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Abstract: Aim: This study aims to develop new approaches to characterize brain networks to
potentially contribute to a better understanding of mechanisms involved in depression. Method and
subjects: We recruited 90 subjects: 49 healthy controls (HC) and 41 patients with a major depressive
episode (MDE). All subjects underwent clinical evaluation and functional resting-state MRI. The
data were processed investigating functional connectivity network measures across the two groups
using Brain Connectivity Toolbox. The statistical inferences were developed at a functional network
level, using a false discovery rate method. Linear discriminant analysis was used to differentiate
between the two groups. Results and discussion: Significant differences in functional connectivity
(FC) between depressed patients vs. healthy controls was demonstrated, with brain regions including
the lingual gyrus, cerebellum, midcingulate cortex and thalamus more prominent in healthy subjects
as compared to depression where the orbitofrontal cortex emerged as a key node. Linear discriminant
analysis demonstrated that full-connectivity matrices were the most precise in differentiating between
depression vs. health subjects. Conclusion: The study provides supportive evidence for impaired
functional connectivity networks in MDE patients.

Keywords: functional connectivity; functional magnetic-resonance imaging; resting state; mood
disorders; classification

1. Introduction

Major depressive disorder (MDD) is a leading cause of disability worldwide [1]. How-
ever, its exact pathophysiological mechanism remains unclear. Symptoms of depressive
episode include sadness, anhedonia, insomnia, restlessness, and suicidal thoughts [2].
Moreover, this condition is characterized by impairments in cognitive and emotional pro-
cessing [3]. There is evidence suggesting that cognitive dysfunction could be seen not
only in the acute phase but in remission as well, and it could even worsen the condition’s
outcome [4,5].

Brain networks can be defined as a set of regions that exhibit correlated activity in
resting-state condition or during task performance [6,7]. In recent studies, researchers
concentrated on building brain functional networks, as well as searching for abnormal
communication between them in order to elucidate the pathophysiological mechanisms of
MDD [8]. Different methods are used for constructing brain networks such as region of
interest (ROI) analysis, seed-based analysis or independent component analysis (ICA) with
the first two being preferred in hypothesis driven research; while the latter is an example
of data driven approach [9]. However, for each of these methods there are strengths and
weaknesses. In the ROI-based method the definition of the regions could affect functional
connectivity patterns [10]. Moreover, seed-based analysis results depend much on the
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positioning of the seed voxel, which could lead to inconsistent results [11]. As a data-driven
approach, ICA extracts the signal and creates a number of components (limited by the
researcher), which could affect the number of spatially distinct networks and is dependent
on the knowledge and critical thinking of the investigator for the interpretation.

Generally, the brain networks which are thought to be involved in depression are
the default mode network (DMN), salience network (SN), and executive control network
(ECN) [12–14]. The rostral medial prefrontal cortex (rmPFC) is a key node in the DMN
and has been reported to support socio-cognitive and socio-affective processes which
are impaired in patients with major depressive disorder [15]. Moreover, decreased tha-
lamic connectivity within the SN has been reported in patients with major depressive
disorder [12]. However, other brain regions are affected by the major depressive disorder
as well. Patients with MDD had increased connectivity between the right anterior hip-
pocampus (rAHipp) and lingual gyrus (LinG) [16]. In addition, there was also a decreased
connectivity between the right posterior hippocampus (rPHipp) and right inferior frontal
gyrus (rIFG) [16]. On the other hand, decreased connections between the frontoparietal
network and subcortical network and increased connections between the frontoparietal
network and salience network were reported, which shows the dysregulated neuronal
activity in patients with MDD [17].

Understanding brain network dysfunctions in depression is a promising key in the
process of elucidating the pathophysiological mechanisms involved. Previous studies
have used amplitudes of low-frequency fluctuations and resting-state fMRI data in order
to observe the connections between DMN and CEN [18]. A large study by Liang et al.
managed to divide two subgroups of MDD according to their hyper and hypo DMN
connectivity [19]. They proposed that the hypo-DMN function relates to the age-related
severity of depressive symptoms. Bhaskar Sen et al. proposed a different methodology for
predicting the chance of suffering from depression by examining connectivity values of
different brain regions during resting-state fMRI [20]. In addition, a multivariate approach
was implemented to differentiate between MDD and healthy controls, where not only
cross-network connections were found but also the supramarginal gyrus appeared to be
the most discriminative one [21].

In contrast to the abundance of classical functional connectivity research, there are
very few studies which investigate the pathology of psychiatric conditions from the point
of graph-theory analysis and its characteristics such as node strength, centrality, etc. Ac-
cording to Jacob et al. MDD patients showed decreased node strength of the right hip-
pocampus and decreased clustering coefficient of the right dentate gyrus in contrast to
the HC group [22]. In another study using this method MDD patients exhibited reduced
centrality in parietal lobule, lingual gyrus and thalamus and there was node disruption in
brain connectivity of the patients which correlated with their depressive symptoms and
cognitive performance [23].

Moreover, a meta-analysis from 2017 shows the role of ACC, as part of SN, in differenti-
ating drug-naive and medicated patients with MDD [24]. On the other hand, meta-analysis
reveals an aberrant intrinsic brain activity predominantly in the insula, medial prefrontal
cortex and cerebellum [25]. In addition, according to a meta-analysis research study it
reported that the resting-state fMRI could be used for the classification of MDD and HC
with 85% sensitivity, 83% specificity according to the methodology [26].

Our approach is an explorative, data-driven, semi-unsupervised study aiming to
investigate newer approaches to characterize brain networks measures in terms of clus-
tering coefficient, node centrality, and node strength. The purpose of this approach is to
address network generative principles, order dependencies and the community structure of
networks, which could potentially contribute to a better understanding of the mechanisms
involved in depression and in certain perspectives differentiate patients with depression
from healthy individuals, aiding the diagnostic process.
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2. Subjects and Methods
2.1. Subjects

We recruited 90 subjects: 49 healthy controls (HC) and 41 patients with a major depres-
sive episode (MDE) in the context of major depressive disorder (n = 35) or bipolar affective
disorder (n = 6). Subjects from both groups were assessed by experienced psychiatrists
using Mini International Neuropsychiatric Interview [27] and Montgomery–Åsberg De-
pression Rating Scale (MADRS) [28]. Subjects having a previous history of comorbid (for
HC and patients, respectively) psychiatric conditions, autoimmune diseases, neurological
diseases, history of head trauma, or any metal implants incompatible with the MRI were
excluded. All participants provided a written consent form complying with the Declara-
tion of Helsinki. The study was approved by the Medical University of Plovdiv Ethical
Committee (2/19 April 2018).

Demographic and Clinical Characteristics

The two groups of subjects did not differ significantly in terms of mean age, sex, and
level of education distributions. Expectedly, patients had significantly higher MADRS
scores (see Table 1).

Table 1. Demographic and clinical characteristics of the groups.

Healthy Controls (n = 49) Patients (n = 41) Statistic Significance

Age (mean ± SD) 40.7 ± 13.5 41.2 ± 15.4 D-statistic = 0.121 0.842 a

Sex (M/F) 14/35 14/27 χ2-statistic = 0.324 0.569 b

Education (secondary/higher) 16/33 20/21 χ2-statistic = 2.419 0.120 b

MADRS score (mean ± SD) 2.2 ± 2.9 29.8 ± 8.2 D-statistic = 0.975 * 10−22 a

SD—Standard Deviation, a Two-sample Kolmogorov–Smirnov nonparametric test, b χ2-test, MADRS—Montgomery–Åsberg
Depression Rating Scale, * p < 0.05.

2.2. Methods
2.2.1. MR Scanning

The MR scanning procedure was performed on a 3T MRI system (GE Discovery 750w,
General Electric, Boston, MA, USA). The protocol included a high-resolution structural
scan (Sag 3D T1) with slice thickness of 1 mm, matrix 256 × 256, TR (relaxation time) 7.2 s,
TE (echo time) 2.3 s, and flip angle 12◦, FOV 24, 368 slices and resting-state functional
scan—2D echo-planar imaging (EPI), with slice thickness 3 mm, matrix 64× 64, TR 2000 ms,
TE 30 ms, 36 slices, flip angle 90◦, FOV 24, a total of 192 volumes. Before the EPI sequence,
subjects were instructed to remain as still as possible with their eyes closed and not to think
of anything in particular.

2.2.2. Image Processing

Neuroimaging data were processed using SPM 12 software (Statistical Parametric Mapping,
http://www.fil.ion.ucl.ac.uk/spm/, accessed on 4 October 2021) running on MATLAB
R2021 for Windows. The functional images of each participant were first realigned, co-
registered with the high-resolution anatomical image, and normalized to standard MNI
space. Parameters for the realignment step were the following: quality 0.9, separation 4,
smoothing FWHM 5, 2-nd degree B-spline interpolation, no wrap, 12 × 12 basis function,
regularization 1 with medium factor, without Jacobian deformations, 5 iterations, average
Taylor expansion point. The co-registration method was set to the normalized mutual
information with the following parameters: separation [4 2], tolerances [0.02 0.02 0.02 0.001
0.001 0.001 0.01 0.01 0.01 0.001 0.001 0.001], histogram smoothing [7 7]. MNI normalization
parameters were the following: bias regularization 0.0001, bias FWHM 60mm cutoff, affine
regularization ICBM European brain template, warping regularization [0 0.001 0.5 0.05 0.2],
no smoothing, sampling distance 3.

http://www.fil.ion.ucl.ac.uk/spm/
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2.2.3. Connectivity Matrix Calculation

The normalized functional MRI volumes extracted with the help of SPM12 and the
“spm_data_read” function were parcellated into 166 regions according to the automated
anatomical labeling atlas AAL3 [29]. We have chosen the AAL atlas because it is the most
commonly used parcellation scheme in functional network studies [30]. To estimate the
connectivity between the regions of interest, we calculated an average BOLD time series
xi(t) (across the voxels in each parcellation i) and Pearson correlation coefficients for all
pairs of the mean parcellation activities. The Pearson correlation coefficient measures the
linear relationship between two random variables and is good for low-frequency processes,
which also include fMRI [31]. Connectivity Matrix calculation from the averaged activity
time series was performed with the help of Matlab statistics “corrcoef” function. Thus,
we obtained for each subject a 166 × 166 symmetric connectivity matrix R. Each cell of
the connectivity matrix (ri,j) represents the strength of the connection (or edge) between
two parcels:

ri,j =
∑n

k=1 (xi,k − xi)(xj,k − xj)√
∑n

k=1 (xi,k − xi)
2 ∑n

k=1 (xj,k − xj)
2

(1)

Here, n is the length of the x time series, and x is the mean of the x time series.

2.2.4. Network Measure

To characterize the identified brain networks with meaningful and simplistic com-
putable indicators, we used the following measures implemented in the Brain Connectivity
Toolbox [32,33]:

(1) The weighted undirected clustering coefficient [34], which is typically used as a
measure of the prevalence of node clusters in a network. For the particular node i local
undirected clustering coefficient of the network can be calculated as follows:

Cclust,i =
1

li(li − 1)
ri,jrj,krk,i, i, j, k ∈ [1..166] (2)

where li =
166
∑

j=1
ri,j is the total weight of the relationship of the i-th node, 166 is the number

of regions. The mean value for the whole network will be:

< Cclust >= ∑
i

Cclust,i (3)

(2) The weighted undirected eigenvector centrality [33,35], which measures a node’s
importance while considering the importance of its neighbors. This measure is defined as
the eigenvector, v, associated with the largest eigenvalue λ of the correlation matrix, and
can be written as:

θi =
1
λi

166

∑
j=1

ri,jvj (4)

In analogy with (3), the mean centrality for the network will be denoted as <θ>.
(3) The node strength [32], which is the measure representing the sum of the edge weights:

Nsi =
166

∑
j=1

ri,j (5)

In analogy with (3), the mean node strength for the network will be denoted as <Ns>.
These measures address network generative principles, order dependencies, and

community structure of networks. These measures are implemented as a diagnostic tool for
explicitly linking micro-scale features of network organization to macro-scale characteristics
of neurophysiological dynamics [33].
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2.3. Statistical Analysis

Statistical analysis of the demographic and clinical characteristics of the participants
were performed using IBM SPSS 28.0 for Windows. The significance level was set to p < 0.05.
We employed the Chi-square test for the categorical variables (sex and education). We
tested the normality of the distributions of the continuous variables with the Kolmogorov–
Smirnov one-sample criterion, which did not verify the normality for age and MADRS
scores. In that regard, we employed the two-sample Kolmogorov–Smirnov nonparametric
test to assess the differences between the control and patient groups.

The false discovery rate (FDR) method [36] with t-test implemented in NBS soft-
ware [37] was used to assess the differences between the obtained correlation matrices
for the two groups (control vs. patients) with a significance level of p = 0.0001 and
100,000 permutations. We included diagnoses as dummy-coded covariates in the t-test to
control the presence of two depressive subgroups (MDD and bipolar).

For independent samples t-test was performed on the network mean values <Cclust>,
<θ>, <Ns>. Obtained network measures were tested for being normally distributed with
the Kolmogorov–Smirnov one-sample criterion.

We applied permutation-based statistical testing [38] to test the significance difference
(control vs. patients) between the distributions of the network measures by nodes. We
revealed the node clusters, which were significantly different between healthy controls and
depression groups based on their local values of Cclust,i, θi, Nsi. Order in the procedure is
defined by the neighborhood of the anatomical parcellations, this allows us to analyze the
spatial structures of the obtained clusters. For the visualization of the network structures,
we used the BrainNet Viewer [39].

Linear Discriminant Analysis

To evaluate the diagnostic value of the identified differences in functional networks be-
tween the groups, we applied a linear discriminant analysis (LDA) (using the Classification
Learner toolbox, Matlab) to data feature vectors from the control and depression groups.
Linear discriminant analysis is widely used for diagnostic purposes; the multivariate su-
pervised classification method sorts objects of the study into groups by finding linear
combinations of a number of variables [40]. The tested variants of feature vectors included:
full functional connectivity (FC) matrices, FC matrices with only connections that were
considered significant through the FDR analysis, node clustering coefficients, node strength,
and node centrality. Statistical significance of the results was ensured by the use of the
nested k-fold (k = 10) cross-validation with each test run 1000 times. Names of classes
used in the algorithm for training and classification were specified as a categorical set
including “control” and “depression”. Cost of misclassification of a point was set to the
default Cost(i,j) = 1 if i 6= j, and Cost(i,j) = 0 if i = j. A linear coefficient threshold was set to
zero. The discriminant type was set, recommended by the toolbox “pseudolinear” type
to avoid problems with zeros and negative values in the predictors set. Other parameters
including the enforced amount of regularization or prior probabilities were not applied.
The chance level of the LDA for the considered problem is 50%.

3. Results
3.1. Connectivity Analysis

Our analysis identified a total of 2673 connections and 152 nodes, which were signifi-
cantly stronger in the control group compared to the depression group. We present the top
30 of those connections in Table 2 and in Figure 1.
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Table 2. The top 30 significant connections were stronger in the control group compared to the
depression group.

Connection Connectivity t-Statistic

1 Precuneus_L — Precuneus_R 31.3
2 Cuneus_L — Cuneus_R 28.6
3 Cerebellum_4_5_L — Cerebellum_4_5_R 28.3
4 Cuneus_R — Occipital_Sup_R 24.7
5 Cuneus_L — Occipital_Sup_L 24.2
6 Cerebellum_4_5_L — Vermis_4_5 21.0
7 Cerebellum_6_L — Cerebellum_6_R 20.9
8 Calcarine_R — Cuneus_R 20.8
9 Cuneus_R — Occipital_Sup_L 20.7
10 Hippocampus_L — Hippocampus_R 19.1
11 Calcarine_R — Cuneus_L 18.0
12 Cerebellum_4_5_L — Cerebellum_6_L 17.3
13 Calcarine_R — Occipital_Mid_R 16.7
14 Caudate_L — Caudate_R 16.6
15 Cerebellum_3_R — Cerebellum_4_5_R 16.5
16 Fusiform_R — Cerebellum_4_5_L 16.5
17 Cerebellum_4_5_R — Vermis_4_5 16.3
18 Fusiform_R — Vermis_4_5 16.3
19 Cingulate_Mid_L — Cingulate_Mid_R 16.0
20 Occipital_Sup_R — Occipital_Mid_L 15.8
21 Hippocampus_R — Temporal_Mid_R 15.5
22 Cuneus_R — Occipital_Mid_L 15.2
23 Lingual_L — Lingual_R 15.2
24 Hippocampus_L — Cerebellum_4_5_L 14.5
25 Fusiform_R — Cerebellum_4_5_R 14.4
26 Cerebellum_4_5_R — Cerebellum_6_L 14.3
27 Thal_MDm_L — Thal_MDl_L 14.2
28 Cerebellum_4_5_R — Cerebellum_6_R 13.8
29 Fusiform_R — Cerebellum_6_L 13.8
30 Calcarine_L — Calcarine_R 13.6
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3.2. Network Analysis

The Kolmogorov–Smirnov one-sample criterion confirmed the normality of the mean
network measures processed with the t-test. Mean values for the node strength <Ns>
(t2, 40= 0.179; p = 0.8584), node eigenvector centrality <θ> (t2, 40 = 0.004; p = 0.9993), and the
clustering coefficient <Cclust> (t2, 40 = 0.398; p = 0.5351) did not show a significant difference
between the two groups.

Permutation-based statistical testing revealed 5 positive and 2 negative clusters of
nodes in the distribution of node eigenvector centrality; 4 positive and 1 negative clusters in
the distribution of node strength and 2 positive and 1 negative clusters in the distribution of
clustering coefficient (see Tables 3–5). A positive cluster corresponds to a set of neighboring
nodes in which the corresponding network measure is significantly higher in the control
group, while for a negative cluster, the network measure is significantly higher in the
MDE group.

Table 3. Significant clusters for the node eigenvector centrality measure; here, superscripts “+” and
“−” denote positive (Control > MDE) and negative (MDE > Control) clusters, respectively.

Cluster Nodes Region p

1+

49 Lingual L

0.001

50 Lingual R
51 Occipital Sup L
52 Occipital Sup R
53 Occipital Mid L
54 Occipital Mid R

2+

109 Vermis 1, 2

0.005
110 Vermis 3
111 Vermis 4, 5
112 Vermis 6
113 Vermis 7

3+
35 Cingulate Mid L

0.00936 Cingulate Mid R
37 Cingulate Post L

4+
118 Thal AV R

0.014119 Thal LP L
120 Thal LP R

5+
7 Frontal Inf Oper L

0.0228 Frontal Inf Oper R
9 Frontal Inf Tri L

1−

21 Frontal Med Orb L

0.001

22 Frontal Med Orb R
23 Rectus L
24 Rectus R
25 OFCmed L
26 OFCmed R
27 OFCant L
28 OFCant R

2−

121 Thal VA L

0.006
122 Thal VA R
123 Thal VL L
124 Thal VL R

To construct specific networks, we considered only nodes included in the significant
clusters (separately for positive and negative ones) and only significant connections be-
tween such nodes that were found in the previous step with the FDR method. Specific
networks for the significant positive clusters for all considered network measures are
presented in a unified manner in Figure 2, and the specific networks for negative clusters



Int. J. Environ. Res. Public Health 2022, 19, 14045 8 of 19

are shown in Figure 3; Tables A1 and A2 in the Appendix A contain information about all
connections belonging to these networks. The first two positive clusters are very similar for
all network measures considered, the 2nd and 3rd are for eigenvector centrality and node
strength, and the 5th is unique for eigenvector centrality. The first negative cluster is similar
for all network measures considered and the 2nd is unique for eigenvector centrality.

Table 4. Significant clusters for the node strength measure; here, superscripts “+” and “−” denote
positive (Control > MDE) and negative (MDE > Control) clusters, respectively.

Cluster Nodes Region p

1+

47 Cuneus L

0.005

48 Cuneus R
49 Lingual L
50 Lingual R
51 Occipital Sup L
52 Occipital Sup R
53 Occipital Mid L

2+

109 Vermis 1, 2

0.029
110 Vermis 3
111 Vermis 4, 5
112 Vermis 6
113 Vermis 7

3+
35 Cingulate Mid L

0.05036 Cingulate Mid R
37 Cingulate Post L

4+
118 Thal AV R

0.050119 Thal LP L
120 Thal LP R

1−

21 Frontal Med Orb L

0.003

22 Frontal Med Orb R
23 Rectus L
24 Rectus R
25 OFCmed L
26 OFCmed R
27 OFCant L
28 OFCant R

Table 5. Significant clusters for the clustering coefficient measure; here, superscripts “+” and “−”
denote positive (Control > MDE) and negative (MDE > Control) clusters, respectively.

Cluster Nodes Region p

1+

47 Cuneus L

0.009

48 Cuneus R
49 Lingual L
50 Lingual R
51 Occipital Sup L
52 Occipital Sup R
53 Occipital Mid L

2+

109 Vermis 1, 2

0.035
110 Vermis 3
111 Vermis 4, 5
112 Vermis 6
113 Vermis 7

1−

21 Frontal Med Orb L

0.003

22 Frontal Med Orb R
23 Rectus L
24 Rectus R
25 OFCmed L
26 OFCmed R
27 OFCant L
28 OFCant R



Int. J. Environ. Res. Public Health 2022, 19, 14045 9 of 19

Int. J. Environ. Res. Public Health 2022, 19, x FOR PEER REVIEW 10 of 21 
 

 

Moreover, Clusters 2–4 are common for the node centrality and node strength indi-

cators. 

 

Figure 2. Connected graph obtained for the significant positive clusters (Control > MDE) of the con-

sidered network measures. Dots correspond to the nodes of the clusters and lines correspond to the 

significant connections between the nodes. Numbers denote approximate positions of the clusters 

(see Table 3). Yellow clusters are similar for all considered network measures; green clusters are 

similar for eigenvector centrality and node strength; blue clusters are unique for eigenvector cen-

trality. 

 

Figure 3. Connected graph obtained for the significant negative clusters (MDE > Control) of the 

considered network measures. Dots correspond to the nodes of the clusters and lines correspond to 

Figure 2. Connected graph obtained for the significant positive clusters (Control > MDE) of the
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(see Table 3). Yellow clusters are similar for all considered network measures; green clusters are
similar for eigenvector centrality and node strength; blue clusters are unique for eigenvector centrality.
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Figure 3. Connected graph obtained for the significant negative clusters (MDE > Control) of the
considered network measures. Dots correspond to the nodes of the clusters and lines correspond to
the significant connections between the nodes. Numbers denote approximate positions of the clusters
(see Table 3). Yellow clusters are similar for all considered network measures and blue clusters are
unique for eigenvector centrality.

For the comparison Control > MDE, the main hubs common for the considered network
measures are the lingual gyrus, the superior occipital gyrus, and the middle occipital gyrus.

Moreover, Clusters 2–4 are common for the node centrality and node strength indicators.
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3.3. Linear Discriminant Analysis (LDA)

Employing LDA, we explored the accuracy of the diagnostic classification based
on different connectivity measures. As seen in Table 6, all methods were suitable for
classification purposes (precision of at least 80%), although the best results obtained from
the LDA were full functional connectivity matrices. An illustration of the results are given
in Figure 4, where the ROC curves are presented.

Table 6. Classification accuracy of different connectivity features.

# Feature Vector Accuracy (Mean ± SD) Sensitivity Specificity Precision

1 Full FC matrices 0.9278 ± 0.0102 84% 99% 98%

2 FC matrices with
significant connections 0.8954 ± 0.0232 83% 92% 90%

3 Clustering coefficient 0.8425 ± 0.0263 87% 81% 79%
4 Node strength 0.8382 ± 0.0181 87% 83% 80%
5 Eigenvector centrality 0.8519 ± 0.0197 81% 89% 86%

Gray line highlights the unsuitable feature for classification.
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4. Discussion

Our current study resulted in the following major findings: (1) patients with depres-
sion demonstrated decreased functional connectivity within as well as between different
brain regions such as precuneus (PreCu), cuneus (Cu), superior occipital gyrus (SOG),
lingual gyrus (LG), fusiform gyrus (FG), cerebellum, along with limbic structures including
the hippocampus (Hipp) and cingulate gyrus; (2) two positive clusters (with higher mea-
sures in HC as compared to MDE patients) were common for all three network measures
including node eigenvector centrality, node strength and clustering coefficient (the first
cluster included mainly occipital brain regions—Cu, LG, middle and SOG while the second
encompassed parts of the vermis); (3) another two positive clusters were common for
both centrality and strength measures (the first one—middle cingulum bilaterally and left
posterior cingulum, the second one—right anteroventral and bilateral lateroposterior thala-
mus); (4) one negative cluster (higher in MDE group) encompassing mainly orbitofrontal
regions was common for all network characteristics while another one (with thalamic
nodes) was featured solely by eigenvector centrality; (5) the LDA demonstrated that the
full-connectivity matrices had the highest precision in differentiating between depression
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and health whilst the clustering coefficient was the least suitable measure. The significance
of these findings will be discussed in the following lines.

The most significantly different connection was the one between the left and right
PreCu. The function of the precuneus at rest is traditionally linked to the default mode net-
work (DMN), which is responsible for internally oriented attention and self-reference [41].
In this context, the current findings of changed connectivity within the PreCu is not sur-
prising and is seen in many resting-state studies of depression where the DMN, as well as
its subregions, is found to be hyperactivated and hyperconnected [42,43]. This is usually
linked to the clinical features of depression as a state of increased internalization (including
ruminations) [44]. Notably, the direction of the change in our sample is opposite (hypocon-
nectivity between left and right PreCu) which is in line with the most recent meta-analytic
studies finding reduced DMN connectivity especially in recurrent depression as is the case
of our patient group [45].

We found no significant difference in the global (network-wide averaged) eigenvector
centrality, node strength, and clustering coefficient measures between the control and MDE
groups. Thus, in terms of global network topology, the characteristic functional networks
do not differ between the groups under consideration. The main differences are observed at
the local level, as indicated by the significant clusters in the network measure distributions
(see Tables 3–5).

The first two positive clusters (Control > MDE) in the network measure distributions,
in which eigenvector centrality, node strength, and clustering coefficient are higher in the
control group, include bilateral lingual, superior, and middle occipital gyri and cerebellar
regions (vermis). In terms of the network measures, a higher local clustering coefficient
means that short-range (local) connections prevail over long-range (global) ones in these
brain areas in the control group, and network clusters are formed there. A higher eigenvec-
tor centrality and node strength in the same nodes in the control group corresponds to a
stronger integration of emerging clusters in the network and stronger connections of these
nodes (hubs) with other large hubs. The remaining three positive clusters (the cingulate,
thalamic nodes and the inferior frontal gyrus) are characterized by increased eigenvector
centrality and node strength (only for the 3rd and 4th clusters) in the control group. This
indicates that these nodes form larger and more strong integrative network hubs compared
with the MDE group. These conclusions are also supported qualitatively in Figure 2.

Of note, all considered measures pointed to the role of the left LG as a major hub in
the occipital cluster, with a number of connections demonstrating a significant difference
in the depressed as compared to healthy individuals. In accordance with these results,
depression has been linked to impaired static and dynamic FC of the LG. The role of the
left LG in depression has been reported in a most recent functional connectivity study
assessing the effect of childhood trauma [46]. The authors report that the FC changes of
the left LG were not affected by the presence or absence of traumatic events, which may
reflect a general vulnerability to depression. In support of this notion is a recent study
by Wang et al. on electroconvulsive treatment of depression. The authors found changes
in functional connectivity of the lingual gyrus to be persistent before as well as after the
procedures [47]. The other common hub for all three network measures in our study was
the vermis. Apart from the well-known motor functions, there is growing evidence for the
involvement of different parts of the vermis in higher order functions including cognitive
and emotional processing [48]. Although long neglected, the role of the cerebellum in
emotion has been now reestablished also in a recent consensus paper [49].

The links with psychiatric disorders are not surprising. Cerebellar gray matter reduc-
tions as well as decreased activity and connectivity of this region have been reported in
depression [25,50]. Some authors proposed that impaired cerebellar function contributes to
abnormalities in predictive coding and homeostatic dysregulation in depressive disorder [51].

The third cluster which demonstrated significantly different distribution of node
strength and node centrality encompassed the mid-cingulate cortex(MCC) which is divided
into the posterior MCC involved in multisensory orientation of the head and body in space
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while the anterior MCC is involved in action-reinforcement associations and selection
based on the amount of reward or aversive properties of a potential movement. MCC
contributes to cognitive control and decision making [52]. The anterior subregion also
has high dopaminergic afferents and high dopamine-1 receptor binding and is engaged
in reward processes [53]. Emotional n-back tasks elicited differential activation of the
posterior MCC in unipolar compared to bipolar depression [54]. In addition, MDD patients
as compared to healthy individuals failed to activate MCC when an emotional stimulus
was paired by a neutral one [55].

The fourth positive cluster yielded by the comparison HC vs. MDE patients included
different areas of the thalamus with bilateral lateroposterior and mostly right- sided an-
teroventral engagement. The anteroventral/anteromedial together with the mediodorsal
nuclei play important roles in connecting subcortical limbic structures (amygdala) to the
limbic cortex (anterior cingulate and orbitofrontal cortex) [56]. In addition, the cerebello–
thalamo–cortical loops are implicated in emotion regulation and subjective sense of con-
trol [57]; and aberrant intrinsic FC of the thalamocortical pathway was associated with
depression [58].

The first negative cluster (MDE > Control), which is the same for all considered
measures, includes the following brain areas: superior frontal gyrus (medial orbital), rectus
gyrus, and medial and anterior orbital gyri. Thus, in the MDE group, more developed
network clusters are formed near these nodes, while they are also more strongly integrated
into the whole network, being large hubs (see also Figure 3). The second negative cluster is
unique for the eigenvector centrality measure and includes thalamic nodes. Note that a
significantly large number of positive clusters in comparing the control vs. MDE groups is
a characteristic feature of the functional network.

The orbitofrontal cortex (OFC) plays a key role in emotion, by representing the reward
value of the goals for action [59]. Its involvement in depression has been supported by a
number of structural and functional imaging studies [10,60]. The ENIGMA consortium
found that MDD patients had thinner gray matter in OFC [61]. Moreover, one of the most
recent hypotheses about the development of depression, namely the non-reward attractor
theory of depression, assigns a major role of the lateral OFC in the pathophysiology of the
disorder [62]. According to the author the lateral orbitofrontal cortex non-reward system
triggers negative cognitive states, which in turn have positive feedback top-down effects on
the orbitofrontal cortex non-reward system. Our results of increased network measures of
the anterior OFC (corresponding to the functional division of lateral OFC] hub in depressed
patients is in line with this recent theory.

On the other hand, we know that the medial OFC is activated by rewarding and
subjectively pleasant stimuli and MDD has been found to be characterized by reduced
functional connectivity of the mOFC with the parahippocampal gyrus, which is in line
with the clinical manifestations of anhedonia (reduced anticipatory and consummatory
pleasure [63]. Our results support previous findings of depression being characterized by
disturbances of both lateral and medial part of the OFC.

The most important to the clinical reality findings of the current study was derived
from the linear discriminant analysis. It demonstrated that the clustering coefficient was
the most ineffective measure, while full-connectivity matrices, as well as those with only
the significant connections identified in advance, were the most precise in differentiating
between depression in patients and healthy individuals. These measures reached precision
levels of 97% and 94%, respectively. Thus, the connectivity matrices outperformed the
network-specific features of node strength and node centrality. We can speculate that in
order to demonstrate a meaningful diagnostic value, the resting-state connectivity feature of
depression should be considered as a whole and not reduced to separate network measures.

Earlier connectivity-based classification studies focused on specific regions or net-
works, some of them reaching very good accuracy levels of around 90% [64]. Later, whole-
brain connectivity analysis was favored, and the prediction levels reached 94% [65]. Some
of the most recent studies adopted a fusion strategy using different connectivity features
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(intrinsic, dynamic FC, effective connectivity) that could distinguish between MDD and
controls with an accuracy of 90.91% and an AUC of 0.895 [66]. In this regard, our study
yielded one of the highest performances of the classifier based on whole-brain functional
connectivity analysis.

5. Limitations

This study has several limitations that must be admitted. Firstly, the sample size is
relatively small, although comparable to other single-site studies. Secondly, the patient
group is heterogeneous in terms of diagnosis (major depressive and bipolar disorder) and
this may have influenced the results since both common and distinct activity and connec-
tivity patterns have been demonstrated [67,68]. However, we have studied dysfunctional
connectivity as a state dependent measure in major depressive episode. Unlike the trait
(or state-independent indicators), clinical features as well as the underlying functional
networks impairment on the level of the episode or the syndrome are more or less shared
between BAD and MDD. Thirdly, the fact that all patients have been on stable antidepres-
sant medication prior to inclusion might have contributed as well to our findings. Future
research should address those limitations by increasing the number of subjects, exploring
the two types of depression separately, and including samples of non-medicated patients.

6. Conclusions

In the recent decade, there is a major paradigm shift toward the network-connectivity-
driven classification of mental disorders [69]. Our work contributes to this field by pro-
viding insights into impairment of resting-state network hubs elucidated by functional
connectivity measures such as node centrality, node strength and clustering coefficient. This
approach delineated brain structures, including the lingual gyrus, cerebellum, midcingulate
cortex and thalamus, as being more prominent in healthy subjects as compared to depres-
sion where the orbitofrontal cortex emerged as a key node. In addition, the connectivity
matrices proved to be suitable for differentiating between patients with MDE and HC with
fairly high precision levels. Further integration of these results with clinical measures,
structural and diagnostic task-related functional MRI on the level of multivariate analysis
may outline new approaches and criteria to the definition of mental disorders [70–72].
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Appendix A

Table A1. List of significant (found with the FDR method) connections between positive clusters
nodes (See Figure 2) for the node centrality measure.

Region 1 Region 2
‘Frontal Inf Oper L’ — ‘Frontal Inf Oper R’
‘Frontal Inf Oper L’ — ‘Frontal Inf Tri L’
‘Frontal Inf Oper L’ — ‘Cingulate Mid L’
‘Frontal Inf Oper L’ — ‘Cingulate Mid R’
‘Frontal Inf Oper L’ — ‘Cuneus L’
‘Frontal Inf Oper L’ — ‘Cuneus R’
‘Frontal Inf Oper L’ — ‘Lingual L’
‘Frontal Inf Oper L’ — ‘Lingual R’
‘Frontal Inf Oper L’ — ‘Occipital Sup L’
‘Frontal Inf Oper L’ — ‘Occipital Sup R’
‘Frontal Inf Oper L’ — ‘Occipital Mid R’
‘Frontal Inf Oper L’ — ‘Vermis 3’
‘Frontal Inf Oper L’ — ‘Vermis 4, 5’
‘Frontal Inf Oper L’ — ‘Vermis 7’
‘Frontal Inf Oper L’ — ‘Thal LP L’
‘Frontal Inf Oper R’ — ‘Frontal Inf Tri L’

‘Frontal Inf Tri L’ — ‘Cingulate Mid L’
‘Frontal Inf Tri L’ — ‘Cingulate Mid R’
‘Frontal Inf Tri L’ — ‘Cingulate Post L’
‘Frontal Inf Tri L’ — ‘Cuneus L’
‘Frontal Inf Tri L’ — ‘Cuneus R’
‘Frontal Inf Tri L’ — ‘Lingual R’
‘Frontal Inf Tri L’ — ‘Occipital Sup L’
‘Frontal Inf Tri L’ — ‘Occipital Sup R’
‘Frontal Inf Tri L’ — ‘Occipital Mid L’
‘Frontal Inf Tri L’ — ‘Occipital Mid R’
‘Frontal Inf Tri L’ — ‘Vermis 4, 5’
‘Frontal Inf Tri L’ — ‘Vermis 6’
‘Frontal Inf Tri L’ — ‘Vermis 7’
‘Cingulate Mid L’ — ‘Cingulate Mid R’
‘Cingulate Mid L’ — ‘Cingulate Post L’
‘Cingulate Mid L’ — ‘Vermis 3’
‘Cingulate Mid L’ — ‘Vermis 7’
‘Cingulate Mid R’ — ‘Cingulate Post L’
‘Cingulate Post L’ — ‘Cuneus L’
‘Cingulate Post L’ — ‘Cuneus R’
‘Cingulate Post L’ — ‘Lingual L’
‘Cingulate Post L’ — ‘Lingual R’
‘Cingulate Post L’ — ‘Occipital Sup L’
‘Cingulate Post L’ — ‘Occipital Sup R’
‘Cingulate Post L’ — ‘Occipital Mid L’
‘Cingulate Post L’ — ‘Occipital Mid R’
‘Cingulate Post L’ — ‘Vermis 3’
‘Cingulate Post L’ — ‘Vermis 4, 5’
‘Cingulate Post L’ — ‘Vermis 6’
‘Cingulate Post L’ — ‘Vermis 7’

‘Cuneus L’ — ‘Cuneus R’
‘Cuneus L’ — ‘Lingual L’
‘Cuneus L’ — ‘Lingual R’
‘Cuneus L’ — ‘Occipital Sup L’
‘Cuneus L’ — ‘Occipital Sup R’
‘Cuneus L’ — ‘Occipital Mid L’
‘Cuneus L’ — ‘Occipital Mid R’
‘Cuneus L’ — ‘Vermis 3’
‘Cuneus L’ — ‘Vermis 4, 5’
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Table A1. Cont.

Region 1 Region 2
‘Cuneus L’ — ‘Vermis 6’
‘Cuneus L’ — ‘Vermis 7’
‘Cuneus R’ — ‘Lingual L’
‘Cuneus R’ — ‘Lingual R’
‘Cuneus R’ — ‘Occipital Sup L’
‘Cuneus R’ — ‘Occipital Sup R’
‘Cuneus R’ — ‘Occipital Mid L’
‘Cuneus R’ — ‘Occipital Mid R’
‘Cuneus R’ — ‘Vermis 3’
‘Cuneus R’ — ‘Vermis 4, 5’
‘Cuneus R’ — ‘Vermis 6’
‘Cuneus R’ — ‘Vermis 7’
‘Lingual L’ — ‘Lingual R’
‘Lingual L’ — ‘Occipital Sup L’
‘Lingual L’ — ‘Occipital Sup R’
‘Lingual L’ — ‘Occipital Mid L’
‘Lingual L’ — ‘Occipital Mid R’
‘Lingual L’ — ‘Vermis 1, 2’
‘Lingual L’ — ‘Vermis 3’
‘Lingual L’ — ‘Vermis 4, 5’
‘Lingual L’ — ‘Vermis 7’
‘Lingual R’ — ‘Occipital Sup L’
‘Lingual R’ — ‘Occipital Sup R’
‘Lingual R’ — ‘Occipital Mid L’
‘Lingual R’ — ‘Occipital Mid R’
‘Lingual R’ — ‘Vermis 1, 2’
‘Lingual R’ — ‘Vermis 3’
‘Lingual R’ — ‘Vermis 4, 5’
‘Lingual R’ — ‘Vermis 6’
‘Lingual R’ — ‘Vermis 7’

‘Occipital Sup L’ — ‘Occipital Sup R’
‘Occipital Sup L’ — ‘Occipital Mid L’
‘Occipital Sup L’ — ‘Occipital Mid R’
‘Occipital Sup L’ — ‘Vermis 3’
‘Occipital Sup L’ — ‘Vermis 4, 5’
‘Occipital Sup L’ — ‘Vermis 6’
‘Occipital Sup L’ — ‘Vermis 7’
‘Occipital Sup R’ — ‘Occipital Mid L’
‘Occipital Sup R’ — ‘Occipital Mid R’
‘Occipital Sup R’ — ‘Vermis 3’
‘Occipital Sup R’ — ‘Vermis 4, 5’
‘Occipital Sup R’ — ‘Vermis 6’
‘Occipital Sup R’ — ‘Vermis 7’
‘Occipital Mid L’ — ‘Occipital Mid R’
‘Occipital Mid L’ — ‘Vermis 3’
‘Occipital Mid L’ — ‘Vermis 4, 5’
‘Occipital Mid L’ — ‘Vermis 6’
‘Occipital Mid L’ — ‘Vermis 7’
‘Occipital Mid R’ — ‘Vermis 3’
‘Occipital Mid R’ — ‘Vermis 4, 5’
‘Occipital Mid R’ — ‘Vermis 6’
‘Occipital Mid R’ — ‘Vermis 7’

‘Vermis 1 2’ — ‘Vermis 3’
‘Vermis 3’ — ‘Vermis 4, 5’
‘Vermis 3’ — ‘Vermis 6’
‘Vermis 3’ — ‘Vermis 7’

‘Vermis 4 5’ — ‘Vermis 6’
‘Vermis 4 5’ — ‘Vermis 7’
‘Vermis 6’ — ‘Vermis 7’
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Table A2. List of significant (found with the FDR method) between negative clusters nodes (See
Figure 3) for the node centrality measure.

Region 1 Region 2
‘Frontal Med Orb L’ — ‘Frontal Med Orb R’
‘Frontal Med Orb L’ — ‘Rectus L’
‘Frontal Med Orb L’ — ‘Rectus R’
‘Frontal Med Orb L’ — ‘OFCmed L’
‘Frontal Med Orb L’ — ‘OFCmed R’
‘Frontal Med Orb L’ — ‘OFCant L’
‘Frontal Med Orb L’ — ‘OFCant R’
‘Frontal Med Orb L’ — ‘Thal VA L’
‘Frontal Med Orb L’ — ‘Thal VA R’
‘Frontal Med Orb R’ — ‘Rectus L’
‘Frontal Med Orb R’ — ‘Rectus R’
‘Frontal Med Orb R’ — ‘OFCmed L’
‘Frontal Med Orb R’ — ‘OFCmed R’
‘Frontal Med Orb R’ — ‘OFCant L’
‘Frontal Med Orb R’ — ‘OFCant R’
‘Frontal Med Orb R’ — ‘Thal VA L’
‘Frontal Med Orb R’ — ‘Thal VA R’

‘Rectus L’ — ‘Rectus R’
‘Rectus L’ — ‘OFCmed L’
‘Rectus L’ — ‘OFCmed R’
‘Rectus L’ — ‘OFCant L’
‘Rectus L’ — ‘OFCant R’
‘Rectus L’ — ‘Thal VA L’
‘Rectus L’ — ‘Thal VA R’
‘Rectus L’ — ‘Thal VL L’
‘Rectus L’ — ‘Thal VL R’
‘Rectus R’ — ‘OFCmed L’
‘Rectus R’ — ‘OFCmed R’
‘Rectus R’ — ‘OFCant L’
‘Rectus R’ — ‘OFCant R’
‘Rectus R’ — ‘Thal VA L’
‘Rectus R’ — ‘Thal VA R’
‘Rectus R’ — ‘Thal VL L’
‘Rectus R’ — ‘Thal VL R’

‘OFCmed L’ — ‘OFCmed R’
‘OFCmed L’ — ‘OFCant L’
‘OFCmed L’ — ‘OFCant R’
‘OFCmed L’ — ‘Thal VA L’
‘OFCmed L’ — ‘Thal VA R’
‘OFCmed L’ — ‘Thal VL L’
‘OFCmed L’ — ‘Thal VL R’
‘OFCmed R’ — ‘OFCant L’
‘OFCmed R’ — ‘OFCant R’
‘OFCmed R’ — ‘Thal VA L’
‘OFCmed R’ — ‘Thal VA R’
‘OFCmed R’ — ‘Thal VL L’
‘OFCmed R’ — ‘Thal VL R’
‘OFCant L’ — ‘OFCant R’
‘OFCant L’ — ‘Thal VA L’
‘OFCant L’ — ‘Thal VA R’
‘OFCant L’ — ‘Thal VL R’
‘OFCant R’ — ‘Thal VA L’
‘OFCant R’ — ‘Thal VA R’
‘OFCant R’ — ‘Thal VL L’
‘Thal VA R’ — ‘Thal VL L’
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