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Functional magnetic resonance imaging recordings in the resting-state (RS) from the human

brain are characterized by spontaneous low-frequency fluctuations in the blood oxygenation

level dependent signal that reveal functional connectivity (FC) via their spatial synchronic-

ity. This RS study applied network analysis to compare FC between late-life depression

(LLD) patients and control subjects. Raw cross-correlation matrices (CM) for LLD were

characterized by higher FC. We analyzed the small-world (SW) and modular organization

of these networks consisting of 110 nodes each as well as the connectivity patterns of

individual nodes of the basal ganglia.Topological network measures showed no significant

differences between groups. The composition of top hubs was similar between LLD and

control subjects, however in the LLD group posterior medial-parietal regions were more

highly connected compared to controls. In LLD, a number of brain regions showed connec-

tions with more distant neighbors leading to an increase of the average Euclidean distance

between connected regions compared to controls. In addition, right caudate nucleus con-

nectivity was more diffuse in LLD. In summary, LLD was associated with overall increased

FC strength and changes in the average distance between connected nodes, but did not

lead to global changes in SW or modular organization.

Keywords: late-life depression, aging, resting-state, functional connectivity, default mode network, network

analysis, graph theory, functional magnetic resonance

INTRODUCTION

Late-life depression (LLD) is a common psychiatric disorder that
typically occurs after 60 years of age. Prevalence rates can range
from 1 to 4% for major and up to 13% for minor depres-
sion. Whereas volume reductions in cortical- and subcortical
regions can be found, it is unclear what the consequences for
cognitive functions may be. In this study, resting-state (RS) func-
tional magnetic resonance imaging (rs-fMRI) is used to observe
functional connectivity (FC) indicating correlated activity pat-
terns in different parts of the brain (Fox and Raichle, 2007;
Auer, 2008). In rs-fMRI, spontaneous low-frequency fluctua-
tions (SLFs, 0.01–0.1 Hz) occur in the blood oxygenation level
dependent (BOLD) signal in globally distributed brain areas,
which form functionally related networks, termed RS networks
(RSNs; Fox and Raichle, 2007; Auer, 2008; van den Heuvel
and Hulshoff Pol, 2010). Default Mode Network (DMN) SLFs
are negatively correlated with tasks requiring focused atten-
tion (Raichle et al., 2001; Greicius et al., 2003; Buckner et al.,
2008). The DMN includes the ventral medial prefrontal cor-
tex and the posterior cingulate cortex (PCC) also stretching to
the precuneus (PC) and intraparietal lobule. Primary sensory

or motor regions are absent from the DMN (Buckner et al.,
2008).

There are two main approaches to investigate FC: hypothesis-
driven and data-driven. Hypothesis-driven approaches involve the
selection of a seed and FC is investigated with either a pre-defined
brain region(s) or all other brain voxels by correlation of the
SLF in the seed region with the other brain regions. In contrast,
data-driven approaches are not based on any a priori hypothesis
about the importance of specific brain areas and look into patterns
emerging as a result of the analysis of the activity in the brain as
a whole. Compared to a previous hypothesis-driven LLD study
(Kenny et al., 2010), we here use a data-driven approach.

We apply network analysis to characterize whole brain changes
in FC. Network analysis provides a range of tools for studying brain
regions (treated as nodes of the network) and interactions (edges;
Sporns et al., 2004; Reijneveld et al., 2007; Stam and Reijneveld,
2007; Bullmore and Bassett, 2010; Kaiser, 2011).

Brain connectivity was found to show properties of Small-
World (SW) networks (Watts and Strogatz, 1998) for various
techniques (fMRI, EEG, tract tracing) and various species and
levels of organization (C. elegans, rat, cat, macaque, human). SW
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networks are characterized by a relatively small number of links
that must be passed to “travel” between a pair of nodes. This may
be expressed as the characteristic path length; L. SW networks also
display high values of interconnectedness of neighboring nodes
(high clustering coefficient, C). Therefore, SW properties in brain
networks ensure efficient processing while reducing the total cost
of wiring (Bassett and Bullmore, 2006; Kaiser and Hilgetag, 2006).

Brain networks also show a hierarchical modular organization
(Bassett et al., 2010) and contain highly connected nodes or hubs
(Hagmann et al., 2008). Hubs are often critical for the structural
and functional integrity of a network. In many cases they play
a role of “bridges” between nodes and often between clusters,
thus assuring a low value of characteristic path length. For RS
FC, most hubs are part of the DMN; for example, the PC or pari-
etal and medial prefrontal cortex (Buckner et al., 2009). Hubs have
been characterized by a high number of long distance connections
(Achard et al., 2006) and a tendency toward an inverse relation-
ship between Euclidean distances (EDs) and fluctuation frequency
(Salvador et al., 2005). A number of diseases have an impact on
FC (Buckner et al., 2008; Bassett and Bullmore, 2009), including
Alzheimer’s disease (Supekar et al., 2008), schizophrenia (Liu et al.,
2008), and depression (Zhang et al., 2011). It has been proposed
that neurodegenerative diseases specifically target critical network
components, such as hubs and sets of hubs (Buckner et al., 2009;
Seeley et al., 2009); therefore, alterations in RSNs might be causes
rather than consequences of these disorders.

Depression can be categorized as either major or minor based
on duration, number of symptoms, and severity. Five of the core
symptoms must be present for at least 2 weeks for a diagnosis of
major depression to be fulfilled; one symptom must be depressed
mood or loss of interest/enjoyment in everyday activities (anhe-
donia). The symptoms must have a significant impact on occupa-
tional and/or social functioning in order for criteria to be fulfilled
(Meunier et al., 2009). LLD, typically occurring after 60 years of
age, can cause great suffering in the elderly and reduce their qual-
ity of life. LLD is frequently comorbid with physical illnesses,
for example it is common in patients recovering from myocar-
dial infarction (MI; American Psychiatric Association, 1994), and
when present can delay recovery and lengthen hospital stay. Com-
pared to other diseases, there are few studies on the relationship
between FC and LLD. Findings have varied with some reporting
increased connectivity (Kenny et al., 2010), others increased and
decreased connectivity (Yuan et al., 2008), and others decreased
only (Aizenstein et al., 2009).

In this study, we measured RS FC using a data-driven analysis
approach thus extending the findings from a previous hypothesis-
driven study that used a seed correlation analysis approach (Kenny
et al., 2010). Note that we selected a group of patients not display-
ing symptoms of depression at the time of the investigation since
our aim was to look at the traits rather than the state of the disease
(see also Materials and Methods and Discussion for more details
on this matter).

MATERIALS AND METHODS

PARTICIPANTS

This study involved 30 subjects: 14 with a history of major depres-
sion (LLD group) and 16 (age-matched) control individuals.

Patients were recruited from consecutive referrals to Newcastle
and Gateshead Old Age Psychiatry Services. All subjects were aged
65 years or older. Control participants were recruited by adver-
tisement; none of the control subjects had past or present history
of depression. A full neuropsychiatric assessment was conducted
including family history of depression, previous psychiatric his-
tory, medical history, and current medication. Current depression
severity was rated using the Montgomery–Åsberg Depression rat-
ing scale (MADRS; Montgomery and Asberg, 1979). Depressed
subjects were required to fulfill DSM-IV criteria for a life-time
diagnosis of major depressive episodes (American Psychiatric
Association, 1994). Patients were assessed by senior psychiatrists
in the NHS and then by a senior research psychiatrist (JR) who
applied DSM criteria. All psychiatrists were MRCPsych and fully
trained, equivalent of Board Certified in US. Comorbidity was
assessed by physical examination, including cardiovascular and
ECG, by Jonathan Richardson.

All subjects were also assessed on the Mini Mental State Exam-
ination (MMSE) to exclude the presence of dementia (Folstein
et al., 1975). For all participants, the following exclusion crite-
ria applied: dementia or MMSE < 24 (absence of dementia in
referred subjects was confirmed by AV), current use of a tricyclic
antidepressant, comorbid or previous drug or alcohol misuse, pre-
vious head injury, previous history of epilepsy, previous transient
ischemic attack (TIA), or stroke, a carotid bruit on physical exam-
ination, MI in the previous 3 months, a depressive episode in the
previous 3 months, or contraindication to MRI screening. The
study was approved by the Newcastle and North Tyneside Research
Ethics Committee and all subjects gave verbal and written consent.

Table 1 shows the clinical characteristics of the study sub-
jects. Groups were comparable for gender (χ2 = 1.2, df = 1), age,
and MMSE score. Mean MADRS score for LLD subjects was 7.5,
indicating that most had recovered from their episode of depres-
sion by the time of scanning. Mean age at onset of depression
was 49.8 years and the number of previous episodes of depres-
sion was 2.6. At the time of the study, four LLD subjects were
taking antidepressants (citalopram and lofepramine), two were
taking antipsychotics (flupenthixol and prochlorperazine), one

Table 1 | Demographic and neuropsychological data of controls and

late-life depression (LLD) patients.

Demographic/

neuropsychological data

Controls LLD p Value

N 16 14

Sex (M:F) 10:6 8:6 0.27a

Age (years) 75.8 ± 7.8 76.6 ± 7.7 0.77b

MMSE 28.9 ± 1.2 28.0 ± 1.9 0.27b

MADRS 7.5 ± 4.7

Age at onset of depression 49.8 ± 18.8

No. of previous episodes of depression 2.6 ± 2.1

Values expressed as mean ± SD. MADRS, Montgomery–Asberg depression rat-

ing scale; MMSE, mini mental state examination.

aThe p value was calculated using χ2 test.

bThe p values were calculated using the independent-samples t-test.
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was taking non-benzodiazepine hypnotic (zopiclone), and one an
antiepileptic drug (carbamazepine).

IMAGE ACQUISITION AND PRE-PROCESSING

Images were acquired using a 3 T scanner (Intera Achieva,
Philips Medical Systems, The Netherlands), with an eight-
channel head coil. Conventional T1-weighted three-dimensional
scans: magnetization-prepared rapid acquisition with gradi-
ent echo (MPRAGE) were collected for anatomical map-
ping. Sagittal slices were acquired of thickness = 1.2 mm, voxel
size = 1.15 mm × 1.15 mm, repetition time (TR) = 9.6 ms, echo
time (TE) = 4.6 ms, flip angle = 8˚, SENSE factor = 2.

Subjects were instructed to lie still in the scanner, to keep their
eyes closed but not to fall asleep while RS images were collected
using a gradient echo echo-planar imaging (GE-EPI) sequence
with the following parameters: TE = 40 ms, TR = 3000 ms, flip
angle 90˚, 25 contiguous axial slices of 6 mm thickness, field of view
(FOV) = 260 mm × 260 mm, in-plane resolution 2 mm × 2 mm.
A total of 128 volumes were collected per subject, with a total scan
time of 6.4 min. As previously shown, this number of volumes is
sufficient to obtain stable network features (van Wijk et al., 2010).

Images were pre-processed using FSL (Smith et al., 2004; Wool-
rich et al., 2009) to correct for subject motion (MCFLIRT; Jenk-
inson et al., 2002) and to extract the brain from non-neural tissue
(BET; Smith, 2002). We also applied spatial smoothing (5 mm
full width at half maximum) and high-pass temporal filtering
(cut-off = 125 s; FEAT, version 5.92). To account for age-related

anatomical changes, such as ventricular enlargement or gyri
shrinking, anatomical scans were transformed to standard space
and averaged to create a subject-specific template for registering
our functional imaging data.

Anatomical T1 images were segmented into gray matter, white
matter, and cerebrospinal fluid (CSF) using SPM5 (Wellcome
Department of Imaging Neuroscience Group,London,UK) imple-
mented in Matlab R2009a (Mathworks, Inc., Natick, MA, USA),
and total intracranial volume was calculated from the sum of the
three components. We did not find a significant difference in brain
volumes between controls and the LLD group using unpaired
two-sample t -test.

FUNCTIONAL CONNECTIVITY ANALYSIS WORKFLOW

All major steps of the workflow are summarized in Figure 1.
Parcellation was performed using FSL and was based on the
Harvard-Oxford Probabilistic MRI Atlas (HOA). This involved
extracting 48 cortical and seven subcortical regions (thalamus,
caudate, putamen, pallidum, amygdala, nucleus accumbens, and
hippocampus) from the respective parts of the atlas, thus totaling
in 110 brain regions in two hemispheres. Note, that network prop-
erties relate to the number of nodes in a network (Echtermeyer
et al., 2011) and we therefore chose 110 nodes to be comparable
with majority of previous whole brain networks studies based on
macroanatomical atlases; see for instance a recent paper indicating
similar results of FC analysis using three types of macroanatom-
ical atlases (Spoormaker et al., 2012). FLIRT was used to register

FIGURE 1 | Major steps of functional connectivity analysis. Parcellation of

the brain into areas based on the anatomical atlas and extraction of

demeaned time series BOLD signal from each area (A), construction of

correlation matrices (B) thresholding and binarization of correlation matrices;

generation of binary adjacency matrices (C) visualized in (D), analysis of

topology and microcircuit patterns (E). In the blue boxes are the names of

main software tools used at relevant stages. Section “Materials and

Methods” for further details.
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structural images to functional images, averaging over each ROI
for each volume, and demeaned time series for each area extracted.
Using custom scripts in Matlab (Release 2009a), data from each
individual were placed in one temporary matrix for each subject
(n × m; n = number of nodes = 110, m = number of scans = 128),
global signal removed (mean BOLD signal subtraction for all
nodes), and transformed into correlation matrix (CM) represent-
ing all 110 nodes. Self-correlations, across the diagonal of CM,
were disregarded.

NETWORK ANALYSIS

The raw CM represents weighted un-directed graphs. We observed
the average correlation between all pairs of nodes (cross-
correlation matrix). This procedure was applied to (a) the raw
CMs, (b) CMs with negative correlation values set to zero, and
(c) CMs with a percentage of top positive correlations remaining
and all other correlations set to zero. The latter CMs were used to
generate binary networks, setting all non-zero values to 1. For this,
the 20% of top correlations (Pearson r-values) were considered
as functionally connected nodes. Such thresholding led to equal
edge densities in all subjects, which is required for comparisons of
network topology. Using different edges densities, e.g., by using a
constant correlation value as threshold for all subjects, would oth-
erwise directly influence network features. In addition, we chose a
20% edge density to be in line with what would be expected from
the edge density of the underlying structural connectivity which
ranges from 10 to 30% (van Wijk et al., 2010). The 20% edge den-
sity led to an average correlation threshold of r = 0.28 which is
close to the threshold in an earlier study (Kaiser, 2011).

We calculated several topological features for the thresholded
binary networks (see Appendix or Achard et al., 2006; Bassett
and Bullmore, 2006 for more details): first, the characteristic path
length L, which is the average number of connections that have to
be crossed to go from one node to another on the shortest-possible
path. Second, the clustering coefficient C, that defines what pro-
portion of neighbors (nodes which are directly connected to a
node) are connected to each other. SW networks are characterized
by a clustering coefficient that is much higher than for a ran-
domly connected network while the characteristic path length is
still comparable to that of a random network (Kaiser, 2011). A
way to assess the extent of such a SW organization is the small-
worldness σ as defined by σ = C Lr/(C r L) where Lr and C r are
the characteristic path length and clustering coefficient of a ran-
dom benchmark network, respectively (Watts and Strogatz, 1998).
Third, we observed the modularity Q that determines the degree
to which a network is organized into distinct modules. In addi-
tion to topological changes, we also searched for changes in spatial
organization. The three-dimensional location of a node was given
by the centre of mass of a region’s coordinates in FSL. The ED
between connected nodes was used as an approximation of the
connection reach.

STATISTICAL ANALYSIS

Values for metrics of global FC are quoted as mean ± SD. Two-
sample t -tests were performed to check for statistical differences of
single measures between the two groups, with p < 0.05 thresholds
for significance of global measures and p < 0.01 for node-wise

analysis (corrected for multiple comparisons; number of nodes:
110). All correlations were tested with Pearson coefficient (r) and
with t -test (n − 2 degree of freedom; n = number of rows in a
correlation matrix) for significance. To correct for multiple com-
parisons in the case of node-wise analysis, we used non-parametric
permutation tests (Humphries and Gurney, 2008; 5,000 iterations)
with a False Discovery Rate (FDR) of 5% (implemented by Dr.
Cheol Han in a Matlab script). Analysis was performed using SPSS
(version 15.0.1) and Matlab.

RESULTS

GLOBAL NETWORK

Late-life depression showed a higher association at a global level
as measured by the cross-correlations r, averaged across all sub-
jects in each group (p = 0.037): rav = 0.006483 ± 0.010662 vs.
rav = 0.000411 ± 0.00482 for patients and controls, respectively.
There was no difference between groups after setting negative
correlations to zero.

Global network measures for binary networks (Lav, Cav, γ, λ,
σ, and Q) yielded very similar values for both groups (Table 2).
The values for average characteristic path length Lav were similar
for controls and LLD participants (2.20 ± 0.14 and 2.20 ± 0.19,
respectively), as was the value for average clustering coefficient
Cav (0.58 ± 0.05 in both groups). The values of L and C suggest
a SW architecture of the FC networks. This is confirmed by high
values of small-worldness σ (2.30 ± 0.07 and 2.27 ± 0.13, respec-
tively) and consistent with the ratio of path lengths γ (2.78 ± 0.25
and 2.80 ± 0.21) and of clustering coefficients λ (1.20 ± 0.08 and
1.23 ± 0.11) between FC and benchmark random networks with
the same number of nodes and edges. These findings indicate
that the LLD group preserved SW and modular characteristics
despite the mental changes caused by depression. Interestingly,
there was no correlation between clustering coefficient C and
modularity Q in LLD whereas these two measures of modular

Table 2 | Summary of global aggregate measures in the two groups

(means ± SD).

Controls LLD

Grand mean for row

cross-correlation

matrices

0.000411 ± 0.0048 0.00648 ± 0.011*

Grand mean for

thresholded

cross-correlation

matrices

0.454229 ± 0.05358 0.465225 ± 0.071135

Characteristic path

length (L)

2.20 ± 0.14 2.20 ± 0.19

Clustering

coefficient (CC)

0.58 ± 0.05 0.58 ± 0.05

γ 2.78 ± 0.25 2.80 ± 0.21

λ 1.20 ± 0.08 1.23 ± 0.11

Small-world index (σ) 2.30 ± 0.07 2.27 ± 0.13

Modularity (Q) 0.39 ± 0.04 0.37 ± 0.03

*Significantly higher (p < 0.05, t-test).
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organization strongly correlate with each other within controls
(r = 0.6; p < 0.05).

LOCAL REGIONS

Topological measures, when applied to each node separately, did
not yield significant inter-group differences (Li, Ci, σ, and k).
In contrast, mean EDs of neighbors changed for several nodes
(Figure 2). The average distance between connected nodes in LLD
patients was significantly higher than in the control group for 14
regions and significantly lower than in the control group for two
brain areas in the left hemisphere: Middle Temporal Gyrus, and
Supramarginal Gyrus (SG; all significant differences at 5% FDR).

Composition of the top 15 hubs (Table 3) did not yield
significant differences. In addition there was a great deal of
inter-individual variance in the two groups as far as composition
of this core is concerned. The hub that occurred most consistently

(60% in both groups) within the core was the posterior supra-
marginal gyrus (PSG). In controls the second most frequently
occurring hub was a frontal area: middle frontal gyrus (MFG),
whereas in LLD it was an anterior division of the SG (53%) coming
in at third position in frequency ranking (33%), slightly ahead of
the PCC PCC (27%), which was less frequent in controls (20%).
Therefore a tendency toward more medial-parietal areas as the
most frequent hubs in LLD was observed. This was in contrast to
controls in which frontal and temporal areas seemed to dominate.

LOCAL CIRCUITS

The caudate has been identified in earlier studies (Genovese et al.,
2002) as a crucial area involved in LLD, due to its known role
in emotion regulation. Analysis of connectivity of the right cau-
date in the present study between the groups demonstrated the
existence of 16 nodes which were specific for the LLD subjects

FIGURE 2 | Areas with significantly different average Euclidean distances

to its neighbors (inter-group differences), superimposed on the whole

brain connectivity projected onto one axial plane, averaged for all

subjects in each group (pale gray lines), FDR: 5% corrected. LLD-related

increases in black, decreases in red. R\L, right\left hemisphere; front, frontal;

G, gyrus; inf, inferior; occ, occipital; temp, temporal.
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Table 3 | List of 15 top hubs for controls and LLD group.

Controls LLD

Area name k Area name k

R-paracingulate G 38 R-paracingulate G 46

R-supramarginal G, posterior

division

37 L-supramarginal G, ant.

division

43

L-middle frontal G 36 L-paracingulate G 42

L-paracingulate G 36 L-central opercular C 42

R-lateral occipital C, superior

division

36 L-precentral G 41

L-cingulate G, ant. division 34 R-pariet. operculum 41

L-central opercular C 34 L-supramarginal G, posterior

division

39

R-angular G 33 L-cingulate G, ant. division 39

L-pariet. operculum 33 L-pariet. operculum 39

L-supramarginal G, posterior

division

32 R-lateral occipital C, superior

division

39

L-putamen 32 R-supramarginal G, posterior

division

38

R-frontal pole 32 R-angular G 38

R-juxtapositional lobule C

(formerly supplementary

motor C)

32 R-cingulate G, ant. division 38

R-cingulate G, ant. division 32 R-precuneus C 37

L-insular C 31 L-lateral occipital C, superior

division

36

L, left; R, right; k, degree centrality values; C, cortex; G, gyrus; ant., anterior;

pariet., parietal.

(Figure 3), importantly including the PCC and the PC, which are
elements of the DMN. While looking at frequencies of neighbors
of the right caudate nucleus (rCN) present in the two groups, six
areas occurred more frequently in controls and three were more
prevalent in LLD (z-score > 2 of pooled frequencies were con-
sidered as significantly different, see Figure 4). Despite variability
in frequencies of hub’s occurrences between groups, connections
with medial-parietal areas observed in the rCN tended to occur
more frequently in LLD patients (Figure 3).

EFFECT OF ANTIDEPRESSANT MEDICATIONS

A previous study (Anand et al., 2005b) reported an up-regulatory
effect of selective serotonin reuptake inhibitors (SSRI) such as ser-
traline on connectivity between the anterior cingulate and limbic
regions. To verify that our findings are not due to SSRI activity,
we compared the global strength of connectivity (based on CM)
and node-related average EDs for SSRI-takers (see Table 2) and
patients not taking these drugs. We found no significant differ-
ences for both sub-groups. Based on these analyses, differences
observed for controls vs. LLD group are unlikely to result from
SSRI intake, although due to the small SSRI subgroup we cannot
dismiss this effect entirely. Ideally, all depressed subjects would
be medication free but the associated ethical concerns with this
would be great.

DISCUSSION

In this study, we showed distinct differences in FC between LLD
subjects and similarly aged healthy controls. First, at the global
level, the average correlation strength is higher in LLD. Secondly,
spatial properties of individual nodes were altered in LLD: 16
nodes showed a significant difference for average spatial (Euclid-
ean) distance between connected nodes with 14 increased and two
reduced distances (Figure 2). Third: the core hubs for LLD com-
prised the medial PCC and anterior supramarginal gyrus (ASG),
whereas in controls the MFG was more common. Below we discuss
these three major points.

DEPRESSION: INCREASED OR DECREASED CONNECTIVITY?

Our analysis of strength of global association between nodes (of
raw CM) yielded higher values for LLD. This is in agreement
with a number of studies that have reported increased connectiv-
ity in depression. However, there have also been papers showing
decreased connectivity in this condition. One possible explanation
for this discrepancy might be significant methodological differ-
ences between studies. For example, some studies use model-free
approaches (Greicius et al., 2007; Veer et al., 2010) whereas others
use model-based approaches (Bluhm et al., 2009; Sheline et al.,
2010; Zhou et al., 2010). FC can either be determined in the RS
(Greicius et al., 2007; Bluhm et al., 2009; Sheline et al., 2010) or
while performing tasks (Aizenstein et al., 2009; Grimm et al., 2009;
Sheline et al., 2009). For studies with depression patients over
30 years of age, increased connectivity has generally been reported
(Greicius et al., 2007; Bluhm et al., 2009) with few studies reporting
decreased connectivity (e.g., Veer et al., 2010).

There are only few publications investigating FC in LLD (see
e.g., Yuan et al., 2008; Aizenstein et al., 2009). A study reported
decreased FC (Aizenstein et al., 2009) whereas the study by Zhang
et al. (2011) in subjects with a wide range of age reported both
increased (putamen, frontal, and parietal cortex) and decreased
(frontal, temporal, and parietal cortices) FC. A recent study
showed an increased global network integrity metrics based on
graph theory (increased efficiency; decreased characteristic path
length) and locally for a range of nodes (increased nodal central-
ity) in freshly diagnosed drug-naive patients (Zhang et al., 2011).
The findings from the current study are partially consistent with
reports of increased connectivity, at least as revealed at the level of
raw cross-correlation matrices.

At nodal level tendencies toward increased connectivity was
observed for all types of networks analyzed, but these differences
did not survive FDR correction. Noteworthy one of the areas with a
higher degree (number of neighbors) for binary graphs in LLD was
the right anterior cingulate (31.93 ± 6.76 vs. 25.44 ± 7.55, t -test
p = 0.018, uncorrected). In a previous study an increase of con-
nectivity was reported in subgenual cortex, which is a small part of
anterior cingulate (Greicius et al., 2007). Therefore it is tempting
to hypothesize that an observed tendency toward increase in the
number of connections for the anterior cingulate cortex was driven
by the subgenual cortex. Psychosurgical interventions specifically
target major projections and elements of the DMN such as ante-
rior cingulate cortical tracts connecting it to other structures. In
recent years, more refined methods include deep brain stimula-
tion for treatment-resistant forms of depression. Interestingly, the
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FIGURE 3 | Connections specific for the right caudate in LLD group. These

connections are superimposed on the whole brain connectivity (projected

onto one axial plane), averaged for all subjects in each group (pale gray lines).

The thickness of black lines is proportional to the frequency of occurrence of a

particular caudate connection in relation to the total number of connections in

each group. Depicted in red are core elements of the default mode network

(DMN). R\L, right\left hemisphere; front, frontal; G, gyrus; inf, inferior; occ,

occipital; blue oval depicts a cluster of closely located structures of the

primary visual cortex, consisting of bilateral cuneal, and supracalcarine

cortices as well as left lingual and intracalcarine cortices.

subgenual cingulate cortex, one of the regions targeted by this tech-
nique for depression symptoms relief (Mayberg et al., 2005) was
also found to be characterized by an increased FC in depression
patients (Greicius et al., 2007).

LATE-LIFE DEPRESSION: INCREASE OF CORRELATION LENGTH

This is the first study to report increased average ED between many
nodes in LLD (Figure 2). The increases in geometrical distances of
average connections in LLD suggest the prevalence of long connec-
tions implying more intense communications between large and
widely distributed components of the brain networks such as the

DMN. Indeed, a recent study (Zhang et al., 2011) suggested that
diminished average L in major depression is linked to an increased
number of long-range connections. In addition, elements of the
DMN were characterized by higher centrality metrics. An over-
all increase in long distance connections (observed in this study)
could be explained by an up-regulation of DMN activity, as areas
displaying higher ED values were core components of the poste-
rior part of the DMN. Amongst the areas with up-regulated mean
ED is the right caudate. This region also showed a more diffuse
pattern of connectivity in a previous seed-based analysis of the
same data (Sheline et al., 2009). The observed rise in ED may be
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FIGURE 4 | Areas with significantly different frequencies of

right caudate connections between the groups (z-score > 2)

superimposed on the whole brain connectivity (projected

onto one axial plane), averaged for all subjects in each group

(pale gray lines). LLD-related increases in black, decreases in red

(note: only connections shared in the two groups were taken into

account), R\L, right\left hemisphere; G, gyrus; front, frontal; occ,

occipital.

regarded as another altered feature of connectivity related to the
caudate associated with LLD.

LLD AND CORE HUBS

The results of this study suggest that LLD spares general orga-
nization of FC, at least in relation to the aggregate topological
measures used. This is in contrast to neurodegenerative diseases
such as Alzheimer’s disease that show higher characteristic path
lengths in FC and decrease in small-worldness properties (de Haan
et al., 2009). In general, many neurodegenerative disorders seem
to target specific elements of the brain that are considered to be

critical parts of its topology (Buckner et al., 2009). We therefore
specifically investigated the connectivity pattern and structure of
the 15 top hubs (Table 3). Changes in composition of the core
of hubs were observed, with LLD individuals having a higher fre-
quency of medial PCC and one parietal structure ASG, whereas
controls had a higher frequency in the MFG. Within the set of
core hubs, a similar pattern was also determined by Kenny et al.
(2010). PCC is a crucial component of the DMN and is thought
to play a role in interpreting other people’s feelings and envisag-
ing the future (Buckner et al., 2008). Importantly, it is part of the
limbic system and disturbances in its connectivity, especially with
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the frontal cortex, were related to psychiatric diseases including
depression and schizophrenia (Buckner et al., 2008; Johnson et al.,
2009). In line with connectivity abnormalities, a lower inhibi-
tion of DMN activity was shown in attention-demanding tasks
in relation to depression (Anand et al., 2005a; Greicius et al.,
2007; Auer, 2008; Buckner et al., 2008). Importantly a recent paper
more specifically pointed to the significance of over-activity of the
posterior medio-parietal complex comprising the PCC in major
depression (Sheline et al., 2009). The role of SG in LLD is more dif-
ficult to interpret, however this structure lies in close proximity to
parietal components of the DMN. The study by Buckner and co-
workers identified SG as one of the critical cortical hubs, similarly
in a DTI (Buckner et al., 2009), and morphometric connectivity
study (Gong et al., 2009). Importantly, the authors also noted an
overlap of the network comprising SG with a network containing
PCC/PC (core constituents of the DMN) (Buckner et al., 2009).

EXPERIMENTAL GROUP COMPOSITION AND LIMITATIONS OF THE

STUDY

The first possible concern about this study is the definition and
composition of the patient group. Although this group was char-
acterized by a spread in clinical characteristics (e.g., age of onset
and number of depression episodes) the patients shared the fea-
tures which were in the centre of our attention: the occurrence of
depression in later life, rather than late-onset depression. Despite
the variance in age of onset, all patients had suffered an initial
episode of depression followed by remission with then at least
another one episode in later life. Another point is that they were
not depressed at the time the study was performed enabling us
to look at patients state rather than trait. Therefore these findings
may reflect features which are either a consequence of the previ-
ous disease or are constituent part of the brain organization in
subjects vulnerable to depression. There is another possible con-
cern. Although subjects were not currently depressed we did not
include a specific measure of severity of anxiety symptoms and
it is therefore possible that some of the changes in connectivity
we identified reflected comorbid anxiety symptoms. Last but not
least: there were medications taken by a part of patient group. Ide-
ally, all depressed subjects would be medication free: however for a
study looking for a long term effects of a disease, it is very difficult
to recruit a sufficiently large group of patients completely free of
medications. In addition we addressed a possible effect of SSRIs
and found no significant impact on our findings.

It should be stressed that there are several potential confounds
to the RS signal such as, for example, physiological noise (both
respiratory and cardiac related). Over the last decade various
approaches to remove potential noise have been assessed, but
this still remains a key area of investigation (for reviews: Birn,
2012; Snyder and Raichle, 2012). In this study, we carried out

high-pass temporal filtering and global signal removal to account
for potential global noise in our data. More recently, other studies
have regressed white matter and CSF signal and included motion
parameters in their analysis. These methods are receiving growing
attention and are being used (see e.g., Liao et al., 2010; Zuo et al.,
2012) in addition to the methods that we used (e.g., Lynall et al.,
2010; Sanz-Arigita et al., 2010).

In addition recent studies have applied corrections to the
extracted BOLD signal to account for potential effects caused by
brain atrophy (see e.g., Binnewijzend et al., 2012;Voets et al., 2012).
Although atrophy is a potential confound, we did not observe
significant differences in the brain volume between the groups,
therefore we conclude that levels of atrophy might not be a fac-
tor that could explain FC differences between LLD patients and
controls.

We believe that despite these limitations the study gives a
valuable insight into the characteristics of the state of the brain
affected by a relatively long history of a mental disease. It pro-
vides new information and/or corroborating previous findings or
suggestions.

CONCLUSION

This is the first FC study showing that in LLD specific brain
areas are characterized by higher correlation lengths (EDs between
nodes with correlated activity). In line with the above notion, the
average functional correlation strength is higher in LLD. In con-
trast, clustering coefficient, characteristic path length, and mod-
ularity in tresholded binary networks were unaffected in LLD.
In LLD, connectivity with the caudate nucleus (right) showed a
more diffuse pattern and linked closer to the core elements of the
DMN. In conclusion, this study reports some interesting findings
of altered connectivity in LLD and highlights the potential use of
RS FC in characterizing LLD.
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APPENDIX

METHODS

Characteristic path length L

The shortest path metric may be applied to characterize the whole
network or single nodes (brain regions) within it (Watts and Stro-
gatz, 1998). The shortest path is defined as a path connecting two
non-identical nodes i and j passing through a minimal number of
edges. This number of edges is the length of the path. The aver-
age shortest path (characteristic path length, L) is defined as the
sum of all shortest path lengths within the network divided by the
number of all possible pathways between non-identical nodes in
the graph (Eq. 1):

L =
1

N × (N − 1)

n∑

i=l

n∑

j=l

lij ; i 6= j (A1)

N – total number of nodes in the network
lij – the shortest path between nodes i and j

for an average L:

Lav =

n∑
i=1

Li

N
(A1a)

In this study, Floyd’s algorithm was used (Floyd, 1962) to
calculate L.

Clustering coefficient C

The clustering coefficient indicates how well neighbors of a node
are connected (Watts and Strogatz, 1998). It specifies the propor-
tion of edges within the neighborhood of a node i to the potential
maximum number of edges between neighbors.

For a single node i the following formula was applied (Eq. 2)

Ci =
Nc

(N − 1) × N
(A2)

Ci – clustering coefficient of node i

N – number of neighbors of node i

N c – number of existing connections within the neighborhood
of node i

The average clustering coefficient was subsequently calculated
using the local clustering coefficient of each individual node,
according to Eq. 3:

Cav =

N∑
i=1

i

N
(A3)

Cav – average clustering coefficient
Ci – clustering coefficient of each node in the graph
N – number of nodes in the network

Small-world index (σ)

The value of small-worldness is defined from values of L and CC
comparing a tested network against a random benchmark network
(having the same number of nodes and edges; Watts and Strogatz,

Table A1 | List of brain regions analyzed.

Abbreviation Brain region

FP Frontal pole

IC Insular cortex

SFG Superior frontal gyrus

MFG Medial frontal gyrus

IFG.pt Inferior frontal gyrus, pars trigonum

PIFG.po Inferior frontal gyrus, pars orbitale

PG Precentral gyrus

TP Temporal pole

STG.ad Superior temporal gyrus, anterior division

STG.pd Superior temporal gyrus, posterior division

AMTG Medial temporal gyrus, anterior division

PMTG Medial temporal gyrus, posterior division

MTG.top Medial temporal gyrus, temperooccipital part

AITG Inferior temporal gyrus, anterior division

TG Temporal gyrus

ITG temp occ Inferior temporal gyrus, temporal occipital part

PostcG Postcentral gyrus

SPL Superior parietal lobule

SGA Supramarginal gyrus (SG), anterior division

PSG Supramarginal gyrus, posterior division

AG Angular gyrus

SLOC Lateral orbital cortex, superior division

ILOC Lateral orbital cortex, inferior division

ICC Inferior calcarine cortex

FMC Fronto medial cortex

SMC Supplementary motor cortex

SCC Subcalcarine cortex

PCG Paracingulate gyrus

ACG Cingulate gyrus, anterior division

PCG Cingulate gyrus, posterior division

PC Precuneal cortex

CC Cuneal cortex

FOC Frontal orbital cortex

APG Parahippocampal gyrus, anterior division

PPG Parahippocampal gyrus, posterior division

LG Lingual gyrus

ATFC Temporal fusiform cortex, anterior division

PTFC. Temporal fusiform cortex, posterior division

TOFC Temporo occipital fusiform cortex

OFG Occipital fusiform cortex

FOpC Frontal operculum cortex

COC Central opercular cortex

POP Parietal operculum cortex

PP Planum polare

HG Heschl’s gyrus

PT Planum temporale

SCC Supracalcarine cortex

OP Occipital pole

Thal Thalamus

NC Nucleus caudatus

Put Putamen

Pal Pallidum

(Continued)
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Table A1 | Continued.

Abbreviation Brain region

Amy Amygdala

Acc Nucleus accumbens

Hipp Hippocampus

1998). The small-world index (σ; Humphries and Gurney, 2008)
was then calculated according to Eq. 4:

σ =
Ct × Lr

Cr × Lt
(A4)

C t – average clustering coefficient for a tested network
C r – average clustering coefficient for a benchmark random

network (result of averaging this metrics for six instances of a
benchmark random network)

Lt – average shortest path length for a tested network
Lr – average shortest path length for a random network (result

of averaging this metrics for six instances of a benchmark random
network)

Formula (4) is an equivalent of the following expression:

σ = γ/λ (A5)

where:

γ = Ct /Crλ = Lt /Lr (A6)

for networks with SW properties γ is typically above 2 and λ∼ 1
(Humphries et al., 2006).

Measures for six instances of the random benchmark network
were averaged for each subject. The same values of random bench-
mark network as for the whole network were used for node-wise
analysis.

Modularity (Q)

Modules may be defined as communities of nodes within a graph
which are more densely connected to each other than to the rest
of the network (Clauset et al., 2004).

To estimate modular organization of networks, a fast modu-
larity maximization algorithm was applied (Clauset et al., 2004).
Adjacency matrix representations of FC networks were converted
into their incidence versions using a Java programme employing
the JMatIO library (Gradkowski; http://www.mathworks.co.uk/
matlabcentral/fileexchange/10759) which were then input to a fast
modularity algorithm (http://www.cs.unm.edu/~aaron/research/
fastmodularity.htm) to calculate modularity, Q.

Maximal modularity Q was treated as the modularity for each
network. Modularity (Q) is a reflection of the natural segregation
within a network (Newman, 2004) and can be a valuable tool in
identifying the functional blocks within. Given two parcellations
into distinct modules for the same network, the parcellation with
the higher value of Q would be preferred. Note that Q does not
include information about how many modules exist or about their
size or overlap.

DISCUSSION

Variability in sub-circuit properties

In contrast to aggregate topology metrics, all values for microcir-
cuits (the top 15 hubs and BG) were characterized by remarkable
inter-individual variability. This seems to reflect a general fea-
ture of RS FC. Honey et al. (2009) looked into this problem
and found a poor correlation (with r ranging from 0.4 to 0.6)
not only between individuals but also within the same subjects
when scanned on two different sessions. This variability may be
due to the fact that although there is a common denominator
to the brain activity in RS, there are also a plethora of differ-
ences. A likely cause is that subjects may engage in a variety of
types of mental activity during a RS study. In fact, in the light of
Buckner et al. (2009), RS may be seen as an umbrella term cover-
ing different types of internal cognitive processes, such as theory
of mind, autobiographical memory, planning, and others. There
are also a number of methodological issues that probably con-
tribute to the observed variability. FC may be determined using
many approaches. The most popular of them (also used in this
study) is based on generating thresholded, binary cross-correlation
matrices (un-directed, unweighted graphs). There are also other
means of representing functional brain networks, including: par-
tial correlation, mutual information, or synchronization likeli-
hood (summarized in Bullmore and Bassett, 2010). In addition,
pre-processing techniques, such as filtering and treatment of the
global signal, may also play an important role (Fox and Raichle,
2007; Weissenbacher et al., 2009). Although in the term FC, the
word connectivity is used, we should bear in mind that it deals
with merely temporal coherence in BOLD between different, dis-
tributed brain areas. This coherence in some cases does not reflect
the existence of direct activation of one by the other (Honey
et al., 2009) and should therefore not be confused with effective
connectivity (Sporns et al., 2004). In fact there may be different
connectivity patterns resulting in coherence in BOLD detected
for a pair of nodes. Major possible causes include (a) inter-
mediate nodes, resulting in coherence between two nodes, even
though there is no direct connection between them and common
input, such as activity of neuromodulatory ganglia activating dis-
tributed regions of the neocortex, e.g., cholinergic transmission
originating in BG or other “synchronizers” such as vast neuro-
modulatory transmission from brainstem or unspecific thalamic
nuclei.

Due to these and other reasons, structural connectiv-
ity is considered to yield results in greater agreement
with anatomy (Iturria-Medina et al., 2007). Therefore some
authors postulate using structural connectivity as guid-
ance for FC (Rykhlevskaia et al., 2008; Honey et al.,
2009).

In a broad sense RS FC has been proven to be a useful tool to
determine changes in global brain organization in relation to dis-
eases such as AD or other dementias, affecting critical components,
and global properties of brain networks (Stam et al., 2007; Buckner
et al., 2009; de Haan et al., 2009; Seeley et al., 2009). In other brain
impairments, for example depression, this method may have short-
comings mostly due to unaffected or weakly affected large-scale
organization of FC.
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