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Highlights: 

• Background EEG features track multidien cycles in RNS dIEA 
• dIEA linked EEG features are patient-specific and may differ with cortical structure 
• Responsive neurostimulation suppresses EEG-dIEA coupling 

 
Abstract: 
 
Background: Longitudinal EEG recorded by implanted devices is critical for understanding and 
managing epilepsy. Recent research reports patient-specific, multi-day cycles in device-
detected epileptiform events that coincide with increased likelihood of clinical seizures. 
Understanding these cycles could elucidate mechanisms generating seizures and advance drug 
and neurostimulation therapies.  Objective/Hypothesis: We hypothesize that seizure-
correlated cycles are present in background neural activity, independent of interictal epileptiform 
spikes, and that neurostimulation may disrupt these cycles. Methods: We analyzed regularly-
recorded seizure-free data epochs from 20 patients implanted with a responsive 
neurostimulation (RNS) device for at least 1.5 years, to explore the relationship between cycles 
in device-detected interictal epileptiform activity (dIEA), clinician-validated interictal spikes, 
background EEG features, and neurostimulation.  Results: Background EEG features tracked 
the cycle phase of dIEA in all patients (AUC: 0.63 [0.56 - 0.67]) with a greater effect size 
compared to clinically annotated spike rate alone (AUC: 0.55 [0.53-0.61], p < 0.01). After 
accounting for circadian variation and spike rate, we observed significant population trends in 
elevated theta and beta band power and theta and alpha connectivity features at the cycle 
peaks (sign test, p < 0.05). In the period directly after stimulation we observe a decreased 
association between cycle phase and EEG features compared to background recordings (AUC: 
0.58 [0.55-0.64]). Conclusions: Our findings suggest that seizure-correlated dIEA cycles are 
not solely due to epileptiform discharges but are associated with background measures of brain 
state; and that neurostimulation may disrupt these cycles. These results may help elucidate 
mechanisms underlying seizure generation, provide new biomarkers for seizure risk, and 
facilitate monitoring, treating, and managing epilepsy with implantable devices. 
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Introduction 
 
Temporal cycles in seizures have been documented extensively in animals and humans for 

many years [1]–[4]. Recently,  recordings from chronic implantable EEG recording devices have 

yielded new insights into seizure generation in patients with epilepsy [5], [6]. In particular, Baud 

et al. found patient-specific, periodic multi-day (“multidien”) fluctuations in device-detected 

interictal epileptiform activity (dIEA) over the course of weeks to months in long-term recordings 

from the implantable responsive neurostimulation (RNS) device [5].  More recently, similar 

cycles have been described in long-term EEG recordings from other devices in humans [6]–[8], 

dogs [9], and rats [10], and in longitudinal measures of heart rate [11]. 

 

Device-detected IEA counts are based on combinations of detection parameters that are hand-

tuned by neurologists to be sensitive to acute aberrant brain activity. In practice, these detection 

parameters vary over time, and it is unclear how often they track epileptiform discharges or 

some other phenomena. Despite the heterogeneous and subjective nature of these detection 

settings, there is evidence that tracking patient-specific dIEA can  be useful as a predictive 

biomarker of seizure risk [5], [12]. While numerous theories exist regarding the origin of 

multidien cycles, and early evidence indicates that cycles can be perturbed with 

neuromodulation [7], little is known about how their biological underpinnings relate to neural 

function and therapy [4]. 

 

Understanding these cycles and their relationship to other measures of brain state would allow 

us to discover novel ways to titrate treatment and support patient-specific, phase-locked 

therapeutic paradigms. Prior efforts to investigate multidien fluctuations in long-term neural 

recordings are based upon measures of acute epileptiform activity (i.e. spikes, dIEA) [5], [8], 

[13], however it is unclear whether these cycles result from epileptiform activity or some other 

phenomena. The relationship between dIEA cycles and background EEG measures remains 

unexplored. 

 

In this study we investigate the relationship between interictal background EEG features and 

dIEA cycle phase. We test the hypothesis that the dIEA cycle that best aligns with periodic 

seizure occurrence is represented in background neural activity as well as in clinical spike rate, 

and that neurostimulation suppresses this relationship. To test these hypotheses, we measure 

associations between dIEA cycle phase and features calculated from interictal recordings: spike 
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rate, band power, and connectivity both at baseline and in a window following stimulation. We 

identify novel associations between seizure-associated dIEA cycles and measures of 

background brain state, suggesting that the observed cycles are not solely based on acute 

discharges and creating a platform for generating novel hypotheses that further our 

understanding and treatment of epilepsy. 

 

Materials and Methods 

 
RNS system recordings. 
The RNS System is a neuromodulation therapy that uses an implantable device with two bipolar 

channels each in two electrode leads (4 channels total). EEG activity in two selected detection 

channels is continuously monitored, and the device responds with electrical stimulation pulses 

when abnormal activity is detected [14]. A count of hourly detections is recorded by the device 

and has previously been referred to as a measure of interictal epileptiform activity (IEA) [5]. 

Here we denote device-detected interictal epileptiform activity as “dIEA”, to distinguish it from 

clinically-verified epileptiform spikes that we extract from EEG recordings (in methods below). 

 

In addition to recording counts of hourly dIEA detections, the RNS device records 90-second 

“Scheduled Event” (SE) EEG recordings every 12 hours to capture baseline activity (Figure 

1D), and 90-second “Long Episode” (LE) recordings, which capture likely seizures. Due to 

device memory limitations, SE clips are often set as low priority and can be overwritten by other 

stored EEG clips. Because the detection criteria are met so frequently, SEs often capture 

stimulations as well as baseline activity (Figure 1F). In this study, we used hourly dIEA 

detections, LE capture timepoints, and EEG signals recorded in SE events both with and 

without stimulation. 

 

Patient population. 
We retrospectively analyzed longitudinal RNS EEG and dIEA recordings from twenty out of 28 

patients with drug-resistant epilepsy who were implanted with the RNS System (NeuroPace, 

Inc., Mountain View, CA) at the Hospital at the University of Pennsylvania. We included patients 

if they had at least one year of dIEA recordings (recordings could be segmented as long as 

segments were at least three months in duration). Patients were required to have at least 200 

recorded SE clips without stimulation, or 200 post-stimulation analysis windows, so that enough 

samples were present for our multivariate analysis. We also excluded patients without a 

significant multidien cycle in their dIEA counts. Eight patients did not meet our inclusion criteria 
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(full breakdown is detailed in the Supplemental Methods). The remaining 20 patients included 

in this study were implanted with the RNS device between August 2015 and January 2022. 

Patient demographics are summarized in Table 1. All patients considered for this study gave 

written informed consent in accordance with the Institutional Review Board of the University of 

Pennsylvania. 

 
Extracting multidien cycles from dIEA counts. 
We followed a similar methodology as outlined in Baud et al. to extract multidien cycles from 

dIEA activity (Figure 1A) [5], [15]. In brief, for each patient we applied a wavelet transform to 

the dIEA signal and identified the dominant modes in the average frequency spectrum (peaks in 

the periodogram) in the range of 3-60 days. We performed a wavelet decomposition at each 

peak periodicity and for each patient, we used the wavelet component that was most phase-

locked to seizure occurrence for our analysis (Figure 1B, C). Finally, we calculated phase angle 

by applying the Hilbert transform to each patient’s extracted multidien cycle (Figure 1C). See 

Supplemental Methods for more details. 

 
Extracting electrophysiology from RNS EEG recordings. 

Selecting device EEG recordings 

We analyzed only SE device recordings because we were interested in understanding the 

relationship between baseline brain state and dIEA cycle phase. We divided our analysis of SEs 

into two separate datasets: (1) SEs without detections and subsequent simulations (N=19 

patients), and (2) SEs containing simulations followed by a 12-second window of stimulation-

free EEG (N = 17 patients) (Figure 1D, F). SEs are non-uniformly distributed in time (Figure 

S13) precluding us from applying circular analyses and wavelet decompositions to directly 

compare EEG recordings with dIEA cycles. We assigned a phase angle to each SE based on its 

phase location within the extracted dominant multidien cycle. The SE clips were categorized into 

four phase bins: peak (-π/4 to π/4), falling (π/4 to 3π/4), trough (3π/4 to -3π/4), and rising (-3π/4 

to -π/4).  

 

Extracting spike rate 

We detected spikes in all SE clips using a modified version of a previously validated spike 

detector [16] (Figure 2A) (see Supplemental Methods for detector parameters). One board-

certified neurologist (JL) independently validated a random selection of 50 spikes per patient. 

The median positive predictive value (PPV) across patients was 70% (IQR: [47.5%, 78.5%]). 
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Extracting representative brain-state features 

We calculated band power and connectivity in four frequency bands - theta (4-8 Hz), alpha (8-

13 Hz), beta (13-30 Hz), and gamma (33-100 Hz) (Table 2). In SEs without stimulation, we 

calculated features across the entire 90s clip, in SEs with stimulation, features were calculated 

within the 10-second window beginning two seconds after the stimulation occurred (Figure 1F) 

[17]. We calculated the maximum feature value between detection channels (band power) and 

between leads (connectivity) as a summary statistic for each feature in each window. We also 

calculated a binary time-of-day feature, delimited at 8am/8pm, to account for circadian variation 

in the features when analyzing their model coefficients. To address changes in detection 

parameters and baseline drifts in the features, we z-scored each feature between clinical 

neurologist visits. See the Supplementary Methods for details on feature calculations. 

 
Statistical analysis. 

Multidien cycle significance and phase distribution  

We tested the significance of the dIEA periodogram peak associated with the highest LE PLV 

value using the 99% confidence interval of an autoregression-based red noise null model for 

periodic signals, a method previously applied to find multidien cycles in humans [18], [19]. When 

analyzing the phase entrainment of LEs to cycle phase, we used an omnibus test for non-

uniformity to assess the significance of LE phase locking [5], [20]. 

 

Univariate feature analysis 

For each univariate feature extracted from the SEs, we used a one-way ANOVA to test for 

significant differences in feature values across the four phase bins. We further split the feature 

comparison into two groups to increase interpretability: peak vs. trough (PvT) phase bins, and 

rising vs. falling (RvF) phase bins. We calculated the effect size (Cohen’s d) between the peak 

and trough groups, and the rising and falling groups. We report effect size as Cohen’s d to 

better characterize both the directionality and sample-size-independent magnitude of the 

relationships[21]. We tested for group-level trends in effect-size and directionality across the 

patient population using a two-tailed sign test against a zero median for each feature (Figure 

S5). 

 

Multivariate machine learning model 

We developed a multivariate classification model to understand how band power and 

connectivity features relate to dIEA cycle phase. For each patient, we built two linear support 
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vector machines (SVMs) which used the EEG features to classify PvT and RvF phases, 

respectively. We transformed the features using principal component analysis (PCA) to account 

for multicollinearity. For each patient-specific PvT and RvF model, we performed 10-fold cross 

validation to obtain a robust estimate of model performance. We report the mean area under the 

receiver operating curve (AUROC) across all of the k-folds as a measure of generalization 

performance effect size. To assess the statistical significance of the AUROC values, we used 

the p-value of the associated Mann-Whitney U statistic comparing the predicted scores between 

the true negative (trough/falling) and true positive (peak/rising) samples (Figure S5,8) [22]. 

 

We analyzed the magnitude and direction of the model coefficients to better understand the 

relationship between the EEG features and cycle phase. We applied the inverse PCA transform 

to the model coefficients to obtain individual feature importances. We tested for group-level 

trends in coefficient magnitude across the patient population using a two-tailed sign test against 

a zero median for each feature.  

 

General Statistical Tests 

For all paired (unpaired) non-parametric tests we used a sign test of differences (rank sum) to 

compare model effect sizes between patients. We used spearman correlation to analyze 

population trends between periodogram attributes and model performance. When comparing 

distributions within patients we applied parametric statistical tests for both paired and unpaired 

analyses. We tested for an uneven distribution of SEs at the population level both with and 

without stimulations across the four phase bins using a Kruskal-Wallis test, and for each 

individual we used a chi-square goodness of fit test against a uniform distribution to test for 

class imbalance. For all box plots, the middle line indicates the median, box edges are lower 

and upper quartiles, and whisker edges are the maximum and minimum. For all assessments, 

the significance threshold (α) was set at 0.05, and significance is indicated in figures with *= p < 

0.05, **=p < 0.01, and *** = p < 0.001. Because this paper is largely exploratory, we do not 

correct for multiple comparisons. 

 

Results 

 
Multidien cycles in interictal epileptiform activity. 

In our retrospective cohort of 20 patients, we replicated analyses from previous studies [3], [5], 

[15] to compare the multidien dIEA cycle characteristics in our subjects with existing literature. 
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We found significant multidien cycles in 89% of our patient population, with patient-specific cycle 

periods ranging from 7 to 49 days, consistent with prior studies [4], [5]. On average, subjects 

possessed 2 ± 0.65 significant peaks with a median significant multidien cycle length of 22.08 

[13.13, 31.17] (Figure S1). Our analysis of the LE phase-locked cycles showed that the 

distribution of seizures across cycle phase was significantly non-uniform in 18 of 20 patients, 

with a median PLV of 0.24 [.17, .35], consistent with previously reported values (Figure S2)[4], 

[5]. We observed a significant negative correlation (R: -0.603, p = 0.005) between the peak 

period length of the LE phase-locked cycle and the LE phase-locking value, indicating stronger 

phase-locking in shorter multidien cycles (Figure S3). 

 

Because dIEA cycles represent fluctuations in stimulation event frequency, we quantified the 

disparity in the distribution of SE events both with and without stimulation across the four phase 

bins, given the higher number of stimulations at the cycle peak. Group-level analysis showed a 

significant difference in the distribution of available SE clips without stimulation across phase 

groups, with the largest difference between peak and trough recordings (KW test (72); Chi-sq = 

33.8, p = 2.18e-07) (Figure 1E). When analyzing SEs containing stimulations, we found a 

smaller group-level class imbalance in the opposite direction (more peak than trough 

recordings) (KW test (67) Chi-sq = 8.53, p = 0.0363) (Figure 1G), (Figure S4). These results 

demonstrate distinct distributions between baseline SE recordings with and without stimulation. 

 

Spike rate is associated with dIEA counts. 

We found that patients demonstrated a moderate correlation (Pearson r > 0.3) between spike 

rate and dIEA counts with a medium effect size (median r: 0.34, IQR: [.23, .48]). We next asked 

to what extent the spike rate extracted from the device recordings could differentiate between 

cycle phases. At the population level, we found that spike rate was greater at cycle peaks vs. 

troughs (sign test U(19)=15, p=0.0192), with 72% (15/19) of patients showing a higher spike 

rate at cycle peaks. Univariate effect sizes were not correlated with the positive predictive value 

of the spike detector (p > 0.5). We did not observe a significant difference at the population level 

in spike rate between the rising and falling dIEA cycle phases (Figure 2E). The spike rates we 

analyzed were calculated outside of SE recordings containing detected events, suggesting that 

the dIEA cycle is in part measuring the brain state that is associated with epileptiform spike rate 

in background recordings. 

 

Phase-dependence of interictal EEG features.  
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We asked whether features of background interictal activity were related to dIEA cycle phase 

(Figure S5). Our one-way ANOVA revealed that individual patients had at least one significant 

feature that was strongly associated with phase, though not the same feature for all patients. 

The proportion of day versus night recordings was similar across phase groups. The full results 

of the patient-specific ANOVA models are described in Table S1 & Figure S7. 

 

We next split our analysis into two paired comparisons, peak vs. trough and rising vs. falling, 

because we expected to see the largest differences in features between the peaks and the 

troughs of the cycles. For the PvT comparison, analysis of Cohen's d effect sizes across 

patients revealed higher feature values at the peaks of dIEA cycles (Figure 3A). We observed 

significantly positive effect sizes for theta (sign test U(19) = 16, p = 0.004) and beta connectivity 

(U(19) = 17, p = 0.0007), as well as theta (U(19) = 16, p = 0.004) and alpha (U(19) = 16, p = 

0.004) band power. Interestingly, we found a bimodal distribution of gamma band power effect 

sizes, indicating distinct patient subpopulations with higher gamma band power either at the 

peaks or troughs (Figure 3B,S6) Repeating the above analysis for RvF phases revealed that 

feature values were not preferentially higher in either phase, and the difference between rising 

and falling phases was not significant across the population in any feature (Figure 3A, S7). Our 

analysis of univariate features revealed no one electrophysiological biomarker that could 

strongly discriminate between the cycle peaks and troughs, but rather that subsets of features 

which discriminate between cycle phases are patient-specific. 

 

ML Model with background features. 

For each patient, we built binary linear SVM classifiers to predict cycle phase - PvT, and RvF - 

from the EEG features. Our models were able to predict PvT cycle phase above chance in all 

patients (AUC >0.5, 14/19 significant - Figure S8, Table S1), and RvF phase in 14/19 patients 

(8/19 significant - Table S1). Between the two classifiers, we saw higher performance in the 

PvT over the RvF model (sign test, p = 0.0044) (Figure 3E). Despite the fact that seizures 

preferentially occur in the rising phase of the cycle[5], our results indicate that EEG features are 

more strongly associated with the amplitude of dIEA cycles than individual phase bins.  

 

Even after accounting for correlated features (Figure S9), spike rate, and time of day, model 

coefficients showed higher band power and connectivity in the brain during the peaks of the 

multidien dIEA cycles (Figure 3C). While there was between-patient variation in the magnitude 

of the coefficients corresponding to each feature, we identified significant population trends of 
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higher connectivity in the theta (sign test U(19) = 17, p = 0.0007) and beta (U(19) = 17, p = 

0.0007) bands, and higher power in the theta (U(19) = 16, p = 0.0044) and alpha (U(19) = 17, p 

= 0.0007) bands at the peaks of the cycles. We also correlated model performance with both 

dIEA cycle length and LE phase-locking value, and found no significant trends. This suggests 

that the representation of dIEA cycles in interictal baseline electrophysiology is independent of 

cycle length as well as LE entrainment (Figure S10). 

 

Phase dependence of stimulation response features. 

We hypothesized that multidien fluctuations would be temporarily superseded by the brain’s 

stimulation response, making multidien cycles more difficult to detect. Univariate analysis on 

post-stimulation periods was consistent with our univariate analysis of SE clips without 

stimulation, showing that brain connectivity and band power activity are increased at the peaks 

vs. troughs after stimulation (Figure S11).  

 

As with our background EEG analysis, we used an SVM model to explore the multivariate 

relationship between post-stimulation features and phase. The PvT detection model achieved 

above-chance performance in all patients (median AUC 0.58 [0.55, 0.64], Figure 4B) and the 

RvF model achieved above chance performance in 12 of 17 patients (median AUC 0.53 [0.50, 

0.60], Figure S12), indicating that multidien phase remained detectable in the seconds following 

stimulation. However, compared to PvT detection in scheduled events without stimulation, post-

stimulation detection performance was reduced, suggesting a relative suppression of the 

relationship between the EEG and dIEA cycles. Finally, the standardized feature importance for 

both PvT and RvF models did not exhibit a significant directional effect at the group level 

(Figure 4A). In general, both the direction and magnitude of feature importance is more 

heterogeneous across patients in the post-stimulation detection scenario, when compared with 

background EEG model coefficients. 

 

Comparison of ML model in different scenarios. 

Finally, we compared PvT performance for models trained with the following feature sets: (1) 

features from SE clips without stimulation, (2) features from SE clips without stimulation AND 

spike rate, (3) spike rate, and (4) features from post-stimulation windows. Across the four 

feature sets, we found an increased ability to detect peak vs. troughs in the EEG (0.63 [0.56 - 

0.67]) and EEG + spikes (0.62 [0.55 - 0.66]) models when compared to the spike only (0.55 

[0.53-0.61], rank sum p = 0.0038) and post-stimulation models (0.58 [0.55-.64], rank sum p = 
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0.205) (Figure 4B). We further analyzed model performance by implant depth, the decrease in 

performance between background EEG to post-stim models appeared to be driven by patients 

with neocortical implants (median AUC 0.64 - 0.55) (Figure 4C). Similarly, the superior 

performance of PvT models when compared with RvF models persisted in the  EEG feature 

sets but not in the post-stimulation or spike rate only feature set (sign test p= 0.03, 0.03, 1, 

0.47). 

 

Although spike rate alone did not significantly indicate phase for all patients, we incorporated 

spike rate into the linear SVM of background features to determine whether a more complex 

interaction could better be associated with phase position. We found that the inclusion of spike 

rate did not substantially change the median AUC, though both the EEG and EEG with spikes 

models performed better than the spike rate only model, which had the worst performance 

across all models compared, indicating that the inclusion of background EEG features adds 

complementary information to phase detection (Figure 4B). 

 

Discussion 

 

Our study investigates RNS EEG recordings in 20 patients to build on prior work examining the 

relationship between EEG features and multidien cycles of cortical excitability. We leverage the 

unique recording and stimulation characteristics of the RNS dataset to complete the largest 

investigation to date on neuromodulation and dIEA cycles. Specifically, we show that: (1) 

beyond spike rate, features of interictal EEG signals contain information pertinent to detecting 

dIEA phase, (2) EEG features that are most associated with cycle phase are patient-specific, 

and (3) after neurostimulation, the EEG-dIEA relationship is suppressed. These findings may 

have important implications for tailoring pharmacological and neurostimulation therapy to patient 

chronotype, as well as for using multidien cycles as a predictive biomarker of seizure risk and 

understanding their underlying mechanisms. 

 

Spike rate does not tell the whole story: even after accounting for spikes, broader EEG 

features are associated with cycles.  

Prior work investigating the multidien nature of epilepsy characterized the presence of cyclical 

seizure risk in acute event counts both in RNS dIEA[5], [12] as well as clinical spikes in different 

implantable devices[8]. We found evidence of multidien dIEA cycles in background EEG 

features beyond epileptiform spikes and acute signatures of epileptiform activity, and showed 
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that multivariate EEG models outperformed spikes alone in predicting dIEA cycle phase. Our 

results suggest that there is complementary information between spikes and EEG features, and 

indicate that multidien cycles can be identified even below the spike detection threshold. It may 

be that some other latent mechanism, linked to both epileptiform activity and subthreshold EEG 

features, is responsible for cycle generation. EEG features could present an alternative or 

addition to using spikes in future therapeutic algorithms that incorporate patient chronotypes to 

titrate pharmacological or neuromodulatory therapy. 

 

Patient-specific features underlie the population level dIEA-EEG association. 

The mechanism that causes variability in cycle period between patients is unknown and could 

be driving the observed differences in important feature sets between patients. It is also 

possible that differences in implant locations and electrode type could drive inter-patient 

variability in feature importance, given that measures of brain activity vary across brain 

structures [23]–[25]. Subgroup analysis revealed that the EEG-dIEA cycle coupling is strongest 

in neocortical patients. Prior work has shown that within patients dIEA cycles are stable 

between anatomical regions[5] but our finding suggests that there may be an anatomical basis 

for the presence of cycles in background recordings. Future work should rigorously investigate 

sub population effects on multidien cycles in background EEG features. 

 

The relationship between dIEA cycle and EEG features is attenuated after 

neurostimulation. 

There is room for improving responsive stimulation specificity, and a functional question that 

arises from our observation of multidien cycles in epilepsy is: can stimulation perturb these 

cycles? Recently, Gregg et al. provided evidence that the power of the dominant dIEA cycle 

could be modulated by thalamic deep brain stimulation [7], and a broad body of literature has 

shown that stimulation acutely suppresses EEG signal features[17], [26], [27]. Our results are 

consistent with the potential for neurostimulation to disrupt cycles – we find a general 

suppression of the relationships between the EEG and dIEA with lower model effect sizes and 

limited population trends in model coefficients after stimulation, particularly with neocortical 

implants. One possible theory is that stimulation causes a stereotyped brain activity reset[27], 

reducing feature variance across cycle phases and model performance. Another theory is that 

the brain state triggering the stimulation is inherently decoupled from the dIEA cycles.  

 

Sampling bias in RNS recording types reflects cycle phase. 
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We found that cycle phase caused an imbalance in the availability of scheduled events both 

with and without stimulation, potentially biasing analyses towards recordings with different levels 

of cortical excitability. Given that values of EEG features fluctuate with cycle phase at the group 

level, sampling bias should be a practical consideration for studies separately analyzing RNS 

recordings with or without stimulation. 

 

Limitations. 

Our study has several limitations. The relatively small size of our patient cohort, and the 

variability within it, precluded us from performing robust statistical sub-analyses or further 

exploring mechanistic hypotheses. Further studies with larger sample sizes are needed to 

confirm and expand upon our findings, and our group is currently working on a federated 

analysis of RNS data from multiple institutions to accomplish this goal [28]. We were also limited 

by the highly irregular sampling of EEG recordings by the RNS device, which prevented us from 

extracting cycles from EEG features using the same statistical tools and methods we applied to 

dIEA counts. This under sampling of the intracranial EEG is a fundamental challenge presented 

by this device. Future work investigating the observed phenomena should leverage continuous 

recording paradigms. Additionally, we select the cycle of interest based on LE PLV. While RNS 

LEs may not always capture true seizure activity, they have been shown to be correlated with 

electrographic events[29]. Despite these limitations, our study provides insight into the 

physiological correlates and underpinnings of the measured dIEA cycles in patients with RNS. 
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Figures  
 

 

 
 

Figure 1 EEG clip selection and dIEA phase labeling. We illustrate our methods in panels A-E using
data from the same representative patient (HUP096). A) Hourly counts of detected interictal epileptiform
activity (dIEA) after z-scoring between patient visits (vertical red lines). A 100-h moving average was
applied for visualization. B) The periodogram obtained by averaging the spectrogram of the dIEA signal
over time. The peak associated with the greatest LE PLV is indicated by the purple marker. Inset:
Histogram showing mean multidien phase and axial mean of LE occurrences. LEs in this patient were
phase-locked to the rising phase of the multidien cycle. C) Signal component after wavelet decomposition
of dIEA signal with period corresponding to the marked periodogram peak in B. Sawtooth lines indicate
instantaneous phase, purple markers indicate LE recordings, filled dots indicate sampling of SE
recordings in peak (P), falling (F), trough (T), and rising (R) phase bins. D) Example SE recording without
stimulation sampled at the cycle trough. Each channel represents a bipolar montage between pairs of
adjacent contacts on the same electrode. E) Distribution of recorded stimulation-free SEs across each
phase bin. F) Example SE recording with shaded 10-s analysis windows following simulations marked in
blue. G) Distribution of post-stimulation analysis windows across each phase bin. 
 
LE- long episode, PLV- phase-locking value, SE- scheduled event, R-rising, P-peak, F-falling, T-trough 
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Figure 2 Spike rate association with dIEA counts and multidien cycles. A) Illustration of spike
detection limits for an example spike detection. B) Spike rate in scheduled events and dIEA counts for
sample subject HUP096. For visualization purposes, dIEA counts were smoothed using a moving
average with window size equal to the median schedule event sampling rate (~12 hours) and the
averaged dIEA signal was resampled to correspond with the recorded scheduled events. C) Polar plot for
sample subject HUP096 of average spike rate (spikes/90s clip) and standard error across phases of their
multidien cycle. D) Box plots show distribution of spike rate in rising/falling (green) and peak/trough
(orange). E) Cohen’s D effect sizes of spike rate association in PvT (green) or RvF (orange). Stars
represent a significant difference in phase groups (signtest). Population distribution of effect sizes is
represented in the box plot at right, with the distribution of PvT effect sizes being significantly greater than
zero (signtest). 
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Figure 3. Association of background features to dIEA cycle phase. A) Evolution of feature
values over time for an example patient, trend lines are omitted for ≥5 days without recorded SE data
(HUP096). Features were smoothed for visualization purposes and normalized between clinical visits
(vertical lines). B) Heatmap demonstrating population trends in PvT effect sizes. The relationship between
electrophysiology and dIEA is an individualized phenomenon, with different patients having different
features that best associate with dIEA cycle phase. C) Population distributions of PvT and RvF
multivariate model coefficients. PvT models reveal increased activity and connectivity during the peaks
compared to the troughs of multidien dIEA cycles. D) Mean out-of-sample PvT prediction ROC curve for
HUP096 (purple) and ROC for each fold (light blue). E) Population distributions of model performance
(AUROC) between PvT and RvF models without spike rate. Model performance is significantly higher in
PvT models. 
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Figure 4: Post Stimulation Feature Importance and Model Comparison. A) Peak-Trough and Rising-
Falling multivariate feature importance (Cohen’s D) in multivariate post-stimulation model. Stars indicate
significance level of effect size distributions against a zero median (sign test). B) Comparison of PvT
model performance (AUC) across SVM models trained with (1) background EEG features, (2) background
EEG features + spikes, (3) spikes, (4) post-stimulation features. C) Comparison of EEG (no-stim) and
post-stim model performance broken down by implant depth subgroups. Neo.: Neocortical implants, Mes.:
Mesial temporal implants, Neo. + Mes.: one implant each in neocortical and mesial temporal structures. 
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Tables 
 
 
 
Table 1. Patient Demographics 
 

 
*non-stimulation analysis only, †post-stimulation analysis only, L/R/B: left/right/bilateral, M/N/B: mesial
temporal, neocortical, both, % interp: percent of interpolated dIEA signal, % discarded: percent of dIEA
recording omitted due to implant effect or discontinuity. 
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Table 2: Feature calculations. Two types of features were extracted from the EEG recordings
measuring (1) neural activity at each detection channel and (2) functional connectivity within leads. Each
feature was calculated in four canonical frequency bands encapsulating the entire frequency spectrum
captured by the RNS device. For each bandpower feature we took the maximum value between the two
detection channels (purple vs green). For each connectivity feature we took the maximum value between
the two leads (purple vs green). We also included time of day of the recording to account for potential
circadian variations when interpreting our features. 
 

Feature Calculation Frequencies Combining 

Brain activity:  
band power 

Hamming window power 
spectrum estimate 

theta, alpha, beta, 
gamma 

Max of detection channels.

 

Brain connectivity: cross-
wavelet transform 

 Mean over 1s non-
overlapping windows 

theta, alpha, beta, 
gamma 

 

Max over each channel 

 

Time of Day 0 night, 1 day – – 
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