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Regular Article

Resting state default-mode network connectivity in early
depression using a seed region-of-interest analysis:
Decreased connectivity with caudate nucleuspcn_2030 754..761

Robyn Bluhm, PhD,1,2 Peter Williamson, MD,1,3 Ruth Lanius, MD, PhD,1,3

Jean Théberge, PhD,1,3–5 Maria Densmore, BSc,5 Robert Bartha, PhD,1,3,4

Richard Neufeld, PhD1,6 and Elizabeth Osuch, MD1,3*
1Department of Psychiatry, University of Western Ontario, Schulich School of Medicine and Dentistry, Departments of
3Medical Biophysics, 4Medical Imaging and 6Psychology, University of Western Ontario, 5Imaging Division, Lawson Health
Research Institute, Ontario, Canada and 2Old Dominion University, Norfolk, USA

Aim: Reports on resting brain activity in healthy con-
trols have described a default-mode network (DMN)
and important differences in DMN connectivity have
emerged for several psychiatric conditions. No study
to date, however, has investigated resting-state DMN
in relatively early depression before years of medica-
tion treatment. The objective of the present study
was, therefore, to investigate the DMN in patients
seeking help from specialized mental health services
for the first time for symptoms of depression.

Methods: Fourteen depressed subjects and 15
matched controls were scanned using 4-T functional
magnetic resonance imaging while resting with eyes
closed. All but one subject was medication free. A
precuneus/posterior cingulate cortex (P/PCC) seed-
region connectivity analysis was used to identify the
DMN and compare study groups in regions of
relevance to depression.

Results: The P/PCC analysis identified the DMN well
in both study groups, consistent with prior literature.
Direct comparison showed significantly reduced cor-
relation between the P/PCC and the bilateral caudate
in depression compared with controls and no areas of
increased connectivity in the depressed group.

Conclusions: The present study is the first to inve-
stigate resting-state DMN in the early stages of
treatment-seeking for depression. Depressed subjects
had decreased connectivity between the P/PCC and
the bilateral caudate, regions known to be involved
in motivation and reward processing. Deficits in
DMN connectivity with the caudate may be an early
manifestation of major depressive disorder.

Key words: caudate nucleus, cingulate gyrus, depres-
sion, functional, magnetic resonance imaging.

RESEARCH DELINEATING LOW-FREQUENCY
(<0.1-Hz) oscillations of brain activity in the

default-mode network (DMN) is increasing. The
DMN is suggested to be involved in the neurophy-

siological processes of introspection and self-
monitoring.1 Many studies of the DMN involve
healthy controls but investigations in clinical popu-
lations have also been conducted. These include
reports on schizophrenia,2,3 autism,4 Alzheimer’s
disease,5–7 post-traumatic stress disorder8 and
depression.9,10 One study has demonstrated use of
resting state analyses to distinguish between schizo-
phrenia and bipolar disorder.11 Thus, this technique
may eventually provide valuable clinical informa-
tion not available with other approaches.
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Many functional imaging studies implicate specific
brain regions involved in depression including areas
of medial prefrontal cortex (mPFC),12–14 and the
striatum.15–18 In a resting functional magnetic reso-
nance imaging (fMRI) study to investigate the DMN
in long-standing depressed subjects compared with
controls Greicius et al. found greater DMN connectiv-
ity in areas long associated with depression.9 These
included the subgenual cingulate, medial frontal
cortex, thalamus, and cuneus/precuneus. The sub-
genual anterior cingulate differences correlated posi-
tively with length of depressive episode.9 The mean
duration of the depressive episode of the population
in that study was >3 years. No study, to date, has
investigated the DMN in depressed patients early in
the course of their treatment seeking, or before sig-
nificant use of medications.

In the present study we used fMRI to investigate the
resting-state DMN in older adolescents and adults
presenting to a psychiatric clinic for the first time.
Most of these individuals had never been medically
treated for their psychiatric symptoms prior to scan-
ning and all but one was medication free. Given the
previous research on the DMN in chronic depression
by Greicius et al.,9 we predicted that the present
recently depressed subjects would show greater func-
tional connectivity of the DMN than healthy controls
in the thalamus, mPFC, and cuneus/precuneus.

METHODS

Subjects

Fourteen depressed and 15 healthy control subjects
were recruited during 2006–2008. Depressed subjects
were recruited from first-time psychiatric consulta-
tions at the London Health Sciences Centre and were
included if their ages were between 17 and 35 years
and they had a primary diagnosis of major depressive
disorder (MDD). Exclusion criteria were major
medical illness, history of head trauma, lifetime psy-
chiatric medication use longer than 3 months in
total, diagnosis of obsessive–compulsive disorder,
current post-traumatic stress disorder, bipolar disor-
der, imminent danger to self or others, or pregnancy,
intent to become pregnant, or other MRI exclusion
criteria. Healthy controls were recruited based on
matching age and gender, and were excluded if they
reported a first-degree relative with a mood disorder,
or for any exclusion criteria for MRI scanning. The
protocol was approved by the Human-Subjects

Research Ethics Board at the University of Western
Ontario. The study was fully explained to all subjects
and written, informed consent was obtained and
all subject identifiers were removed. The Structured
Clinical Interview for DSM-IV (SCID-IV) was con-
ducted to evaluate for axis I disorders. Subjects also
completed the Beck Depression Inventory (BDI).

Functional magnetic resonance imaging

All subjects underwent a 5.5-min resting scan. They
were instructed to close their eyes, relax and let their
mind wander freely. Subjects were asked if they were
able to comply with these directions after the resting
scan. All subjects reported having been able to
comply.

Images were acquired using a 4.0-T Varian Unity
Inova whole-body MRI system (Varian, Palo Alto,
CA. USA) equipped with Siemens Sonata actively
shielded gradient coils (Siemens Medical, Erlangen,
Germany). A single-tuned,1H quadrature hybrid
birdcage volume head coil, 27 cm inner diameter,
was used for transmission and signal detection
(XLR Imaging, London, Ontario, Canada). Subjects’
heads were immobilized with foam padding and a
Plexiglass head cradle (Robarts Research Institute,
London, ON, Canada). Functional images were con-
tinuously collected using a segmented (two-shot)
gradient echo (T2*-weighted) pulse sequence utiliz-
ing spiral-gradient waveforms (64 ¥ 64 matrix size;
field of view, 25.6 cm; echo time, 15 ms; volume
acquisition time (relaxation time), 3 s; tip angle,
60°). Between 26 and 29 slices were acquired,
depending on the number of slices needed to achieve
whole-brain coverage. Slice thickness was 4 mm,
resulting in 4 ¥ 4 ¥ 4-mm3 isotropic voxels. A total of
110 volumes was collected for each subject.

Statistical analysis

The spiral reconstruction of images utilized a regrid-
ding algorithm that incorporated a Kaiser–Bessel
kernel, Jacobian weighting function, and density com-
pensation. Image preprocessing steps and statistical
analysis was conducted using Statistical Parametric
Mapping (SPM2, Wellcome Department of Neurol-
ogy, London, UK). Preprocessing of images followed
steps previously reported in Fransson1 and Bluhm
et al.3 For each subject, all functional images were
realigned to the first image in the series to reduce the
effects of head motion. The images were then resliced
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and a mean functional image was also created. Images
were then coregistered to the mean functional image
and normalized to the EPI template in SPM2. The
functional images were smoothed using a 12-mm
full-width half-maximum isotropic Gaussian filter to
compensate for residual within-subject variability,
decrease high spatial frequency noise and insure
the applicability of Gaussian random field theory on
which further statistical testing relied. Time course
intensities were globally normalized.

For each subject a mean signal intensity time
course, adjusted for the frequency range of 0.012–
0.1 Hz, was extracted from a 10-mm sphere in the
region of interest (ROI) and then used as a regressor
in a correlation analysis with the resting scan data for
that subject, which had been bandpass filtered to
preserve only low-frequency oscillations between
0.012 and 0.1 Hz.3,19 Correlation analyses were con-
ducted using a seed ROI in the precuneus/posterior
cingulate cortex (P/PCC); centered at MNI coordi-
nates x, y, z = 0, -56, 20). Connectivity described as
follows reflects positive correlations between this
seed region and other brain areas. Seed ROI analyses
using the P/PCC were used to emulate previous pub-
lished work on the DMN1,20 including our own prior
work in other psychiatric sample groups,3,8 and
because it is a central hub in functionally specialized
systems.21,22 It was also chosen because this area was
not expected to have major differences between
groups at these coordinates, as would mid-line
frontal regions,23 which could have led to complica-
tions in interpretation of the results. To compare ROI
connectivity within and between subject groups,
second-level mixed-effects analyses, in which subjects
are treated as random variables (frequently referred
to as ‘random effects’ in the imaging literature), were
conducted in SPM using contrast images from
individual subjects. Reported within-group findings
reflect a type 1 error threshold of P < 0.001 using false
discovery rate correction for multiple comparisons.

Within-group comparison showed several regions
that appeared in one but not both groups and several
of these areas were noted to be relevant to depression
from prior published studies. These included Brod-
mann area (BA) 10 and 32,24,25 the caudate26,27 and
the parahippocampal cortex.28,29 We therefore con-
ducted small volume corrected (SVC) analyses using
Pickatlas30 standardized BA to determine if there were
significant differences between groups in these ROI.
In addition, the published DMN study in chronic
depression showed areas of group difference in thala-

mus, BA 25, BA 11, and cuneus/precuneus.9 Coordi-
nates from the work of Greicius et al.9 were used to
identify these regions. Small volume corrections
using a 5-mm radius sphere were used to compare
group connectivity maps in these regions. Correla-
tion of the connectivity map with BDI scores in the
depressed group was also performed.

RESULTS

Demographics and psychometrics

The age of control and depressed subjects was
not significantly different at 23.5 � 5.4 years (range,
18–34 years) and 21.9 � 5.1 years (range, 17–35
years), respectively. Sex distribution was 11F/4M
and 9F/5M for control and depressed subjects. Only
one depressed subject was over 30 years of age. As
expected, mean BDI score was significantly higher for
depressed subjects at 24.5 � 8 (range, 10–33) com-
pared with healthy controls at 0.8 � 1 (range, 0–5).
Lifetime dysfunction from psychiatric illness was low.
Because of the recent onset of symptoms, depressed
subjects were high functioning at the time of scanning,
with 13 (81%) enrolled in school.

Of 14 depressed subjects, all met DSM-IV criteria
for MDD. Lifetime use of psychiatric medication in
depressed subjects was low, with only three subjects
having ever received any psychiatric medications in
their lifetimes (two a selective serotonin norepineph-
rine re-uptake inhibitor, one a benzodiazepine). The
maximum duration of past psychiatric medication
use was 3 months. At the time of study only one
subject was on a psychiatric medication, a steady
dose of the selective serotonin re-uptake inhibitor
escitalopram.

Three depressed subjects also met criteria for a
current anxiety disorder (two social phobia, one gen-
eralized anxiety disorder). The anxiety symptoms
expressed by these subjects were not easily clinically
separable from their depressive symptoms. There
were no current psychiatric diagnoses in control
subjects.

Functional imaging

Subjects reported being able to comply with instruc-
tions for the scan session. Results of the P/PCC seed
ROI connectivity analysis in each group are given in
Table 1 and Fig. 1(a,b). The DMN was easily identi-
fied by the P/PCC seed-region analysis in both
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groups. This included the frontal pole (BA 8 and 10),
angular gyrus (BA 39), and thalamus in both groups.
In addition, controls showed P/PCC connectivity
with the caudate, right BA 10, and right BA 32 while
only depressed subjects showed connectivity in the
parahippocampal cortex bilaterally.

The between-group comparisons demonstrated
significantly greater connectivity with P/PCC in the
bilateral caudate in controls compared to depressed
subjects (Table 2; Fig. 1c). No significant differences
were found in BA 10 or 32,24,25 parahippocampal gyri;
or areas identified by Greicius et al.,9 including the
thalamus, BA 25, BA 11, and cuneus/precuneus at the
coordinates they identified (2, –86, 37, Talairach).
There were no significant regions of greater P/PCC
connectivity in the depressed subjects versus controls
in any ROI. There were no correlations that survived
correction between BDI and connectivity in the
depressed subjects.

DISCUSSION
In the present study we investigated resting-state
DMN connectivity in depression compared with

healthy controls. This was the first study to acquire
such data from individuals with little to no previous
treatment and only recent entry into the mental
health care system. The P/PCC seed ROI analyses
used here demonstrated good identification of the
DMN as consistent with previous literature. It also
showed significantly greater connectivity between the
P/PCC and the bilateral caudate in the control group
compared with the depressed subjects. Contrary to
our hypothesis and the previous DMN study of
depression in older and longer treated patients, there
was no greater connectivity in depressed subjects
between the DMN and several areas of the mPFC,
subgenual anterior cingulate cortex, thalamus, para-
hippocampal gyri, or cuneus/precuneus.

Depressed individuals often describe anhedonia,
which manifests as an inability to experience interest
or pleasure in activities,31 and have difficulty motivat-
ing themselves to act, which may be mediated
through abnormalities in the subgenual PFC and/or
other limbic regions. The striatum, including the
caudate, is involved in the processing of rewarding
stimuli in healthy controls and is therefore intri-
cately involved in pleasure and motivation.32–37 The

Table 1. Significant clusters of DMN functional connectivity using P/PCC positive correlations

Region Coordinates (MNI) t-value Voxel cluster size

Controls (n = 15)
Bilateral posterior cingulate/precuneus 0, -56, 0 11.49 4721
Bilateral medial prefrontal gyrus (BA 10) -2, 68, 12 8.97 402
Left superior temporal/angular gyrus (BA 39) -50, -60, 30 8.83 613
Left middle frontal gyrus (BA 8) -24, 32, 48 8.05 406
Right caudate head 12, 12, 4 7.43 427
Right superior frontal gyrus (BA 8) 26, 38, 46 6.64 164
Left caudate body -12, 4, 16 6.06 42
Left thalamus -20, -16, 10 5.94 38
Right medial frontal gyrus (BA 32) 6, 38, 24 5.89 12

Depressed (n = 14)
Bilateral posterior cingulate/precuneus -22, -60, 20 11.84 4239
Left precuneus/inferior parietal lobule, angular gyrus (BA 39/19) -34, -76, 44 9.00 277
Right parahippocampal gyrus 20, -36, -8 8.83 209
Left parahippocampal gyrus -26, -32, -14 8.57 402
Left superior/middle frontal gyrus (BA 9/8) -22, 32, 40 7.78 234
Right inferior parietal/angular gyrus (BA 39) 36, -66, 42 7.76 134
Left superior frontal gyrus (BA 10) -26, 60, -2 7.73 34
Left thalamus -8, -16, 10 6.43 34
Right thalamus 8, -18, 12 6.23 10

Significance criteria of P < 0.001, k � 10 with false discovery rate correction for multiple comparisons; random effects analysis.
BA, Brodmann area; DMN, default-mode network; MNI, Montreal Neurological Institute spatial array coordinates; P/PCC,
precuneus/posterior cingulate cortex.
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striatum plays a role in conditioning and learning
and is related to probability and magnitude of
rewards.38 Functional connectivity between the stria-
tum and the P/PCC in the resting state has been

discovered in a previous study of healthy controls.39

Previous studies of depressed individuals have found
abnormalities in striatal function associated with
anhedonia,40,41 in response to positive stimuli,42

(a)

(b)

(c)

x=0 z=8y=0

x=14 y=10 z=8

x=0 y=-66 z=40

Figure 1. Connectivity SPM[T] maps of individual groups and group comparison using look-through view for full-brain results and
overlays showing specific coordinates. (a) Control and (b) depressed subjects using a precuneus/posterior cingulate cortex (P/PCC)
seed region-of-interest analysis within the P/PCC at coordinates x = 0, y = -56, and z = 20 as per the Montreal Neurological Institute
spatial array coordinate system. Locations of the images are indicated by the x, y, or z as per the same coordinate system. Images reflect
false discovery rate correction (P < 0.001). (c) Controls > depressed; right caudate. Between-group comparisons with x, y and z
coordinates shown at the voxel of right caudate peak difference between groups. The threshold of significance for this whole-brain
subtraction image was P < 0.001, uncorrected for multiple comparisons, to demonstrate the shape and extent of the right caudate
finding.
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positive feedback,26 or with dextroamphetamine
administration.43 The significantly lower connectivity
found here between the P/PCC and bilateral caudate
in the resting state of depressed subjects compared
with controls may reflect a discrepancy in reward-
processing networks in these subjects even at rest and
could be involved in the lack of motivation and
anhedonia experienced by depressed subjects. We did
not find correlations between these regions and
depressive symptoms per se, however. Further inves-
tigations are warranted to determine the implications
of the relationship between DMN and reward-
processing neurocircuitry.

The absence of differences in the subgenual PFC
between groups is in notable contrast to the other
published work investigating the resting-state DMN
in depression.9 That research showed a direct corre-
lation between connectivity in the subgenual PFC
and duration of illness. The subjects studied here
were seeking their first contact with a psychiatrist and
most had never been on psychiatric medications. The
divergence in the present findings from those in sub-
jects with longer duration of illness could represent
differences in brain DMN connectivity that may be
involved in different stages of depressive illness, or it
may reflect differences between the independent
components analysis and the seed ROI analysis used
here. It may be important to investigate DMN

throughout the course of depressive illness to identify
primary functional deficits versus compensatory
deficits in this network.

There are several limitations of this study. First,
we did not use physiological monitoring of respira-
tory or heart rate during the scans. Regions of the
DMN have been found to vary with respiratory dif-
ferences44,45 so our findings could reflect mean dif-
ferences in respiratory rate, respiratory volume
and/or CO2 blood levels between the subject
groups. Studies have shown no differences in respi-
ratory function in depression itself46,47 but have
demonstrated increased respiratory variability in
panic disorder.47 Although panic disorder was not
present in any of the current patients, other anxiety
disorders were and may also involve respiratory
abnormalities at rest. For this and for other reasons,
the presence of three subjects with anxiety disorder
diagnoses may have confounded the results. Cova-
rying for the severity of anxiety symptoms would be
helpful in future studies,12 as would monitoring of
respiratory rhythm. Future studies are needed to
replicate the results reported here.
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