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Abstract 

While child poverty is a significant risk factor for poor mental health, the developmental 

pathways involved with these associations are poorly understood. To advance knowledge about 

these important linkages, the present study examined the developmental sequelae of childhood 

exposure to poverty in a multi-year longitudinal study. Here, we focused on exposure to poverty, 

neurobiological circuitry connected to emotion dysregulation, later exposure to stressful life 

events, and symptoms of psychopathology. We grounded our work in a biopsychosocial 

perspective, with a specific interest in “stress sensitization” and emotion dysregulation. 

Motivated by past work, we first tested whether exposure to poverty was related to changes in 

the resting state coupling between two brain structures centrally involved with emotion 

processing and regulation (the amygdala and ventromedial prefrontal cortex). As predicted, we 

found lower household income at age 10 was related to lower resting state coupling between 

these areas at age 15. We then tested if variations in amygdala-vmPFC connectivity interacted 

with more contemporaneous stressors to predict challenges with mental health at age 16. In line 

with past reports showing risk for poor mental health is greatest in those exposed to early and 

then later, more contemporaneous stress, we predicted and found that lower vmPFC-amygdala 

coupling in the context of greater contemporaneous stress was related to higher levels of 

internalizing and externalizing symptoms. We believe these important interactions between 

neurobiology and life history are an additional vantage point for understanding risk and 

resiliency, and suggest avenues for prediction of psychopathology related to early life challenge.  

Keywords: poverty; brain; amygdala; stress; psychopathology 
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Resting state coupling between the amygdala and ventromedial prefrontal cortex is related to 

household income in childhood and indexes future psychological vulnerability to stress 

 

Child poverty is common and a serious threat to development, as lower socioeconomic 

status (SES) is associated with an increased risk for a host of mental health difficulties (Cohen et 

al., 2010; Reiss, 2013). This is true for both internalizing and externalizing psychopathology, as 

poverty is associated with greater aggression, oppositional behavior, depression, and anxiety 

(Letourneau et al., 2013; McLaughlin et al., 2011; Piotrowska, Stride, Croft, & Rowe, 2015). 

Although these linkages have been well studied across different disciplines, the developmental 

pathways of this poverty-related risk are poorly understood. 

Surveying a growing body of multidisciplinary research conducted from a 

biopsychosocial perspective, stress exposure is a strong predictor of psychopathology (e.g., 

(Ozer, Best, Lipsey, & Weiss, 2003) and may be important to consider when conceptualizing 

associations between poverty and psychopathology. Throughout development, higher stress is 

common in low-SES contexts. For example, studies of large adult cohorts (of several thousand) 

have noted strong links between socioeconomic position and negative life events (Lantz, House, 

Mero, & Williams, 2005; Orpana & Lemyre, 2004). Looking at children and families, the 

frequencies of negative life events are also greater in low-income contexts (Dubow, Tisak, 

Causey, Hryshko, & Reid, 1991; Guerra et al., 1995). By one estimate, low-income families 

experience 35% more negative life events in one year than their middle-income counterparts 

(Attar et al., 1994).  

Thinking about stress exposure and psychopathology, experiences of early adversity (e.g., 

the multiple stressors associated with poverty; maltreatment) also may affect how individuals 
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respond to subsequent life stressors and heighten risk for poor mental health (Hammen, 2018; 

Monroe & Harkness, 2005). For example, women with exposure to one or more childhood 

adversities (e.g., family violence, parental psychopathology) were more likely to become 

depressed following less total stress than women without such adversity (Hammen, Henry, & 

Daley, 2000). Additional evidence has accumulated validating these “stress sensitization 

models,” with many groups finding interactions between childhood adversity and 

contemporaneous stress predicting significant increases in psychopathology (Dougherty et al., 

2004; Espejo et al., 2006; Harkness, Bruce, & Lumley, 2006; Kendler et al., 2004; Rudolph & 

Flynn, 2007). While these associations were initially seen for depression, stress sensitization 

effects are also present for PTSD and other anxiety disorders (N = 34,653; McLaughlin et al., 

2010), as well as externalizing symptomatology (N = 18,713; Meyers et al., 2015).  

Although we know that stress exposure is linked to psychopathology, and poverty is 

related to higher stress, more work is needed to identify how child poverty and stress exposure 

contribute to increased rates of psychopathology in lower SES contexts. In considering past 

research, there are three notable gaps in previous studies. First, the core psychosocial processes 

underlying stress sensitization are unclear. Emotion dysregulation may be one important pathway 

linking developmental variations in stress exposure to later psychopathology. The ability to 

regulate emotions is critical to successful development, with poor emotion regulation creating 

transdiagnostic risk for different forms of psychopathology (for conceptual discussion and 

review, see Beauchaine & Zisner, 2017). Second, these models have been most commonly talked 

about in samples exposed to maltreatment, but stress sensitization could similarly be taking place 

in the context of child poverty. For example, research teams (see McCrory & Viding, 2015) 

focused on maltreatment have argued that this type of adversity may create a “latent 
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vulnerability” for poor mental health. Third, few studies focused on stress-sensitization have 

centered on neurobiological processes. Initial research found that early adversity (specifically 

child maltreatment) increases reactivity to acute stress through physiological pathways, such as 

alterations in blood pressure (Gooding et al., 2015; Leitzke et al., 2015), cardiac output 

(McLaughlin et al., 2014), and cortisol release (Heim et al., 2008; Tarullo & Gunnar, 2006). 

However, few studies have specifically examined how early adversity may relate to changes in 

the brain, and then how these changes in the brain, in the context of more contemporaneous 

stress, increase the incidence of psychopathology. Such gaps are important to fill as the brain is 

positioned to mediate the effects of external stressors, especially those psychosocial in nature, on 

such physiological pathways. To these ends, by considering neurobiological and environmental 

risk factors as interactive diatheses that cut across multiple developmental spheres to influence 

outcomes (e.g., Starr, Hammen, Conway, Raposa, & Brennan, 2014), important progress might 

be made in conceptualizing, treating, and, ultimately, preventing the mental health challenges 

commonly seen in those exposed to poverty and related stressors. 

 

Emotion Dysregulation: Core Processes Connections to Psychopathology  

In thinking about stress sensitization effects, emotion regulation likely plays a critical 

role in our responses to stress, by helping individuals motivate and organize behavior (Cicchetti, 

Ackerman, & Izard, 1995). Regardless of one’s current stress load or developmental history of 

exposure to stress, an individual must regulate their emotional responses (volitionally or 

unconsciously), all in the service of adaptive behavior (Eisenberg & Spinrad, 2004; Thompson, 

1994). This response is multifaceted in nature, involving monitoring, evaluating, and modifying 

our emotional states and expressions to appropriately fit different contexts and situations (Gross, 
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1998; Ochsner & Gross, 2005). Emotion dysregulation is a pattern of emotional experience 

and/or expression that interferes with accomplishing a goal (Beauchaine, 2015). This may be due 

to challenges in cognitive, social, or behavioral processes, including shifting attention from an 

over-arousing situation, failing to use memories and associations when needing to change 

emotions, struggling to reappraise emotionally negative situations, or failing to take instrumental 

action to relieve frustration (Cole, Hall, & Hajal, 2017).  

The consequences of emotion dysregulation may be quite profound, as this may cause 

emotions to interfere with adaptive behavior, that are contextually inappropriate, and/or that 

change too abruptly or too slowly (Cole, Hall, & Hajal, 2017). Emotion dysregulation could then 

contribute to maladaptive decision-making and interpersonal behaviors, as well as cause 

significant distress for individuals (Leshin & Lindquist, 2019). Given these connections, it is 

perhaps not surprising that emotion dysregulation plays an etiological role for many different 

mental health issues (Aldao, Gee, De Los Reyes, & Seager, 2016; Hostinar & Cicchetti, 2019). 

This is true for disorders on both the internalizing and externalizing spectrum (including major 

depressive disorder, generalized anxiety disorder, alcohol-related disorders, and substance-

related disorders, see Aldao, Nolen-Hoeksema, & Schweizer, 2010, for strong meta-analytic 

work on the topic).  

 

Poverty and Emotion Dysregulation: Direct and Indirect Pathways 

Considering the developmental pathways leading to emotion dysregulation, 

environmental experiences may impact critical processes and systems relevant for emotion 

processing and regulation. As a starting point, early parenting practices, caregivers’ reactions to 

children’s emotions, and the overall quality of a parent-child relationship may influence emotion 
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regulation (Morris, Silk, Steinberg, Myers, & Robinson, 2007; Thompson & Meyer, 2007). 

Children may learn maladaptive patterns and be set on a trajectory toward emotion dysregulation 

through observing and modeling parents and peers (Calkins, & Hill, 2007; Crick & Dodge, 1994; 

Dodge, 2014).  Regarding lower socioeconomic status and poverty, this adversity has been found 

to increase emotion dysregulation by impacting youths’ developing sense of self, coping skills, 

and interpersonal competencies (as reviewed in Wadsworth, Evans, Grant, Carter, & Duffy, 

2016). Indeed, children from low-SES families tend to carefully monitor their environment for 

danger and maintain a low threshold for judging situations as threatening (Chen & Matthews, 

2003; Chen et al., 2006). When confronted with ambiguous stimuli, whose threat value is 

uncertain, low-SES youth often exhibit larger cardiovascular responses than higher SES youth 

(Chen et al., 2004).  

Additionally, there are a host of risk factors correlated with poverty, including harsher 

family climates, neighborhood violence, child maltreatment and so on (Conger & Donnellan, 

2007; Owens & Shaw, 2003). These experiences could all contribute to differences in attentional 

and arousal processes, as well as coping and deployment of emotion regulation strategies 

(Cicchetti, 2013; McLaughlin & Lambert, 2017; Messman‐Moore & Bhuptani, 2017). Such 

patterns have been confirmed in investigations working at multiple levels of analysis (including 

psychophysiology and neurocognitive assessments; for review, see Pollak, 2015), as well as in 

longitudinal investigations (e.g., Kim, & Cicchetti, 2010; Kim‐Spoon, Cicchetti, & Rogosch, 

2013). Collectively, whether it be through parents and peers, higher levels of cumulative stress, 

or potential exposure to harsh family climates, poverty and lower socioeconomic status could 

increase emotion dysregulation and then contribute to risk for psychopathology. These changes 

could then leave impoverished youth vulnerable in the face of future stress. 
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Emotion Neurobiology: Basic Processes and Relations with Early Adversity 

In thinking about neurobiological processes related to emotion dysregulation and stress-

sensitization, there is strong evidence underscoring the importance of two critical nodes in the 

corticolimbic brain circuit in multiple emotion-related processes: the amygdala and the vmPFC. 

Situated in the anterior portion of the temporal lobes, the amygdala is an information-processing 

hub, involved in both physiological and behavioral response to environmental and social 

challenges (Hariri, 2009; Ledoux, 2000). This includes, but is not limited to, detecting potential 

environmental danger and adjusting levels of vigilance. Meta-analyses of functional 

neuroimaging studies in humans find the amygdala is activated by a number of negative 

emotions, including the processing of anger and fear (Lindquist et al., 2012). Furthermore, 

individuals with various mood and anxiety disorders (e.g., major depressive disorder, MDD; 

generalized anxiety disorder, GAD; post-traumatic stress disorder, PTSD) and some autism 

samples have shown greater amygdala responses to facial displays of fear and anger than 

individuals without psychiatric disorders or autism (Etkin & Wager, 2007; Hamilton et al., 2012; 

Karl et al., 2006; Woon & Hedges, 2009). Relevant for models of stress-sensitization, a 

longitudinal study in young adults found amygdala activity interacted with stress exposure to 

predict internalizing symptomatology 1 to 4 years later (Swartz, Knodt, Radtke, & Hariri, 2015). 

Individuals with higher amygdala activity and higher exposure to stress had the greatest increase 

in symptoms of depression and anxiety over this time period.  

Exerting a top-down, inhibitory influence on the amygdala, the vmPFC is a portion of the 

prefrontal cortex that aids in emotion regulation (Davidson, Putnam, & Larson, 2000; 

Ghashghaei & Barbas, 2002; Milad & Quirk, 2012). Work in non-human animals suggests 
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damage to the vmPFC impairs the ability to decrease (and eventually extinguish) behavioral 

responses to cued fear conditioning (for review, see Milad & Quirk, 2012 and Sotres-Bayon, 

Cain, & LeDoux, 2006). Supporting these results, neuroimaging work in humans has found 

increases in activity in the vmPFC occurring during the extinction of cued fear responses 

(Kalisch et al., 2006; Phelps, Delgado, Nearing, & Ledoux, 2004) and the reappraisal of negative 

emotions (Johnstone, Van Reekum, Urry, Kalin, & Davidson, 2007; Urry et al., 2006). 

Moreover, the structure and function of the vmPFC are related to different mental health issues, 

including forms of addiction, depression, and Post-Traumatic Stress Disorder (for review, see 

Hiser & Koenigs, 2017). 

Turning to potential neurobiological alterations related to lower SES contexts and the 

stressors associated with poverty, a number of investigations have focused on the brain circuitry 

involved with emotion processing and regulation, such as the amygdala and vmPFC. For 

example, there have been multiple reports of smaller volumes in the amygdala and vmPFC in 

relation to childhood exposure to poverty (Edmiston et al., 2011; Hanson et al., 2015A; Holz et 

al., 2015; Luby et al., 2013). Relatedly, Dufford and Kim (2017) found reduced fractional 

anisotropy, a measure of structural integrity, in white matter tracts connecting the vmPFC and 

amygdala after exposure to poverty in middle childhood. In terms of amygdala function, there is 

evidence showing an association between child poverty and increased adult amygdala activation 

to emotional stimuli (Gianaros et al., 2008; Javanbakht et al., 2015). Similarly, SES-related 

measures have also been linked to differences in vmPFC activation during fMRI tasks. In a 

sample of adults aged 31-54, lower parental education was related to reduced dorsal anterior 

cingulate-vmPFC and dorsolateral prefrontal cortex-vmPFC connectivity during positive 

feedback in a reward task (Gianaros et al., 2011). 
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Importantly, while many studies found that childhood poverty is associated with 

alterations in the structure and function of the amygdala and vmPFC, fewer investigations have 

focused on the functional connectivity between these two brain regions. This is notable since 

disrupted amygdala-prefrontal functional connectivity has been reported in multiple forms of 

psychopathology (Gold et al., 2016; Stevens et al., 2013). Furthermore, many studies focused on 

other forms of adversity (e.g., maltreatment) have noted differences in the resting state coupling 

between amygdala and vmPFC. For example, Herringa et al. (2013) found that maltreatment was 

related to lower amygdala-vmPFC connectivity in females at 18 years of age, and this altered 

connectivity mediated the development of internalizing symptoms. Earlier in development, 

exposure to more stressful life events was related to decreased functional coupling between the 

amygdala and vmPFC in a sample of children between four to eight years of age (Park et al., 

2018). Analogous patterns have also been noted in urban youth, age 9-15, exposed to trauma 

(Thomason et al., 2015).  

Integrating across these studies, alterations in vmPFC-amygdala resting connectivity may 

index diminished capacity to down-regulate maladaptive emotional responses to environmental 

challenges. There has, however, been limited work focused on impoverished samples during 

childhood and adolescence. Studies focused on poverty and using resting state connectivity could 

fill in these important gaps and provide new insights about the impact of experience on brain 

organization. Spontaneous brain activity (assessed at rest) is highly correlated between multiple 

brain regions, predicts task-response properties of neural circuits, and can identify subjects’ 

aptitude for different cognitive tasks (Fox & Greicius, 2010). Thinking about stress exposure and 

sensitization, different forms of psychopathology often are being preceded by life events that 

possess a high degree of threat and unpleasantness (Hammen, 2005; Kessler, 1997; Monroe & 
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Reid, 2008; Paykel, 2003); thus, effective regulation of negative emotion, potentially through 

vmPFC-amygdala pathways, is critical to preventing increases in symptoms of various mental 

health issues.  

 

The Current Study 

Motivated by these different bodies of research, we turn to an ethnically and 

socioeconomically diverse sample of youth currently enrolled in a longitudinal study of family 

processes and child development (the Parenting Across Cultures study). First, to investigate links 

between poverty and neurobiology, we examined the correlation between variations in SES 

measured in middle childhood and resting state fMRI measured in adolescence. We specifically 

focused on amygdala-vmPFC connectivity as this functional coupling has been related to 

different forms of emotion dysregulation. On the basis of this past research, we hypothesized that 

lower SES would be related to lower coupling between these brain regions. Second, we tested 

the hypothesis that exposure to more contemporaneous stress, at the time of the neuroimaging 

session, would moderate the association between vmPFC-amygdala connectivity and 

psychopathology. We also investigated the competing hypothesis that vmPFC-amygdala 

coupling would be related to different symptom-level indicators of psychopathology (without 

moderation by recent stress exposure). 

 

Method 

Participants 

Participants for this neuroimaging project were recruited from a larger, prospective 

longitudinal study of parenting and child adjustment (the Parenting Across Cultures, PAC, study, 
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see http://parentingacrosscultures.org for an overview). Specifically, participants were recruited 

from Durham, North Carolina, formerly a manufacturing hub in the tobacco industry and still, 

largely, a working-class city. Durham’s population is 250,000, located in a larger metropolitan 

area of North Carolina with a population of 1.2 million. For the full PAC study, university IRB 

approval and approval from the appropriate elementary school authorities was obtained and then 

families were recruited from 15 socioeconomically diverse public and 2 private elementary 

schools using recruitment letters written in both English and Spanish. Participating families were 

African American, European American, and Hispanic. The full Durham PAC cohort was 311 

families: 109 European American, 103 African American, and 99 Hispanic. Following this initial 

assessment, children and parents were interviewed annually; as of this writing, 8 waves of 

interviews have been completed. For this neuroimaging project, all participants at the Durham 

site were offered the opportunity to participate in this supplemental study. Ninety-two families 

chose to participate in this neuroimaging sub-project. Compared to the full PAC sample, youth in 

this sub-project were more likely to be European American (χ² = 9.1, p = 0.02) and from more 

affluent households (t = 2.2, p = 0.02), but did not differ on other variables of interest (all other 

ps > 0.07). Of note, early family income was missing from 5 participants, therefore our sample 

size with usable data was n = 87. Table 1 presents the demographic characteristics of these 

families at the initial assessment.  

 

Procedure 

Study Design and Data Overview. The current study was a supplemental project that 

recruited PAC participants six years after the start of that project. Here, we connected 

neuroimaging to longitudinal data collected at four PAC study time-points: when participants 

http://parentingacrosscultures.org/
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were approximately age 10, 13, 15, and 16 years of age (Study Waves 2, 5, 6, and 7). The wave 2 

and 6 timepoints leveraged parental self-reports (participant age: 10 and 15). The wave 5 and 7 

timepoints focused on child self-report data (participant age: 13 and 16).  

Self-report measures. Each timepoint focused on self-report questionnaires to assess 

experiences and behavior, including: Family Information Form (specifically information about 

yearly household income; Wave 2); the Life Events Scale (Dodge, Pettit, & Bates, 1994; Wave 

6); and the Youth Self-Report (YSR; Achenbach & Rescorla, 2001; Waves 5 & 7). Of note, we 

used parental reports (only) from the Family Information Form and the Life Events Scale. These 

different measures were correlated and connected to neuroimaging data collected near Wave 6 of 

the project (participants were between 13 and 16 years; additional information in Table 1). 

Socioeconomic Status. Socioeconomic status was measured via the Family Information 

Form. For this measure, parents selected an answer to the question “indicate the gross annual 

income of your family” on a ten-point scale with options ranging from “up to $5000” to “beyond 

$81,000.” We specifically focused on yearly household income at PAC Wave 2 (mean 

participant age = 10.04 +/-0.54 years; range = 8.78-10.9), as this was the earliest study time-

point when this information was collected.  

Stressful Life Events. To identify stressful events that families had encountered in the past 

year, parents completed the Life Events Scale. Questions followed a dichotomous yes/no format 

for parents to indicate the occurrence of 19 difficult events. This list of life events included: 

moving, major repairs/remodeling to home, severe and/or frequent illness for any child in the 

home, accidents and/or injuries for any child in the home, other medical problems for any child 

in the home, medical problems for close family members, death of close family member (or 

other important person), divorce and/or separation for the child’s parent and her/his 
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husband/wife, parent and child were separated (due to illness, divorce, work, etc.), money 

problems that made it hard to pay for basic living expenses, legal problems, problems and 

conflicts with relatives, birth of a baby, problems at school for child, problems at work for 

parents, loss of a job, remarriage or marital reconciliation, and participation in any parenting 

programs. The total number of “yes” answers were summed, with higher scores indicating 

greater numbers of experienced stressful life events. Given our interest in “stress sensitization,” 

we examined this variable at PAC Wave 6 (mean participant age = 15.4 +/-0.63 years; range = 

13.82-16.44), which was near or after the collection of the neuroimaging data. Reliability for this 

measure was α=0.43. 

Child Behavior. To measure problem behaviors, child participants completed the widely 

used YSR. For this measure, Adolescents completed the 29-item internalizing subscale and the 

30-item externalizing subscale (Achenbach, Dumenci, & Rescorla, 2003). Informants rate to 

what extent each item is applicable (0 = not true, 1 = somewhat true, and 2 = very true). We 

examined this approximately one year after the neuroimaging session (mean participant age = 

16.38+/-0.61 years; range = 15.07-17.62). We also used this measure before the neuroimaging 

session (mean participant age = 13.8+/- 0.571 years; range = 12.42-14.83) to control for pre-

existing levels of problem behaviors.  Reliability for this measure was high before and after the 

neuroimaging session (one year after the neuroimaging session α = 0.95; before the 

neuroimaging session α = 0.94). 

 

Magnetic Resonance Imaging Data. Structural and functional MR images were 

acquired at the Duke-UNC Brain Imaging and Analysis Center (BIAC) on a 3.0 Tesla General 

Electric scanner (Signa EXCITE, GE Healthcare; Waukesha, WI, USA). In regards to brain 
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anatomy, high-resolution T1- weighted anatomical images were acquired with 162 axial slices 

using a fast-spoiled gradient echo pulse sequence (TR=7.584 ms; TE=2.936 ms; FOV=256 mm; 

image matrix=256 256; voxel size=1x1x1 mm; flip angle=121) and were used for normalization 

and co-registration with the functional data. During acquisition, this image was aligned in a near 

axial plane defined by the anterior and posterior commissures. Whole-brain functional images 

were then acquired using a SENSE inverse-spiral sequence (TR=2000 ms; TE=32 ms; FOV=256 

mm; image matrix, 64x64; flip angle=77°; voxel size, 4.0x.4.0x4.0 mm; 34 axial slices). The 

resting-state functional scan was 364 seconds long, and participants were instructed to rest 

comfortably with their eyes open while viewing a gray fixation cross. A semi-automated high-

order shimming program ensured global field homogeneity. 

Neuroimaging Preprocessing and Analysis. The acquired fMRI data were then processed 

by using tools in the FMRIB Software Library (FSL; http://www.fmrib.ox.ac.uk/fsl; Jenkinson et 

al., 2012; Smith et al., 2004) and were customized using Matlab code developed in-house 

(MathWorks, Natick, Massachusetts). This processing scheme was developed in service of long-

term reproducibility of resting state connectivity (see Chou, Panych, Dickey, Petrella, & Chen, 

2012, information and scripts available at: 

https://wiki.biac.duke.edu/biac:analysis:resting_pipeline). In brief, the first four volumes of each 

functional imaging dataset were discarded to allow for magnetic field stabilization. Slice-timing 

correction, motion correction, intensity normalization, brain extraction, and smoothing (6mm 

Gaussian blur) were then performed using FSL (version 5.0.1, specifically slicetimer, mcflirt, 

fslmaths, and bet). Of note, after motion correction, the 6 motion parameters were then regressed 

out of each individual voxel using linear regression. Participants’ anatomical scans were then 

nonlinearly registered using FNIRT to the MNI-152 template (2mm). Resulting warping 

http://www.fmrib.ox.ac.uk/fsl
https://wiki.biac.duke.edu/biac:analysis:resting_pipeline
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parameters were then applied to the functional volumes. Next, the signal from white matter and 

cerebrospinal fluid masks (generated from FMRIB’s Automated Segmentation Tool, FAST) 

were regressed out of the resting state volumes, using the same method as the motion parameters. 

Finally, data were bandpass filtered between 0.008 and 0.1 Hz using custom python scripts. 

Motion was censored at 0.2 millimeters between frames, using the derivative and euclidean 

norm. Participants were excluded if >20% of frames were censored (n = 1), yielding at least 5 

minutes of resting state data. Of further note, given recent controversies in the field, we chose 

not to regress global signal intensity (Saad et al., 2012). 

We next extracted the time course of the amygdala at rest, using a bilateral probabilistic 

region of interest from the Harvard–Oxford subcortical atlas (distributed with FSL; threshold at 

50%). For each participant, a regression was performed including this bilateral amygdala time 

course in Analysis of Functional NeuroImages (AFNI; Cox, 1996), generating subject-level 

maps of the correlations between this region’s time course and every other voxel’s time course. 

Next, these subject-level maps were Fisher z-transformed and entered into a whole-brain linear 

regression as the dependent variable; household income when participants were approximately 

10 years of age was entered as the independent variable. This whole-brain regression yielded t-

statistics at each voxel noting associations between resting state coupling (for a bilateral 

amygdala seed) and household income.  

For these analyses, we limited our search space using a whole-brain gray matter mask 

(thresholded at 50%). To correct for multiple comparisons, we deployed AFNI’s 3dClustSim 

using cluster-size thresholding based on Monte Carlo simulation and new, mixed-model (non-

Gaussian) auto-correlation functions and used an initial, uncorrected statistical threshold of p < 

.01 (Cox, Chen, Glen, Reynolds, & Taylor, 2017). Based on this threshold, the number of 
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comparisons in our mask, and the smoothness of our imaging data, a minimum cluster size of 

160 voxels was required to have a corrected p ≤ .05. For any regions above this threshold, mean 

functional connectivity estimates were then extracted by averaging across every voxel in each 

regional cluster. These procedures are in keeping with other past reports from our group (e.g., 

Hanson et al., 2019). 

 

Statistical Analysis 

Linear regression models were next constructed (outside of FSL and AFNI) using the R 

statistical package (http://cran.r-project.org). These models examined associations between 

household income, amygdala connectivity, child behavioral problems, and contemporaneous 

stress exposure. First, we examined associations between household income when participants 

were approximately 10 years of age (entered as an independent variable) and resting state 

coupling for any brain regions above our multiple comparisons threshold (mean coupling for 

each regional cluster, entered as the dependent variable). While primarily confirmatory in nature, 

these regressions allowed us to visually check and test for potential outliers, and to see if the 

inclusion of child sex or ethnicity reduced any associations (both entered as independent 

variables). Next, based on our interest in stress-sensitization, we tested if contemporaneous stress 

exposure moderated associations between child behavioral problems and amygdala connectivity 

(for any brain regions above our multiple comparisons threshold). To be concrete, in two 

separate regression models, child behavioral problems (internalizing or externalizing total scores, 

when participants were approximately 16 years of age) were entered as the dependent variable, 

while child sex and ethnicity, amygdala connectivity, contemporaneous stress exposure (when 

participants were approximately 15 years of age), and the interaction between amygdala 

http://cran.r-project.org/
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connectivity and contemporaneous stress exposure were entered as independent variables. 

Finally, we examined associations between child behavioral problems when participants were 

approximately 16 years of age (internalizing and externalizing total scores, entered in separate 

models, as independent variables) and any brain regions above our multiple comparisons 

threshold (again, entered as the dependent variable). In full transparency, we did not predict that 

there would be simple (main effect) associations between psychopathology and resting state 

variables; however, we wanted to complete these analyses as a form of “competing hypothesis” 

(in contrast to our predictions for stress-sensitization).  

 

Results 

Whole-Brain Connectivity Results 

Voxelwise analyses of resting-state fMRI data revealed that the functional coupling for 

the bilateral amygdala was related to early household family income. Specifically, and as 

predicted, lower income at age 10 was related to lower connectivity between the bilateral 

amygdala and the vmPFC (peak at x = -4, y = +36, z = -16, cluster size = 187, max voxel t = 

4.153) at age 15. Of note, this relation remained significant after controlling for race/ethnicity 

and sex (t = 3.54, p < .005). In addition to the lower coupling for vmPFC, early household family 

income was also related to greater connectivity between the bilateral amygdala and two other 

brain regions: (a) the paracingulate gyrus (peak at x = +10, y = +10, z = +50, cluster size = 434, 

max voxel t = 4.136); and (b) the putamen (peak at x = +22, y = +4, z = -8, cluster size = 284, 

max voxel t = 4.315). Effects were, again, similar when controlling for race/ethnicity and sex (all 

ps < 0.005). These associations are depicted in Figure 1 (surface-based renderings). Figure 2 

depicts a scatterplot for our a priori focus, amygdala-vmPFC resting state coupling. 
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Moderation Analyses (Tests of Stress-Sensitization) 

Given that lower household income was related to differences in emotion regulatory 

neurobiology, we next sought to test the potential behavioral consequences of this brain 

difference. We investigated if brain differences interacted with later stress exposure to predict 

symptoms of internalizing psychopathology. For these analyses, we constructed linear regression 

models examining the main effect of amygdala-vmPFC resting state coupling, stress exposure at 

or after the time of the neuroimaging session (parental report), and the interactions of these two 

factors. We predicted that higher rates of later psychopathology would be seen only when a 

participant had faced higher, recent stress and showed lower amygdala-vmPFC resting coupling. 

In line with our hypotheses, there was a significant interaction of amygdala-vmPFC resting state 

coupling and stress exposure in predicting youths’ later self-report of internalizing symptoms (β 

= -0.274, t = 3.257, p = 0.0017). There was no simple (main effect) association between 

internalizing and amygdala-vmPFC resting state coupling (p = 0.382) or stress-exposure (p = 

0.518). This interaction is shown in Figure 3. Simple slope analyses revealed that stress-exposure 

had a significant and positive correlation with youth reports of internalizing when amygdala-

vmPFC resting state coupling was at below-average levels (at -1 SD below the mean of 

amygdala-vmPFC resting state coupling, the simple slope = 3.241, SE = 1.124, t = 2.88, p = 

0.005); however, at average or above average (+1 SD) levels of amygdala-vmPFC resting state 

coupling, this relation was not statistically significant (at +1 SD above the mean of amygdala-

vmPFC resting state coupling, the simple slope = -2.15, SE = 1.43, p = 0.13, and at the mean, the 

simple slope = 0.541, SE = 0.98, p = 0.58).  
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In addition to youth reports of internalizing, we also examined if brain differences 

interacted with later stress exposure (again, as measured by parental report) to predict symptoms 

of externalizing psychopathology. Similar to the results for internalizing symptomatology, there 

was a significant interaction of amygdala-vmPFC resting state coupling and stress exposure in 

predicting youths’ self-reported symptoms (β = -0.203, t = 2.007, p = 0.048). Again, there was no 

simple (main effect) association between externalizing and amygdala-vmPFC resting state 

coupling (p = 0.96) or stress-exposure (p = 0.84). However, in contrast to the simple slope 

analyses with internalizing symptoms, no simple slopes from the interaction groups were 

significant (-1 SD amygdala-vmPFC resting state coupling, p = 0.2; mean amygdala-vmPFC 

resting state coupling, p = 0.79; +1 SD amygdala-vmPFC resting state coupling, p = 0.18). These 

effects were, however, in a similar direction, as stress-exposure had a positive correlation with 

youth reports of externalizing when amygdala-vmPFC resting state coupling was at below-

average levels (at -1 SD below the mean of amygdala-vmPFC resting state coupling, the simple 

slope = 1.07, SE = 0.846, t = 1.27).  

Speaking to the specificity of these associations, interactions between stress exposure and 

resting state coupling between the amygdala and other brain regions (paracingulate; putamen) 

were not significant in predicting internalizing (interactions of all ps < 0.48) and externalizing 

(interactions of all ps < 0.25) symptoms. 

 

Competing Analyses (Non-Moderated Models)  

In a series of competing hypotheses, we also tested the associations between resting-state 

functional coupling and symptoms of psychopathology in regression models that did not include 

interaction terms. Related to our primary brain variable of interest, amygdala-vmPFC functional 



SES & RESTING STATE  21 

coupling was not significantly associated with internalizing (p = 0.54) or externalizing (p = 0.84) 

symptoms. We also explored associations with psychopathology for amygdala-paracingulate 

coupling and amygdala-putamen coupling. There were no associations between these brain areas 

and internalizing symptoms (all ps < 0.49). Similarly, there were no significant relations between 

these regions and externalizing symptoms (all ps < 0.82). 

 

Discussion 

Grounding our work in stress sensitization and emotion dysregulation perspectives, we 

provide novel evidence regarding the developmental pathways through which lower 

socioeconomic status and exposure to child poverty play a precipitating role in the development 

of poor mental health. We focused on poverty-related alterations in functional coupling between 

neurobiological nodes involved with emotion reactivity and regulation, and the degree to which 

these alterations sensitize individuals to the deleterious impacts of stressful life experiences. In 

regards to neurobiology, we found that lower household income in middle childhood (age 10) 

was related to lower coupling between the amygdala and vmPFC in adolescence (age 15). Such a 

finding is particularly important given that past research has noted variations in this functional 

coupling are often related to different forms of emotion dysregulation. We also demonstrated that 

lower coupling between the amygdala and vmPFC interacted with more recent exposure to 

stress, to predict increases in internalizing problems (age 16). There was also evidence that a 

similar interaction existed in relation to externalizing problems. Collectively, these results 

provide powerful evidence of the transactions between neurobiological, environmental, and 

psychosocial processes and how such interactions may convey risk for psychopathology.  
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Thinking first about the neurobiological correlates of household income that we noted, 

structural and functional alterations in the amygdala and vmPFC may have significant behavioral 

consequences across development. Research in rodents indicates that portions of the vmPFC 

inhibit amygdala-based responses (Milad & Quirk, 2012). These patterns connect to a number of 

neuroimaging studies that suggest activity in the vmPFC and amygdala are inversely related 

during the extinction of conditioned fear (e.g., Kalisch et al., 2006; Phelps et al., 2004). 

Furthermore, research in healthy adolescents and adults has found greater vmPFC activity, in 

combination with reduced amygdala activity, to be associated with reduced negative affect and 

the intentional suppression of negative emotions (Johnstone et al., 2007; Pitskel et al., 2011; Urry 

et al., 2006; also as reviewed in Hiser & Koenigs, 2018). Altered functional connectivity 

between these regions may represent a lessened ability for “top-down” emotion regulatory 

structures, like the vmPFC, to exert an influence on “bottom-up” emotion reactivity regions like 

the amygdala. This lower influence may mean greater neural (and behavioral) responses to 

environmental threats and other negatively-valanced stimuli.  

Related to past research on early adversity, our reported results connect to and expand on 

both behavioral and neurobiological findings. In regards to the amygdala and vmPFC, structural 

alterations have also been commonly reported in these regions for individuals exposed to 

different forms of early adversity, including child poverty (Hanson et al., 2010; Hanson et al., 

2015A; Holz et al., 2014; for review, also see Palacios-Barrios & Hanson, 2019). In terms of 

brain function, increased amygdala activation has been reported after exposure to child poverty 

(Kim et al., 2013), as well as child maltreatment (Dannlowski et al., 2012; McCrory et al., 2011). 

For functional connectivity, Herringa and colleagues (2013) found resting state coupling between 

these regions was lower for adult female participants reporting experiences of maltreatment 
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during childhood. Burghy et al. (2012) similarly reported that greater childhood adversity 

predicted increased childhood cortisol levels, which then predicted lower amygdala and vmPFC 

coupling 14 years later. More recently, Park and colleagues (2018) found more adverse 

experiences, measured cross-sectionally, were related to lower amygdala and vmPFC coupling in 

middle childhood. These patterns fit with structural connectivity work by Dufford and Kim 

(2017) that found exposure to poverty was associated with reduced integrity in the white matter 

tracts connecting the vmPFC and amygdala in middle childhood. 

Behaviorally, our results connect to past work on emotion dysregulation in impoverished 

samples. Exposure to poverty is connected to lessened emotion regulation and coping skills, 

differences in threat sensitivity and altered cardiovascular responses to threat. Changes in the 

amygdala and vmPFC coupling may be neural markers of these behavioral processes and/or 

explain the development of negative behaviors over the course of development. More broadly, 

our findings suggest a neurobiological mechanism that may connect experiences of child poverty 

to later mental health issues. Altered functional connectivity within the brain’s threat-detection 

and regulation circuitry may, over time, give rise to difficulties in the processing and regulation 

of emotion, causing poverty-exposed individuals to experience greater negative mood and affect 

especially after exposure to more contemporaneous stress.  

This study also connects to past work on stress sensitization. Accumulating evidence has 

found contemporaneous life stress may interact with early adversities and then cause subsequent 

increases in symptoms and formal diagnoses of different mental health issues (e.g., internalizing; 

externalizing; Grasso, Ford, & Briggs-Gowan, 2012; McLaughlin et al., 2010). The strongest 

evidence of stress sensitization comes from different studies examining stress exposure in 

relation to self-report and clinical ratings of psychopathology. Additional work has also found 
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changes in blood pressure, cardiac functioning, and the functioning of the hypothalamic-

pituitary-adrenal axis in connection to multiple exposures to stress. While important, many of the 

past results can be seen as the output of stress-response systems. Fewer reports have provided 

neurobiological evidence for the idea of stress sensitization after child adversity. For example, 

Hanson and colleagues (2015B) found that the structural connectivity between the amygdala and 

vmPFC (as indexed by fractional anisotropy) was lower in young adults who retrospectively 

reported experiences of child maltreatment and child trauma. In that work, these investigators 

then demonstrated individuals with lower structural connectivity who subsequently experience 

stressful life events reported higher levels of internalizing symptomatology at follow-up. 

Situating our findings in the multiple levels of analyses central to a developmental 

psychopathology perspective, our results provide further neurobiological evidence related to this 

theory.  

Connected to stress-sensitization, neurobiology, and psychopathology, and in contrast to 

past reports (Hanson et al., 2015B; 2018; Ho et al., 2017), we found significant interactions 

between neurobiology and stress exposure for both internalizing and externalizing symptoms. It 

is unclear if these previous reports have robustly interrogated both forms of “broad band” 

psychopathology, or if the associations were only present for internalizing symptoms and 

diagnoses. Collectively, the reported results underscore that neurobiological changes may be 

taking place in relation to stress sensitization, and this may explain the increase in symptoms of 

psychopathology commonly reported in samples exposed to early, and then more recent, life 

stress.  

Relevant for psychopathology, the findings presented here underscore the importance of 

corticolimbic connectivity in relation to different types of affective and behavioral dysregulation. 
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For internalizing psychopathology, a number of past reports have found lower structural and 

functional connectivity between the amygdala and vmPFC in those presenting with major 

depressive, generalized anxiety or social anxiety disorders (Etkin & Schatzberg, 2011; Tromp et 

al., 2012). These patterns fit nicely with a recent report by Connolly and colleagues (2017) that 

found depressed adolescents showed reduced amygdala vmPFC connectivity, compared to 

healthy comparison subjects. Similarly, depressed adolescents displayed reduced vmPFC 

functional connectivity during emotional reappraisal of negative images (Perlman et al., 2012). 

Importantly, similar patterns are often noted in externalizing psychopathology. For example, 

adults with psychopathy show lower functional connectivity between the amygdala and vmPFC 

at rest (Motzkin, Newman, Kiehl, & Koenigs, 2011), as well as during socioemotional reactivity 

tasks (Kiehl et al., 2001; Yoder, Harenski, Kiehl, & Decety, 2015). In interesting recent work by 

Waller et al. (2017), lower functional connectivity between the amygdala and vmPFC during the 

processing of different emotional facial expressions was prospectively related to psychopathic 

traits in a racially-diverse, low income male sample. In toto, strong evidence suggests 

neurobiological signatures of effective emotion regulation, with alterations in amygdala and 

ventromedial prefrontal connectivity associating with both internalizing and externalizing forms 

of psychopathology. Lower functional coupling between these areas may connect to increases in 

negative affect and this may eventually give way to symptoms of depression and anxiety, as well 

as aggression and disruptive behavioral outbursts.  

Thinking about future research, we believe continued work in line with and building on 

the current study could advance knowledge of basic scientific issues, as well as applied questions 

related to atypical development and different forms of psychopathology. This additional 

information will likely come through research focused on neurobiology, emotion dysregulation 
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and related constructs, as well as research that integrates insights from multiple levels of 

analysis. 

In regard to neurobiology and risk for psychopathology, our neuroimaging data connect 

to many “neuro-maturational” theories focused on risk for poor mental health across 

development. These models argue that different developmental trajectories for subcortical versus 

cortical brain structures (e.g., amygdala versus prefrontal cortex) may lead to poor mental health 

(for thoughtful discussion, see Beauchaine, Constantino, & Hayden, 2018). We speculate that 

aberrant connectivity between the amygdala and vmPFC may be due to the stressors associated 

with poverty impacting the development of the prefrontal cortex. While we do not have direct 

evidence related to this idea, the prefrontal cortex has a particularly protracted post-natal 

developmental timeline (for review, see Marín, 2016) and has been shown to be impacted by 

poverty and the stressors associated with poverty (e.g., Hanson et al., 2012; Hanson et al., 2013). 

However, we believe a great deal of additional work is needed related to this conjecture (and 

associated “neuro-maturational” theories). First, through longitudinal investigations, especially 

those earlier in development, it may be possible to understand if the stressors associated with 

poverty are uniquely impacting the prefrontal cortex, compared to the amygdala and other 

subcortical regions. Second, those interested in neuro-maturation will need to realize that risk for 

psychopathology likely emerges from the dynamic interactions of multiple brain regions; and we 

will need to probe the brain in a fashion commensurate with these synergies. For example, 

Silvers and colleagues (2016) found that differences in one form of emotion regulation 

(cognitive reappraisal) were related to interactions between the amygdala, the vmPFC, and also 

ventrolateral PFC. Similarly, Hare and colleagues (2009; 2014) have found the dorsolateral 

prefrontal cortex moderates the vmPFC during different self-regulation and decision-making 
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tasks. Given these suggestive results, researchers would be well-served to deploy advanced 

analytic approaches drawn from network science, such as graph theory, with resting state fMRI 

and diffusion-weighted imaging (for review, see Lydon-Staley & Bassett, 2018). It is possible to 

investigate multiple brain regions at once, understanding if these are diffusely correlated with 

other regions or if they are regions so tightly coupled that they form clusters that function in 

unison (Bullmore & Sporns, 2009). 

Relevant for emotion dysregulation, linking clear behavioral metrics of emotion 

regulation to brain development, stress exposure, and symptoms of psychopathology will be 

critical in the future. In the current work, we used amygdala-vmPFC resting state coupling as a 

neurobiological marker of emotion dysregulation based on past research. However, emotion 

dysregulation may manifest as many different cognitive, social, or behavioral processes, 

including an inability to shift attention from an over-arousing situation, failing to use memories 

and associations when needing to change emotions, etc. (see Cole, Hall, & Hajal, 2017, for 

thoughtful discussion on this issue). Surveying the affective neuroscience literature, there are 

powerful paradigms to probe both “explicit” and “implicit” forms of emotion regulation (for 

review, see Gyurak, Gross, & Etkin, 2011). Direct investigations of attentional, memory, coping, 

and other relevant emotion-related processes in relation to neurobiology, as well as testing 

connections between neurobiology and physiological reactions to acute stress (e.g., blood 

pressure), could be of interest to those studying adversity and psychopathology, as well as 

researchers in intervention and prevention science. To fully understand the developmental 

connections among stress exposure, emotion dysregulation, neurobiology, and psychopathology, 

we will need to leverage these types of approaches, as well as think about the bidirectional 

influences between these constructs. Our work suggests many open questions of inquiry, 
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including-- Do changes in neurobiology give rise to emotion dysregulation, or vice-versa? Are 

there instead oscillating cascades happening where modest levels of emotion dysregulation 

impact the brain, and then there are neural changes that give rise to greater manifestations of 

emotion dysregulation? Answering such questions could greatly advance understanding of not 

only how the early social environment may shape behavior, but also how we might promote 

resilience in those that have suffered stress. 

Several methodological strengths of this study bolster our confidence in the robustness of 

the central results that we reported. First, we employed a longitudinal research design with 

multiple informants and measures centered on different levels of analysis. We examined parental 

self-reports of household income and stress exposure, while employing youth self-reports of 

psychopathology. Many past reports have leveraged data from the same individuals; these types 

of designs may suffer from specific sources of bias (e.g., Reid, Kavanagh, & Baldwin, 1987), 

reducing the reliability of results. Second, our sample includes a great deal of socioeconomic and 

ethnic diversity, with high numbers of European-, African-, and Latin- American families. This 

would suggest that study findings are likely relevant to a broad range of youth populations and 

communities. Third, resting state fMRI may be particularly useful in developing samples because 

it is not biased by a task, instead reflecting a dynamic measure of the history of co-activation 

between brain regions (Park et al., 2018). Recent work also suggests resting state fMRI may have 

stronger reliability than task-based measures (e.g., Elliott et al., 2018).  

Of important note, the connectivity between the amygdala and two other brain regions 

(the paracingulate gyrus and the putamen) emerged in our analyses. These additional brain 

regions were not hypothesized and did not relate to measures of psychopathology. Furthermore, 

these regions did not interact with more contemporaneous stress to predict psychopathology. It is 
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currently unclear what these differences may mean and if/how they contribute to different 

behavioral outcomes. The paracingulate gyrus has previously been connected to response 

selection (e.g., Sakai et al., 2000). Heightened connections between this area and the amygdala 

could mean that there are action selection and motor biases in responses involving emotion for 

lower-SES youth. The putamen has been connected to the processing of rewards, aspects of 

learning. Acute stress has been found to increase amygdala-striatal connectivity (including the 

putamen). This hyper-connectivity may shift learning processes away from flexible approaches 

to more habitual responding (for additional discussion, see Vogel et al., 2015). While 

speculative, this is an interesting route for future focus, as there are recent reports of issues with 

reward learning in adversity exposed youth (Hanson et al., 2017; Harms et al., 2018). 

Despite these important strengths, our work is not without limitations. First, we 

investigated the effects of poverty and the interactions between contemporaneous stress exposure 

and neurobiology in separate models. Ideally, we would have probed a three-way interaction, 

focused on early household income, contemporaneous stress, and neurobiology. This approach 

has been employed in other work focused on this topic (Hanson et al., 2015B); however, our 

sample size with usable fMRI data is relatively modest. Assuming similar effects as Hanson et 

al. (2015B), we would be underpowered to detect a significant three-way interaction. Future 

work should aim to test interactions in larger samples with the appropriate power to detect such 

effects. Second, only one neuroimaging time point was available for our analyses. With the 

pathways to either maladaptive or positive adaptive functioning being influenced by a complex 

matrix of factors (Cicchetti & Tucker, 1994), additional research with longitudinal measures of 

both brain and behavior are needed. Such work could elucidate how neurobiological, 

environmental, and psychosocial factors continue to interact and potentially amplify (or 
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diminish) risk over development. Related to this, the age range of our participants (15-17 years 

of age) is relatively young compared to the average onset of many mental health disorders 

(Burke, Burke, Regier, & Rae, 1990; Kessler et al., 2005). It is possible that many of these 

participants will go on to develop psychopathology later in development; we therefore could be 

underestimating different associations between stress exposure, neurobiology, and mental health. 

Finally, we specifically examined household income as our measure of SES. This measure, 

however, does not richly assess all elements of poverty likely to influence outcomes, including 

the chronicity of poverty, parental education, subjective social status, etc. Information about 

these parameters could further clarify individual differences in neurobiological and 

psychological development. 

These limitations notwithstanding, our results provide strong empirical evidence that 

lower household income impacts important neurobiological circuitry involved with emotion 

regulation. Variations at this neurobiological level may then convey risk for increases in 

internalizing and externalizing symptomatology, particularly in the context of more recent 

exposure to stress. These results have important implications for the development and 

implementation of novel resilience-promoting interventions in those exposed to child poverty 

and other early life adversities. Additional research is needed to clarify the complex relations 

between child adversity and long-term physical and mental difficulties; our data are, however, a 

needed step in the ability to predict, prevent, and treat stress-related psychopathology. 
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Table 1 

Descriptive Statistics for Demographic Variables 

 

Variables 

 

Statistic 

Sex  

Male 56.5% (N = 52) 

Female 43.5% (N = 40) 

Ethnicity   

European American 47% (N = 43) 

African American 29% (N = 27) 

Hispanic 24% (N = 22) 

Participant Age (Start of the Study)  

Mean (SD), years 9.02 (0.531) 

Range 7.83 - 10.1 

Participant Age (at Scanning Session)  

Mean (SD), years 15.2 (0.671) 

Range 13.6 - 16.9 

Participant Age (at Follow-up)  

Mean (SD), years 16.4 (0.615) 

Range 15.06 - 17.63 

Household Income (Mean, SD) 6.66 (2.89)  

Youth Internalizing (Mean T-Score, SD)  

Males (Near Scanning Session) 49.04 (11.73) 

Males (At Follow-up) 51.38 (12.38) 

Females (Near Scanning Session) 54.08 (13.94) 

Females (At Follow-up) 61.25 (15.50) 

Youth Externalizing  

Males (Near Scanning Session) 46.81 (9.67) 

Males (At Follow-up) 49.52 (10.09) 

Females (Near Scanning Session) 47.92 (10.75) 

Females (At Follow-up) 50.25 (11.86) 

Notes.  Household income measured on 1-10 scale (1=up to $5,000; 2=between $5,000 

and $10,000; 3=between $11,000 and $15,000; 4=between $16,000 and $29,000; 

5=between $30,000 and $40,000; 6=between $41,000 and $50,000; 7=between $51,000 

and $60,000;8=between $61,000 and $70,000; 9=between $71,000 and $80,000; 

10=beyond $81,000) 
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Table 2 

Correlation Matrix of Variables 

 

 

 
Sex 

Household 

Income  

(Age 10) 

Internalizing 

(Age 15) 

Externalizing 

(Age 15) 

Life Stress 

(Age 15) 

Internalizing 

(Age 16) 

Externalizing 

(Age 16) 

Sex 

 
-- -- -- -- -- -- -- 

Household 

Income (Age 10) 
=0.017 -- -- -- -- -- -- 

Internalizing 

(Age 15) 
=0.205 r=0.185 -- -- -- -- -- 

Externalizing 

(Age 15) 
=0.069 r= 0.098 r= 0.606*** -- -- -- -- 

Life Stress 

(Age 15) 
=0.108 r= -0.184 r=0.023 r=0.006 -- -- -- 

Internalizing 

(Age 16) 
=0.339** r=0.197 r=0.638*** r=0.347* r=0.157 -- -- 

Externalizing 

(Age 16) 
=0.051 r=0.020 r= 0.484*** r=0.565*** r= 0.048 r=0.595 -- 

 

Notes. Associations with child sex were determined by constructing regression models were sex (coded as a binary factor, with 

0 = male, 1 = female) was entered as an independent variable (and the other variable of interest entered as the dependent 

variable). Statistically significant correlations are noted with the following conventions: * p ≤ 0.05; ** p ≤ 0.01; *** p ≤ 0.001. 

Of note, the association between sex and internalizing symptoms at age 15 was p=0.06. 
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Figure 1. Early household income was related to significant differences in amygdala resting state 

coupling. Lower income was associated with greater coupling between the amygdala and: the 

paracingulate gyrus (labeled A above), as well as the putamen (labeled B above). Lower income 

was correlated with lower coupling between the amygdala and the ventromedial prefrontal cortex 

(labeled C above). A surface-based rendering is shown on the left side of the figure, while the 

right side of the figure uses “glass brains” to depict the extent of these associations. These areas 

were significant at p =.05, after correcting for multiple comparisons within a whole-brain gray 

matter mask (thresholded at 50%, initial uncorrected threshold p = .01).  
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Figure 2. Scatterplots show relations between early household income and extracted resting state 

coupling estimates for the bilateral amygdala and the ventromedial prefrontal cortex. This 

association was positive in nature, with lower income relating to lower coupling between these 

areas. The horizontal axis depicts resting state coupling between regions (Fisher’s Z-transformed 

correlation coefficients, with higher values indicating greater coherence between brain regions), 

while the vertical axis shows family income (on a 1-10 scale, with lower numbers indicating 

lower income).  
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Figure 3. This graphic shows the interaction between amygdala-vmPFC resting coupling and 

recent life stress, in predicting internalizing symptomatology. Recent life stress is graphed on the 

horizontal axis and internalizing symptomatology on the vertical axis. Levels of amygdala-

vmPFC resting coupling are also shown, with lower (red), mean (green), and higher (blue) levels 

depicted in the figure. The interaction of amygdala-vmPFC resting coupling and recent life stress 

was related to greater internalizing problems (β = -0.274, p < 0.005). 
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