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Abstract

Parkinson’s disease (PD) is one of the most serious and challenging neurodegenerative dis-

orders to diagnose. Clinical diagnosis on observing motor symptoms is the gold standard,

yet by this point nerve cells are degenerated resulting in a lower efficacy of therapeutic treat-

ments. In this study, we introduce a deep-learning approach based on a recently-proposed

20-Layer Convolutional Neural Network (CNN) applied on the visual realization of the Wave-

let domain of a resting-state EEG. The proposed approach was able to efficiently and accu-

rately detect PD as well as distinguish subjects with PD on medications from subjects who

are off medication. The gradient-weighted class activation mapping (Grad-CAM) was used

to visualize the features based on which the approach provided the predictions. A signifi-

cantly high accuracy, sensitivity, specificity, AUC, and Weighted Kappa Score up to 99.9%

were achieved and the visualization of the regions in the Wavelet images that contributed to

the deep-learning approach decisions was provided. The proposed framework can then

serve as an effective computer-aided diagnostic tool that will support physicians and scien-

tists in further understanding the nature of PD and providing an objective and confident opin-

ion regarding the clinical diagnosis of the disease.

Introduction

Parkinson’s disease (PD) which mostly affects the elderly population (age > 65 years old) is a

neurodegenerative disorder that affects dopamine-producing neurons in the substantia nigra

region of the brain [1]. Symptoms usually progress slowly over time ranging from mild tremor,

changes in posture, walking and facial expressions to loss of balance, slowness of movements,

frequent falls, stiffness, hallucinations and delusions, mood and sleep disorders and cognitive

dysfunction. In advanced stages, the patient may be bedridden and requires around-the-clock

care for all activities. In addition, cognitive impairment which is a non-motor complication of

PD has been related to disease morbidity, significant burden on caregivers, social and working

impairment, placement at long-term care facilities, and mortality [2]. According to Parkin-

son’s foundation, almost one million people suffer from the disease in the U.S. while it is
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estimated that 10 million individuals were diagnosed with the disease worldwide. In addition,

60,000 Americans are usually diagnosed with PD on an annual basis. It is also estimated that

the health care cost for PD in the U.S. reaches $52 billion per year.

Evaluation of the motor and non-motor aspects of PD in the clinical setting is subjective

and challenging [2]. Thus, there is a critical need to identify reliable biomarkers of PD that can

be used by clinicians to monitor disease progression and response to therapeutic treatments.

In addition, the development of early diagnosis and screening tools that may be able to identify

subjects with high risk to develop prodromal PD will potentially improve the efficiency of

administered therapeutic treatments and therefore eventually slow down the progression of

the disease.

Electroencephalography (EEG) is considered as a potential diagnostic modality that may

identify unique features of PD. Using this modality, researchers observed that beta and gamma

power in PD are reduced [3, 4]. Further, persons with PD exhibit a slowing of resting-state

oscillatory brain activity [5, 6] and changes in phase-amplitude coupling when compared to

healthy controls (HC) [7, 8].

Machine and deep learning techniques (MDL) [9–17] can provide efficient solutions for

various medical applications [18]. Several MDL approaches were introduced as an alternative

to standard spectral analysis methods to identify the unique features of EEG and predict PD

with an accuracy that ranges from 88% to 99.7% [19–28]. The aforementioned techniques

either used MDL directly on the EEG data such as in [23–25] or transformed the EEG signal

into a time-frequency representation (TFR) followed with feature extraction and classification

using MDL as in [26] or TFR transformation and MDL for both feature extraction and classifi-

cation [27, 28]. However, in most cases, the proposed methods exhibit limited accuracy as in

[23–25] without a thorough assessment for the robustness and reliability of the methods based

on the weighted Kappa score. In addition, features detected by the models were not interpreted

and the basis for the provided predictions were not emphasized.

In this paper, a novel deep-learning approach was introduced that exploits the Wavelet

domain of a resting-state EEG time-series in order to classify subjects into HC and PD in

order to support the clinical diagnosis of the disease. The contributions of this study can be

summarized as follows:

1. This is the first time where a continuous wavelet-based deep learning approach was utilized

to exploit the resting-state EEG for subjects with a confirmed diagnosis of PD offering a

precise screening for the subjects (i.e., accuracy, sensitivity, specificity, Area Under Curve

(AUC) and Weighted Kappa Score up to 99.9%) to support the clinical diagnosis of the dis-

ease. The achieved performance is the highest achieved among the recent state-of-the-art

deep-learning applications on EEG for PD detection and diagnosis [23–28].

2. The deep-learning approach was also deployed for the first time to distinguish subjects that

are OFF medications from subjects that are ON medications in order to understand the

changes due to the therapeutic treatment initiation. Such experiment was not investigated

in [23–28].

3. A three-class challenge was addressed, where subjects with and without medications and

HC were identified from resting-state EEG achieving the highest possible accuracy (i.e.,

99.6%) as compared to [23–28] including the deep learning approach [28] that was

deployed for the three-class application with an accuracy of 99.46%.

4. The feature and class discriminative maps identified at the final convolutional layer of this

approach were visualized using the Grad-CAM method [50] offering further insights on the

features attributed to the disease as well as treatment initiation. The observations of the
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discriminative features of the Wavelet domain for PD (OFF and ON medications) were

reported as well.

Related work

EEG is a non-invasive modality that has gained traction to obtain mechanistic and granular

information about brain activities and diseases including PD. Several studies have explored

electrophysiological indices based upon spectral power in different frequency bands in both

EEG, and magnetoencephalography (MEG) (e.g., delta [1–4 Hz], theta [4–8 Hz], alpha [8–12

Hz], beta [12–35 Hz], and gamma [35–45 Hz] waves) for PD patients [3–8].

In [3], a Fast Fourier Transform (FFT) was used on EEG data to show reduced power in the

beta band with no detectable change in the theta, and alpha bands. In [4], it was reported that

non-demented PD patients showed slowing of resting state oscillatory brain activity compared

to controls. An increase in the theta power, and a decrease in beta, and gamma powers were

also observed. However, demented PD patients showed an increase in delta, and theta powers,

and a decrease in alpha, beta, and gamma powers. In [5], FFT was also applied to EEG data.

An increase in the power in the theta band, and slowing in predominant frequencies for non-

demented PD patients compared to controls was observed. An increase in the delta band activ-

ity was also detected among demented PD patients. A consistent increase in power in the

delta, and theta bands, and a decrease in power in the alpha band was observed for demented

PD patients [6]. Phase amplitude coupling (PAC) which is the coupling of the beta phase to

the gamma amplitude was found to be elevated in the PD population as compared to subjects

without movement disorders [7, 8].

The promising intersection of EEG data with MDL techniques demonstrates that MDL can

precisely identify disease features or risks, and thus may have utility for screening patients.

Vanegas et al. proposed three MDL frameworks: deploying Extra Tree Classifier, Linear

Regression, and Decision Tree to identify EEG based biomarkers of PD with an AUC of

99.4%, 94.9%, and 86.2% respectively [19]. Oh et al. proposed a 13-layer Convolutional Neural

Network (CNN) on resting-state EEG to detect de novo PD which achieved an accuracy of

88.25% [20]. In [21] Wagh et al., an 8-layer graph-CNN was proposed to classify various neu-

rological diseases including PD with an accuracy of 85%. Koch et al. proposed a Random For-

est Classifier to detect PD based on both clinical and automated features from EEG data with

an AUC of 91% [22].

In [23], Shi et al., proposed two hybrid models including two-dimensional CNN-Recurrent

Neural Networks (RNN) and three-dimensional CNN-RNN, where the former model

achieved an accuracy of 82.89% for detecting PD. In [24], Lee et al. proposed a hybrid model

using CNN and Long-Short Term Memory (LSTM) to exploit both the spatial and temporal

features of EEG respectively with an accuracy of 96.9% for differentiating PD from HC. The

model learns representations closely related to clinical features such as disease severity and

dopaminergic levels. Our prior work has adopted an ANN based framework applied on three

spatial channels of EEG including Oz, P8 and FC2 to screen subjects into PD and controls

with an accuracy of 98%, sensitivity of 97%, and specificity of 100% [25]. Khare et al. have

introduced the use of different machine learning methods including the Least Squares Support

Vector Machine (LSSVM) on five different features extracted from the tunable Q-factor wave-

let transform (TQWT) of a resting-state EEG dataset to discriminate HC from PD subjects

with and without medications at an accuracy of 96% and 97.7% [26]. Khare et al. have also

recently applied a 2D-CNN on the smoothed pseudo-Wigner Ville distribution (SPWVD)

transformation of two EEG datasets with a validation accuracy of 99.9% and 100% respectively
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[27]. Loh et al. have also applied a 2D-CNN on the Gabor transform of a resting-state EEG

dataset in order to classify subjects into HC and PD with and without medications at an accu-

racy of 99.5% [28]. In [29], Murugappan et al. have introduced the use of several machine

learning algorithms including k-nearest neighbor, random forest, decision tree and extreme

learning machine to classify the emotional state of PD patients into happiness, sadness, fear,

anger, surprise and disgust based upon the features extracted from the low-pass and high-pass

of the TQWT of EEG signals. The proposed approach achieved an accuracy, sensitivity and

specificity of 94%, 96% and 82% for PD detection and identification.

MRI is usually considered by neurologists for the clinical diagnosis of neurological diseases.

Zhang et al. proposed a novel approach for screening de novo PD using ResNet (i.e., a deep

CNN) with broad views using two-view MRI data (i.e., AXI and SAG) with an accuracy of

76.46% [30]. Ramirez et al. introduced three fully convolutional Autoencoder models to detect

de novo PD in Diffusion Tensor Imaging (DTI) MRI data with a best AUC of ROC of 77%

[31]. Prasuhn et al. also proposed a binary Support Vector Machine (SVM) and used Multiple-

Kernal Learning (MKL) to detect PD in DTI with no more than 60% specificity [32]. Their

findings suggested that DTI-based analysis is not useful for correct differentiation of subjects

with PD from HC.

Speech analysis has also been used to detect and distinguish subjects with PD from HC.

Frid et al. used CNN on raw speech to distinguish between various stages of PD with a high

accuracy [33]. In [34], SVM, and random forests were introduced to classify speech signals of

33 PD patients and 10 controls with an accuracy of 99%, achieved using 10 dysphonia features.

Rasheed et al. proposed a Back Propagation Algorithm with Variable Adaptive Momentum

(BPVAM) for detection of de novo PD applied on speech data with an accuracy of 97.5% [35].

Gunduz proposed two CNNs based on vocal data features to classify PD with an accuracy of

84.5%, and 86.8% respectively [36]. Karabayir et al. proposed Light Gradient Boosting (GB)

and Extreme GB to detect PD from vocal data with an accuracy of 84.1%, and 81.6% respec-

tively [37]. Zhang et al. introduced stack autoencoders (SAE) for diagnosing PD over the tele-

phone where personal information and vocal data are fed to the machine learning algorithm to

analyze the speech records [38].

In addition, wearable sensors have been adopted for collecting data related to PD. Moon

et al. proposed a machine learning approach based on neural networks to distinguish between

essential tremor (ET) and PD which have similarities in clinical characteristics including

movement and gait [39]. El Maachi et al. proposed a deep neural network consisting of 18 par-

allel CNNs followed with a fully connected network to exploit relevant gait information and

diagnose PD with an accuracy of 98.7% [40]. Zeng et al. introduced a mathematical model for

the gait dynamics of subjects that determines output results by approximating the gait dynam-

ics via radial basis achieving an overall accuracy of 96.39% [41].

Muniz et al. used logistic regression, probabilistic neural network (PNN), and SVM in diag-

nosing PD when ground reaction force (GRF) was considered as in input and the effectiveness

of PD treatments were compared [42]. Pfister et al. proposed a CNN to classify PD into three

movement states (OFF, ON, and dyskinesia (DYS) motor states) using data from wearable sen-

sors achieving a low accuracy of 65% [43]. Drotar et al. proposed the use of feature selection

and SVM methods to differentiate between 37 PD patients and 38 controls based on handwrit-

ing movements with an accuracy of 84% and 78% respectively [44]. Eskofier et al. compared

the use of machine learning methods including SVM and k-nearest neighbors’ algorithms with

CNN to classify inertial measurement units’ data obtained using wearable sensors attached to

the right and left limbs of ten idiopathic PD patients. CNN outperformed the machine learning

methods by at least 4.6% [45].
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Ricci et al. used Naïve Bayes, SVM, and k-NN to detect de novo PD from wearable sensor

data with SVM achieving the highest accuracy of 95% [46]. Talitckii et al. proposed using sev-

eral machine learning approaches to differentiate PD from other neurological disorders char-

acterized by motor differences using wearable sensors that would help minimize misdiagnosis

of PD with the best accuracy of 85% [47]. Pereira et al. collected handwriting data for HC and

PD and created the "HandPD" dataset [48]. Naive Bayes, optimum-path forest, and SVM were

used for classification where the Naive Bayes achieved the highest accuracy of 78.9%. Further,

Pereira et al. developed a CNN architecture to classify the "HandPD" dataset into one of two

categories (i.e., PD or Controls) with an improved accuracy compared to the machine learning

methods used in this task [49]. Moreover, Pereira et al. introduced CNN architectures for clas-

sifying handwriting dynamics obtained from a smart pen equipped with a series of sensors for

224 PD patients and 84 controls [50]. In [51], the author used a fine-tuned pre-trained VGG-

19 to differentiate between PD and controls based on wave and spiral handwriting datasets.

The proposed model achieved an elevated accuracy and sensitivity of over 88% and 86%

respectively.

Although the prior work has addressed the use of MDL on EEG as well as other modalities,

the classification accuracy, sensitivity and specificity in the majority of the methods are still

limited with no explanation for the disease features detected by the proposed methods. In this

paper, we introduce an efficient deep learning approach with an accuracy, sensitivity and spec-

ificity that almost reached 99.9% for classifying subjects into HC, PD with and without treat-

ments. Further, a visualization and explanation of the classification results were provided that

may potentially assist future clinical studies in further understanding the characteristics and

biomarkers of the disease. We believe that a reliable and successful computer-aided diagnostic

tool based upon machine or deep learning should be characterized by sensitive and accurate

predictions outperforming the human or expert graders where the experts’ diagnosis accuracy

was estimated to be 83.9% which was deemed unsatisfactory [56] as well as providing an expla-

nation for the attained prediction to support the clinical diagnosis and elevate the confidence

in such predictions.

Materials and methods

Dataset

The EEG dataset analyzed in this study was acquired at the Aron lab at the University of

California at San Diego and further curated by the Swann lab at the University of Oregon.

The dataset is on OpenNeuro where the latest version of 1.0.4 was published in January

2021 [52].

The dataset includes EEG samples for fifteen right-handed PD patients (eight females,

mean age 62.6 ± 8.3 years), and sixteen matched HC (nine females, 63.5 ± 9.6 years) based on

age, gender, and handedness. All PD patients have either mild or moderate PD. The patients

were recruited from Scripps Clinic in La Jolla, California, and HC were volunteers from the

local community.

EEG data were initially created in a Brain Imaging Data Structure (BIDS) format. Using

Matlab EEGLAB tool, the data were then inserted into forty-six Excel files for the fifteen PD

subjects (ON and OFF medication) and the sixteen HC. ON medication EEG data were

recorded for the subjects who received treatments including Levodopa equivalent dose (three

times/day). The EEG data were acquired using thirty-two standard electrodes at a sampling

rate of 512 S/s within 1.9 to 2 minutes. The locations of the 32-channel EEG electrodes are

shown in Fig 1.
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Proposed wavelet-based deep learning framework

The proposed framework consists of three main operations: Continuous Wavelet Transform

(CWT), Time-Series Segmentation, and deep learning using CNN. The block diagram of this

approach is illustrated in Fig 2.

The CWT was applied on the EEG signal xi(t) which is recorded at the ith electrode to trans-

form the EEG signal from the time-domain into the scale-time domain. The CWT operation is

defined as follows:

Xiðs; tÞ ¼
1
ffiffi
s
p

Z1

0

xiðtÞcð
t � t
s
Þdt ð1Þ

whereC is the Morlet analysis Wavelet, τ and s are the time shift and the scale of the Wavelet

respectively. The scale of the Morlet Wavelet transform is the reciprocal of Fourier frequency

where larger scales represent lower frequencies and vice versa [53]. In addition, the magni-

tudes of the Wavelet transform |Xi(s,τ)| were generated and scaled for each subject and at each

electrode i. This provided two-dimensional (i.e., 138×96,768 for HC and 138×97,792 for PD)

matrices where the first dimension represents the scale and the second dimension represents

time.

Fig 1. Locations of 32 electrodes of EEG.

https://doi.org/10.1371/journal.pone.0263159.g001
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Although the number of subjects used in this study is limited (i.e., 29 subjects), the applica-

tion of a time-series segmentation of the aforementioned two-dimensional signals into

128×128 samples (The lowest 128 scales were selected out of 138 scales) provided sufficient

number of training data samples for the deep learning approach to successfully identify the

class of interest. Gray-scale scalograms of the segmented wavelets were then generated and

provided for a second stage of a CNN based deep-learning model. Examples of EEG Wavelets

for HC and PD recorded by the Fp1 and CP5 electrodes are shown in Fig 3.

Fig 2. Proposed deep-learning approach.

https://doi.org/10.1371/journal.pone.0263159.g002

Fig 3. EEG wavelet images for HC (first column), PD OFF medication (second column) and PD ON medication

(third column) for channels Fp1 and CP5. Channel Fp1 is represented in the first row and channel CP5 is

represented in the second row.

https://doi.org/10.1371/journal.pone.0263159.g003
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The deep learning approach was used to achieve the following tasks. 1. Distinguishing HC

from subjects with PD who do not receive treatments; 2. Classifying subjects into PD without

and with therapeutic intervention; 3. Discriminating HC from PD OFF medication and PD

ON medication. The deep learning approach adopted in this study uses an efficient CNN that

was recently proposed by Shaban et al. and validated on a computer vision application (i.e.,

detection of oil spill from satellite aperture radar images) [54]. The components of the CNN

are listed in Table 1.

The deep learning network consists of 20 layers of convolutions, rectified linear units

(ReLU), and maximum pooling (MaxPooling). The SoftMax probabilities of the network out-

puts were calculated and the cross entropy loss was estimated and minimized using the gradi-

ent stochastic descent. Finally, the probabilities calculated using the SoftMax function were

then compared with an appropriate threshold providing a classification decision (i.e., 0 for

HC, 1 for PD OFF medication and 2 for PD ON medication).

Performance evaluation

Both four-fold and ten-fold cross-validation accuracy, sensitivity, and specificity were esti-

mated in this study to evaluate the performance of the deep-learning approach to classify and

identify HC, PD OFF medication, and PD ON medication. The aforementioned performance

measures are defined as follows:

Accuracy ¼
TP þ TN

TPþ TN þ FPþ FN
ð2Þ

Sensitivity ¼
TP

TP þ FN
ð3Þ

Specificity ¼
TN

TN þ FP
ð4Þ

where TP, FP, TN, and FN are the number of gray-scale images that were predicted as true

positive (i.e., ground truth: PD and prediction: PD), false positive (i.e., ground truth: HC and

prediction: PD), true negative (i.e., ground truth: HC and prediction: HC), and false negative

(i.e., ground truth: PD and prediction: HC) respectively. The AUC of the Receiver Operating

Characteristic Curve (ROC) was measured to assess the separability of the classifier. To ensure

that the agreements among the predicted and the ground truth labels were not random, the

Quadratic Weighted Kappa score (K) was used to evaluate the performance of the deep-

Table 1. CNN structure.

Layer Layer Size Layer Depth No. of Layers Layer Properties

Input 128×128 1 1 -

Convolutional / ReLU 11×11 32 4 Same Padding

MaxPooling 2x2 32 1 No Padding

Convolutional / ReLU 9×9 64 4 Same Padding

MaxPooling 2x2 64 1 No Padding

Convolutional / ReLU 7×7 128 4 Same Padding

MaxPooling 2×2 128 1 No Padding

Fully Connected / ReLU 128, 64, 32, 16 1 4 -

Fully Connected / SoftMax 2 1 1 -

https://doi.org/10.1371/journal.pone.0263159.t001
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learning method as follows:

K ¼ 1 �

XL

i¼0

XL

j¼0

wði; jÞcði; jÞ

XL

i¼0

XL

j¼0

wði; jÞpði; jÞ
ð5Þ

where L is the number of classes which the images belong to (i.e. L = 2 or L = 3), c (i,j) and w (i,
j) are the elements of the normalized confusion matric C and the weight matrix respectively

where

wði; jÞ ¼ ði � jÞ ð6Þ

Further, p (i,j) is an entry of the normalized outer product of the two normalized histo-

grams for predicted and actual labels. To further understand the discriminative nature of the

three classes (i.e., HC or PD (OFF medication) or PD (ON medication)), the Gradient-

Weighted Class Activation Mapping (Grad-CAM) was applied on the gray-scale Wavelet

transform images to visualize the feature maps of the last non-fully connected layer (i.e., layer

no. 16, which is the last max-pooling and spatial filtering applied on the images) [55].

In the Grad-CAM method, the global average pooling is applied on the gradient of the class

score yc with respect to the 128-feature maps Ak of the 16th layer where k is the feature map

index as follows:

wck ¼ 1=S
X

j

X

j

@yc=@Akij ð7Þ

where wck represents the significance of the kth feature map of the 16th layer in discriminating

the class c in the image from other classes, S is the size of the feature maps, and Akijare the pixel

values of the kth feature map of the 16th layer. Further, the weights are multiplied with the

128-feature maps and rectified using a ReLU layer to generate the heat feature maps (i.e., class

discriminative maps) as follows:

LcGrad� CAM ¼ ReLUð
X

k

wckAkÞ ð8Þ

The Grad-CAM method was selected due to the simplicity of calculating the weights wck
without the need for retraining the model. Further, the generated heat maps will pinpoint the

regions within the wavelet images that the deep-learning approach considers to successfully

classify as HC or PD (OFF medication) or PD (ON medication).

Experimental study

Four different experiments were conducted using the deep-learning approach as follows:

HC versus subjects with PD (OFF medication)

The objective of the first experiment is to classify subjects into HC and PD (OFF medication).

This will support the clinician’s decision for screening subjects based on the recorded EEG.

In this experiment, the Morlet Wavelet transform was applied on the EEG time-series sig-

nals for the 16 HC and 15 PD (OFF medication) generating 24,264 gray-scale images of a

dimension 128×128×1 at each of the 32 spatial channels. A total of 12,260 images were labelled

as HC while 12,004 were related to PD. Four different channels (i.e., Fp1, FC1, CP5, and Fp2)
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were randomly selected for the analysis. The 4-fold and 10-fold cross-validation methods were

deployed to evaluate the performance of the model where the training and validation images

were separated based on the patient ID. Training images were then grouped into patches of 50

and the back propagation algorithm was executed at a learning rate of 10−5 for 40 epochs.

Tables 2 and 3 show the 4-fold and 10-fold cross-validation training, cross-validation accuracy,

sensitivity, specificity, weighted Kappa score, and AUC respectively for four different

channels.

Fig 4 shows the ROC graph for the proposed model in this case scenario. It is obvious that

the proposed model performs better when applied on the CP5 channel as compared with Fp1

channel where the measured AUC is 0.99 and 0.97 respectively.

The confusion matrix for the 4-fold cross validation experiments at Fp1, CP5 and Fp2

channels is shown in Table 4. Indeed, Table 4 shows that the deep-learning approach achieves

a minimal classification error ranging from 5 to 57 misclassified wavelet images out of 6066

images. Also, fewer PD images were misclassified as HC (i.e., less false negative rate) as com-

pared to the false positive rate indicating that the approach can serve as a powerful pre-screen-

ing method that can be used prior to the application of the standard clinical tests.

Subjects with PD (OFF medication) versus subjects with PD (ON

medication)

In this study, the objective is to identify PD subjects who are ON and OFF medication. The

ability of the approach to discriminate PD patients ON and OFF medication based on the rest-

ing-state EEG may support future studies to assess the efficacy of these treatments and monitor

the changes in the EEG brain waves. In this case, the Wavelet transform is applied on the rest-

ing-state EEG corresponding to 15 subjects with PD (ON and OFF medication). The CNN

was also applied with the same training and validation setup described in the previous sub-sec-

tion. Table 6 presents the 4-fold cross-validation performance of the approach.

The reported results in Table 5 shows a promising use of the approach to identify PD with

and without treatment at an accuracy up to 99.8% at CP5. Fig 5 shows the ROC graph for the

Table 2. 4-Fold cross validation results.

Channel (Fp1) (FC1) (CP5) (Fp2)

Training Accuracy 100% 100% 100% 100%

Validation Accuracy 98.6% 99.7% 99.9% 98.9%

Sensitivity 98.9% 99.8% 99.9% 99.1%

Specificity 98.3% 99.6% 99.9% 98.8%

Weighted Kappa 0.97 0.99 0.99 0.98

AUC 0.99 0.99 0.99 0.99

https://doi.org/10.1371/journal.pone.0263159.t002

Table 3. 10-Fold cross validation results.

Channel (Fp1) (FC1) (CP5) (Fp2)

Training Accuracy 100% 100% 100% 100%

Validation Accuracy 98.7% 99.8% 99.9% 98.9%

Sensitivity 98.6% 99.8% 99.9% 98.8%

Specificity 98.7% 99.8% 99.9% 98.9%

Weighted Kappa 0.97 0.99 0.99 0.97

AUC 0.97 0.98 0.99 0.99

https://doi.org/10.1371/journal.pone.0263159.t003
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proposed framework when used to discriminate subjects who are not receiving medical treat-

ments from subjects on medications.

It is clear that the at a relatively low false alarm probability (i.e., false positive rate), the pro-

posed approach is slightly sensitive to identify patients who are ON medications as well as who

are OFF medication at CP5 as compared to Fp1 with almost the same AUC of 0.99 at both

channels. This may assist clinical studies to monitor the effects of therapeutic treatments initia-

tion and verify whether PD subjects receiving therapeutic treatments may or may not exhibit

Fig 4. Receiver operating characteristic curve for the proposed model used to classify subjects into HC, and PD

(OFF medication) at Fp1 and CP5.

https://doi.org/10.1371/journal.pone.0263159.g004

Table 4. Confusion matrix for the deep-learning approach (4-fold cross validation).

Fp1

HC PD

HC 3042 38

PD 19 2967

CP5

HC PD

HC 3077 3

PD 2 2984

Fp2

HC PD

HC 3021 37

PD 18 2990

https://doi.org/10.1371/journal.pone.0263159.t004
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the same EEG changes as subjects not receiving the treatments. A potentially even more excit-

ing use of this would be to test new therapeutic interventions to see if the experimental treat-

ment causes the same EEG changes that known effective PD medications induce to predict

potential for clinical efficacy.

HC versus subjects with PD (OFF medication) and subjects with PD (ON

medication)

In this experiment, we investigate the efficacy of the deep-learning approach when applied

over the three cohorts (i.e., HC, PD (ON Medication) and PD (OFF Medication)). This will

show the scalability of the approach over a multi-class problem when subjects can be directly

screened into HC or PD with and without treatments from the resting-state EEG. Table 6 pres-

ents the 4-fold cross validation performance metrics in this scenario.

The approach proved to maintain a significantly high 4-fold cross-validation accuracy, sen-

sitivity and specificity up to 99.6% at CP5. The weighted Kappa score was ranging from 0.94 to

0.99 showing the robustness of the approach and offering an evidence on the reliability of the

performance recorded at the four different channels. In addition, the performance of the

approach has slightly dropped to 95.5% and 96.2% at Fp1 and Fp2 respectively as compared to

the respective value at the central electrode CP5. This may be attributed to proximity of the

frontal electrodes to eyes which make those electrodes more prone to eye movements and

limit the classifier performance.

Figs 6 and 7 show the sensitivity and specificity of the deep-learning approach across the

three different classes using the EEG data at three different channels (i.e., Fp1, CP5, and Fp2).

Based on the figures, the approach is relatively more sensitive at CP5. Also, it is slightly sensi-

tive towards PD (ON medication) as compared to the other two classes.

Fig 8 shows the ROC of the proposed model in the generic case when it is used to classify

subjects into HC, PD (OFF medication), and PD (ON medication) at Fp1 (worst case scenario)

and CP5 (best case scenario) based on the 4-fold cross validation experiment. As shown in Fig

8, the proposed model exhibits a better performance at CP5 with respect to Fp1 in terms of the

Table 6. 4-Fold cross validation results.

Channel (Fp1) (FC1) (CP5) (Fp2)

Training Accuracy 99.6% 99.9% 100% 99.6%

Validation Accuracy 95.5% 99.6% 99.6 96.2%

Sensitivity 95.4% 99.6% 99.6% 96.2%

Specificity 97.7% 99.8% 99.8% 98.1%

Weighted Kappa 0.94 0.99 0.99 0.95

AUC 0.98 0.99 0.99 0.99

https://doi.org/10.1371/journal.pone.0263159.t006

Table 5. 4-Fold cross validation results.

Channel (Fp1) (FC1) (CP5) (Fp2)

Training Accuracy 99.7% 99.7% 99.9% 99.9%

Validation Accuracy 96.3% 99.3% 99.8% 98%

Sensitivity 96.6% 99.3% 99.7% 97.8%

Specificity 95.9% 99.4% 99.8% 98.2%

Weighted Kappa 0.93 0.99 0.99 0.96

AUC 0.99 0.99 0.99 0.99

https://doi.org/10.1371/journal.pone.0263159.t005
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Fig 5. Receiver operating characteristic curve for the proposed model used to classify subjects into PD (OFF

medication) and PD (ON medication) at Fp1 and CP5.

https://doi.org/10.1371/journal.pone.0263159.g005

Fig 6. Sensitivity of the model across the three classes.

https://doi.org/10.1371/journal.pone.0263159.g006
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Fig 7. Specificity of the model across the three classes.

https://doi.org/10.1371/journal.pone.0263159.g007

Fig 8. Receiver operating characteristic curve for the proposed model used to classify subjects into HC, PD (OFF

medication) and PD (ON medication) at Fp1 and CP5.

https://doi.org/10.1371/journal.pone.0263159.g008
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elevated true positive rate at a relatively low false positive rate. This may show that the values

recorded at the central electrodes offer a benefit over the ones captured by frontal electrodes

due to less susceptibility to eye motion artifacts as mentioned before.

In conclusion, the deep-learning approach provides a promising PD screening tool that

exploits the Wavelet domain of resting-state EEG and offers a significantly accurate and sensi-

tive decision support system for neurologists and neuroscience researchers seeking answers

regarding the differentiability of PD based on resting-state EEG.

Feature visualization using the Grad-CAM method

In order to understand the reason behind the achieved predictions, the feature maps of the

16th layer of the models used in the past three experiments were visualized using the Grad-

CAM method discussed in Section III Subsection B. Figs 9–11 show the corresponding class

discriminative maps for the models when validated using the EEG data at Fp1 and CP5.

As shown in Fig 9, and by referring to the original Wavelets of Fp1 and CP5 presented in

Fig 2, the deep-learning approach was able to distinguish HC from PD or PD subjects who are

OFF medication based on regions of high intensity values (marked in RED) at low scales but

Fig 9. Heat maps showing the significance of the features identified in the wavelet images for HC (first column)

and PD OFF medication (second column) for channels Fp1 and CP5. Channel Fp1 is represented in the first row

and channel CP5 is represented in the second row.

https://doi.org/10.1371/journal.pone.0263159.g009
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most importantly at mid and high scales of the Wavelet images. This is more obvious in Wave-

lets of Fp1 as compared to CP5 Wavelets.

When PD (ON medication) was compared to PD (OFF medication) as in Fig 10, the features

identified by the model as significant and discriminatory were the time-continuity of the high

intensity values at a certain low scale range for PD (OFF medication) as compared to PD (ON

medication). Further, the locations of the higher scales with relatively high intensity values were

used to differentiate PD (OFF medication) from PD (ON medication) at both channels as well.

When the deep-learning approach was used in the three-class problem (i.e., classification of

subjects into HC, PD (OFF medication) and PD (ON medication)), the significant feature

maps used in the successful prediction of the subject status (see Fig 11) were consistent with

the observations reached based on Figs 9 and 10.

Computational time complexity

The proposed framework has achieved a significant performance in discriminating subjects

with Parkinson’s Disease (PD) from healthy controls as well as the efficient classification of PD

Fig 10. Heat maps showing the significance of the features identified in the wavelet images for PD OFF

medication (first column) and PD ON medication (second column) for channels Fp1 and CP5. Channel Fp1 is

represented in the first row and channel CP5 is represented in the second row.

https://doi.org/10.1371/journal.pone.0263159.g010
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subjects into patients receiving therapeutic treatments and patients without any intervention.

One of the limitations of this study is that the proposed approach has not been tested in a clini-

cal setting or directly applied to real-time EEG being recorded for patients to provide a prompt

prediction and diagnosis of the disease.

However, due to the low-complexity of the proposed approach which consists of a Continu-

ous Wavelet transform preceded with a 20-Layer CNN, the proposed approach is expected to

offer a promising real-time screening for subjects that will potentially support the clinical diag-

nosis of the disease. We have determined the computational time for the application of the pro-

posed framework when applied on the offline version of the entire EEG time-series recorded at a

single channel (i.e., CP5) for approximately 1.9 to 2 minutes. The EEG which was sampled at

512 S/s created a discrete-time signal of 102,400 time-samples. A computational time of 25.1 sec-

onds was estimated on a Dell Alienware workstation with Intel(R) Core (TM) i9-9900K CPU @

3.6GHz (8 Cores), 64 GB RAM, NVIDIA GPU using MATLAB R2021a.

Comparative study with related work

The state-of-the-art research that adopted the use of machine and deep learning for PD diag-

nosis [24–29] have mostly used two different datasets (i.e., UC San Diego Resting State, and

UKM Medical Center EEG datasets) while a single study [23] used a locally acquired EEG

dataset at the Sun Yat-Sen University First Affiliated Hospital which is considered the largest

among other datasets.

The related work adopted three different approaches:

1. Direct application of MDL techniques including hybrid CNN-RNN and ANN on the time-

domain representation of EEG such as in [23–25].

Fig 11. Heat maps showing the significance of the features identified in the wavelet images for HC (first column),

PD OFF medication (second column) and PD ON medication (third column) for channels Fp1 and CP5. Channel

Fp1 is represented in the first row and channel CP5 is represented in the second row.

https://doi.org/10.1371/journal.pone.0263159.g011
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2. TFR Transformation using TQWT followed with handcrafted feature extraction which is

labor and computational time-intensive and then classification based on the extracted fea-

tures using a machine learning technique such as LSSVM and probabilistic neural network

as in [26, 29].

3. TFR Transformation using TQWT and SPWVD followed with a direct application of a

deep learning technique (i.e., 2D CNN) for simultaneous feature extraction and classifica-

tion as in [27, 28].

Both the second and third approach provided the highest performance in terms of valida-

tion accuracy, sensitivity and specificity as compared with the first approach as shown in

Table 7. This may be due to the intrinsic discriminative features of PD that can be extracted in

the TFR or time-scale domains rather than the pure time-domain. Further, the third approach

with the direct application of CNN for both feature extraction and classification provides a

major advantage on the second approach in terms of the reduction in the framework complex-

ity as well as the generalization of the approach that can be directly adopted and tested on

non-resting state EEG or sleep EEG without the need to validate the aforementioned hand-

crafted features.

Based on the reported performance results in Table 7, the proposed CWT-CNN approach

provided a cross-validation accuracy up to 99.9% at CP5 for classifying subjects into HC and

PD without medication (which is the case for the initial screening of potential PD patients)

outperforming the recent state-of-the-art methods [23–27] with the highest accuracy attained

by Khare et al. [27] of 99.7%. In addition, the proposed framework slightly surpassed the only

framework (Gabor transform-CNN [28]) tested on a three-class challenge aimed at identifying

HC from PD (ON, and OFF medication) with 0.16% improvement.

Not only the validation accuracy, sensitivity, specificity and AUC of the proposed approach

reached 99.9%, but also a weighted Kappa score of 0.99 was almost achieved at CP5 providing

a clear evidence on the reliability of the performance values obtained in this study where the

Table 7. Comparison of the proposed approach and the-state-of-the-art architectures used for PD detection.

Approach Dataset TFR MDL Classification Accuracy

Shi et al., 2019 [23] Sun Yat-Sen University First Affiliated Hospital

EEG for 40 PD and 30 HC

- 2D CNN-RNN, 3D

CNN-RNN

PD Vs. HC 81.13%

82.89%

Lee et al., 2019 [24] UBC Resting State EEG for 20 PD and 22 HC - 2D CNN-LSTM PD Vs. HC 96.9%

Shaban, 2021 [25] UC San Diego Resting State EEG for 15 PD and

16 HC

- ANN PD Vs. HC 98%

Khare et al., 2021 [26] UC San Diego Resting State EEG for 15 PD and

16 HC

TQWT LSSVM HC Vs. PD (OFF Medication) 96.13%

HC Vs. PD (ON Medication) 97.65%

Khare et al., 2021 [27] 1. UC San Diego Resting State EEG for 15 PD

and 16 HC

SPWVD 2D CNN HC Vs. PD (OFF Medication) 99.7%

2. UKM Medical Center EEG for 20 PD and 20

HC

HC Vs. PD (ON Medication) 100%

Loh et al., 2021 [28] UC San Diego Resting State EEG for 15 PD and

16 HC

Gabor

Transform

2D CNN HC Vs. PD (ON, OFF

Medication)

99.46%

Murugappan et al.,

2020 [29]

UKM Medical Center EEG for 20 PD and 20 HC TQWT Probabilistic Neural

Network

PD Emotion Classification 94%

Proposed Work UC San Diego Resting State EEG for 15 PD and

16 HC

CWT 2D-CNN HC Vs. PD (OFF Medication) 99.9%

PD (OFF Medication) Vs. PD

(ON Medication)

99.8%

HC Vs. PD (ON, OFF

Medication)

99.6%

https://doi.org/10.1371/journal.pone.0263159.t007
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probability that the prediction matched the ground truth by chance is very minimum.

Although the proposed approach performed slightly better at a central electrode (CP5) as com-

pared with frontal electrodes (Fp1 and Fp2), generally the performance measures at the four

selected channels were found to be comparable showing the ability of the deep-learning

approach to identify the PD features regardless the location at which the EEG signal was

captured.

Discussion

PD is a complex neurodegenerative disease that is challenging for physicians and specialists to

diagnose and grade. Observation of motor system abnormalities is the current means of clini-

cal diagnosis and is the gold standard despite being subjective and prone to human error. Ear-

lier detection of disease and initiation of neuroprotective treatments (when these are available)

have potential to improve the prognosis and possibly slow down the disease progression.

In this paper, we have introduced a deep-learning approach that utilizes a recently proposed

CNN structure to exploit the Wavelet domain of resting-state EEG for HC, PD (OFF medica-

tion), and PD (ON medication). The objective of this framework is to distinguish PD from HC

as well as to identify the distinguishing features in EEG between PD subjects who receive ther-

apeutic treatments and subjects without any intervention. Further, we have introduced the use

of this technique on a three-class problem where deep-learning can efficiently identify normal

subjects, PD (OFF medication), and PD (ON medication).

The strengths of the proposed approach can be summarized as follows: 1. The deep-learn-

ing approach was able to classify subjects into PD and HC with significantly high cross-valida-

tion accuracy, sensitivity, specificity, AUC of ROC, and Weighted Kappa Score up to 99.9%

surpassing the recent state-of-the-art literature [23–28]. 2. The deep-learning framework

revealed significant features of the disease where the Wavelet domain of HC (subjects without

a clinical diagnosis of PD) exhibits regions of significantly high intensities at low, mid, and

high scales as compared to subjects with PD. This may show neurological activity at specific

EEG frequency intervals. 3. This study also demonstrated that PD (OFF medication) maintains

a consistent continuous high intensity at narrow range of low-scales as compared to PD (ON

medication). Further, there are significant changes in the locations of high scales that exhibit

high values for both PD (OFF and ON medication).

The observations can serve as hypothesis generation for larger clinical and research studies

to understand the role Parkinson’s disease plays in changing the Wavelet domain of the EEG.

Although the study and the current findings are promising, the deep-learning approach has a

few limitations:

1. Most of the deep-learning approaches including the proposed framework lack real-world

clinical and experimental validation where the approaches are not tested on EEG data for

patients awaiting clinical diagnosis. It was mentioned in [56], that the accuracy of clinical

diagnosis performed by non-experts was determined as 73.8% while when the diagnosis

was performed by movement disorders experts, the accuracy was found to be 79.6% (initial

assessment) and 83.9% (follow-up assessment). Using AI models with accuracies that are

close to 100% as attained in this study will provide a high confidence in the AI classifier pre-

dictions and will support the clinical diagnosis. In the future, we are planning to investigate

the use of AI methods in sleep EEG that has been acquired for 59 patients with and without

Mild Cognitive Impairment (MCI) as there have been several studies on sleep-EEG to iden-

tify potential biomarkers of PD and cognitive dysfunction [57–61]. We will further use the

future developed methods to test on real-time data generated for patients and compare

with expert’s annotation (i.e., ground truth). We also expect that the model will be able to
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run concurrently with real-time EEG data acquisition and therefore, the processing time

may then slightly exceed total time required to acquire EEG.

2. Since the CWT is a highly redundant transform with a significant overlap among Wavelets

at different scales, Discrete Wavelet Transform (DWT) can be deployed instead of the

CWT to provide more efficient and sparse time-scale representation of EEG time-domain

signals. Further, more powerful and efficient techniques including TQWT, Flexible Ana-

lytic Wavelet Transform (FAWT), and Variational Mode Decomposition (VMD) will be

considered for EEG transformations prior to AI framework application as such techniques

will support better identification and interpretation of the discriminative features of EEG

related to each class using AI based visualization techniques.

3. EEG is not currently adopted for the clinical diagnosis of PD. However, once the EEG based

deep-learning method is validated in the clinical setting and trials demonstrate the relation-

ship between the recognized Wavelet features and PD, these EEG signatures may serve as an

alternative supportive objective measure of disease status and improve the understanding of

the nature of the disease, its potential EEG biomarkers, and its response to treatment.

4. Additional work is needed to determine if the proposed approach can effectively serve as a

screening method to identify subjects with high risk to develop PD, since the current

approach was trained and validated on a dataset for subjects with a confirmed PD diagnosis.

Pre-clinical diagnosis of PD may help improve the efficacy of the therapeutic treatment and

potentially delay the progression of the disease. Subjects with prodromal PD (such as those

with REM sleep behavior disorder) will be an ideal population in which to test this.
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