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Abstract

Functional magnetic resonance imaging data are commonly collected during the resting state.

Resting state functional magnetic resonance imaging (rs-fMRI) is very practical and applicable

for a wide range of study populations. Rs-fMRI is usually collected in at least one of three differ-

ent conditions/tasks, eyes closed (EC), eyes open (EO), or eyes fixated on an object (EO-F). Sev-

eral studies have shown that there are significant condition-related differences in the acquired

data. In this study, we compared the functional network connectivity (FNC) differences assessed

via group independent component analysis on a large rs-fMRI dataset collected in both EC and

EO-F conditions, and also investigated the effect of covariates (e.g., age, gender, and social sta-

tus score). Our results indicated that task condition significantly affected a wide range of net-

works; connectivity of visual networks to themselves and other networks was increased during

EO-F, while EC was associated with increased connectivity of auditory and sensorimotor net-

works to other networks. In addition, the association of FNC with age, gender, and social status

was observed to be significant only in the EO-F condition (though limited as well). However, sta-

tistical analysis did not reveal any significant effect of interaction between eyes status and cov-

ariates. These results indicate that resting-state condition is an important variable that may limit

the generalizability of clinical findings using rs-fMRI.
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1 | INTRODUCTION

Resting state functional magnetic resonance imaging (rs-fMRI) is a

data collection method that does not require participants to engage in

a specific task. This allows rs-fMRI to be acquired from a wide range

of populations including patient groups, participants with intellectual

disabilities, pediatric groups, and even unconscious patients (Smitha

et al., 2017). Since Biswal, Yetkin, Haughton, and Hyde (1995) initially

observed that temporal correlation of low frequency fluctuations in

rs-fMRI (<0.1 Hz) can provide an estimate of functional connectivity

(FC), research on rs-fMRI has greatly increased (Agcaoglu et al., 2018;

Agcaoglu, Miller, Mayer, Hugdahl, & Calhoun, 2016; Allen et al., 2011;

Cetin et al., 2016; Haak, Marquand, & Beckmann, 2018; Hart et al.,

2018; Park, Friston, Pae, Park, & Razi, 2018; Rashid et al., 2018;

Smitha et al., 2017).

Rs-fMRI is commonly scanned in at least one of three different

conditions, eyes closed (EC), eyes open (EO), and eyes fixated on a tar-

get (EO-F), usually a crosshair. In the EC case, participants are asked

to closed their eyes and stay awake during the scanning; in the EO

case, the participants are asked to keep their eyes open; and in the

EO-F case, the participants are asked to keep their eyes fixated on an

object, usually a crosshair presented at the center of the screen, dur-

ing scanning. Several previous studies have focused on the difference

in fMRI assessed brain activation during these scanning conditions.

For example, Patriat et al. (2013) analyzed FC differences in EC, EO,

and EO-F conditions as well as reliability and consistency between

multiple scans of the same scanning conditions; they found higher FC

in auditory networks in EC condition and greater reliability in EO-F

condition in default-mode, attention and auditory networks; and

greater reliability in visual networks in EO conditions. Liu, Dong, Zuo,
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Wang, and Zang (2013) evaluated split half reproducibility for EO and

EC conditions using three metrics including amplitude of low fre-

quency fluctuations, regional homogeneity and seed-based correla-

tion, and found that reproducible patterns of EO-EC differences can

be detected in all three measures. Yan et al. (2009) found significantly

higher FC in default-mode network (DMN) in both EO and EO-F con-

ditions compared to EC. Van Dijk et al. (2010) found significantly

higher FC in DMN and attentional networks for EO-F case compared

to EC, but they did not find any significant differences when compar-

ing EO-F and EO conditions. There have been a few studies analyzing

functional network connectivity (FNC) utilizing group independent

component analysis (gICA) on the same small EEG-fMRI dataset

(25 participants); Wu, Eichele, and Calhoun (2010) found higher FNC

in EO case, compared to EC case, and Allen, Damaraju, Eichele, Wu,

and Calhoun (2018) investigated dynamic FNC states for EO versus

EC conditions, found association between dynamic connectivity in

concurrently collected EEG and fMRI data and a large effect of vigi-

lance on FNC.

In this study, we investigated FNC differences between EO-F and

EC cases on a large fMRI dataset (173 participants) of children

scanned via a multiband sequence with a short sampling rate. This

study makes three key contributions: first, to our knowledge, this is

the only study that compares these resting state conditions in such a

large dataset. Second, we investigate the effects of various covariates

(e.g., age, gender, and social status score) on EO-F and EC cases. Third,

we perform a comprehensive (whole brain) analysis of connectivity

using gICA and FNC between all pairs of brain networks.

2 | METHODS AND MATERIALS

2.1 | Participants

In this study, we used resting state fMRI scans of EO-F and EC condi-

tions collected from 182 participants from two different sites (Mind

Research Network [MRN]/New Mexico and University of Nebraska

Medical Center/Nebraska). Participants were asked to stare at a fixa-

tion cross during the eyes open scanning and to close their eyes but

remain awake during the eyes closed condition. Initially, 358 different

scans were used in the gICA state. We removed participants who had

only EO-F or EC scans available, resulting in 346 scans from 173 par-

ticipants (age range from 9.1 to 15.5 years, 11.95 ± 1.78). The

included participant had maximum mean frame displacement (MFD)

of 0.3 mm, and mean of MFD was 0.074 mm with a standard devia-

tion of 0.03 mm. Demographic information of the subjects was sum-

marized in Table 1.

2.2 | Imaging parameters

Imaging data at the MRN site were collected on a 3T Siemens Tim

Trio scanner and a 3T Siemens Skyra scanner was used at the

Nebraska site. A total of 650 volumes of echo planar imaging BOLD

data were collected per condition and participant with a TR of 0.46 s,

TE = 29 ms, FA = 44�, and a slice thickness of 3 mm with no gap. Rs-

fMRI scans were acquired using a standard gradient-echo echo planar

imaging paradigm; MRN site: FOV of 246 × 246 mm (82 × 82 matrix),

56 sequential axial slices; Nebraska: FOV of 268 × 268 mm (82 × 82

matrix), 48 sequential axial slices. The order of the EO-F and EC ses-

sions were counter-balanced across participants at each site.

2.3 | Preprocessing

The data were preprocessed using a combination of toolboxes (AFNI,

http://afni.nimh.nih.gov, SPM, http://www.fil.ion.ucl.ac.uk/spm, GIFT,

http://mialab.mrn.org/software/gift), and custom scripts written in

MATLAB. Rigid body motion correction was performed using the

INRIAlign (Freire & Mangin, 2001) toolbox in SPM to correct for subject

head motion followed by slice-timing correction to account for timing

differences in slice acquisition. Then the fMRI data were despiked using

3dDespike algorithm in AFNI (https://afni.nimh.nih.gov) to mitigate the

impact of outliers. The fMRI data were subsequently warped to a Mon-

treal Neurological Institute (MNI) template (http://www.mni.mcgill.ca)

and resampled to 3 mm3 isotropic voxels, the first four volumes of each

session were discarded to account for the T1 equilibrium effect.

Because participants consisted of children with an age range of

9.1–15.5, we rewarped the data to a study specific template computed

as the average of the first time point from each scan. Next we

smoothed the data to 6 mm full width at half maximum (FWHM).

2.4 | Group independent component analysis

The preprocessed functional data was analyzed with gICA implemen-

ted in the GIFT software (Calhoun & Adali, 2012; Calhoun, Adali,

Pearlson, & Pekar, 2001; Calhoun, Adali, Pearlson, & Pekar, 2002) and

decomposed into 150 spatially independent components. Prior to

gICA, a scan specific principle component analysis (PCA) was applied

to reduce the dimensionality across the 646 time points to 200 maxi-

mally variable directions. The reduced data were concatenated across

time and a group PCA was applied to further reduce the dimensional-

ity to 150 (Erhardt et al., 2011). One hundred and fifty independent

components were estimated from the group PCA reduced matrix

using the infomax algorithm (Bell & Sejnowski, 1995). We repeated

the ICA algorithm 20 times in ICASSO (Himberg, Hyvarinen, &

Esposito, 2004; http://www.cis.hut.fi/projects/ica/icasso) to ensure

stability of the estimation, and the most central run was selected from

the resulting 20 runs (Ma et al., 2011). A spatially constrained ICA

algorithm (Du et al., 2016; Du & Fan, 2013) was used to estimate sub-

ject specific spatial maps (SMs) and time courses (TCs) from the group

maps, called group information guided ICA (GIG-ICA) as implemented

in the GIFT software.

TABLE 1 Demographic information of the participants, the dataset

included 173 subjects (89 males) with age range 9.1–15.5 years old

# of subjects %

Gender 173 100

Male 89 51.45

Female 84 48.55

Age (years) Mean SD Min Max

Male 12.03 1.88 9.1 15.5

Female 11.89 1.66 9.2 15.1
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2.5 | Post-gICA processing

Subject specific SMs and TCs were postprocessed with methods simi-

lar to that described in a previous study (Allen et al., 2011). We calcu-

lated one sample t-test maps for each SM across all participants and

then thresholded these maps to obtain regions of peak connectivity

for the corresponding component. We also computed mean power

spectra of the corresponding TCs. Later, these components were ana-

lyzed based on criteria such as peak activated voxel location in gray

matter, showing less overlap with known vascular, susceptibility, ven-

tricular and edge regions corresponding to head motion by visually

and using AFNI whereami function; and 51 components out of

150 were identified as the resting state networks (RSNs). These

51 RSNs were also grouped based on their anatomical and functional

properties by visual observation and using AFNI whereami function;

including 4 sub cortical networks (SC), 3 auditory networks (Aud),

8 sensorimotor networks (SM), 18 visual networks (Vis), 4 default-

mode networks (DMN), 12 cognitive control networks (CC), and 2 cer-

ebellar networks (Cb).

The subject specific TCs were detrended, motion parameters

were regressed (including their derivatives, their squares, and deriva-

tives of their squares), and then despiked, which involved detecting

spikes as determined by AFNI's 3dDespike algorithm and replacing

spikes by values obtained from third order spline fit to neighboring

clean portions of the data.

2.6 | Functional network connectivity

FNC is a measure that shows the average FC among different RSNs

during scanning, calculated as the pairwise correlation between RSN

time courses. TCs were filtered using a fifth-order Butterworth low-

pass filter with a high frequency cutoff of 0.15 Hz since correlation

among brain networks is primarily driven by the low frequency fluctua-

tions in BOLD fMRI data (Cordes et al., 2001). We calculated FNC

matrix for each subject for eyes open and eyes closed cases separately,

and averaged over subjects. We estimated covariance from the regular-

ized precision matrix or the inverse covariance matrix (Smith et al.,

2011). Following the graphical LASSO method of Friedman, Hastie, and

Tibshirani (2008), we placed a penalty on the L1 norm of the precision

matrix to promote sparsity. The regularization parameter lambda (λ)

was optimized separately for each subject by evaluating the log-

likelihood of the unseen data in a cross-validation framework. The

unseen data was the windowed covariance matrices from the same

subject, using a Gaussian window of size 323 with alpha parameter of

1. This resulted in a penalty parameter of 0.1 for all subjects, and final

FNC were calculated using all 646 time courses. FNC matrix was ini-

tially organized similar to Allen et al. (2014) as the main modules of sub-

cortical, auditory, sensorimotor, visual, default-mode, cognitive control,

and cerebellar. Then, we applied the Louvain algorithm from the brain

connectivity toolbox https://sites.google.com/site/bctnet) to arrange

the RSN ordering within these main modules.

2.7 | Eyes open- eyes closed FNC differences

We compared the FNC differences between EO-F and EC cases

with a paired t-test and corrected for multiple comparisons with

false discovery rate (FDR) of 0.01. Before calculating the paired

t-test, we regressed out motion (as the mean frame displacement)

to minimize any effect. We also confirmed there was no significant

motion difference for EO-F and EC cases (paired t-test,

p = 0.7443).

2.8 | Effect of age, gender, and social status scores

on FNCs

We analyzed how age, gender, and social status scores affected the

network connectivity with a regression model and corrected for

multiple comparison with FDR of 0.05. We also added site and

mean frame displacements as nuisance covariates. Gender was

coded as 1 for males and 0 for females. We applied this model to

the EO-F and EC cases separately. We used the Barratt simplified

measure of social status, which was available for 156 subjects to

measure social status.

3 | RESULTS

3.1 | Resting state networks

The gICA revealed 51 RSNs which were grouped based on their

anatomical and functional properties, including 4 sub corticals

(SC), 3 auditory (Aud), 8 sensorimotor (SM), 18 visual (Vis),

4 default-mode networks (DMN), 12 cognitive control (CC), and

2 cerebellum (Cb). These networks are displayed in Figure 1 and

corresponding anatomical regions and peak locations are pre-

sented in Table 2.

3.2 | Eyes open eyes closed group differences

The FNCs for EO-F and EC cases are displayed in Figure 2 as one

sample t-statistics and thresholded with 0.01 levels FDR. Both FNC

matrices show similar patterns; SC-SC, Aud-Aud, Vis-Vis, DMN-

DMN, and Cb-Cb domains were almost entirely positively corre-

lated with Vis-Vis having the highest correlation. CC-CC showed

both anti-correlated and correlated networks. Vis-SM and Vis-Aud

networks showed different patterns; for EO-F these networks were

mostly anti-correlated, while they were mostly correlated in EC

case. Paired t-test results are presented in Figure 3, which revealed

significant differences in a variety of networks comparing EO-F and

EC. Blue regions indicate that numerical correlation values that are

lower for EO-F comparing to EC, and red regions indicate vice

versa; we observe more blue regions than red regions. When we

tested for the differences in connectivity (either positive or nega-

tive), connectivity within the Vis network showed the most signifi-

cant differences; most of Vis-Vis was more connected (positively)

in EO-F case and Vis-SC, Vis-DMN, and Vis-Cb had higher connec-

tivity (positive or negative) in EO-F cases. Vis-Aud and Vis-SM also

had significant conditional differences and directional differences,

negatively connected in EO-F while positively connected in EC. Vis

network 76 (calcarine fissure)-other Vis networks and Vis network

37 (posterior cingulate cortex)-other Vis networks, as well as SC-SC

and SM-SM had lower connectivity in EO-F. Connectivity between
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Aud-DMN, Aud-CC, Aud-Cb and SM-DMN, SM-CC, SM-Cb were

also lower (either positively connected or negatively connected) in

EO-F comparing to EC. Finally, DMN-DMN, Aud-Aud, and Cb-Cb

did not exhibit any significant conditional differences.

3.3 | Age, gender, and social score effects

We also evaluated the effect of age, gender and social status score on

the FNC for EO-F and EC conditions. We found some FDR-significant

effects for pairs of EO-F FNC; however, we did not find any FDR-

significant effects for age, gender or social score in the EC condition.

The pattern of age effects mostly suggested a decrease in FNC with

increasing age in the EO-F case, and seven pairs of FNC survived mul-

tiple comparisons correction. Recall that participants were typically-

developing school age children ranging from 9.1 to 15.5 years old.

The pairs surviving multiple comparisons correction were all connec-

tivity of Vis networks and mostly showed a decrease in connectivity

with increasing age (Figure 4). FNC between RSN130 (middle occipital

gyrus) and networks containing cerebellar regions showed a decrease

in connectivity with increasing age; FNC of RSN130 (middle occipital

gyrus) with RSN100 and RSN129 (both cerebellar vermis) and RSN84

(right cerebellum). Also FNC between RSN42 (fusiform gyrus and left

cerebellum) and RSN100 (cerebellar vermis) also showed a decrease

with increasing age. FNC pairs of RSN33 (calcarine gyrus) with RSN38

FIGURE 1 51 resting state components are presented as subgroups based on their anatomical and functional properties, including 4 sub-cortical

(SC), 3 auditory (Aud), 8 sensorimotor (SM), 18 visual (Vis), 4 default-mode networks (DMN), 12 cognitive control (CC), and 2 cerebellum (Cb)

[Color figure can be viewed at wileyonlinelibrary.com]
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TABLE 2 Anatomical regions associated with the RSNs presented in

Figure 1 and MNI coordinates of the peaks. L = Left, R = Right,

G = gyrus, Inf = Inferior, Temp = Temporal

IC# Nv Tmax Coord. BA

Sub-Cortical Networks

85

L putamen 1,463 141.63 −18 10 4

R putamen 735 82.27 20 12 0

54

R putamen 1,224 135.54 26 4 −2

L putamen 1,197 147.24 −28 0 −2

58

R thalamus 1,033 170.69 2 −20 6

68

L thalamus 1,430 141.33 −4 −12 12

Auditory Networks

62

L superior Temp G 2,267 84.25 −52 −18 6 22

R superior Temp G 2,029 87.45 60 −12 0 22

145

R superior Temp G 3,713 104.6 56 −44 18 13

L middle Temp G 1,378 51.41 −58 −54 12 22

125

R insula lobe 1908 119.75 42 −18 12 13

L superior Temp G 1,795 107.6 −46 −24 12 41

Sensorimotor Networks

9

L paracentral lobule 2,599 94.33 0 −24 72 6

8

L postcentral G 1828 94.76 −46 −30 54 2

R postcentral G 383 37.47 54 −20 48 1

98

L Inf parietal lobule 2,438 96.03 −54 −30 46 2

R supramarginal G 1,621 76.73 60 −20 40 3

26

R postcentral G 2,515 96.98 44 −30 58 2

L postcentral G 507 37.30 −42 −38 60 40

2

L postcentral G 1,080 91.31 −54 −8 34 6

R postcentral G 1,014 90.70 60 −6 30 6

73

L paracentral lobule 4,219 125.8 0 −24 54 6

L rolandic operculum 157 40.96 −40 −26 18 13

124

L Inf parietal lobule 1,073 76.71 −58 −42 42 40

R supramarginal G 873 73.92 60 −38 40 40

77

L SMA 4,587 101.23 0 6 52 6

R insula lobe 516 53.27 48 10 −2 22

Visual Networks

131

L Inf Temp G 2,183 74.55 −52 −50 −12 37

R fusiform G 1,668 60.82 44 −30 −18 20

76

R calcarine G 2,756 81.86 18 −102 −2 18

34

L cuneus 3,412 82.78 2 −80 24 18

42

R fusiform G 1,510 72.64 32 −78 −14 19

L cerebellum 569 36.52 −40 −68 −20 19

71

L fusiform G 1920 77.93 −30 −56 −14 19

R fusiform G 1,422 69.95 30 −48 −18 37

91

R lingual G 4,008 91.16 24 −72 −12 19

111

L lingual G 2,891 109.15 0 −78 4 18

69

L cerebellum 1,662 143.19 −6 −50 −2 30

82

R cerebellum 1,674 142.59 8 −50 −2 30

70

L lingual G 2,152 76.07 −18 −86 −18 18

33

R calcarine G 3,313 115.61 8 −68 10 30

(Continues)

TABLE 2 (Continued)

IC# Nv Tmax Coord. BA

59

R lingual G 2,465 127.29 12 −56 10 30

L middle occipital G 293 41.29 −42 −80 30 19

130

R middle occipital G 3,229 97.50 38 −84 6 19

L middle occipital G 3,092 82.44 −36 −86 6 19

100

Cerebellar vermis 1,270 192.57 2 −42 4 29

129

Cerebellar vermis 1,448 140.21 6 −56 0

38

L precuneus 3,174 79.17 0 −66 58 7

R superior frontal G 241 32.07 30 4 60 6

37

L posterior cingulate cortex 2019 141.39 0 −54 30 31

L angular G 509 45.23 −52 −68 28 39

27

R middle cingulate cortex 2,693 88.57 −4 −24 28 23

L Inf parietal lobule 207 35.50 −36 −62 48 7

Default Mode Networks

123

R anterior cingulate cortex 4,398 118.94 2 42 10 32

R insula lobe 538 59.55 36 18 −12 47

49

L mid orbital G 2,941 115.46 0 48 −6 10

L middle Temp G 253 39.78 −58 −14 −18 21

90

L angular G 2,579 91.98 −52 −62 30 39

L middle frontal G 2,269 52.91 −42 18 46 8

101

R middle frontal G 2,450 57.54 30 18 54 8

R Inf parietal lobule 1892 99.84 54 −56 40 40

Cognitive Control Networks

83

L middle Temp G 2,105 93.39 −46 6 −30 21

R medial Temp pole 1,588 96.98 48 10 −26 21

114

L sup. Medial frontal G 3,955 103.29 0 60 22 10

L Temp pole 733 40.71 −36 22 −20 47

63

R middle frontal G 6,987 115.49 32 58 4 10

R Inf parietal lobule 72 26.70 50 −50 48 40

48

L sup. Medial frontal G 2,744 86.68 0 66 18 10

R cerebellum 77 31.19 48 −72 −38

120

L. inf. front. G. (P. triangularis) 4,236 91.65 −48 30 18 46

R. inf. front. G. (P. triangularis) 855 52.20 50 22 28 46

146

R. inf. front. G. (P. opercularis) 7,279 114.14 50 18 6 45

L insula lobe 590 46.17 −34 24 −2 13

119

L insula lobe 2,186 116.66 −40 18 −6 47

R insula lobe 1,381 88.71 44 16 −2 47

96

L Inf parietal lobule 3,989 78.25 −24 −72 46 7

L precentral G 711 47.22 −52 10 34 9

102

R Inf parietal lobule 3,397 82.40 44 −42 48 40

R. inf. front. G. (P. opercularis) 1,660 51.33 54 12 30 9

133

R rolandic operculum 2,745 102.29 54 4 4 22

L rolandic operculum 766 51.31 −54 0 4 22

55

R superior parietal lobule 3,916 71.19 18 −54 66 7

R cerebellum 106 33.04 26 −44 −48

136

L angular G 6,603 74.10 −52 −78 28 39

R middle occipital G 807 58.53 44 −78 34 19

Cerebellar Networks

84

R cerebellum 4,173 150.37 30 −68 −38

110

L cerebellum 3,906 126.64 −30 −66 −38
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(left precuneus) and RSN27 (middle cingulate cortex) showed an

increase with increasing age. Gender effects were also significant in

the EO-F condition for the FNC pairs of CC network RSN114 (left

superior medial frontal gyrus and left temporal pole) with Vis networks,

indicating higher correlation in females compared to males (Figure 5).

Finally, social status score had a significant effect on FNCs of Cb and

Vis networks, suggesting an increase in connectivity with higher social

status, and SM networks 26 (right postcentral gyrus) and 2 (left post-

central gyrus) showed a significant decrease in connectivity with

increasing social score (Figure 6).

4 | DISCUSSION

In this study, we investigated FNC differences using a high ICA model

order for resting state EO-F and EC within a large fMRI dataset. Our

results indicated that connectivity within the visual networks showed

the most dramatic change between the two different rs-fMRI condi-

tions, which is intuitive given the vast differences in visual input. The

EO-F condition had significantly more connectivity of Vis networks

to themselves and other networks (except for the Aud and SM net-

works, which had lower connectivity in EO-F condition), while EC

FIGURE 2 The FNC matrix for all participants, displayed as one sample t-statistics, thresholded with 0.01 levels FDR. The eyes open––fixated

condition is shown on the left and the eyes closed condition is on the right [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Paired t-test results for EO-F and EC FNCs, displayed as −sign(t-statistics)*log10(p-value) and on the right 0.01 levels FDR survivors.

Blue color shows the regions that have higher correlation in EO-F case and red color shows the regions that have higher correlation in EC case

[Color figure can be viewed at wileyonlinelibrary.com]
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was associated with significantly higher connectivity of Aud and SM

networks to other networks. The increase in connectivity of Vis net-

works is consistent with the interpretation of more organized activa-

tion in the visual networks during visual processing, which increases

both positive and negative connectivity. The increase in connectivity

of SM and Aud networks associated with closing the eyes is consis-

tent with the notion that having closed eyes allows the brain to focus

more on other senses like audio and sensation, and thereby increas-

ing connectivity to other networks. This suggests that a similar

dynamic change in sensory sensitivity may occur in healthy children

and is consistent with the hypothesis of compensation plasticity

which states a superior ability in the use of the remaining senses in

the early blind population (Liu et al., 2007). However future studies

will need to evaluate this more directly.

Our findings are both consistent and inconsistent with previous

studies. For instance, Liu et al. (2013) compared FC using seed based

analysis with two seeds, left middle occipital gyrus (MOG) and left

primary sensory motor cortex (PSMC). They found significantly

increased connectivity with the left MOG in the bilateral superior

and inferior parietal lobules, widespread regions in the visual cortex,

and the right precentral gyrus in EO relative to EC, and found

decreased FC with the left MOG mainly within the bilateral PSMC,

paracentral lobule, and auditory cortex. These findings were mainly

consistent with our results; the Vis network RSN130 in our analysis

contains the middle occipital gyrus and it had increased correlation

with other Vis network, SC networks and CC networks 96 and

102 (left and right inferior parietal lobule); and showed a significant

decrease in FNC with SM and Aud networks during EO-F relative to

FIGURE 4 Regression results of the age effect, top figures are for the EO-F and bottom figures for the EC condition. The results are displayed as

−sign(beta)*log10(p-value). The FDR-significant results (0.05) are shown to the right. Blue colors show the regions that have lower correlation with

increasing age and red colors show the regions that have higher correlation with increasing age [Color figure can be viewed at wileyonlinelibrary.com]
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EC. On the other hand, Patriat et al. (2013) found that connectivity

with a visual seed was significantly modulated by eye condition in a

study of 25 participants, which is similar to our results, but they also

found greater positive connectivity in the EC case between left

visual cortex and higher order visual cortical regions, visual associa-

tion areas, superior parietal cortex and supramarginal gyrus, while

we found greater connectivity in the EO-F condition. These inconsis-

tent results could be due to the smaller number of participants in the

other studies and/or also methodological differences; for example,

Patriat et al. (2013) used a seed based analysis.

Another interesting result of our study is that we found signifi-

cant associations between FNC and age, gender, and social status

score only for the EO-F case. Of note, the association with the EO-F

case was itself limited. This may be due to the fact that the EO-F

represents both a more controlled condition and a condition in which

individuals are likely less drowsy. The variability in the EC condition

may be greater as a result of participants being in a more drowsy

state or to the fact that its less controlled nature may lead to more

mind wandering. Of note, Wang, Han, Nguyen, Guo, and Guo (2017)

reached higher reliability of FC by removing volumes with high

sleepiness, and Patriat et al. (2013); Zou et al. (2015) reported higher

test–retest reliability in EO or EO-F conditions compared to EC. In

addition to that, (Allen et al., 2018) reported that according to EEG

data; subjects are more likely to get into drowsy/early-sleep states

during EC comparing to EO condition. Future studies should investi-

gate this further and evaluating time-varying connectivity (Calhoun,

Miller, Pearlson, & Adali, 2014) to study these aspects in greater

detail.

FIGURE 5 Regression results of the gender effect, top figures are for the EO-F and bottom figures for the EC condition. The results are

displayed as −sign(beta)*log10(p-value). The FDR-significant results (0.05) are shown to the right. Blue colors show the regions that have higher

correlation in females and red colors show the regions that have higher correlation in males [Color figure can be viewed at wileyonlinelibrary.com]
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5 | LIMITATION

We should consider some limitations regarding the study. First, we

did not have any quantitative metric regarding how well the partici-

pant kept their eyes on fixation during the scanning or have a mecha-

nism to check if participant were able to stay awake during the

screening. These may introduce some confound to the results. Also,

we used an ICA model order of 150, but it would also be interesting

to evaluate FNCs differences in EO-F and EO conditions with higher

and lower model orders. Additionally, even though substantial efforts

were taken to eliminate confound related to motion and site, residual

motion or site related effects could still be present. Finally, we calcu-

lated FDR threshold for each covariate separately.

6 | CONCLUSION

In conclusion, our study indicated that resting state FNC is signifi-

cantly affected by the condition (eyes open fixated vs. closed) during

scanning. Opening eyes and maintaining fixation was associated with

an increase in connectivity of Vis networks to other networks (except

from Aud and SM networks which had lower connectivity in EO-F

condition) and themselves, while closing the eyes was linked to a sig-

nificant increase in connectivity of Aud and SM networks to other

networks. Also, we observed EO-F FNC showed significant associa-

tion with covariates such as age, gender, and social status scores, but

the EC case did not; this could be due to the fact that EO-F is a more

controlled condition that reduces the experimental variability, such as

FIGURE 6 Regression results of the social status score effect, top figures are for the EO-F and bottom figures for the EC case. The results are

displayed as −sign(beta)*log10(p-value). FDR-significant results (0.05) are shown to the right. Blue colors show the regions that have lower

correlation with increasing social status score and red colors show the regions that have higher correlation with increasing social status score

[Color figure can be viewed at wileyonlinelibrary.com]
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drowsiness, and increases field focus. FNC between Vis and Cb net-

works increased with higher social status and also FNC between

visual areas (middle occipital gyrus) and regions containing cerebellar

areas decreased with increasing age. Overall these findings indicated

that resting-state condition has significant effects on the estimated

FNC, especially on Vis, Aud, and SM, and suggested that the EO-F

condition may be a better choice for FNC studies that aim to analyze

associations with demographic and behavioral covariates.
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