules. Excluding the subjects
with missing or problematic entries for some behavioral measures further reduced
the dataset to 953 subjects belonging to 419 families. To avoid the influence of
shared genetic and environmental factors, we kept the first subject from each
family leading to a final set of N= 419 unrelated subjects. Among the 419 families
used for the initial set, 91 ‘families’’ contained only one subject and hence these
families were discarded in the construction of the replication dataset that contained
328 subjects.

Variance component model. We regressed age, gender, race, education, and
motion (mean FD) from the 58 phenotypic measures, which were then quantile
normalized. We used the multivariate variance component model developed by Ge
et al.38 to link FC markers and behavioral measures:

Y ¼ C þ E ð2Þ

where Y, C, and E are 419 × 58 matrices. Y contains the 58 processed behavioral
measures for all 419 subjects. VecðCÞ � N 0;Σc � Fð Þ and VecðEÞ � N 0;Σe � Ið Þ,
where Vec(.) is the matrix vectorization operator, ⊗ is the Kronecker product of
matrices, and I is the identity matrix. F is a similarity matrix such that F(i, j)
encodes the (static or dynamic) FC similarity between subjects i and j, and is
defined as the correlation between the static FC (or dynamic FC) matrices of the
two subjects. Σc and Σe are unknown 58 × 58 matrices to be estimated from F and
Y. The variance explained by (static or dynamic) FC markers, denoted by M, is
computed as:

M ¼
TrðΣcÞ

TrðΣcÞ þ TrðΣeÞ
; ð3Þ

where Tr(.) is the trace operator. M measures how much inter-subject behavioral
variability is explained by inter-subject FC variability38. Equation (3) is computed
twice, once using static FC to build the FC similarity matrix in (2) and once using
dynamic FC to build this matrix. Mi for a single behavioral measure is given by
Mi= Σc(i, i)/(Σc(i, i)+ Σe(i, i)). We used the variance component model because it
provides an easy way to summarize high-dimensional FC patterns and produces
one scalar (variance explained) for each behavioral measure that is normalized
(between 0 and 1) and directly comparable across measures and processing
methods.

Complexity of static and dynamic variance component models. Static FC
similarity matrices are built from the correlation matrix of resting-state fMRI time
series. These correlation matrices are symmetric and of size NROI ×NROI, where
NROI is the number of regions of interest, and hence their degrees of freedom
(d.o.f.) is NROI × (NROI− 1)/2. On the other hand, dynamic FC is built from the
non-symmetric coefficient matrix of a first-order AR model of size NROI ×NROI,
and hence their d.o.f. is N2

ROI . It should be noted, however, that this difference in d.
o.f. is not present in the static and dynamic variance component models as the
static and dynamic FC matrices are only used in intermediate steps of the com-
putation of the similarity matrices of the variance component model. These
similarity matrices are in both the static and dynamic case symmetric and of size N
with N × (N− 1)/2 degrees of freedom, where N is the number of subjects.
Therefore, there is no complexity bias giving an advantage to one or the other
approach.

Statistic inference. We use the delete-1 Jackknife approach74 to evaluate the
statistical difference between the variance explained by two different methods (e.g.,

whenM is computed using only static FC vs. only dynamic FC). Let M̂A and M̂B be
the estimates of behavioral variance explained using the methods A and B to be

compared. Denoting by M̂�i the estimates computed from the whole dataset
without subject i, the delete-1 Jackknife estimate of the mean difference between
methods A and B is:

M̂jack ¼
1

N

X

N

i¼1

M̂A
�i � M̂B

�i

� �

¼
1

N

X

N

i¼1

M̂�i; ð4Þ

where N= 419 is the number of subjects, and M̂�i ¼ M̂A
�i � M̂B

�i is the difference
of explained variance for the i-th Jackknife sample. The variance estimate of the

mean difference of explained variance is:

V̂jack ¼
N � 1

N

X

N

i¼1

M̂�i � M̂jack

� �2
: ð5Þ

With a large sample size (N= 419), the estimator M̂jack �M
� �

=
ffiffiffiffiffiffiffiffiffi

V̂jack

q

is

assumed to follow a standard normal distribution under the null hypothesis (M=
0) and a two-tailed p-value can be computed. All significant results survived FDR
correction at q < 0.05 (see Supplementary Table 1 for details).

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The HCP data is publicly available at http://www.humanconnectomeproject.org/data/;
informed consent was obtained from all HCP participants23.

Code availability
All code is publicly available at https://github.com/RaphaelLiegeois/FC-Behavior/.
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