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Abstract

Biomarkers have transformed modern medicine but remain largely elusive in psychiatry, partly 

because there is a weak correspondence between diagnostic labels and their neurobiological 

substrates. Like other neuropsychiatric disorders, depression is not a unitary disease, but rather a 

heterogeneous syndrome that encompasses varied, co-occurring symptoms and divergent 

responses to treatment. By using functional magnetic resonance imaging (fMRI) in a large 

multisite sample (n = 1,188), we show here that patients with depression can be subdivided into 

four neurophysiological subtypes (‘biotypes’) defined by distinct patterns of dysfunctional 

connectivity in limbic and frontostriatal networks. Clustering patients on this basis enabled the 

development of diagnostic classifiers (biomarkers) with high (82–93%) sensitivity and specificity 

for depression subtypes in multisite validation (n = 711) and out-of-sample replication (n = 477) 

data sets. These biotypes cannot be differentiated solely on the basis of clinical features, but they 

are associated with differing clinical-symptom profiles. They also predict responsiveness to 

transcranial magnetic stimulation therapy (n = 154). Our results define novel subtypes of 

depression that transcend current diagnostic boundaries and may be useful for identifying the 

individuals who are most likely to benefit from targeted neurostimulation therapies.

Depression is a heterogeneous clinical syndrome that is diagnosed when a patient reports at 

least five of nine symptoms. This allows for several hundred unique combinations of 

changes in mood, appetite, sleep, energy, cognition and motor activity. Such remarkable 

heterogeneity reflects the consensus view that there are multiple forms of depression, but 

their neurobiological basis remains poorly understood1,2. So far, most efforts to characterize 

depression subtypes and develop diagnostic biomarkers have begun by identifying clusters 

of symptoms that tend to co-occur, and by then testing for neurophysiological correlates. 

These pioneering studies have defined atypical, melancholic, seasonal and agitated subtypes 

of depression associated with characteristic changes in neuroendocrine activity, circadian 

rhythms and other potential biomarkers3–5. Still, the association between clinical subtypes 

and their biological substrates is inconsistent and variable at the individual level, and unlike 

diagnostic biomarkers in other areas of medicine, they have not yet proven useful for 

differentiating individual patients from healthy controls or for reliably predicting treatment 

response at the individual level.

An alternative to subtyping patients on the basis of co-occurring clinical symptoms is to 

identify neurophysiological subtypes, or biotypes, by clustering subjects according to shared 

signatures of brain dysfunction6. This type of approach has already begun to yield insights 

into how differing biological mechanisms may give rise to overlapping, heterogeneous 

clinical presentations of psychotic disorders6,7. Neuroimaging biomarkers of abnormal brain 

function have proven utility in the assessment of pain8 and have also shown promise for 

depression, for both the prediction of treatment response9–13 and treatment selection14. 
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Resting-state fMRI (rsfMRI) is an especially useful modality because it can be used easily in 

diverse patient populations to quantify functional network connectivity in terms of 

correlated, spontaneous MR signal fluctuations. Depression is associated with dysfunction 

and abnormal functional connectivity in frontostriatal and limbic brain networks15–20, in 

accordance with morphological and synaptic changes in chronic stress models in 

rodents21–24. These studies raise the intriguing possibility that fMRI measures of 

connectivity could be leveraged to identify novel subtypes of depression with stronger 

neurobiological correlates that predict treatment responsiveness.

To this end, we developed a method for defining depression subtypes by clustering subjects 

according to distinct, whole-brain patterns of abnormal functional connectivity in resting-

state networks, unbiased by assumptions about the involvement of particular brain regions, 

and tested it in a large, multisite data set. Our analyses revealed four biotypes that were 

defined by homogeneous patterns of dysfunctional connectivity in frontostriatal and limbic 

networks, and that could be diagnosed with high sensitivity and specificity in individual 

subjects. Importantly, these biotypes were also prognostically informative, predicting which 

patients responded to repetitive transcranial magnetic stimulation (TMS), a targeted 

neurostimulation therapy.

RESULTS

Frontostriatal and limbic connectivity define four depression biotypes

We began by designing and implementing a preprocessing procedure (Online Methods) to 

control for motion-, scanner- and age-related effects in a multisite data set that comprised 

rsfMRI scans for 711 subjects (the ‘training data set’, n = 333 patients with depression; n = 

378 healthy controls). No subjects had comorbid substance-abuse disorders, and patients and 

controls were matched for age and sex. Data that support our approach to controlling for 

motion-related Blood-oxygen-level dependent (BOLD) signal effects, a particularly 

important source of rsfMRI artifact25–27, are presented in Supplementary Figure 1. After co-

registering the functional volumes to a common (Montreal Neurological Institute (MNI)) 

space, we applied an extensively validated parcellation system28 to delineate 258 functional 

network nodes that spanned the whole brain and had stable signals across all sites and scans 

in this data set (Fig. 1a). Next, we extracted BOLD signal residual time series and calculated 

correlation matrices between each node, which provided an unbiased estimate of the whole-

brain architecture of functional connectivity in each subject (Fig. 1b).

Each correlation matrix comprised 33,154 unique connectivity features, which thus 

necessitated a protocol for selecting a subset of relevant, nonredundant connectivity features 

for use in clustering. We reasoned that biologically meaningful depression subtypes would 

be best characterized by a subset of connectivity features that were significantly correlated 

with depressive symptoms. Therefore, to select connectivity features for use in clustering, 

we used canonical correlation analysis (Online Methods) to define a low-dimensional 

representation of connectivity features that were associated with weighted combinations of 

clinical symptoms, as quantified by the 17-item Hamilton Depression Rating Scale 

(HAMD), a commonly used, clinician-rated assessment. To ensure that cluster discovery 

was not confounded by site-related differences in subject recruitment criteria or by other 

Drysdale et al. Page 3

Nat Med. Author manuscript; available in PMC 2017 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



unidentified variables, the cluster-discovery analysis was restricted to a subset of patients 

(the ‘cluster-discovery subset’, n = 220 of the 333 patients with depression) from two sites 

with identical inclusion and exclusion criteria and statistically equivalent depression-

symptom scores (see Supplementary Tables 1–3 for details). This analysis identified linear 

combinations of connectivity features (analogous to principal components) that predicted 

two distinct sets of depressive symptoms (Fig. 1c,d). The first connectivity component 

(canonical variate) defined a combination of predominantly frontostriatal and orbitofrontal 

connectivity features that were correlated with anhedonia and psychomotor retardation (Fig. 

1c, Supplementary Fig. 2 and Supplementary Table 4). The second component defined a 

distinct set of predominantly limbic connectivity features involving the amygdala, ventral 

hippocampus, ventral striatum, subgenual cingulate and lateral prefrontal control areas, and 

that was correlated with anxiety and insomnia (Fig. 1d). Thus, this empirical, data-driven 

approach to feature selection and dimensionality reduction identified two sets of functional 

connectivity features that were correlated with distinct clinical-symptom combinations.

We then tested whether abnormalities in these connectivity feature sets tended to cluster in 

patient subgroups. Multiple statistical learning approaches are available for discovering 

notable structure in large data sets (‘unsupervised learning’). Here we chose to use 

hierarchical clustering—a standard approach that has been used extensively in the biological 

sciences29,30—to discover clusters of patients, by assigning them to nested subgroups with 

similar patterns of connectivity (Online Methods). This analysis revealed four patient 

clusters defined by distinct and relatively homogeneous patterns of connectivity along these 

two dimensions (Fig. 1e,f) and comprising 23.6%, 22.7%, 20.0% and 33.6% of the 220 

patients with depression, respectively. This four-cluster solution was optimal for defining 

relatively homogeneous subgroups that were maximally dissimilar from each other 

(maximizing the ratio of between-cluster to within-cluster variance), while ensuring 

individual cluster sample sizes that provided sufficient statistical power to detect biologically 

meaningful differences (Supplementary Fig. 3). Therefore, we focused our subsequent 

analyses on characterizing and validating these four putative subtypes of depression.

Biotype-specific clinical profiles predicted by frontostriatal and limbic network dysfunction

To understand the neurobiological basis of these biotypes, we began by testing for 

differences in the whole-brain architecture of functional connectivity between patients (n = 

220) and age-, sex- and site-matched healthy controls (n = 378) and for connectivity features 

that differed between patient subgroups. We observed a common neuroanatomical core of 

pathology underlying all four biotypes and encompassing areas spanning the insula, 

orbitofrontal cortex, ventromedial prefrontal cortex and multiple subcortical areas (Fig. 2a,b 

and Supplementary Table 5)—all of which have been implicated in depression 

previously15–20. This led us to ask whether these connectivity features predicted the severity 

of ‘core’ symptoms that were present in almost all patients, regardless of biotype. We found 

that, of the 17 symptoms quantified by the HAMD, three were present in almost all patients 

with depression (>90%): mood (“feelings of sadness, hopelessness, helplessness,” 97.1%), 

anhedonia (96.7%) and anergia or fatigue (93.9%). Across subjects, regardless of biotype, 

abnormal connectivity in this shared neuroanatomical core (as indexed by the first principal 
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component in a principal-component analysis (PCA)) was correlated with severity scores on 

these three symptoms (Fig. 2c; r = 0.72–0.82).

In addition, we found that, superimposed on this shared pathological core, distinct patterns 

of abnormal functional connectivity differentiated the four biotypes (Fig. 2d,e) and were 

associated with specific clinical-symptom profiles (Fig. 2f). For example, as compared to 

controls, reduced connectivity in frontoamygdala networks, which regulate fear-related 

behavior and reappraisal of negative emotional stimuli31–33, was most severe in biotypes 1 

and 4, which were characterized in part by increased anxiety. By contrast, hyperconnectivity 

in thalamic and frontostriatal networks, which support reward processing, adaptive motor 

control and action initiation20,34–37, were especially pronounced in biotypes 3 and 4 and 

were associated with increased anhedonia and psychomotor retardation. And reduced 

connectivity in anterior cingulate and orbitofrontal areas supporting motivation and 

incentive-salience evaluation38–40 was most severe in biotypes 1 and 2, which were 

characterized partly by increased anergia and fatigue.

Importantly, although the connectivity-based biotypes revealed in our analysis were 

associated with differences in clinical symptoms, they did not simply reflect differences in 

overall depression severity. Although overall depression severity scores were modestly but 

significantly decreased in biotype 2 as compared to the other three groups (by 15–16%), 

there were no significant differences in severity between biotypes 1, 3 and 4 (Fig. 2g; see 

Supplementary Fig. 4 for convergent findings in independent data acquired from subjects not 

included in the cluster-discovery analysis). Furthermore, they did not simply recapitulate 

subtypes derived strictly from clinical-symptom measures; whereas clustering according to 

functional connectivity features in random patient subsamples yielded stable clustering 

outcomes, clustering according to clinical symptoms yielded unstable outcomes with 

relatively low longitudinal stability over time (Supplementary Fig. 5).

Functional connectivity biomarkers for diagnosing depression biotypes

By reducing diagnostic heterogeneity, we reasoned that clustering could be leveraged to 

develop classifiers for the diagnosis of depression biotypes solely on the basis of fMRI 

measures of functional connectivity, which have shown promise in smaller-scale, single-site 

studies of depression41–43 and other neuropsychiatric disorders44,45, but that have not 

performed as well when tested in multisite data sets44. To this end, we developed classifiers 

for each depression biotype, testing and optimizing standard, extensively used methods for 

brain parcellation, subject clustering, feature selection and classification to identify 

empirically the most successful approach to clustering and classification (Fig. 3a and Online 

Methods). Throughout, clustering analysis was performed in the same cluster-discovery 

sample (n = 220), whereas classification of patients versus controls was optimized in the full 

training data set (n = 333 patients; n = 378 controls), and leave-one-out cross-validation and 

permutation testing were used to assess performance and significance (Supplementary Fig. 

6; for additional analysis confirming the stability of cluster assignments, see Supplementary 

Fig. 3d–f). The optimization process yielded progressive improvements in classifier 

performance (Fig. 3b). Support-vector machine (SVM) classifiers (using linear kernel 

functions) performed best, yielding overall accuracy rates of up to 89.2% for the clusters 
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characterized above, on the basis of connectivity features associated with the 

neuroanatomical areas summarized in Figure 3c–f. In cross-validation (leave-one-out), 

individual patients and healthy controls were diagnosed correctly with sensitivities of 84.1–

90.9% and specificities of 84.1–92.5% (Fig. 3g).

To further validate the biotypes, we asked whether biotype diagnosis (cluster membership) 

was stable over time by testing these classifiers on a subset of patients (n = 50) who received 

a second fMRI scan while they were actively experiencing depression, 4–6 weeks after the 

first scanning session. We found that, overall, 90.0% of subjects were assigned to the same 

biotype in both scans (Fig. 3h; χ2 = 84.6, P < 0.0001). There were no significant between-

group differences in age, medication usage or head motion during scanning, variables that 

may affect rsfMRI connectivity measures (Supplementary Fig. 7).

It is well established in the machine-learning literature that iterative training and cross-

validation on the same data overestimate classifier performance46, and other studies have 

raised questions about the capacity for classifiers trained on one data set at a single site to 

generalize to data collected at multiple sites44. Therefore, we tested the most successful 

classifier for each depression biotype in an independent replication data set that consisted of 

125 patients and 352 healthy controls acquired from 13 sites, including five sites that were 

not included in the original training data set (Supplementary Table 3). To avoid 

overestimating diagnostic sensitivity, only one classifier—the classifier for the best-fitting 

biotype—was tested on each subject (Online Methods). Overall, 86.2% of subjects in this 

independent, out-of-sample replication data set were correctly diagnosed, including >90% of 

patients in biotypes 3 and 4 (Fig. 3i; Supplementary Table 6). By implementing stricter data 

quality controls and by treating subjects with ambiguous classification outcomes (the lowest 

absolute SVM classification scores; Online Methods) as equivocal test results, as is common 

practice for biomarkers in other areas of medicine, these accuracy rates exceeded 95%.

Connectivity biomarkers predict responsiveness to rTMS

Treatment-response prediction is an important element of validating biomarkers and 

establishing potential for clinical actionability, and neuroimaging measures have already 

shown promise for predicting treatment response in depression9–14. Repetitive transcranial 

magnetic stimulation (rTMS) is a noninvasive neurostimulation treatment for medication-

resistant depression that modulates functional connectivity in cortical networks47–49. 

Although the left dorsolateral prefrontal cortex is the most common target for stimulation48, 

recent studies have demonstrated efficacy for a dorsomedial prefrontal (DMPFC) target13, 

which raises the intriguing possibility that biotype differences in dysfunctional connectivity 

at the DMPFC target (Fig. 2d) site may give rise to differing treatment outcomes. To test 

this, we asked first whether the four depression biotypes were differentially responsive to 

rTMS in 124 subjects who received repetitive high-frequency stimulation of the dorsomedial 

prefrontal cortex for 5 weeks, beginning shortly after their fMRI scan (Online Methods). 

Treatment response varied significantly with cluster membership (χ2 = 25.7, P = 1.1 × 

10−5). rTMS was most effective for patients in biotype 1, 82.5% of whom (n = 33/40) 

improved significantly (>25% HAMD reduction), as compared to 61.0% for biotype 3 (n = 

25/41) and only 25.0% and 29.6% for biotypes 2 (n = 4/16) and 4 (n = 8/27), respectively 
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(see Fig. 4a,b full response rates (>50% reduction) and percentage change in depression 

severity by total HAMD score).

Next, we tested whether connectivity-based biotypes could be used to predict treatment 

response more effectively than clinical symptoms alone. To this end, we trained classifiers to 

differentiate responders and nonresponders using the same approach to feature selection, 

training and leave-one-out cross-validation. The most discriminating connectivity features 

involved the dorsomedial prefrontal stimulation target and the left amygdala, left 

dorsolateral prefrontal cortex, bilateral orbitofrontal cortex and posterior cingulate cortex 

(Fig. 4c; Supplementary Table 7). Connectivity between other neuroanatomical areas that 

were not directly stimulated by the rTMS protocol—including the ventromedial prefrontal 

cortex, thalamus, nucleus accumbens and globus pallidus—also predicted treatment 

response (Fig. 4d,e). Connectivity features predicted individual differences in the rTMS 

responsiveness with 78.3% accuracy in leave-one-out cross-validation (Fig. 4f,j). 

Classification according to connectivity features plus biotype diagnosis yielded the highest 

predictive accuracy (89.6%; Fig. 4g,j).

By contrast, clinical symptoms alone were not strong predictors of rTMS treatment 

responsiveness at an individual level. To test this, we trained classifiers to differentiate 

responders and nonresponders solely on the basis of clinical data. We found that clinical 

features (insomnia, anhedonia and psychomotor retardation by HAMD) were only modestly 

(62.6%) predictive of treatment responsiveness (Fig. 4h,j). Overall, classifiers based on 

connectivity features and biotype diagnosis significantly outperformed those based on 

clinical features alone (Fig. 4j; P < 0.005). Furthermore, just as we observed for diagnostic 

classifiers in Figure 3, accuracy rates could be improved further (>94%, Fig. 4j) by 

implementing stricter data quality controls and treating subjects with ambiguous 

classification outcomes as equivocal test results (Online Methods). Finally, to further 

evaluate predictive validity, we tested the best-performing classifier, which used a 

combination of connectivity features and biotype diagnosis, in an independent replication set 

(n = 30 subjects) and obtained comparable accuracy rates (87.5–92.6%; Fig. 4i,j). By 

contrast, subtyping subjects on the basis of clinical symptoms yielded highly variable, 

longitudinally unstable clustering outcomes that failed to predict treatment response 

(Supplementary Fig. 5).

Depression biotypes transcend conventional diagnostic boundaries

Collectively, these findings show that our current diagnostic system merges groups of 

patients with at least four distinct patterns of abnormal connectivity under a single 

diagnostic label—major depressive disorder. We concluded our study by testing whether the 

converse also occurs: that is, does our diagnostic system assign different diagnostic labels to 

patients who exhibit the same connectivity biotype? Motivated by studies identifying 

common neuroanatomical and functional changes that are shared across mood and anxiety 

disorders50–53, we first asked whether patients diagnosed with generalized anxiety disorder 

(GAD; n = 39) shared similar patterns of abnormal connectivity with one or more of the 

depression biotypes identified above. GAD was associated with widespread connectivity 

differences in resting-state networks (Fig. 5a–c) that overlapped significantly with those in 
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depression (χ2 = 5,457; P < 0.0001; Fig. 5a–c). Next, to test whether subsets of patients with 

GAD resemble one or more depression biotypes, we applied the optimized classifiers 

developed above to the GAD cohort (Online Methods). Although none of the patients with 

GAD in this analysis met clinical criteria for a diagnosis of depression, 69.2% of them were 

nevertheless classified as belonging to one of the depression biotypes, and a majority of 

these (59.3%) were assigned to the anxiety-associated biotype 4 (Fig. 5d).

Although anxiety symptom severity did not vary significantly by biotype classification (Fig. 

5e), depressive symptom severity (Fig. 5f) and anhedonia (Fig. 5g) were significantly 

increased in patients with GAD who tested positive for one of the depression biotypes, as 

compared to patients with GAD who did not test positive. Furthermore, just as anhedonia 

was increased in patients with depression in biotypes 3 and 4, patients with GAD showed a 

similar trend (Fig. 5g; P < 0.05). Finally, to understand whether these classifiers were 

detecting pathological connectivity related specifically to mood and anxiety as opposed to 

nonspecific differences associated with psychiatric illness in general, we tested them on 

patients with schizophrenia (n = 41), a disorder that is not thought to be closely related to 

unipolar depression. Just 9.8% of patients with schizophrenia tested positive for a depression 

biotype (Fig. 5h).

DISCUSSION

Increasingly, diagnostic heterogeneity has emerged as a major obstacle to understanding the 

pathophysiology of mental illnesses and, in particular, depression. Although major 

depressive disorder—especially highly recurrent depression—is up to 45% heritable54, 

identifying genetic risk factors has proven challenging, even in extremely large genome-

wide association studies55. Likewise, efforts to develop new treatments have slowed, owing 

in part to a lack of physiological targets for the assessment of treatment efficacy and the 

selection of individuals who are most likely to benefit56. All of these challenges have been 

attributed in part to the fact that our diagnostic system assigns a single label to a syndrome 

that is not unitary and that might be caused by distinct pathological processes, which would 

thus require different treatments. Here we have defined four subtypes of depression 

associated with differing patterns of abnormal functional connectivity and distinct clinical-

symptom profiles that transcend conventional diagnostic boundaries, and we have shown 

how neuroimaging biomarkers can be used to diagnose them. Our sample size, cross-

validation in strictly independent samples and replication in independent data sets support 

these results.

However, this is to our knowledge the first effort to apply this type of statistical clustering 

for the purpose of defining depression subtypes and diagnosing them in individual patients, 

so caution is warranted. Replication of our findings in additional, independent, prospectively 

acquired data sets will be crucial for addressing some of the limitations inherent in our 

retrospective, multisite sample. We designed a preprocessing scheme specifically to control 

for site- and scanner-related artifacts, and we performed our clustering analysis on data from 

just two sites with nearly identical acquisition protocols and recruitment criteria. Still, it will 

be essential to replicate these findings in an equally large sample acquired from a single site. 

Furthermore, more extensive and uniform clinical phenotyping—especially within the 
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relatively broad domains of anhedonia and anxiety—will be crucial for further 

understanding how connectivity-based biotypes relate to distinct symptoms and behaviors.

Importantly, we regard the four biotypes identified here as just one, initial solution to the 

problem of diagnostic heterogeneity in a system that relies primarily on the reporting of 

clinical symptoms. This solution is capable of predicting treatment response in a controlled, 

laboratory setting and advances our understanding of how heterogeneous symptom profiles 

in depression might be related to clustered patterns of dysfunctional connectivity. But 

alternative solutions to the problem of depression subtyping also exist, even in our 220-

subject hierarchical clustering analysis, which was suggestive of additional subtypes nested 

within these four clusters. It is likely that relatively restrictive patient-recruitment criteria, 

the size of our cluster-discovery data set, and the ordinal nature of our clinical-symptom 

assessments were also limiting factors. For these reasons, clinical and neuroimaging data 

acquired from much larger populations will be useful for characterizing more complex 

associations between connectivity features and symptoms; for defining robust low-

dimensional representations of this connectivity feature space; and for optimizing the 

mapping between diagnostic subtypes and their underlying neurobiology. It will also be 

crucial to evaluate how these biomarkers perform in real-world, clinical settings, in which 

clinical assessments and treatments might be administered with varying fidelity, which could 

potentially diminish diagnostic and prognostic performance.

These caveats notwithstanding, our results have several potential applications. They may 

inform recent initiatives to rethink our system for diagnosing psychiatric disorders and 

investigating their neuro-physiological and genetic basis, by stratifying subjects into 

subgroups defined by shared neurobiological substrates1. They might also guide optogenetic 

and other circuit neuroscience approaches to investigating how dysfunction in specific 

circuits contributes to depression-and anxiety-related behaviors in experimentally tractable 

animal models57–59. Finally, these biomarkers also have prognostic potential. Patients in 

biotype 1 were approximately three times more likely to benefit from TMS of the 

dorsomedial prefrontal cortex than those in biotypes 2 or 4, and together, biotype diagnosis 

and functional connectivity features could be leveraged to accurately differentiate treatment 

responders from nonresponders on an individual basis. Validating and adapting them for use 

in naturalistic clinical settings will be a key challenge, but our data are also consistent with 

other recent reports that highlight the potential of neuroimaging tools to predict treatment 

response9–14, a major priority for a condition in which most treatments are effective only 

after several months. Biomarkers have already transformed the diagnosis and management 

of cancer, diabetes, heart disease and even pain syndromes8, but they have proven more 

elusive for psychiatry. Our results define one approach for using neuroimaging biomarkers 

to delineate and diagnose novel subtypes of mental illness characterized by uniform 

neurobiological substrates.

ONLINE METHODS

Subjects

All analyses were conducted in one of two data sets, unless otherwise noted (see also 

‘Statistical analysis’ section below for subject details for each analysis, organized by figure 
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panel). Data set 1 (n = 711 subjects, 333 patients and 378 controls) was used for all analyses, 

except those depicted in Figures 3i, 4i and 5. That is, data set 1 was used to identify clusters 

(biotypes) of patients with distinct patterns of dysfunctional connectivity in resting-state 

networks, testing for neurobiological and clinical correlates of these biotypes, and for 

training and testing classifiers to diagnose them. To ensure that cluster discovery was not 

confounded by site-related differences in subject recruitment criteria or other unidentified 

variables, the cluster-discovery analysis (Fig. 1) was restricted to a subset of patients in data 

set 1, the ‘cluster-discovery set’ (n = 220 of the 333 patients), who were recruited and 

scanned from just two sites with identical inclusion and exclusion criteria. Subjects in the 

cluster-discovery set were adult patients meeting Diagnostic and Statistical Manual of 

Mental Disorders (DSM-IV) criteria for (unipolar) major depressive disorder and seeking 

treatment for a currently active, nonpsychotic major depressive episode. They had a history 

of failure to respond to at least two antidepressant medication trials at adequate doses, 

including at least one during the current episode. Patients in the cluster-discovery set were 

excluded from enrollment if they had a currently active substance-use disorder, a psychotic 

disorder, bipolar depression, a history of seizures, unstable medical conditions, current 

pregnancy or other contraindications to MRI (for example, implanted devices, 

claustrophobia or head injury with loss of consciousness). As described in Supplementary 

Table 1, subjects from the two sites included in the cluster-discovery set were matched for 

age, sex and depression severity (HAMD-17 total score). Supplementary Table 1 also 

describes medication status, comorbid diagnoses and additional details about the scanning 

protocols for data acquired at these two sites.

Classifier training, cross-validation and optimization was performed in the full data set 1, 

i.e., the ‘training data set,’ which included patients diagnosed with unipolar major depressive 

disorder and a currently active major depressive episode (n = 333, 59.2% female, mean age 

= 40.6 years) and healthy control subjects without any history of a psychiatric condition (n = 

378, 57.7% female, mean age = 38.0 years). The patient and control groups did not differ 

significantly in age (P = 0.189, Mann-Whitney) or sex (χ2 = 0.61, P = 0.688). The patient 

scans were acquired at separate sites by five principal investigators (the two sites from the 

cluster-discovery set plus three additional sites). The control scans were acquired at these 

same five sites, as well as from seven additional sites that have provided unrestricted public 

access to their data through the 1000 Functional Connectomes Project (http://

fcon_1000.projects.nitrc.org). Inclusion and exclusion criteria were generally similar to 

those described above for the two sites in the cluster-discovery set, except that a history of 

treatment resistance was not a requirement. Exclusion criteria common to all sites were 

contraindications for MRI and a recent history of substance abuse or dependence. Other 

inclusion and exclusion criteria—and consequently, the presence of psychiatric co-

morbidities and use of psychiatric medications—varied by site and are detailed in 

Supplementary Table 2. Clustering into connectivity biotypes was not related to medication 

history, age or head motion (Supplementary Fig. 7). Additional demographic information for 

all sites in data set 1 is reported in Supplementary Table 3.

Data set 2 (n = 477)—the ‘replication data set’—was used to test the most successful 

classifier of each depression biotype in patients with active depression (n = 125 from seven 

sites) and healthy controls (n = 352 from 13 sites). Scans in data set 2 were acquired in 
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separate studies, at a later date or were not initially available to us, and they were not used in 

any step of the cluster identification or classifier training procedure. Furthermore, five sites 

were unique to data set 2. Patients with depression at all sites in both data sets met DSM-IV 

criteria for a current major depressive episode (n = 109 unipolar; n = 16 bipolar 2), and 

healthy controls were subjects without any current or past history of a psychiatric or 

neurological condition.

To test whether patterns of abnormal connectivity that were evident in clusters of patients 

with depression were also present in subsets of patients with other psychiatric disorders (Fig. 

5), we tested the same classifiers on patients meeting DSM-IV criteria for a diagnosis of 

generalized anxiety disorder (GAD, n = 39, 69.2% female, mean age = 32.4 years) or 

schizophrenia (n = 41, 78.0% male, mean age = 38.2 years; no co-morbid mood disorders 

and no schizoaffective disorder). Data for the GAD subjects were acquired by one of the co-

authors of this report (A.E.), and inclusion and exclusion criteria are described in 

Supplementary Table 2 (site: Stanford 1; PI: A. Etkin). Data for the schizophrenia subjects 

were obtained through the 1000 Functional Connectomes Project (http://

fcon_1000.projects.nitrc.org), made publicly available by the Center of Biomedical Research 

Excellence in Brain Function and Mental Illness (PIs: J. Sui, J. Liu, C. Harenski, R. Thoma 

and C. Abbott). Inclusion criteria were a diagnosis of schizophrenia (but not schizoaffective 

disorder), as confirmed by the Structured Clinical Interview for DSM Disorders (SCID), and 

exclusion criteria were a history of neurological disorder, mental retardation, head trauma 

with loss of consciousness or substance abuse or dependence within the past 12 months. All 

subjects in all data sets provided informed consent, and all recruitment procedures and 

experimental protocols were approved by the Institutional Review Boards of the principal 

investigators’ respective institutions (Weill Cornell Medical College, Stanford University, 

Toronto Western Hospital, Emory University and Harvard Medical School).

Clinical measures

At all sites, initial screening interviews were conducted to determine eligibility to 

participate, and a trained clinician conducted a structured clinical interview (MINI or SCID) 

to confirm all psychiatric diagnoses and rule out exclusionary co-morbid conditions as 

defined in Supplementary Table 2. In addition, specific clinical symptoms were evaluated 

using the Hamilton Rating Scale for Depression (HAMD; n = 312 patients; n = 65 healthy 

controls), the Beck depression inventory (BDI, n = 39 patients with GAD) and the Beck 

anxiety inventory (BAI; n = 39 patients with GAD). These assessments were used to test the 

depression biotypes that were associated with specific clinical symptom profiles. For details, 

see ‘Clinical data analysis’ section below.

Magnetic resonance imaging (MRI) data acquisition

A resting-state functional MRI scan was obtained by using a T2*-weighted gradient echo 

spiral in-out sequence or a Z-SAGA sequence, yielding whole-brain coverage in all subjects. 

A high-resolution T1-weighted anatomical scan (MP-RAGE or SPGR) was obtained for 

brain parcellation and co-registration purposes. Specific scanning parameters varied by site. 

Most used a TR of ~2 s, in-plane resolution of ~3.5 mm, and obtained 150–180 volumes in 
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~5–6 min. Detailed scanning parameters for each site are reported in Supplementary Table 1 

and Supplementary Table 3.

fMRI data analysis: preprocessing

All data sets were preprocessed using the Analysis of Functional Neuroimages (AFNI) 

software package. Prior to other preprocessing steps, framewise motion parameters were 

calculated by using AFNI’s 3dvolreg function, owing to concerns that slice-time correction 

might lead to systematic underestimates of motion when this step is performed first. After 

estimating framewise motion parameters, preprocessing included standard procedures for 

slice-timing correction, spatial smoothing (with a 4-mm-full-width, half-maximum Gaussian 

kernel), temporal bandpass filtering (0.01–0.1 Hz), linear and quadratic detrending and 

removal of nuisance signals related to head motion, physiological variables and local and 

global hardware artifacts. Functional data sets were co-registered to the corresponding high-

resolution T1 anatomical images, and T1 anatomicals were transformed into the Montreal 

Neurological Institute (MNI) common space by using AFNI’s 3dQwarp function to calculate 

and optimize a nonlinear transformation. To reduce the number of interpolations performed 

on resting-state data, we combined motion-correcting, anatomical-to-structural and 

structural-to-MNI template alignments and applied them to functional scans in a single step.

Motion correction was achieved using AFNI’s 3dvolreg function. Motion artifact is 

increasingly recognized as an important potential confound in resting-state fMRI studies, 

especially those involving clinical populations, and can introduce systematic shifts in signal 

correlations that vary as a function of the distance separating two brain regions25–27. To 

balance the demands of noise reduction and data preservation, we censored volumes 

preceding or following any movement (framewise displacement (FD)) greater than 0.3 mm. 

These volumes were excluded from all further analysis steps, including nuisance regression. 

A small number of subjects (8.9%) were excluded from further analysis if the number of 

remaining volumes was insufficient for performing simultaneous nuisance signal regression 

and band-pass filtering as described below. (Note that descriptions of the number of subjects 

comprising each data set in the ‘Subjects’ section above and in the main text refer to subjects 

that were actually used in each analysis, after excluding scans because of motion 

contamination or poor signal quality, as defined below.)

Next, nuisance signal regression and band-pass filtering were performed simultaneously, 

only on volumes that survived motion censoring, and excluding high-motion volumes. This 

is because noise from high-motion volumes has been shown to contaminate other volumes, 

even if they are eventually omitted from final analyses60,61. Accordingly, the regression step 

included 12 motion parameters (roll, pitch, yaw, translation in three dimensions and their 

first derivatives); non-neuronal signals from eroded white matter and CSF masks; and 

regressors for temporal filtering. Finally, we used AFNI’s ANATICOR function to eliminate 

local and global hardware artifacts62–63. After preprocessing, the residual time series files, 

co-registered to MNI space, were used for all subsequent analyses.

A note on motion artifact—We selected a censoring threshold (FD > 0.3 mm) 

empirically based on analyses showing that it was sufficient to exclude the majority of 

Drysdale et al. Page 12

Nat Med. Author manuscript; available in PMC 2017 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



excursions from so-called floor values in single-subject FD traces (Supplementary Fig. 1), 

which have been associated with significant motion artifact, while preserving enough data to 

allow for stable estimates of signal cor-relations25–27. It is also worth noting that this 

threshold resembles commonly used thresholds (0.2–0.5 mm) in recently published reports 

(reviewed in ref. 64). However, we found that a small number of RSFC features (just 0.7% 

of the connectivity features that differentiated patients and controls, at a liberal threshold of 

P < 0.005, uncorrected) were significantly different in low- versus high-motion subjects after 

ANATICOR regression and censoring at 0.3 mm (Supplementary Fig. 1d). To further 

evaluate whether motion artifact affected cluster discovery and biotype diagnoses, we 

repeated the hierarchical clustering analysis depicted in Figure 1 after excluding the 0.7% of 

RSFC features that varied with motion at this liberal threshold (P < 0.005). 99.1% of all 

subjects were assigned to the same cluster (Supplementary Fig. 1h). To rule out the 

possibility that multivariate classifiers may been influenced by the aggregation of subtle 

between-group differences in motion artifact that were undetectable by the mass univariate 

approach implemented in ref. 64, we conducted additional analyses reported in 

Supplementary Figure 1i,j. The results indicate that our clustering and classification results 

were not biased substantially by motion.

fMRI data analysis: parcellation and whole-brain connectivity estimation

The objective of this analysis was to extend conventional seed-based approaches to generate 

a whole-brain correlation matrix for each subject, quantifying functional connectivity in 

regions of interest spanning the entire brain in terms of correlated, spontaneous fluctuations 

in the resting-state BOLD signal. Most data sets were acquired in a native grid space of ~3.5 

× 3.5 × 5 mm, yielding ~30,000 brain voxels and up to ~4.5 × 108 unique, potential pairwise 

correlations. To increase computational tractability and biological interpretability, all 

analyses reported in the main text used an established and extensively validated functional 

parcellation system28 to delineate functional network nodes (10-mm diameter spheres) 

spanning most cortical, subcortical and cerebellar areas. The originally published 

parcellation identified 264 nodes (ROIs). Here 13 ROIs that have hypothesized roles in 

depression-related pathology, but that are not represented in this 264-node parcellation, were 

added, including the left and right nucleus accumbens, subgenual anterior cingulate, head of 

the caudate nucleus, amygdala, ventral hippocampus, locus coeruleus, ventral tegmental area 

and raphe nucleus, for a total of 264 + 13 = 277 nodes. However, 19 of the 277 nodes—

mostly cerebellar and inferior temporal areas—were excluded from further analyses owing 

to incomplete MRI volume coverage or because of inadequate signal (SNR < 100), as 

discussed in more detail below. Thus, the primary parcellation used in all analyses included 

264 +13 − 19 = 258 functional nodes. In addition, when optimizing the biomarkers 

developed in Figure 3, we tested four strategies for parcellation: (i) The primary functional 

parcellation of Power and colleagues that is described above and is the focus of the analyses 

in the main text28; (ii) a ‘coarse voxelwise’ parcellation strategy, a standard anatomical 

template brain (1 × 1 × 1–mm resolution in MNI space) was resampled to a 10 × 10 × 15–

mm grid space. After excluding voxels (or portions of voxels) corresponding to white matter 

or CSF using masks derived from a segmentation of the original template brain into tissue 

classes (via AFNI’s 3dSeg function), we were left with 945 ROIs spanning all cortical, 

subcortical and cerebellar gray matter; (iii) an anatomical parcellation used the Freesurfer 
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atlas developed by Desikan, Killiany and colleagues that segments the brain into 68 gyral-

based cortical ROIs and an additional 22 subcortical and cerebellar areas for a total of 90 

anatomical regions of interest65; (iv) finally, a second functional parcellation (in addition to 

the used 90 cortical and subcortical ROIs defined by Shirer, Greicius and colleagues using 

independent-components analysis to identify brain voxels that exhibit correlated activity in 

association with one or more cognitive states (rest, episodic-memory retrieval, serial 

calculations or singing lyrics; see ref.66 for details). The best results were obtained from the 

primary functional parcellation devised by Power and colleagues28, which was the focus of 

all other analyses.

After preprocessing the resting-state fMRI data and parcellating the brain as described 

above, BOLD signal time series were extracted from each ROI by averaging across all 

voxels in that ROI, and a correlation matrix was calculated for each subject by using AFNI’s 

3dNetCorr function. However, before doing so, we took additional steps to control for 

scanner- and site-related differences that could potentially confound analyses of data pooled 

across multiple sites. First, we controlled for site-related differences in signal quality or scan 

coverage by excluding ROIs if the signal-to-noise ratio (SNR, the voxelwise mean of the 

magnetic resonance signal over time divided by the s.d. of the time series) was less than 100 

in >5% of subjects. On this basis, we excluded 13 of the 277 ROIs in the primary functional 

parcellation, leaving 264 ROIs for further analysis. Most excluded ROIs were located in the 

inferior cerebellum, which did not have consistent coverage across all sites, or on the ventral 

surface of the temporal lobe or the orbital surface of the frontal lobe, which tended to have 

lower SNR in some scans, likely owing to artifact at the interface with air sinuses. Second, 

for each subject, only voxels with SNR > 100 were used to calculate the mean BOLD signal 

time series for each ROI, to further control for local differences in signal quality on a per 

subject basis. And third, a small number of subjects (2.9%) was excluded from further 

analysis if the signal quality was low (SNR < 100) in any of the remaining 258 ROIs.

Thus, after excluding 13 ROIs with low-quality signal and a small number of subjects with 

excessive head motion (8.9%) or poor signal quality (2.9%), we calculated 258 × 258–

element correlation matrices for each of the remaining subjects (n = 711 for data set 1; n = 

477 for data set 2; see ‘Subjects’ above). To enable us to test hypotheses about functional 

connectivity differences in the depressed and control populations, we applied the Fisher z-

transformation to each correlation coefficient. Next, we used multiple linear regression to 

further control for site- and age-related effects on functional connectivity by regressing the 

Fisher z-transformed correlation coefficients for each matrix element on subjects’ ages and 

dummy variables for each site. The resulting residuals— comprising a 258 × 258–element 

matrix for each subject—were an estimate of the functional connectivity between each ROI 

and every other ROI, controlling for age effects and relative to other subjects whose data 

were acquired on the same scanner. Henceforth, we refer to these matrices of residuals as 

functional connectivity matrices.

fMRI data analysis: canonical correlation analysis and clustering

To ensure that cluster discovery was not confounded by site-related differences in subject 

recruitment criteria or other unidentified variables, the cluster-discovery analysis was 
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restricted to a subset of patients (the ‘cluster-discovery set,’ n = 220 of the 333 patients) 

from two sites with identical inclusion and exclusion criteria (see Supplementary Tables 1–3 

for details). Each subject’s 258 × 258–element correlation matrix contained 33,154 unique 

functional connectivity features, necessitating a protocol for selecting a subset of relevant, 

nonredundant connectivity features for use in clustering. We reasoned that biologically 

meaningful depression subtypes would be best characterized by a low-dimensional 

representation of a subset of those 33,154 connectivity features that were significantly 

correlated with depressive symptoms. Therefore, to select a set of connectivity features for 

use in clustering, we (i) used Spearman’s rank correlation coefficients to identify 

connectivity features that were significantly correlated (P < 0.005) with severity scores for 

one or more of the 17 depressive symptoms, as indexed by individual item responses on the 

Hamilton Depression Rating Scale (HAMD-17), and then (ii) used canonical correlation 

analysis to define a low-dimensional representation of those connectivity features, in terms 

of linear combinations of connectivity features that were correlated with linear combinations 

of clinical symptoms. This empirical, data-driven approach to feature selection and 

dimensionality reduction identified two linear combinations of functional connectivity 

features (canonical variates) that were correlated with distinct clinical-symptom 

combinations, which we term “anhedonia-related connectivity features” and “anxiety-related 

connectivity features.” The results are depicted in Figure 1, with additional details in 

Supplementary Figure 2.

Next, to assess whether these abnormalities were evenly distributed across patients or tended 

to cluster in subgroups, we used hierarchical clustering to assign subjects to nested 

subgroups with similar patterns of abnormal connectivity along these two dimensions. We 

calculated a dissimilarity matrix describing the Euclidean distance between every pair of 

subjects in this two-dimensional feature space, and then used Ward’s minimum variance 

method to iteratively link pairs of subjects in closest proximity, forming progressively larger 

clusters in a hierarchical tree. These methods were implemented by using MATLAB’s pdist, 

linkage, cluster and clusterdata functions. The height of each link in the resulting 

dendrogram (Fig. 1d) represents the distance between the clusters being linked. On this 

basis, we conservatively identified at least four clusters for which the distance between 

cluster centroids was at least 20 times the mean distance between pairs of subjects within a 

cluster. Additional potential clustering solutions were also evident, nested within these 

subgroups. However, this four-cluster solution was optimal for defining relatively 

homogeneous subgroups that were maximally dissimilar from each other (maximizing the 

ratio of between-cluster to within-cluster variance), while ensuring individual cluster sample 

sizes that provided sufficient statistical power to detect biologically meaningful differences 

between biotypes (Supplementary Fig. 3). To construct the heat maps depicted in Figure 2, 

we used Wilcoxon rank-sum tests to identify connectivity features that were significantly 

different in patients with depression from each cluster, as compared to all controls, and 

Kruskal-Wallis ANOVA to identify connectivity features that differed most between clusters.

As described in the following section, we also investigated whether abnormal resting-state 

connectivity features could be used to diagnose these putative depression subtypes in 

individual subjects by training classifiers to detect them (Fig. 3). In our efforts to optimize 

classifier performance, we compared the hierarchical clustering method described above 
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with k-means clustering, as implemented by MATLAB’s kmeans function, which assigns 

each subject to exactly one of k clusters on the basis of their squared Euclidean distance 

from the centroid of each cluster, iteratively assigning and reassigning subjects to a cluster to 

minimize the sum of the within-cluster sum-of-squares subject-to-centroid distances.

Classification: training and cross-validation of diagnostic classifiers for depression 

biotypes

In analyses depicted in Figure 3, we developed classifiers for diagnosing depression in 

subgroups of patients with similar patterns of abnormal functional connectivity in resting-

state networks, testing and optimizing methods for brain parcellation and feature extraction, 

subject clustering, feature selection and classification to identify empirically the most 

successful approach. This optimization process was conducted exclusively in subjects from 

data set 1 (n = 711). As depicted in Figure 3a and in greater detail in Supplementary Figure 

6, each optimization trial tested a combination of one of four methods for parcellation and 

feature extraction (coarse voxelwise parcellation, anatomical parcellation and two functional 

parcellations; see ‘Parcellation’ above); one of three methods for clustering (no clustering, k-

means clustering or hierarchical clustering; see ‘Clustering’ above); and one of three 

methods for classification: logistic regression, support vector (SVM) classification or linear 

discriminant analysis (LDA).

On each optimization trial, a given combination of methods was evaluated by iteratively 

training classifiers on a subset (the ‘training subset’) of the subjects in data set 1 and then 

testing them on the remaining subjects (the ‘test subset’) through leave-one-out cross 

validation (LOOCV). As above, only the 220 patients in the two-site cluster-discovery set 

were used in the clustering analysis, whereas all 333 patients and 378 controls in data set 1 

were eligible to be used in classification.

Assigning left-out subjects to clusters—The 133 patients (n = 333 − 220 = 133) left 

out of the cluster-discovery set were assigned to one of the four clusters in a two-step 

process. First, the canonical coefficients estimated in the cluster-discovery set were used to 

calculate canonical variate (component) scores for the left-out subjects. Second, LDA 

classifiers trained on the cluster-discovery sample were used to assign left-out subjects to 

one of the four clusters. The same two-step process was used to assign test subjects to the 

best-fitting cluster for the leave-one-out cross-validation analyses described below.

Classifier training—Classifier training was performed using the libsvm classification 

package67, the SPSS Statistics package (IBM: http://www.ibm.com/software/analytics/spss/

products/statistics), or MATLAB classification functions (see schematic in Supplementary 

Fig. 6). Classifiers were trained to discriminate between patients with depression and healthy 

controls on the basis of a set of the most abnormal connectivity features, which were 

selected from the full set of all possible connectivity features (33,154 for the primary 

functional parcellation used in all other figures; 337,431 for the voxelwise parcellation; 

~4,000 for the anatomical and second functional parcellations). In preliminary analyses (data 

not shown), we found that the optimal number of features depended on the parcellation 

strategy and classifier method. Simple logistic-regression classifiers could be trained only on 

Drysdale et al. Page 16

Nat Med. Author manuscript; available in PMC 2017 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.ibm.com/software/analytics/spss/products/statistics
http://www.ibm.com/software/analytics/spss/products/statistics


a small set of features constrained by the number of subjects in each group; optimal 

performance was obtained in most cases with the top 20 features. SVM and LDA classifiers 

performed best when trained on the top ~5–10% of the most abnormal features for the 

primary functional and voxelwise parcellations (~1.5–3,000 and 10,000–25,000 features, 

respectively) and the top 25% for the coarser anatomical and functional parcellations (1,000 

features). Thus, in Figure 3b, simple logistic-regression classifiers were trained on the top 20 

features, whereas LDA and SVM classifiers were trained on the top ~2,000 features for the 

primary functional parcellation, ~1,000 features for the anatomical and secondary functional 

parcellations or ~10,000 features for voxelwise parcellation.

After being trained on subjects in the training subset, the resulting classifiers were tested on 

subjects in the test subset. Importantly, subjects in the test subset were left out of all aspects 

of the optimization procedure, including dimension reduction by canonical correlation 

analysis, clustering, feature selection and classifier training. This is crucial, because 

including members of the test subset in the clustering or feature-selection procedures will 

yield biased, inflated estimates of classifier accuracy. Trials that did not use clustering 

yielded one classifier on each iteration, which was then applied to subjects in the test subset, 

and the accuracy rates in Figure 3b represent the percentage of patients and healthy controls 

correctly classified as patients and healthy controls, respectively, averaged over all iterations. 

Trials that used clustering yielded three, four or five classifiers as indicated in Figure 3b. 

Testing each of them on every subject would tend to overestimate accuracy for patients and 

underestimate accuracy for healthy controls. Therefore, we tested only one of the biotype 

classifiers on each subject, on the basis of proximity to the cluster centroid or (in the case of 

the best performing classifiers depicted in Fig. 3g), by using the LDA classifiers for cluster 

assignment described above. For the purposes of defining a cluster’s centroid in order to 

make new cluster assignments, we excluded a small number of subjects (n = 15, or 6.8% of 

all subjects in the cluster-discovery set) with ambiguous cluster identities. These ‘edge 

cases’ were defined as cases with cluster silhouette values <0, indicating a case that was 

poorly matched to its own cluster and possibly better matched to a neighboring cluster. (We 

found that for small clusters, these edge cases could distort the calculation of the cluster’s 

centroid location, resulting in unstable cluster assignments across iterations.) In Figure 3c–f, 

the neuroanatomical locations of the most discriminating nodes were plotted by selecting 

connectivity features that were significantly different from controls (by Wilcoxon rank-sum 

tests) across each round of training and cross-validation. The nodes were colored and scaled 

by summing across all connectivity features associated with that node, as described in ref.68.

Permutation testing—By systematically testing various combinations of methods for 

parcellation, clustering, and classification, we found that the most successful classifier used 

our primary functional parcellation28, hierarchical clustering and SVM classification with 

linear kernel functions, and correctly identified healthy controls and patients with 

sensitivities of 84.1–90.9% and specificities of 84.1–92.5% (Fig. 3g). The statistical 

significance of these results was estimated by permutation testing, randomly permuting the 

diagnostic labels for each subject and applying the exact same procedure for clustering, 

feature selection and classifier training and repeating this procedure 200 times. Permutation 

testing was used to assess the statistical significance of the most successful classifier derived 
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from each of the three classification methods (logistic regression, SVM and LDA). For all 

three methods, the reported accuracy rates exceeded those obtained on all 200 permutation 

tests, indicating a statistical significance of P < 0.005.

Classification: testing classifiers in an independent replication data set

It is well established in the machine-learning literature that iterative training and cross-

validation on the same data overestimate classifier performance, and other studies have 

raised questions about the capacity for classifiers trained on one data set at a single site to 

generalize to data collected at multiple sites44,46. To address these issues, we tested the most 

successful classifier for each depression biotype (primary functional parcellation, 

hierarchical clustering and SVM classification) in an independent replication data set (data 

set 2; n = 477 subjects), comprising 125 patients and 352 healthy controls acquired from 13 

sites, including five sites that were not included in the original training data set. This 

analysis was essentially identical to the analysis of test subjects in cross-validation described 

above. After preprocessing, parcellation and BOLD signal time-series extraction, we 

calculated correlation matrices, and the Fisher z-transformed correlation coefficients were 

corrected for age and site effects. For subjects in data set 2 who were scanned at a site that 

was included in data set 1, we corrected for age and site effects using the beta weights 

calculated for subjects in data set 1 to calculate residuals as described above. For subjects in 

data set 2 who were scanned at new sites that were not included in data set 1 (all healthy 

controls), we used multiple linear regression to estimate beta weights for these new sites. 

Next, the classifier for one depression biotype was tested on each subject by using the two-

step procedure for cluster/biotype assignment described above (‘Assigning left-out subjects 

to clusters’). The overall accuracy rates and accuracies by cluster are reported in Figure 3i. 

To better understand the potential for further improvements in classifier performance in 

future, prospective data sets, we also calculated accuracy rates separately after implementing 

stricter data quality controls and by treating subjects with ambiguous classification outcomes 

as equivocal test results, as is common practice for biomarkers in other areas of medicine. 

These calculations excluded subjects with <300 s of data after censoring, motivated by 

reports that the stability of low-frequency BOLD signal-correlation estimates is higher for 

longer-duration scans;69 subjects with FD motion estimates exceeding 0.18 mm, i.e., the 95th 

percentile in our training set, motivated by our finding in Supplementary Figure 1 that 

classification rates in cross-validation (i.e., in data set 1) were slightly lower in the 5% of 

subjects with the highest levels of motion (χ2 = 5.096, P = 0.024); and the 10% of subjects 

with the lowest absolute SVM classification scores, i.e., equivocal classification outcomes. 

The results of these analyses are depicted in the cross-hatched bars in Figures 3i and 4j.

We also tested whether cluster assignments were stable over time, reasoning that if these 

clusters represent biologically meaningful depression subtypes, then a patient diagnosed 

with one of these subtypes should be diagnosed with the same subtype when re-tested at a 

later date. To assess this, we tested for reproducibility in a subset of subjects (n = 48) who 

were re-scanned 4–6 weeks after the initial scan and remained actively depressed (meeting 

DSM-IV criteria for a major depressive episode). As above, each subject was assigned to a 

cluster using the two-step procedure for biotype assignment described above (‘Assigning 

left-out subjects to clusters’), and we assessed the stability of cluster assignments across 
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scans (Fig. 3h). A chi-squared test was used to assess the statistical significance of the 

longitudinal-stability results.

Clinical-data analysis

To assess whether biotypes of depression defined by unique patterns of resting state 

functional connectivity were associated with specific clinical profiles (Fig. 2f), we used 

Kruskal-Wallis analysis of variance to test for biotype differences in the severity of 

depressive symptoms in the cluster-discovery set (n = 220), as indexed by the HAMD. The 

six symptoms reported in Figure 2f showed the largest main effects of biotype (see 

Supplementary Fig. 4a for results for all 17 HAMD items). In Supplementary Figure 4c, we 

also tested for differences in these same six measures in clinical data acquired from subjects 

that were not included in the clustering analysis (n = 92).

In Figure 2c, we tested whether abnormal connectivity features that were shared across all 

four biotypes predicted the severity of ‘core’ symptoms that were present in almost all 

patients, regardless of biotype. We found that of the 17 symptoms quantified by the HAMD, 

three were present in almost all patients with depression (>90%); these included depressed 

mood (“feelings of sadness, hopelessness, helplessness”, 97.1%), anhedonia (96.7%) and 

anergia or fatigue (93.9%). We used principal-components analysis to define a low-

dimensional representation of these shared, abnormal connectivity features and correlated 

the first component with severity scores for these three symptoms. The results are depicted 

in quartile plots in Figure 2c.

Repetitive transcranial magnetic stimulation and related analyses

In Figure 4, we tested whether depression biotypes defined by unique patterns of abnormal 

functionally connectivity were differentially responsive to rTMS in a subset of subjects (n = 

154 in total) who received a course of excitatory repetitive TMS (10 Hz or intermittent theta 

burst stimulation) targeting the dorsomedial prefrontal cortex, beginning the week after their 

fMRI scan. The left dorsolateral prefrontal cortex is the most common target for stimulation 

in rTMS clinical trials48, but recent studies have demonstrated efficacy for the dorsomedial 

prefrontal cortical (DMPFC) target used here13,70. Of note, DMPFC was among the most 

important neuroanatomical areas differentiating the four biotypes in Figure 2d, which 

suggested to us that biotype differences in dysfunctional connectivity at the DMPFC target 

site may give rise to differing treatment outcomes.

The treatment parameters and scanning parameters for this sample have been previously 

described in detail elsewhere13,71. To summarize, all subjects received five sessions of TMS 

per week for 4–6 weeks (20–30 sessions total), delivered using a MagPro R30 rTMS device 

(MagVenture, Farum, Denmark) and a Cool-DB80 stimulation coil. For subjects who 

received 10-Hz stimulation (n = 86), each session included 3,000 pulses per hemisphere, 

delivered to the dorsomedial prefrontal cortex at 120% of resting motor threshold at a 

frequency of 10 Hz and with a duty cycle of 5 s on and 10 s off, for a total of 3,000 pulses in 

60 trains per hemisphere per session (6,000 pulses total). For subjects who received 

intermittent theta burst stimulation (n = 68), each session included 600 pulses per 

hemisphere, delivered to the dorsomedial prefrontal cortex, at 120% of resting motor 
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threshold, in 50 Hz triplet bursts, five bursts per second, with a duty cycle of 2 s on and 8 s 

off, for a total of 600 pulses in 20 trains per hemisphere per session (1,200 pulses total). To 

increase the tolerability of the DMPFC stimulation protocol, which has been associated with 

discomfort in some reports, all subjects also underwent a scalp-pain acclimatization 

protocol, as detailed in refs. 13,71. Depression severity was assessed using the 17-item 

HAMD before and after the course of treatment, and clinical improvements were measured 

in terms of changes in the total HAMD score.

To assess whether treatment response varied with depression biotype, subjects were 

classified as “treatment responders” or “treatment nonresponders”. Treatment responders 

were subjects who showed either a partial or full response to treatment, conventionally 

defined as a 25–50% or >50% reduction in HAMD scores, and “treatment nonresponders” 

were subjects who showed a <25% reduction in HAMD scores. A chi-squared test was used 

to assess whether treatment response rates varied with depression biotype, and Kruskal-

Wallis analysis of variance was used to test whether change in HAMD varied with 

depression biotype (Fig. 4a,b).

In addition, we tested whether functional connectivity features and biotype diagnosis were 

predictive of treatment response in a training and cross-validation sample (~80% or n = 124 

of the 154 patients; Fig. 4c–g) and then tested the best-performing classifier in an 

independent replication sample (~20%, n = 30 of the 154 patients). Using a procedure 

identical to the one described above, we used the primary functional parcellation, feature 

selection and SVM classification methods to iteratively train classifiers to prospectively 

identify TMS responders and nonresponders on the basis of connectivity features assessed 

before treatment, with leave-one-out cross validation (Fig. 4f). As above, the test subjects 

were left out of all aspects of feature selection and classifier training. We repeated this 

process using both connectivity features and biotype diagnosis, coded as four binary dummy 

variables (Fig. 4g). To understand whether clinical profiles were sufficient to predict 

treatment response without resting-state connectivity measures, we trained classifiers to 

differentiate responders and nonresponders solely on the basis of clinical data using an 

identical approach (Fig. 4h). Finally, we tested the best-performing classifier, which used 

both functional connectivity features and biotype diagnosis, in the independent replication 

sample (Fig. 4i).

Statistics

In Figure 1, canonical correlation analysis was used to define a low-dimensional 

representation of connectivity features (n = 220 patients from the “Toronto” and “Cornell 1” 

sites, Supplementary Table 1) that were predictive of two specific combinations of clinical 

symptoms (see above), and hierarchical clustering analysis (Fig. 1e–f) was used to delineate 

clusters of subjects in a two-dimensional space defined by these two canonical variates.

In Figure 2a–c, Wilcoxon rank-sum tests were used to test for differences in functional 

connectivity between all patients in the cluster-discovery set (n = 220) and all healthy 

controls (n = 378, Supplementary Table 3, training Data set), and Spearman rank 

correlations were used to test for associations with three clinical symptoms that were present 

in at least 90% of patients (n = 220). In Figure 2d,e, Kruskal-Wallis ANOVA (n = 220) was 
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used to test for connectivity features that varied by biotype, and Wilcoxon rank-sum tests 

were used to assess whether these connectivity features were increased or decreased in 

depression (n = 220) as compared to controls (n = 378). In Figure 2f,g, Kruskal-Wallis 

ANOVA (n = 220) was used to test for differences in clinical-symptom severity by biotype.

In Figure 3b,g, classifier accuracy was assessed in leave-one-out cross validation in the full 

training data set (n = 333 patients, n = 378 healthy controls; Supplementary Table 3, training 

data set), with the test subject strictly excluded from all aspects of the clustering and 

classification optimization process, and statistical significance was assessed by establishing 

a null hypothesis distribution by randomly permuting diagnostic labels 500 times (see 

‘Classification’ and ‘Permutation testing’ sections above). In Figure 3h, the longitudinal 

stability of biotype assignments was assessed in a subset of subjects from the cluster-

discovery set (n = 50 patients with depression from “Cornell 1” site) who received a second 

fMRI scan obtained 4–5 weeks after the initial scan, and a chi-squared test (n = 50) was used 

to assess for a statistical dependence between biotype ID on scans 1 and 2. In Figure 3i, the 

most successful classifier identified in Figure 3b was tested in an independent replication 

data set (n = 125 patients, n = 352 healthy controls; Supplementary Table 3, replication data 

set). In Figures 3h and 3i, the scans used for testing longitudinal stability and for replicating 

classifier performance were not used in any aspect of the cluster-discovery process or 

classifier optimization.

In Figure 4a,b, chi-squared tests (a) and Kruskal-Wallis ANOVA (b) were used to test for 

biotype differences in response rates and improvements in depression severity (change in 

total HAMD), respectively, in patients after treatment with TMS (n = 124 patients with 

depression from training data set, “Toronto” site). In Figure 4c–e, Wilcoxon rank-sum tests 

were used to test for functional connectivity differences in TMS partial responders (n = 70) 

versus nonresponders (n = 54). In Figure 4f–i, classifier accuracy for differentiating 

responders (n = 70) and nonresponders (n = 54) was assessed by using leave-one-out cross 

validation and permutation testing, as in Figure 3, and the best-performing classifier was 

tested in an independent replication set (n = 30 patients with depression from replication 

data set, “Toronto” site) in Figure 4j.

In Figure 5a–c, Wilcoxon rank-sum tests were used to test for functional connectivity 

differences in patients with generalized anxiety disorder (n = 39 patients with GAD from 

“Cornell 1” and “Stanford 1” sites) versus healthy controls (n = 378, training data set; 

Supplementary Table 3), and a chi-squared test was used to test for significant overlap in 

depression- and GAD-related connectivity features (Fig. 5b). In Figure 5d and h, we applied 

the biotype classifiers developed in Figure 3 to the patients with GAD (n = 39) and to a 

separate cohort of patients diagnosed with schizophrenia (n = 41 patients with rsfMRI scans 

shared through the 1000 Functional Connectomes Project and the Center of Biomedical 

Research Excellence in Brain Function and Mental Illness (COBRE)). In Figure 5e–g, 

Kruskal-Wallis ANOVA was used to test for biotype differences in clinical symptom severity 

in the same patients with GAD (n = 39). Throughout, all P values are two-tailed, and all 

error bars are either s.e.m. or 95% confidence intervals, as defined in the corresponding 

figure legends.
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Data availability

Data from the following sites (Supplementary Tables 2 and 3) are publicly available for 

download through the 1000 Functional Connectomes Project International Data Sharing 

Initiative (http://fcon_1000.projects.nitrc.org/index.html): NKI, Atlanta, Cambridge, 

Cleveland, ICBM, New York, COBRE, Beijing, Milwaukee and Leipzig. Data from the 

remaining sites are available at the discretion of the respective principal investigators, listed 

in Supplementary Table 2.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 

Canonical correlation analysis (CCA) and hierarchical clustering define four connectivity-

based biotypes of depression. (a) Data analysis schematic and workflow. After 

preprocessing, BOLD signal time series were extracted from 258 spherical regions of 

interest (ROIs) distributed across the cortex and subcortical structures. The schematics (top) 

show lateral (left) and medial (right) views of right-hemisphere ROIs projected onto an 

inflated cortical surface and colored by functional network (lower left). Left-hemisphere 

ROIs (data not shown) were similar. For each subject, whole-brain functional-connectivity 
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matrices were generated by calculating pairwise BOLD signal correlations between all 

ROIs, as in this example of correlated signals (r2 = 0.88) for DLPFC (solid line) and PPC 

(dashed line) nodes of the FPTC network in a representative subject. (b) Whole-brain, 258 × 

258 functional-connectivity matrix averaged across all healthy controls (n = 378 subjects). z 

= Fischer transformed correlation coefficient. (c,d) CCA was used to define a low-

dimensional representation of depression-related connectivity features and identified an 

“anhedonia-related” component (canonical variate; c) and an “anxiety-related” component 

(d), represented by linear combinations of connectivity features that were correlated with 

linear combinations of symptoms. The scatterplots in c and d illustrate the correlation 

between low-dimensional connectivity scores and low-dimensional clinical scores for the 

anhedonia-related (r2 = 0.91) and anxiety-related components (r2 = 0.95), respectively (P < 

0.00001, n = 220 patients with depression). To the left of each scatterplot, clinical score 

loadings (i.e., the Pearson correlation coefficients between specific symptoms and the 

anhedonia- or anxiety-related clinical score (canonical variate)) are depicted for those 

symptoms with the strongest loadings (HAMD item #, indicated by numbers in superscript; 

for all loadings on all symptoms, see Supplementary Fig. 2). Below each scatterplot, 

connectivity score loadings are summarized by depicting the neuroanatomical distribution of 

the 25 ROIs (top 10%) that were most highly correlated with each component (summed 

across all significantly correlated connectivity features for a given ROI), colored by network, 

as in a. Projections to the medial wall map are for both left- and right-hemisphere ROIs. (e) 

Hierarchical clustering analysis. The height of each linkage in the dendrogram represents the 

distance between the clusters joined by that link. For reference, the dashed line denotes 20 

times the mean distance between pairs of subjects within a cluster. For analyses of additional 

cluster solutions and further discussion, see Supplementary Figure 3. (f) Scatterplot for four 

clusters of subjects along dimensions of anhedonia- and anxiety-related connectivity. Gray 

data points indicate subjects with ambiguous cluster identities (edge cases, cluster silhouette 

values < 0; n = 15, or 6.8% of all subjects). ACC, anterior cingulate cortex; amyg, amygdala; 

antPFC, anterior prefrontal cortex; a.u., arbitrary units; AV, auditory/visual networks; CBL, 

cerebellum; COTC, cingulo-opercular task-control network; D/VAN, dorsal/ventral attention 

network; DLPFC, dorsolateral prefrontal cortex; DMN, default-mode network; DMPFC, 

dorsomedial prefrontal cortex; FPTC, frontoparietal task-control network; GP, globus 

pallidus; LIMB, limbic; MR, memory retrieval network; NAcc, nucleus accumbens; OFC, 

orbitofrontal cortex; PPC, posterior parietal cortex; precun, precuneus; sgACC, subgenual 

anterior cingulate cortex; SS1, primary somatosensory cortex; SN, salience network; SSM, 

somatosensory/motor networks; subC, subcortical; thal, thalamus; vHC, ventral 

hippocampus; VLPFC, ventrolateral prefrontal cortex; VMPFC, ventromedial prefrontal 

cortex; vStr, ventral striatum; n.s., not significant. See Supplementary Table 4 for MNI 

coordinates for ROIs in b and c.
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Figure 2. 

Connectivity biomarkers define depression biotypes with distinct clinical profiles. (a) 

Neuroanatomical distribution of the 25 ROIs (top 10%) with the most abnormal connectivity 

features shared by all four biotypes (summed across all connectivity features for a given 

ROI), identified using Wilcoxon rank–sum tests to test for connectivity features that were 

significantly abnormal in all four biotypes relative to healthy controls in data set 1 (n = 378). 

ROIs are colored by network, as in Figure 1a. (b) Heat maps depicting a pattern of abnormal 

connectivity (P < 0.05, false-discovery rate (FDR) corrected) shared by all four biotypes for 
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the top 50 most abnormal ROIs, colored on the basis of Wilcoxon rank–sum tests comparing 

patients and controls, as in a. Warm colors represent increase and cool colors decrease in 

depression as compared to controls. (c) Correlations (r = 0.72–0.82, ***P < 0.001, 

Spearman) between shared abnormal connectivity features (as indexed by the first principal 

component (PC) of the features depicted in b and the severity of the core depressive 

symptoms. Insets depict the prevalence of each symptom. Symptom severity measures are z-

scored with respect to controls and plotted as the mean for each quartile, ± s.e.m. (d) 

Neuroanatomical distribution of dysfunctional connectivity features that differed by biotype, 

as identified by Kruskal–Wallis analysis of variance (ANOVA) (P < 0.05, FDR corrected), 

summarized for the 50 ROIs (top ~20%) with the most biotype-specific connectivity features 

(i.e., the 50 ROIs with the largest test statistic summed across all connectivity features, 

showing cluster specificity at a threshold of P < 0.05, FDR corrected). Nodes (ROIs) are 

colored to indicate the biotype with the most abnormal connectivity features and scaled to 

indicate how many connectivity features exhibited significant effects of biotype. (e) Heat 

maps depicting biotype-specific patterns of abnormal connectivity for the functional nodes 

illustrated in d, plus selected limbic areas, colored as in b. Green boxes highlight 

corresponding areas in each matrix discussed in the main text. (f) Biotype-specific clinical 

profiles for the six depressive symptoms that varied most significantly by cluster (P < 0.005, 

Kruskal–Wallis ANOVA). Symptom severities (HAMD) are z-scored with respect to the 

mean for all patients in the cluster-discovery set. See Supplementary Figure 4 for all 17 

HAMD items and for replication in data from subjects left out of the cluster-discovery set. 

(g) Boxplot of biotype differences in overall depression severity (total HAMD score), in 

which boxes denote the median and interquartile range (IQR) and whiskers the minimum 

and maximum values. In f and g, asterisk (*) indicates significant difference from mean 

symptom severity rating for all patients (z = 0) at P < 0.05; error bars depict s.e.m.; n.s., not 

significant. Aud, auditory cortex; HC, hippocampus; lat PFC, lateral prefrontal cortex; lat 

OFC, lateral orbitofrontal cortex; MTG, middle temporal gyrus; PHC, parahippocampal 

cortex; PCC, posterior cingulate cortex; SSM, primary sensorimotor cortex (M1 or S1); 

STG, superior temporal gyrus; vis, visual cortex. Other abbreviations are as in Figure 1. See 

Supplementary Table 5 for Montreal Neurological Institute coordinates for ROIs in a and d.
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Figure 3. 

Functional connectivity biomarkers for diagnosing neurophysiological biotypes of 

depression. (a) Data analysis schematic and workflow (Online Methods for additional 

details). (b) Optimization of diagnostic-classifier performance (accuracy) across the 

indicated combinations of methods for parcellation, clustering and classification. *P < 0.005, 

as estimated by permutation testing (Online Methods). Double asterisk (**) indicate the best 

performing protocol for parcellation, clustering and classification, and the focus of all 

subsequent analyses. (c–f) The neuroanatomical locations of the nodes with the most 
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discriminating connectivity features are illustrated for each biotype for the four-cluster 

solution denoted by the double asterisk in b, colored and scaled by summing the results of 

Wilcoxon rank–sum tests of patients as compared to controls across all connectivity features 

associated with that node. Red represents increased and blue decreased functional 

connectivity in depression. (g) Sensitivity and specificity by biotype for the most successful 

classifiers identified in b (**). Error bars depict 95% confidence interval for the mean 

accuracy across all iterations of leave-one-out cross-validation. (h) Reproducibility of cluster 

assignments in a second fMRI scan (n = 50) obtained 4–5 weeks after the initial scan (χ2 = 

112.7, P < 0.00001). (i) Classifier performance in an independent, out-of-sample replication 

data set (n = 125 patients, 352 healthy controls). Cross-hatched bars depict classifier 

accuracy with more stringent data quality controls (Online Methods) and excluding 

equivocal classification outcomes (the 10% of subjects with the lowest absolute SVM 

classification scores). Error bars depict 95% confidence intervals.
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Figure 4. 

Connectivity biomarkers predict differential antidepressant response to rTMS. (a) Differing 

response rates to repetitive transcranial magnetic stimulation (rTMS) of the dorsomedial 

prefrontal cortex across patient biotypes (clusters) in n = 124 subjects. Response rate 

indicates percentage of subjects showing at least a partial clinical response to rTMS (χ2 = 

25.7, P = 1.1 × 10−5), defined conventionally as >25% reduction in symptom severity by 

HAMD. Full response rates (>50% reduction by HAMD, cross-hatched bars) also varied by 

biotype (χ2 = 22.9, P = 4.3 × 10−5). (b) Boxplot of percent improvement in depression 
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severity by biotype (P = 1.79 × 10−6, Kruskal–Wallis ANOVA), in which boxes denote the 

median and interquartile range and whiskers the minimum and maximum up to 1.5 × the 

IQR, beyond which outliers are plotted individually. Percent improvement = total HAMD 

score before treatment – total HAMD score after treatment/total HAMD score before 

treatment. **P = 0.00001–0.002 (Mann–Whitney), indicating significantly increased versus 

biotypes 2–4; *P = 0.007 (Mann–Whitney), indicating significantly increased versus biotype 

4. (c) Functional connectivity differences in the DMPFC stimulation target in treatment 

responders versus nonresponders (Wilcoxon rank–sum tests, thresholded at P < 0.005). 

Warm colors represent increased and cool colors decreased functional connectivity in 

treatment responders as compared to nonresponders. The 12 ROIs depicted here were 

located within 3 cm of the putative DMPFC target site, estimated in a previously published 

report to be located at Talairach coordinates, x = 0, y = +30, z = +30 (ref.13). (d) The 

neuroanatomical distribution of the most discriminating connectivity features for the 

comparison of rTMS responders versus non-responders, summarized by illustrating the 

locations of the 25 (top 10%) most discriminating ROIs indexed by summing across all 

significantly discriminating connectivity features and colored by functional network as in 

Figure 1a. The red arrows denote the rTMS target site in the two (lower) medial panels. (e) 

Heat maps depicting differences in functional connectivity in patients who subsequently 

improved after receiving rTMS (n = 70), as compared to those who did not (n = 54). (f–i) 

Confusion matrices depicting the performance of classifiers trained to identify subsequent 

treatment responders on the basis of the most discriminating connectivity features (f), 

connectivity features plus biotype diagnosis (g), clinical symptoms alone (h) or connectivity 

features plus biotype diagnosis in an independent replication set (i, n = 30 patients with 

depression). NR, nonresponder; R, responder. (j) Summary of performance (overall 

accuracy) for classifiers in f–i. **significantly greater than clinical features alone (P < 0.001) 

and connectivity features alone (P = 0.003) by permutation testing; *P = 0.04 (significantly 

greater than clinical features alone by permutation testing). Cross-hatched bars depict 

classifier accuracy with more stringent data quality controls (Online Methods) and excluding 

equivocal classification outcomes (the 10% of subjects with the lowest absolute SVM 

classification scores). Error bars depict s.e.m. in a and 95% confidence intervals in j. All 

abbreviations as in Figures 1 and 2. See Supplementary Table 7 for MNI coordinates for 

ROIs in d.
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Figure 5. 

Connectivity biomarkers of depression biotypes transcend diagnostic boundaries. (a) 

Abnormal connectivity features in patients with generalized anxiety disorder (GAD, n = 39) 

relative to healthy controls (n = 378). In this matrix depicting the 50 neuroanatomical nodes 

with the most significantly different connectivity features (Wilcoxon rank–sum tests, 

summed across all 258 features), elements in warm and cool colors depict connectivity 

features that are significantly increased or decreased in GAD, respectively. (b) 30.2% of 

connectivity features that were significantly abnormal in GAD (threshold of P < 0.001 

versus controls, Wilcoxon) were also abnormal in depression (χ2 = 5,457, P < 0.0001). (c) 

The neuroanatomical distribution of the most discriminating connectivity features for the 

comparison of GAD patients versus controls. The nodes are colored and scaled by summing 

across all significantly abnormal connectivity features associated with that node. Red 

represents increased and blue decreased functional connectivity in GAD. (d) Distribution of 

biotype diagnoses in patients with GAD. (e) No significant biotypes differences in anxiety 

symptom severity (P = 0.692; Kruskal–Wallis ANOVA). BAI, Beck anxiety inventory. (f,g) 

Significantly (P < 0.005, Kruskal–Wallis) elevated total depressive-symptom severity (f; 

BDI, Beck depression inventory) and anhedonia severity (g; BDI item 12) in GAD patients 

who tested positive for a depression biotype as compared to those who did not. *P < 0.01, †P 
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= 0.064 in post hoc Mann–Whitney tests relative to “not depressed” group. (h) Distribution 

of biotype diagnoses in patients with schizophrenia (n = 41). Error bars depict s.e.m. 

throughout. All abbreviations as in Figures 1 and 2.
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